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Abstract

Generative text-to-image models enable us to synthesize unlimited amounts of
images in a controllable manner, spurring many recent efforts to train vision models
with synthetic data. However, every synthetic image ultimately originates from the
upstream data used to train the generator. Does the intermediate generator provide
additional information over directly training on relevant parts of the upstream data?
Grounding this question in the setting of image classification, we compare fine-
tuning on task-relevant, targeted synthetic data generated by Stable Diffusion—a
generative model trained on the LAION-2B dataset—against finetuning on targeted
real images retrieved directly from LAION-2B. We show that while synthetic data
can benefit some downstream tasks, it is universally matched or outperformed
by real data from the simple retrieval baseline. Our analysis suggests that this
underperformance is partially due to generator artifacts and inaccurate task-relevant
visual details in the synthetic images. Overall, we argue that targeted retrieval
is a critical baseline to consider when training with synthetic data—a baseline
that current methods do not yet surpass. We release code, data, and models at
https://github.com/scottgeng00/unmet-promise.

1 Introduction

The success of modern machine learning systems fundamentally relies on the quantity [33, 10, 28,
57, 51, 65], quality [20, 72, 45, 44, 36], and distribution [17, 22, 62, 70, 9] of the data they are
trained on. However, acquiring large amounts of quality data remains challenging, due to the sheer
cost of data collection and annotation. As demand for training data continues to rise, the field is
actively exploring approaches to automatically curate data at scale [20, 2, 18]. One burgeoning
approach is to source synthetic training data from conditional generative models. Generative models
enable data to be tailored to specific requirements and generated at scale, presenting a promising
alternative to the challenges of real data curation. Recent work highlights this potential: for example,
in natural language processing (NLP), researchers prompt strong proprietary language models to
cheaply synthesize large-scale datasets for instruction tuning [68, 29, 61].

Analogously, in computer vision—the focus of our research—many recent works train models on
synthetic images from modern text-to-image generators, aiming to achieve state-of-the-art visual
recognition performance [56, 63, 3, 23, 24]. For example, SynCLR [62] cleverly prompts Stable
Diffusion for synthetic images tailored to pre-specified downstream image recognition domains;
they find that a CLIP-like model trained from scratch on the resulting targeted synthetic images can
outperform CLIP trained on LAION-2B, a significantly larger untargeted dataset of real images. This
result is quite surprising. Stable Diffusion is also trained on LAION-2B, so by the data processing
inequality, the synthetic images it generates cannot contain any additional information about LAION-
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2B over the original real LAION-2B images. Yet, training on these derivative synthetic images
appears to outperform training directly on LAION-2B. How do we make sense of these additional
gains? Does the generative model truly add useful information on top of its pretraining data?

In this paper, we argue that the performance gained from training on generated synthetic images needs
to be contextualized against a critical baseline often missing in prior work: training on real images
subselected from the generative model’s pretraining data. In particular, prior work has often compared
task-targeted synthetic images to general, untargeted real images (e.g., full LAION-2B), thereby
entangling the effects of training on synthetic versus real images with the effects of targeted versus
general data collection. However, these variables are not intrinsically conflated. Any generative
model we use to synthesize images fundamentally derives from its upstream training data. Instead of
using that upstream data to train an intermediate generative model and synthesize targeted synthetic
images, we can alternatively seek to directly identify targeted real images from the upstream source
through retrieval (Figure 1). By comparing synthetic training data against this retrieval baseline, we
isolate the value added by the generative model.

We formalize our study under the ubiquitous problem of task adaptation, where we seek to curate task-
targeted images to finetune a pretrained vision model. We empirically compare training on targeted
synthetic images generated from Stable Diffusion 1.5—a text-to-image model trained on the upstream
LAION-2B dataset—against training on targeted real images retrieved from LAION-2B itself. We
perform hundreds of experiment runs across an order of magnitude of data scales on five visual
recognition tasks (ImageNet [14], Describable Textures (DTD) [12], FGVC-Aircraft [41], Stanford-
Cars [35], and Oxford Flowers102 [46]) where training on synthetic data has shown promise [62, 23].

Together, we find that training on targeted real data retrieved from a generative model’s upstream
training dataset outperforms training on synthetic data from the generative model. For example,
while training on targeted synthetic images can improve downstream accuracy by up to 7.1% (absolute)
on its best-case benchmark (FGVC-Aircraft), training on targeted real images helps even further,
boosting accuracy by a massive 17.7%. On other benchmarks, such as ImageNet, we find that training
on synthetic images can sometimes hurt performance even when training on real data improves it.
We further show that these findings hold across several different versions of Stable Diffusion, as
well as when we train on a mix of synthetic and real data. Our analysis suggests that the consistent
underperformance of models trained on synthetic images is partially due to low-level generator
artifacts in the synthetic images (e.g., blurs), and partially because synthetic images may distort
high-level class-specific visual details that real images preserve.

Overall, we conclude that retrieval is a critical baseline to consider when evaluating the true added
utility of generated synthetic training data. Our goal is not to make normative claims about whether
synthetic data will ever surpass this standard, but to contribute a simple baseline to aim for, and
a clean set of experiments to explicitly measure progress towards surpassing it. For instance, by
conceptualizing retrieval from a generator’s training data as a strong alternative to synthesizing data,
a natural future direction for improving synthetic training data is to synthesize image compositions
that are explicitly absent from the generator’s upstream training set. Images generated in this manner
may offer unique value beyond what can be retrieved from the training data. Finally, in settings where
the upstream dataset of a generator is unavailable altogether (e.g., due to privacy concerns, due to
proprietary data, or due to download bandwidth restrictions), the retrieval baseline is unrealizable by
assumption; synthetic data therefore retains strong utility for distilling knowledge from generative



models and for privacy preservation. We release all code, models, and over 1TB of generated images
to guide future work (https://github.com/scottgeng00/unmet-promise).

