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ABSTRACT

Road networks evolve over time, requiring frequent map updates. AI tools can
assist with this task; however, methods based on raster segmentation followed by
thinning, skeletonization, or automatic tracing may fail to capture the local struc-
ture of road networks, increasing the burden on human annotators. Our goal is to
directly predict thin centerline representations that reflect structural patterns used
by annotators, particularly at intersections. A secondary goal is to scale train-
ing by learning from variable-quality vector data, such as OpenStreetMap, rather
than relying on precisely aligned segmentation masks that are difficult to produce
at scale. A key challenge is spatial misalignment in training data: while minor
for thick segmentation masks, even small shifts become a major obstacle when
learning thin centerlines, as pixel-wise losses are disproportionately affected. We
propose CenterlineNet, a weakly supervised model that addresses this challenge
with a patch alignment loss that compares local neighborhoods instead of individ-
ual pixels. This loss matches each predicted neighborhood to its nearest annotated
centerline, enabling flexible alignment within a distance tolerance. We present
two variants, basic and reciprocal, with the latter handling many-to-one mappings
via softmax-in-group weighting, and introduce an intersection-aware component
that specifically targets road junctions to improve connectivity.

1 INTRODUCTION

The extraction of road networks from remote sensing imagery is a fundamental task in computer
vision with applications including autonomous driving, urban planning, emergency response, and
geographic information systems. Despite advances in deep learning for semantic segmentation,
road extraction remains challenging due to the thin, elongated nature of road structures, complex
structure relationships, and spatial uncertainties in both imagery and ground truth annotations.

Traditional approaches rely on encoder–decoder architectures such as U-Net (Ronneberger et al.,
2015) and DeepLabV3+ (Chen et al., 2018) trained with pixel-wise loss functions like binary cross-
entropy or Dice loss. More recent work proposes stronger backbones such as CoANet (Liu et al.,
2022) and MSMDFF-Net (Zhang et al., 2023), which incorporate multi-scale context and feature fu-
sion to better handle thin and complex road structures. However, these methods still train with pixel-
wise losses that implicitly assume perfect spatial alignment between predictions and labels—an as-
sumption often violated in real-world deployments. Misalignment arises from (1) registration errors
between imagery and vector annotations, (2) subjectivity and inconsistency in how annotators inter-
pret road geometry, (3) temporal differences between image acquisition and ground-truth creation,
and (4) visual ambiguity or occlusion. Fig. 1 illustrates how accurate centerline predictions can
disagree with annotated roads under pixel-wise comparison despite capturing the correct structure.

Our contributions are threefold: (1) a patch alignment loss that compares local patches under a
label-derived offset field to tolerate spatial offsets while preserving road structure; (2) a reciprocal
formulation with softmax-in-group weighting to resolve many-to-one mappings between predictions
and ground truth; and (3) an intersection-aware loss component to improve connectivity at road
junctions. We demonstrate that CenterlineNet achieves competitive performance on road extraction
tasks while remaining robust to annotation noise and spatial misalignments.
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Figure 1: Four common road misalignments. (1) Ground-truth (GT) pixels displaced from the
true road centerline due to registration error; (2) annotation variability, GT centerlines include extra
edge-line segments; (3) temporal mismatches, new roads appear to have been added to forested areas
after imagery acquisition; and (4) visual ambiguities, roads are missing from GT.

2 RELATED WORK

We organize related work into three areas relevant to our approach: (1) road extraction using tra-
ditional and deep learning-based methods, (2) segmentation techniques designed to handle spatial
misalignment, and (3) approaches that enforce structural consistency in thin, connected structures.
While these lines of research address different aspects of the problem, none fully resolve the chal-
lenge of learning from spatially uncertain labels while preserving structural fidelity.