2 Related Work

Learning from synthetic data. Synthetic data has been widely explored in the context of many
machine learning problems [68, 29, 25, 32, 61, 58, 5, 40]. For example, in NLP, synthetic data
generated from strong large language models [47, 11] has been used to distill instruction-following
behavior [68] and task-specific knowledge [30] into smaller models. In computer vision, prior
works have sought to use synthetic data to improve the state-of-the-art across a breadth of visual
tasks, such as object detection [48, 31], semantic segmentation [54, 52, 8], and optical flow [15].
Traditionally, this synthetic training data has been sourced from expert-crafted simulation and
rendering pipelines [49, 15, 52, 8, 54, 31]. Recent advances in text-to-image synthesis via diffusion
models [59, 27, 53] are changing this paradigm, inspiring a new wave of works that seek to train
visual models on synthetic data algorithmically sampled from large-scale generative models [24,
63, 56, 23, 74, 37]. Recent works have also sought to algorithmically sample synthetic data from
diffusion models trained on data-scarce domains [55]. This structural shift in the source of synthetic
images from expert-supervised programmatic simulation to a learned generator that itself derives
supervision from upstream data raises a critical question: does the intermediate step of training a
generator and sampling synthetic data provide any added useful information over simply training
on relevant parts of the upstream data directly? Our work formalizes and empirically grounds this
question, contributing experiments and baselines to rigorously measure the benefits of training on
modern data-derived synthetic data.

Adapting pretrained vision models. Large-scale pretrained image models such as CLIP [50, 10]
offer transferable visual features that benefit a wide range of downstream vision tasks. It is now
common practice to use pretrained models as a starting point when deploying downstream task-
specific models instead of training them from scratch [69, 66]. From an algorithmic perspective,
many methods have been proposed to adapt CLIP models to downstream tasks, each with varying
trade-offs [71, 73, 42, 21, 4, 69]. We choose to study simple full-finetuning, centering our work
on the data we adapt on as opposed to the algorithm. In particular, the quality and relevance of
adaptation data has a crucial impact on downstream task performance; distribution shifts at inference
time can significantly hurt performance [34]. Acquiring task-targeted data thus remains an active area
of research [39, 67, 25]. Most related to our work is [39, 67], who also employ retrieval as a technique
for collecting task targeted-data. Our work builds upon these methods to construct baselines for
systematically measuring the true added utility of model-generated synthetic training images.

Retrieval as a baseline for synthetic data. Recent studies [74, 7] similarly use retrieval from
generative model training data as a baseline for synthetic training images. For example, [74] adapts
Stable Diffusion with real medical images and then generates synthetic medical images to train
a ResNet from scratch; the resulting ResNet outperforms a ResNet trained on LAION-retrieved
medical images. Consistent with our work, [74, 7] find that in the low-data regime of general image
recognition tasks (e.g., subsampled ImageNet-1K, STL-10), augmenting real datasets with LAION-
retrieved images outperforms augmenting with Stable Diffusion generated images when training
ResNets from scratch. [7] further finds that this performance gap in the low-data regime persists
across many synthetic image generation methods, including when they finetune Stable Diffusion with
task-specific real data. In the medium-data regime (e.g. full ImageNet-1k), [7] finds augmenting with
synthetic data matches but does not outperform augmenting with retrieved data. Our work generalizes
the shared motivation of measuring the utility of synthetic training images to the modern data-rich
regime and a wide range of visual classification tasks.

3 Problem Setting and Method

Given a large dataset D of general real image-text pairs and a downstream visual classification task
specified as a set of text class names C, we aim to algorithmically curate a targeted adaptation
dataset D¢ of images x; and one-hot class labels y; to finetune and improve a pretrained vision
model’s performance on the downstream task. We compare two high-level approaches for sourcing
this targeted data, shown in Figure 1: (1) we retrieve targeted real images directly from D, forming a

targeted retrieved dataset Dgemeved) C D. Alternatively, (2) we generate targeted synthetic images
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by prompting an intermediate text-to-image generative model trained on D, forming a targeted
synthetic dataset Désymhem). We detail each approach below.

3.1 Sourcing data by generating synthetic images

We follow SynCLR [62], a representative method for curating synthetic training data from off-the-
shelf text-to-image models. Given the set of visual class names C, we first synthesize a large corpus
of corresponding image captions by prompting a large language model (details in Appendix C.1).
For example, if the class name ¢ € C is “rose,” then a generated caption might be “a close-up of a
pink rose in bloom.” We then use these captions as input for a text-to-image generator G trained on
the upstream data D, yielding a large set of synthesized images ;. Each image is assigned a class

label y; based on the class name c used to synthesize its caption. These synthetic images and labels

{(&,y:)} form our curated dataset DS,

3.2 Sourcing data by retrieving real images

Rather than querying a generator trained on an upstream dataset D, we can directly train on parts
of D itself by retrieving relevant data. D consists of image-text pairs (z;, t;). To retrieve relevant
pairs, we consider two strategies. We additionally deduplicate all retrieved images with respect to our
evaluation datasets following [20] to minimize test set leakage. We apply NSFW filtering [57].

(retrieved)

Strategy 1: hard substring matching. Inspired by [67], we retrieve the set D, of all images
x; whose corresponding caption ¢; contains at least one target class name ¢ € C as a substring:

Dgemeved) = {(xs,yi) : (z;,t;) € D such that some class ¢ € C is a substring of ¢; } .

Here, label y; is assigned based on the class ¢ contained in ¢;. If an image-text pair (x;,t;) € D has
text ¢; containing multiple class names ¢, ¢’ € C, then we simply retrieve 2;; multiple times and assign
each instance a different label, once for each unique matched class name.

Strategy 2: semantic £-NN retrieval. Hard substring matching is simple and effective when the
target visual concepts ¢ € C are concrete entities that are likely to be described in text captions (e.g.,
c = “fire lily”), but may be less effective when the concepts are abstract (e.g., c = “lined texture”).
Thus, we also consider semantic (soft) retrieval via CLIP image-text embedding space similarity”.
We convert each target class name ¢ € C into a set of natural language search queries (). based
on the templates from the original CLIP paper [50]. For each query g. € Q., we use approximate
k-NN search [16] to retrieve the set S, of k-nearest image-text pairs (z;,t;) € D by CLIP similarity
between the query q. and either the image x; or the text t;:

Sq. = {arg top-k CLIP(x;, q.) } U {arg top-k CLIP(¢;, ;) }
(z4,ti)ED (zi,ti)ED

We assign each image-text pair (z;,t;) € S,, a class label y; based on the class name in query g..
We form the targeted dataset DSV

Déremeved) = U U {(zi,y:): (@i, ti,yi) € Sq.}-

c€C qe€Q.

by unioning over all queries g. € Q). and all classes ¢ € C:

3.3 Additional data filtering and postprocessing

Data filtering has been shown to improve training performance for both real and synthetic data and
is widely used [20, 24]. We filter both our synthetic and retrieved datasets following current best
filtering practices for synthetic image data [24]. Given a curated dataset D¢, we compute the CLIP
similarity of each z; € D¢ with text corresponding to its assigned label y; (e.g., “a photo of {class
name}”), constructed using the CLIP zero-shot classification templates [50]. When there are multiple
templates for a given class, we aggregate by taking the maximum similarity across templates. We

*We perform semantic retrieval using precomputed LAION-2B embeddings from OpenAl CLIP ViT-
L/14 [50], the same model Stable Diffusion uses to embed text prompts during generation.
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Figure 2: We adapt a pretrained CLIP image encoder ( ) to different downstream
image classification tasks, using either (a) targeted synthetic data (orange triangles) generated from
a Stable Diffusion model trained on LAION-2B or using (b) targeted real data (blue circles) directly
retrieved from LAION-2B. We measure performance via downstream zero-shot (ZS) and linear
probing (LP) accuracy, aggregating results over at least 3 seeds (error bars indicate £1 standard
deviation). Overall, while adapting CLIP with targeted synthetic data can sometimes improve
performance over an off-the-shelf model, synthetic data is universally outperformed or matched by
targeted real data. This gap persists even when we scale the sample size of the synthetic adaptation
dataset beyond the maximum amount of (finite) targeted real data considered (gray shaded regions).

keep the top 30% of images per class by aggregate similarity. Intuitively, filtering helps remove
generated and retrieved images with class-misaligned content. For example, an image labeled “dog”
but without any dogs present (i.e., due to retrieval or generation errors) would receive a lower CLIP
similarity score and likely be discarded. See Appendix C.2 for further discussion.

Our synthetic adaptation datasets D((:Symheﬁc) are class-balanced by construction (i.e., we uniformly

generate images for each class). We further postprocess the retrieved adaptation datasets Dgemeved) to

improve class balancing by manually fixing a global threshold M and truncating the dataset such that
each class label y; occurs at most M times.

4 Main Experiments

We seek to measure the utility of learning from model-generated synthetic images. Grounding this
question empirically, our experiments compare finetuning a pretrained CLIP model on (1) targeted
synthetic images Désymhe“c) to (2) finetuning on targeted retrieved real images Dgemeved).

Benchmarks. We focus on five downstream tasks where synthetic data has shown promise compared
to similar scale untargeted real data [62]. We select (a) ImageNet-1K [14] and Describable Textures
(DTD) [12] to evaluate recognition performance on broad categories and (b) FGVC-Aircraft [41],
StanfordCars [35], and Oxford Flowers102 [46] to evaluate performance in fine-grained settings. We
use standard pre-defined train, test, and validation splits when available, and otherwise randomly
subset the training set to create missing train-validation splits (details in Appendix D.2).

Finetuning data curation. For each downstream benchmark, we first curate an adaptation dataset
De (Section 3) by either (1) generating synthetic images with Stable Diffusion 1.5 [53], trained on the
LAION-2B dataset [57], or (2) retrieving real images directly from LAION-2B. We treat the choice
between our substring-based and semantic retrieval strategies as a hyperparameter, using downstream
validation set accuracy to determine the best choice for each benchmark. Hyperparameters for
retrieval are detailed in Appendix D.1.

Model adaptation and evaluation. We adapt a LAION-2B pretrained CLIP ViT-B/16 [10] image
encoder by finetuning on the curated adaptation dataset D¢ with a cross-entropy classification loss for



a pre-set number of epochs. To elucidate the scaling trends of synthetic and retrieved data, we finetune
across an order of magnitude of different adaptation dataset scales, subsampled from the full targeted
adaptation dataset Dc. We report zero-shot (ZS) and linear probing (LP) test set accuracy, using
the benchmark train set to train the LP head. For both LP and ZS evaluation, we use the validation
set to identify the best epoch and finetuning hyperparameters. For each data scale, we aggregate
accuracy across the results of at least three random seeds, and report the standard deviation due to
seed randomness. Please refer to Appendix D.3 for further evaluation details, and Appendix D.4 for
further training and hyperparameter details.

4.1 Main results: synthetic training data lags behind a baseline of retrieved real images

We present our main zero-shot and linear probing scaling results in Figure 2.

At equivalent data scales, finetuning with model-generated synthetic images can help, but is
universally matched or outperformed by finetuning directly with images from the generator’s
training data. Consistent with prior research [62], we find that training with targeted synthetic data
can improve an unadapted model. For example, on FGVC-Aircraft—the setting where previous works
have found strongest gains—finetuning with 139K Stable-Diffusion generated images improved
downstream linear probing accuracy by an average of 3.8 percentage points over an off-the-shelf
CLIP model (64.9% — 68.7%); on DTD, training with 110K synthetic images improves zero-shot
accuracy by 3.3 points (56.3% — 59.6%).

However, the gains from training on synthetic data are consistently matched or surpassed by training
on retrieved real data. For instance, on FGVC-Aircraft, finetuning with an equivalent 139K LAION-
2B retrieved images boosts performance by a massive 17.8 points (64.9% — 82.7%). Moreover,
adapting with retrieved data can improve performance even when synthetic data does not (e.g., on
ImageNet and Flowers102 zero-shot accuracy.) Finally, adapting with synthetic data can sometimes
even hurt performance (ImageNet, StanfordCars, Flowers102 zero-shot), while targeted retrieved data
improves or at least does not hurt performance across all settings considered. Given equal amounts of
targeted retrieved and synthetic data, retrieved data is the clear winner.

Synthetic data can sometimes decrease the gap with retrieved data given additional scale, but
remains behind. The amount of data we can retrieve is fundamentally limited by the finite upstream
data pool. For example, even after searching all 2 billion LAION-2B samples for images containing
an FGVC-Aircraft class name in the caption, substring-based retrieval returned only 139K targeted
images post-filtering. In contrast, it is straightforward to create ever-larger synthetic datasets by
simply generating more data.