Early methods for road extraction relied on handcrafted features, edge detection, and mathematical
morphology (Mena, 2003). Among geometric approaches, Hu et al. (2007) introduced a spoke
wheel operator and Fourier-based shape classification for road tracking. Hu et al. (2007) expanded
this into a road network extraction system using spoke-based tracking with pruning to eliminate false
roads. Deep learning drastically improved road extraction performance. U-Net (Ronneberger et al.,
2015) and DeepLab (Chen et al., 2018) became popular for semantic segmentation of geospatial
imagery. Modern architectures have been tailored to road extraction: Zhang et al. (2018) introduced
Deep Residual U-Net, Zhou et al. (2018) proposed D-LinkNet with dilated convolutions, and He
et al. (2019) integrated ASPP with U-Net using structural similarity loss. However, these advances
still rely on pixel-wise loss functions that assume perfect spatial alignment. While achieving good
performance on aligned benchmarks, they suffer degradation when one attempts to learn misaligned
vector maps, such as crowd-sourced annotations from OpenStreetMap.

Despite these advances, spatial misalignment remains a key obstacle for road network learning. One
early attempt to address this was the work of (Batra et al., 2019), who proposed a multi-branch CNN
that predicts both per-pixel segmentation and local orientation cues, using orientation information
to encourage structurally coherent roads. Their framework also included a connectivity refinement
module applied after inference, combining orientation-guided training with post-processing refine-
ment. While effective, their approach remains fundamentally tied to pixel-wise loss over thicker
representations and does not directly address misalignment at fine granularity.

Other strategies have attempted to tolerate misalignment indirectly. Some works apply relaxed eval-
uation metrics, buffered ground truth, or morphological post-processing (Sun et al., 2019), but these
adjustments only occur after training and do not solve the underlying objective mismatch. The
STEAL framework (Acuna et al., 2019) addressed weakly aligned labels through iterative self-
training with an explicit alignment loss, gradually refining noisy annotations. Related work in
remote sensing has also sought to improve the quality of crowdsourced supervision by aligning
OpenStreetMap-derived labels to imagery before training (Zhang et al., 2020). While these methods
reduce the effects of noisy or shifted labels, they still depend on heuristics or pre-alignment steps.
They do not address misalignment tolerance within the training loss itself.

A third line of research emphasizes preserving connectivity in thin structures, since road networks
are typically represented as centerlines forming graph-like structures where broken connections
severely impact usability. Mosinska et al. (2018) pioneered structure-aware loss functions informed
by persistent homology concepts. Building on this, Yuan & Xu (2022) developed GapLoss to ex-
plicitly reduce gaps in predicted road networks.
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Some multi-task approaches explicitly extract road centerlines. Wei et al. (2020) presented a two-
step CNN that first segments roads and then traces centerlines. Similarly, Lu et al. (2021) proposed
MRENet, which performs simultaneous road surface segmentation and centerline extraction. How-
ever, in contrast to these methods, our approach enables robust centerline extraction directly through
its loss formulation, greatly simplifying downstream post-processing or tracing steps should they
be employed. Recent innovations like Skeleton Recall Loss Kirchhoff et al. (2024) focus on max-
imizing overlap between predicted and ground-truth skeletons, thereby preserving connectivity in
thin structure segmentation. However, these structure-aware approaches still assume precise spatial
alignment. When misalignment occurs, they may penalize structural correct predictions that are spa-
tially offset. However, existing methods either assume spatial alignment, address misalignment only
with post-processing or evaluation adjustments, or fail to resolve many-to-one ambiguities along
thin centerlines. None directly preserve connectivity under misaligned supervision.

3 METHODOLOGY

The accurate extraction of road centerlines from remote sensing imagery remains a complex chal-
lenge due to the presence of spatial misalignments and the intricate structure of road networks. To
address these issues, we introduce a loss formulation tailored for singleton centerline localization,
where “singleton” denotes the nearly one-pixel-wide centerline representation used as ground truth
rather than thick road polygons. The following section outlines the methodological framework,
presenting the network design, loss functions, and training strategies employed in our approach.