Scaling the synthetic adaptation dataset size beyond the amount of retrieved data considered (illus-
trated in the gray-shaded regions of Figure 2), we find that increasing the amount of targeted synthetic
data does not always improve performance. For example, on DTD, synthetic data exhibits U-shaped
scaling, with performance positively scaling up to 110K synthetic training images, after which
performance declines. On ImageNet, Flowers102, and StanfordCars, increasing the synthetic dataset
size consistently hurts zero-shot accuracy and has minimal impact on linear probing performance.

On Aircraft, scaling helps; there is a log-linear relationship between the size of the synthetic adaptation
dataset and downstream linear probing accuracy (e.g., scaling from 139K — 250K synthetic images
improves linear probing accuracy from 68.7% — 70.7%). However, synthetic data still lags behind
retrieved data: matching the performance of a mere 15K retrieved aircraft images requires scaling
the synthetic dataset to 500K images, reflecting a ~33x difference in dataset size and required
finetuning compute. Naively extrapolating this ratio, matching the performance of the full 139K
retrieved adaptation dataset would require nearly SM synthetic images after top 30% filtering. We
note, however, that synthetic data is unlikely to truly scale infinitely, as synthetic data fundamentally
derives from the (finite) training set of our generative model. Still, the performance of synthetic data
is likely unsaturated at the 500K scale (i.e., accuracy is still trending up); due to compute limitations,
studying whether further scaling can outperform retrieved data is left for future work.

Synthetic data can improve a model’s task representation without significantly improving
the model’s task performance. Broadly speaking, zero-shot task accuracy measures a model’s
ability to directly solve the downstream task, whereas linear probing accuracy measures the quality
of the model’s learned task-relevant representation. We find that even when training on synthetic
data improves the model’s representation (i.e., downstream linear probing accuracy), it may not



significantly improve the model’s zero-shot accuracy. In contrast, when training on retrieved data
improves the model’s representation, zero-shot accuracy also exhibits positive scaling. For example,
CLIP adapted with either 15K retrieved images or S00K synthetic images both achieve a similar linear
probing accuracy (~ 72%), yet the model adapted with synthetic data achieves a much worse zero-
shot accuracy (28.9% versus 39.5%). We discuss possible reasons for this qualitative discrepancy in
model behavior in our analyses below (Section 5.1).

S Analysis

In this section, we explore two questions to better understand our main results. First, what factors
drive the underperformance of synthetic data? Second, do our findings hold under variations of our
experimental setup? We focus our analysis experiments on ImageNet, to understand general image
recognition performance, and FGVC-Aircraft, the sole benchmark where synthetic data exhibited
strong positive log-linear scaling. Additional analysis experiments are presented in Appendix B.

5.1 Why does synthetic data lag retrieved real data?

Qualitative visualizations. We visualize a random selection of images from our curated synthetic
and retrieved adaptation datasets in Figure 3. Compared to retrieved real images, we observe that the
synthetic images (1) contain low-level generator artifacts, and (2) differ in visual content distribution,
both in terms of semantic details and overall image composition. For example, although the synthetic
FGVC-Aircraft adaptation images (top two rows of Figure 3) are recognizable as airplanes, the
visual content often contains incorrect class-relevant semantic details: a correctly-depicted “Airbus
A320” should have one engine per wing and two sets of wheels at its rear, yet our synthetic images
often exhibit incorrect engine or wheel configurations. This qualitative discrepancy in visual detail
precision may partially explain why training on synthetic data does not improve task zero-shot
accuracy; synthetic images do not retain enough class-accurate details to directly teach the model
the downstream task. In contrast, training on synthetic images can improve linear probing accuracy,
because the synthetic images still broadly look like aircraft and thus may help align the model’s
representation to the downstream domain.

Test Set Image Retrieved Real Images Generated Synthetic Images

“Airbus A320”

“Flute”

“Tabby Cat”

Figure 3: We visualize retrieved real images and synthetic images from our targeted adaptation
datasets for FGVC-Aircraft (top two rows) and ImageNet-1K (bottom two rows), alongside ground
truth images (left column) for reference. Compared to retrieved images, synthetic images often (1)
contain generator artifacts (e.g., the blur on the edges of the “Cessna 172", the eyes and mouth of
the “Tabby Cat”) and also (2) distort class-relevant visual content, such as the engine configuration
of a true “Airbus A320” (i.e., exactly one engine per wing) and the entire visual appearance of a
“Flute”. We hypothesize that both factors contribute to synthetic training data’s underperformance
versus real training data.



Synthetically perturbing retrieved real images. To disentangle the effect of low-level generator
artifacts and visual content differences between synthetic and retrieved real images on downstream
model performance, we trained on “hybrid” images that have similar semantic visual content as our
retrieved real images but contain generator artifacts like our synthetic images. Following SDEdit [43],
we use Stable Diffusion to synthetically perturb our retrieved images to introduce model-specific
artifacts present in the synthetic images Stable Diffusion generates. Given a noise strength parameter
v € [0,1] and a retrieved image z9, SDEdit adds Gaussian noise to z according to timestep t = =y
of Stable Diffusion’s time-dependent forward process. We then denoise the noisy image using the
same reverse diffusion process as in text-to-image generation, yielding a perturbed image 2(?) that
looks semantically like xy while also containing Stable Diffusion-specific artifacts. Increasing v
increases the amount of Gaussian noise added to xg, thereby increasing the severity of visual artifacts
introduced in the resulting 2:() (see Appendix E.1 for further details). In pseudocode,

2 = StableDiffusion.denoise(StableDiffusion.add_noise(zo, y), 7).

Starting from the full targeted retrieved adaptation datasets Dgemeved) for FGVC-Aircraft and Ima-
geNet, we use SDEdit to introduce generator artifacts into the retrieved real images over a range of
values. We visualize the resulting perturbed images in Figure 4, and plot the results of training on
these perturbed images across v in Figure 5.

Retrieved Synthetically Perturbed Images
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Figure 4: We use Stable Diffusion to synthetically perturb real images according to a noise strength
parameter v € [0, 1], where larger -y increases the severity of generator-specific artifacts added by the
perturbation. When v > 0.6, the introduced artifacts can be strong enough to damage task-relevant
visual details for finegrained tasks like FGVC-Aircraft (e.g., the airplane’s engine and rear wheels).
For broad tasks like ImageNet, artifacts have a lesser impact on class-relevant details; the “Tabby
Cat” is recognizable as a cat even after perturbing with high .
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Figure 5: We finetune a pretrained CLIP model ( ) on retrieved real images that
are synthetically perturbed (green circles) with Stable Diffusion to introduce generator artifacts. The
perturbation strength is controlled by a parameter y € [0, 1] where larger v introduces stronger arti-
facts; within the gray-shaded region, the artifacts are strong enough to damage class-relevant details.
Our results suggest that generator artifacts do contribute to synthetic data’s underperformance—any
artifact level causes performance to drop below training on retrieved images (dashed blue line).
Moreover, differences in visual content between synthetic and retrieved images also matter; even with
relatively strong perturbations (v = 0.5), training on artifact-afflicted perturbed images that retain the
semantic content of retrieved images outperforms training on synthetic images (dashed orange line).



Our results suggest three takeaways. First, generator artifacts indeed contribute to the underperfor-
mance of synthetic training images, especially for fine-grained classification tasks. On FGVC-Aircraft,
any amount of added generator artifacts drops downstream accuracy. Second, the impact of artifacts is
relatively lower for broad classification domains such as ImageNet, where downstream performance
is not significantly impacted until we perturb with a relatively strong noise strength of v = 0.5.
Finally, visual content differences between synthetic and retrieved images also play a key role in
the performance gap between synthetic and retrieved training data. When we perturb images with
strength v = 0.5, the resulting images are heavily afflicted with artifacts, but still retain the important
class-relevant details of retrieved real images, such as correct airplane engine configurations. Training
on v = 0.5 images significantly outperforms training on synthetic images. Intriguingly, training on
aircraft images perturbed beyond the point where class-relevant visual details are damaged (v > 0.6)
still outperforms synthetic data; we speculate that this is because these heavily perturbed images still
retain the overall image composition of retrieved images.

5.2 Synthesizing data via another generative model

For our main scaling experiments, we generate synthetic image datasets using Stable Diffusion 1.5 to
maintain consistency with prior work [62, 23]. To what degree does our choice of generative model
impact our findings? At the time of our study, Stable Diffusion 1.x models are the only modern text-
to-image models with open source training data available to retrieve from. Therefore, we focus our
study here on Stable Diffusion (SD) versions 1.1, 1.3, and 1.5. Starting from SD v1.1, which is trained
on the full LAION-2B dataset, SD v1.3 and v1.5 are derived by further finetuning on high-quality
subsets of LAION-2B. This additional finetuning improves image generation fidelity [53], but may
lead to the model forgetting parts of the LAION-2B distribution [19]. Following our main experiment
setup (Section 4), we use SD v1.1 and SD v1.3 to generate various-sized targeted synthetic adaptation
datasets for ImageNet and FGVC-Aircraft. Results are plotted in Figure 6. Overall, while training
with synthetic data from different generative models yields varying performance, synthetic data from
all generative models considered consistently fall short of retrieval.
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Figure 6: We ablate our choice of generative model used to synthesize images in our main experiments,
comparing training on synthetic images from Stable Diffusion 1.5 (SD v1.5) to synthetic images
from SD v1.1 and SD v1.3. Across multiple Stable Diffusion models—the only modern text-to-image
generators with open-source training data available—training with images directly retrieved from the
generative models’ training dataset (LAION-2B) outperforms training with generated images.

5.3 Mixing synthetic and retrieved data

On FGVC-Aircraft, finetuning CLIP with either synthetic or retrieved data alone consistently improves
downstream task accuracy. The gains from retrieved data are stronger than the gains from synthetic
data across all data scales; however, synthetic data may improve CLIP in ways that is complementary
to retrieved data, and thus present orthogonal value. To test this possibility, we measure whether
training on a mix of synthetic and retrieved Aircraft adaptation data significantly outperforms training

with either alone. Starting from our largest retrieved adaptation dataset Dgetrieved) (139K images), we
progressively add in increasing amounts of synthetic images from our synthetic adaptation dataset
D((;Symhe“c) and finetune a pretrained CLIP model with the resulting mix. We plot results in Figure 7.

We find that training on the mixed images outperforms training on synthetic images alone; however,
training on a mix significantly drops performance compared to using retrieved data alone.
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6 Discussion

Our work sought to answer a key question: given that all model-generated synthetic images derive
from the generator’s upstream training data, does training on synthetic images provide value over
training on the parts of the upstream real data directly? We contribute a set of rigorous experiments to
ground this question empirically, and discover that training on upstream real images collected via our
simple retrieval baseline significantly outperforms training on synthetic images. Our initial question
is answered negatively. We therefore argue that retrieval is a critical baseline to surpass in order to
show value from synthetic training data, and encourage comparison against it in future research.

Importantly, we do not seek to make normative claims about whether training with synthetic images
will ever surpass this baseline—future work may unlock gains that we have not yet found. As
a first step, we contribute analyses of why synthetic training images underperform upstream real
images, finding that both generator artifacts and semantic errors within synthetic images are key
areas for future improvement. Furthermore, given that image retrieval is a strong alternative to image
synthesis, a natural next step is to generate image compositions that are explicitly rare or absent
from the generator’s upstream training dataset; we are optimistic that synthesizing these “missing"
images may offer unique value beyond what is present in the existing upstream real images. Such an
approach leverages the compositional generalization abilities of the generator, which recent research
promisingly suggests may be stronger than the compositionality of a discriminative model trained on
the same upstream data [38, 13].

Finally, our findings assume access to the generative model’s upstream training data, an assumption
that may not always hold. The upstream pool may be proprietary or strictly regulated due to privacy
concerns. In such settings, training directly on the upstream data is impossible; synthetic data from a
generative model trained on this unavailable upstream data remains an exciting alternative to acquire
otherwise inaccessible information.

Limitations. As an empirical study, our compute budget limits the number of experimental varia-
tions we consider. Our results are derived from adapting CLIP models with standard full finetuning;
we conjecture that our findings generalize to other large-scale pretrained backbones and adaptation
methods as well, but we were not able to test this empirically. Moreover, at the time of our work,
Stable Diffusion is the only text-to-image model with publicly available training data to retrieve from
(i.e. LAION-2B); we do not study other generators trained on other data pools. Finally, we focus on
model accuracy, leaving a comparison of model robustness and fairness from training on synthetic
versus real data to future work.
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A Broader Impacts

We release all models and synthetic data from our work to benefit future research. All assets
released are meant to be scientific research artifacts. Moreover, all models released are task-specific
classification models, limiting potential for misuse. Nonetheless, we do not encourage the use or
deployment of our models in practice.

B Additional Findings

We further validate the main findings of our paper by (1) providing further analysis of the synthetic
training data and (2) considering two additional variations upon our experimental setup: applying more
aggressive decontamination, and generating synthetic images with alternative prompting strategies.

B.1 Additional data analysis: CLIP score distributions

Do the distributions of CLIP similarity scores in the final synthetic and retrieved training datasets
significantly differ? Since we filter the synthetic and retrieved data independently of each other to
maintain a clean experimetnal setup (i.e., we do not use any information from the retrieved images to
inform the selection of synthetic data, and vice versa), there may be differences in CLIP similarity
that potentially explain gaps in downstream training performance.

We histogram the CLIP similarity score distributions of the resulting filtered synthetic and retrieved
training data in Figure 8. Overall, despite setting the filter score threshold for synthetic and retrieved
data independently, we find that the distribution of post-filtering synthetic image CLIP scores is
right-shifted compared to the distribution of post-filtering retrieved image CLIP scores. In other
words, synthetic images have comparable or even higher CLIP scores than retrieved images on
average; CLIP judges synthetic data to be higher quality on average. CLIP score differences alone do
not explain the lagging training performance of synthetic data.

Further corroborating this finding with a case study, we observed that CLIP assigns the synthetic
“flute” images in Figure 3 relatively high similarity scores of 0.285, 0.265 and 0.263, despite the
fact they they are obviously wrong to the human eye. For reference, a CLIP score of 0.249 reflects
the top 30% of all retrieved ‘flute” images. Overall, while the current best practice of using CLIP
score to filter synthetic data does improve performance, CLIP score remains limited. Future work
may explore synthetic data filtering methods that do not depend on CLIP.

ImageNet-1K DTD FGVC-Aircraft StanfordCars Flowers102
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Figure 8: We visualize the distribution of CLIP scores in the filtered retrieved and filtered synthetic
targeted adaptation datasets. Overall, CLIP assigns synthetic data higher scores on average, despite
its lower training performance.

B.2 Additional experiment: further decontaminating retrieved data for benchmark train sets

For our main experiments, we decontaminated all retrieved data for the downstream benchmark test
sets to avoid test set leakage. However, retrieving from LAION-2B may also result in images from
downstream benchmark training sets being included in the retrieved data. While this contamina-
tion will also affect synthetic data, as the generator is trained on the same data we retrieve from,
the potential contamination is arguably more explicit when we retrieve directly. We thus further
decontaminated all retrieved data for the benchmark train sets following [20]. We report the amount
data removed by this additional decontamination step in Table 1 and plot the results of training on
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twice-decontaminated retrieved data in Figure 9. Overall, while some retrieved images were indeed
similar to train set data (an average 1.9% of retrieved data was removed), discarding them minimally
impacted performance. Our main findings remain unchanged.

ImageNet-1K DTD FGVC-Aircraft | StanfordCars | Flowers102
145370 (5.6%) | 0 (0.0%) 328 (0.2%) 6647 (3.5%) | 342 (0.1%)

Table 1: We report the number of images removed from our original retrieved datasets (which are test
set decontaminated) after further decontaminating with respect to the downstream benchmark train
set. We report the percentage of the retrieved dataset removed in parentheses.
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Figure 9: We further decontaminate our original retrieved data (already test set decontaminated)
for the benchmark train set and finetune on the train+test decontaminated
retrieved data. Overall, train set decontamination has little performance impact; synthetic data
remains behind. Note, no train set contamination was found for DTD.

B.3 Additional experiment: generating synthetic data with alternative prompts

In our main experiments, we generate synthetic data via LLM-generated image captions following
the SOTA method of SynCLR [62]. SynCLR shows that prompting for synthetic images with LLM
captions outperforms many alternative prompting strategies at the hundred-million scale, such as
prompting with alt-text from LAION images. To ensure that we utilize the most performant synthetic
data generation method available, we sought to validate this finding in our experimental setup. We
further compare against the strategy suggested in [37], which involves prompting with BLIP-2
generated captions of real images.

Starting from the unfiltered retrieved training data, we used BLIP-2 to caption each image and
construct prompts of the form “a photo of classname, BLIP-2 image caption” following [37]. We then
performed top-30% CLIP filtering on the resulting synthetic images. We compare the performance
of training with filtered synthetic images generated with three prompting distinct strategies to our
filtered retrieved data in Figure 10. Specifically, we compare training with filtered synthetic images
generated from (1) our original LLM prompts, (2) BLIP-2 captions, and (3) LAION alt-text from
retrieved data. Overall, among the three generation strategies, our original LLM prompts perform
best on ImageNet, and perform comparably to BLIP-2 captions and LAION alt-text on Aircraft.
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Figure 10: We compare the training performance of targeted synthetic images generated via (1) our
original LLM-guided prompts, (2) LAION alt-text from retrieved data, or (3) BLIP-2 captions of
retrieved data. Our original LLM prompts yield the best synthetic data for ImageNet; all 3 generation
stratgies perform comparably on Aircraft. Regardless of the strategy chosen, synthetic data lags
retrieved data.

C Details in Methodology

C.1 Sourcing data by generating synthetic images

Given a set of visual class names C from our target task, we first synthesize a large corpus of image
captions for each class name by prompting a large language model (we use Llama-2 7B [64]).
For each concept name ¢ € C, we use three type of prompts to convert ¢ into an image caption
following [62]. For the sake of completeness, we detail the prompts here:

1. ¢ — caption. We prompt the language model (LM) to directly translate the class name into a
caption using a prompt with 3 few-shot in-context examples.

2. ¢,background — caption. We prompt the LM with an additional background attribute that
is randomly sampled from a set that is predetermined based on the domain of C. For example,
if C contains a list of flower names, then possible background attributes might include “garden,"
“meadow," or “forest." These background attributes are automatically generated by prompting a strong
instruction-tuned language model such as GPT-4 [1] with the class names C. We provide the LM with
3 in-context examples of ¢, background > caption mappings.

3. ¢, relation — caption. We prompt with an additional spatial relationship attribute that is sampled
from a domain-invariant set of relationships, such as “next to," “below," “besides," etc. We provide 3
in-context examples of ¢, relation — caption mappings.

Each of these captions are directly used as text input to Stable Diffusion 1.5 to produce our targeted

synthetic dataset Désymhetic). When sampling from Stable Diffusion, we denoise for 50 DDIM [60]

steps starting from Gaussian noise, using a classifier-free guidance [26] scale of 2.0. We choose
Stable Diffusion as our generator because (1) it is pretrained on an open-source dataset, LAION-2B,
and (2) to better maintain consistency with recent work [62, 63, 56, 23].

Generating the images can be computationally expensive; every 1M synthetic images gen-
erated (pre-filtering) requires around 12 hours of generation on 64 NVIDIA A100 GPUs.
To lower the barrier for future research, we will release our generated synthetic images at
https://github.com/scottgeng00/unmet-promise.

C.2 Filtering synthetic and retrieved data

We rank and filter synthetic data independently, using a per-class threshold to identify and keep the
top 30% of images for each class and for each dataset. We adopt CLIP as our synthetic image filter as
it is the current best filtering method we are aware of [24].
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D Details in Experimental Setup

D.1 Retrieval hyperparameters

We perform £-NN retrieval with & = 2000 for every downstream benchmark except ImageNet-1K,
where we use & = 500. We picked these values of k with a rough target of retrieving 10K images per
class. In particular, the original CLIP paper [50] has a different set of class template strings for each
benchmark; our query sets (). for each benchmark are differently sized, and our values of k vary to
reflect that.

For class balancing, we set M/ = 10000. We do not tune % or M in our experiments.

Choosing based on downstream validation set accuracy, we use our substring retrieval strategy for
FGVC-Aircraft and Flowers102; we use our semantic retrieval strategy for ImageNet-1K, DTD, and
StanfordCars.

We use precomputed k-NN search indicies from LAION-2B [57] to query against OpenAl CLIP
ViT-L/14 image embeddings. No search indicies are available for querying against text embed-
dings; we construct our own using FAISS [16], using the configuration 0PQ256 768,IVF131072
HNSW32,PQ256x8. Computing 2 billion OpenAl CLIP ViT-L/14 text embeddings for the captions in
LAION-2B took approximately 2 hours on 100 GPUs of varying capacity. Computing the search
index from the embeddings took approximately 12 hours on 128 CPU cores.

D.2 Details for downstream benchmarks

We use the standard pre-defined train-test-validation splits for FGVC-Aircraft, DTD, and Flowers-
102. Standard validation splits are not available for StanfordCars and ImageNet-1K. We construct a
train-validation split for StanfordCars by randomly splitting 80% and 20% of the pre-defined training
set (respectively) using torch.utils.data.random_split with random seed 42. We construct a
validation set for ImageNet-1K by randomly subsampling 50K images from the pre-defined training
set using torch.utils.data.random_split with random seed 42.

D.3 Details for model evaluation

When performing zero-shot evaluation, the finetuned model W o CLIP is directly used to inference
the downstream test set without any additional tuning. When performing linear probing evaluation,
we replace W with a randomly initialized linear head W, freeze the CLIP encoder, and train W’
with a standard cross entropy classification loss on the downstream benchmark train set; we perform
inference with W’ o CLIP.

D.4 Details for model adaptation

Finetuning details. To finetune CLIP for a specific downstream image classification task, we first
initialize a linear readout head W using the weights from the text-based zero-shot CLIP model [10].
Concretely, we initialize W using the CLIP text embeddings of the class names for the desired
downstream task. We then append the classification head W on top of CLIP’s vision encoder, and
train end-to-end using a standard cross entropy classification loss against one-hot labels.

We could alternatively choose to finetune CLIP with a contrastive objective, where each positive
pair is a synthetic or retrieved image alongside its corresponding caption. However, we find that
cross entropy finetuning performs better across the board, so we use cross entropy finetuning for all
experiments in our paper.

A full adaptation dataset scale sweep for a single benchmark and a fixed set of hyperparameters takes
approximately 24-36 hours on 2 NVIDIA A40 GPUs.

Random seed. For our main experiments, generator ablations, and data mixing experiments we
report results aggregated across at least three random seeds. The random seed is used to (1) seed the
training algorithm, and (2) controls adaptation dataset subsampling.

Hyperparameter details. We start with relatively standard hyperparameters from prior work [69],
and initially tune them in our setting by finetuning CLIP on a small-scale dataset of retrieved or
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synthetic images from each downstream benchmark and grid-sweeping by learning rate and batch
size. From the hyperparameters we tried at this scale, we find the following work best for both
synthetic and retrieved images across all downstream benchmarks:

* Batch size: 512

* Warmup steps: 500

* LR schedule: Cosine decay
» L2 weight decay: 0.1

We find that models are sensitive to learning rate; there is no one optimal learning rate across all
settings. Thus, for our full-scale experiments, we sweep learning rate across {5e-4, le-5, le-6}, and
select the best learning rate for each downstream benchmark based on validation set accuracy.

We train with an AdamW optimizer, using 51 = 0.9, 83 = 0.95.

On all benchmarks except ImageNet, we finetune for a fixed 30 epochs. On ImageNet, we train for a
fixed 10 epochs to save compute, as we found that validation set accuracy plateaued early on.

E Details in Analysis Experiments

E.1 Synthetically perturbing retrieved images

We use SDEdit [43] to synthetically perturb the retrieved real images by adding Gaussian noise and
then denoising with Stable Diffusion 1.5. We study the perturbation across 10 different choices of the
noise scale (i.e. perturbation strength) parameter v € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}.
All other hyperparameters for the perturbation (e.g. guidance scale, noise scheduler) are fixed to the
same hyperparameters used to generate synthetic images from scratch (detailed in Appendix C.1)
When using SDEdit to perturb a retrieved real image, we additionaly require a text prompt to guide
the denoising. We find that using an empty string for the prompt results in incoherent images. We thus
use the string “a photo of {classnamel}”, where {classname} is the label name assigned to the
retrieved image being perturbed. Thus, even at noise scale v = 1.0 (i.e., beginning the denoising at the
endpoint of Stable Diffusion’s forward diffusion process®), we would not expect model performance
from training on perturbed retrieved images to be identical to model performance from training
on our synthetically generated images; our synthetically generated images are synthesized using
LLM-written prompts that contain richer information.

F Details in Licensing Information

F.1 Benchmarks

ImageNet-1K is released under a custom license that specifies non-commercial research use only.
Details can be found at https://www.image-net.org/download. php. Licensing information is
unavailable for DTD, Flowers102, FGVC-Aircraft, and StanfordCars; all four datasets are products
of academic research and are publicly available online for download.

F.2 Models

Stable Diffusion 1.1, 1.3, and 1.5 are all released under a CreativeML OpenRAIL M license. Open-
CLIP models and OpenAl CLIP are released under MIT License.

F.3 Data

LAION-2B metadata, precomputed embeddings, and £-NN search indices are released under CC-
BY-4.0 licensing. As a web-scraped dataset, all images pointed to by the URLSs retain their original
licenses.

*Even at v = 1.0, which maps input images to the endpoint of the forward diffusion process, Stable
Diffusion’s noise schedule does not convert the input image into pure isotropic Gaussian noise. This is due to
the noise schedule parameters.
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F.4 Software

We build off the open source code of [53, 39, 6, 16, 69]. FAISS [16] and clip-retrieval [6] are released
under MIT license. SynCLR code [62] is released under Apache 2.0. Stable Diffusion code [53]
is released under CreativeML Open RAIL-M. WiSE-FT (the codebase we build off of for CLIP
finetuning) is released under an MIT license.

21



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our paper seeks to empirically measure what value training on synthetic
images from a generative model adds over training on the generative model’s upstream
training data directly. We present our baseline methods in Section 3 and our experimental
setup empirically grounding this question in Section 4. Our results supporting our main
claim that synthetic training images are significantly outperformed by upstream real images
are illustrated in Figure 2. The additional analysis discussed in the introduction and abstract
is supported by Section 5.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We describe limitations throughout the paper, such as the fact that we assume
access to the generative model’s upstream training data. We further dedicate a section to
limitations in the Discussion section of our main text (Section 6).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail our data curation methods in Section 3 and our full experimental
setup for measuring the added value of synthetic data at the beginning of Section 4. We
additionally provide full hyperparameters and implementation details of data curation and
model training in Appendix C and Appendix D. We have released all code necessary to
replicate our study at https://github.com/scottgeng00/unmet-promise, and are
currently uploading trained models and generated synthetic images from our experiments
for release to mitigate computational cost of reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released all code wused in our study at
https://github.com/scottgeng00/unmet-promise and are -currently upload-
ing all generated synthetic images used in our experiments for release. To prioritize safety
(further discussed in safeguards below), we do not directly distribute the raw images we
retrieved from LAION-2B (a web-scraped dataset); we instead released all new code, and
we are currently uploading all other assets (such as text k-NN search indices) required to
reproduce our data from publicly available assets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We overview experimental setup in Section 4 and provide full training and test
details (data splits, choice of hyperparameters, optimizer) in Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all of our main results, we report 1-sigma error bars computed by aggregat-
ing model accuracy across at least 3 random experimental seed initializations, as described
in the experimental setup of Section 4. We reiterate the meaning of our error bars in the
caption of our main results figure (Figure 2).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail compute resources and time required for generating images in
Appendix C.1, for building retrieval search indices in Appendix D.1, and for training models
in Appendix D.4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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10.

11.

Justification: We document all details necessary to safely reproduce our experiments, as
referenced in the other questions. We take steps to introduce safeguards by filtering all of
our web-scraped data with NSFW filtering. Additionally, we take care to not use the full
version of LAION-5B, which potentially contains CSAM and has been deprecated.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper is largely foundational. We describe broader impacts associated
with our released assets in Appendix A.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our empirical study centers on LAION-2B, a web-scraped dataset that may
contain NSFW and other sensitive content. We mitigate risk by filtering all raw data we
download from LAION-2B with NSFW filtering, described in Section 3.2. Due to potential
risk for misuse, we will not directly release our raw retrieved images. We instead ensure
reproducibility by releasing code and k-NN search indices for the pipeline we used to
perform the retrieval from the LAION-2B URL metadata, which is hosted publicly online.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Full licensing information for all software, datasets, and existing models used
in our work are provided in Appendix F.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our work produces three classes of assets that we are currently uploading for
release. (1) We will release synthetically-generated images and document full details of
image generation in Appendix C. (2) We will release CLIP model checkpoints trained on
task-relevant synthetic and retrieved data. Full details of the training setup that created these
assets are documented in Section 4 and Appendix D.4. (3) We will release k-NN search
indices for querying against the text captions of LAION-2B, documented in Appendix D.1.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects
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15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28



	Introduction
	Related Work
	Problem Setting and Method
	Sourcing data by generating synthetic images
	Sourcing data by retrieving real images
	Additional data filtering and postprocessing

	Main Experiments
	Main results: synthetic training data lags behind a baseline of retrieved real images

	Analysis
	Why does synthetic data lag retrieved real data?
	Synthesizing data via another generative model
	Mixing synthetic and retrieved data

	Discussion
	Broader Impacts
	Additional Findings
	Additional data analysis: CLIP score distributions
	Additional experiment: further decontaminating retrieved data for benchmark train sets
	Additional experiment: generating synthetic data with alternative prompts

	Details in Methodology
	Sourcing data by generating synthetic images
	Filtering synthetic and retrieved data

	Details in Experimental Setup
	Retrieval hyperparameters
	Details for downstream benchmarks
	Details for model evaluation
	Details for model adaptation

	Details in Analysis Experiments
	Synthetically perturbing retrieved images

	Details in Licensing Information
	Benchmarks
	Models
	Data
	Software