3.1 DEEPLABUNETPRECISE ARCHITECTURE

CenterlineNet uses a hybrid backbone, which we call DeepLabUNetPrecise. The encoder follows
DeepLabV3+, using a ResNet-101 with Atrous Spatial Pyramid Pooling (ASPP) to capture multi-
scale context. Unlike prior hybrid models (He et al., 2019; Zhou et al., 2018) that pool to 1/16
or 1/32 scale, our encoder stops at 1/8 resolution and substitutes atrous convolutions for deeper
pooling. This preserves finer feature maps while still expanding the receptive field. The decoder
then upsamples through U-Net–style skip connections to restore predictions at full input resolution,
which is essential for reconstructing one-pixel-wide road centerlines.

The architecture itself follows established hybrid patterns; our main contribution lies in the loss
design. The role of DeepLabUNetPrecise is to provide sufficient resolution and feature detail so that
the proposed patch alignment and intersection-aware losses can operate effectively.

3.2 LOSS FUNCTIONS

Our central idea is a patch alignment loss that tolerates spatial misalignment by comparing small
neighborhoods rather than individual pixels. For each prediction location, we align its predicted
logit-patch (logits of the K nearest pixels centered on a prediction) to the most relevant ground-truth
neighborhood and measure per-patch cross-entropy. This preserves thin structures while allowing
small spatial shifts.

For every pixel x = (x, y), we compute an offset vector v(x) that points to the nearest ground-truth
centerline pixel. This offset field serves two roles: (i) it defines a tolerance band around the centerline
(used later via a binary mask to include/exclude locations), and (ii) it provides the correspondence
needed to extract and compare a predicted patch p̂(x) with the ground-truth patch p(x+v(x)). The
exact loss expressions and masks are given in the subsections that follow.

We train CenterlineNet with a weighted sum of four terms:

Ltotal = Lpatch + αLfp + β Lsingleton + γ Lintersection, (1)

where α = 5.0, β = 0.5, and γ = 1.0 in our experiments. Each term is defined below.

3.2.1 RECIPROCAL SOFTMAX-IN-GROUP WEIGHTING

To resolve many-to-one correspondences, each pixel x that maps to the same ground-truth location
as others is assigned a reciprocal weight wx. Let G(x) denote this group of pixels and τ a tempera-
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Figure 2: Patch alignment and reciprocal grouping. Left: patch alignment—arrows indicate off-
sets from predicted pixels to their nearest ground-truth centerline; patches extracted at corresponding
locations are compared with per-patch cross-entropy. Right: many-to-one mappings are handled by
softmax-in-group weighting, which concentrates loss on the most confident pixel within each group.

ture parameter that controls the sharpness of the distribution. The weights are defined by a softmax
over logits within each group:

wx =
exp

(
z(x)
τ

)
∑

y∈G(x) exp
(

z(y)
τ

) . (2)

This ensures that only the most confident prediction in each group receives high weight, reducing
ambiguity when multiple pixels compete for the same ground-truth location.

3.2.2 WEIGHTED PATCH ALIGNMENT LOSS

First, we define the patch alignment loss

Lpatch =

∑
x m(x)wx CE

(
p̂(x),p(x+ v(x))

)
(
∑

x m(x)wx) ·K
. (3)

Here CE(·, ·) is the binary cross-entropy on logits, m(x) is a binary mask indicating whether pixel
x lies within distance dmax (a hyperparameter set to double the average road-width) of a ground-
truth centerline, wx is the reciprocal softmax weight (defined in eq 2), v(x) is the offset vector
at pixel x, p̂(x) is the set of logits in the predicted patch, p(x + v(x)) the binary labels of the
corresponding ground-truth patch, and K the number of pixels in a patch. The loss averages binary
cross-entropy errors across masked patches, with weights emphasizing high-confidence predictions
and normalization ensuring comparability across patches.

3.2.3 FALSE POSITIVE LOSS

The false-positive loss penalizes road predictions farther than dmax from any ground-truth centerline:

Lfp =
1

|Ω|
∑
x∈Ω

(
1−m(x)

)
CE(z(x), 0), (4)

where Ω is the image domain, m(x) ∈ {0, 1} is the validity mask (m(x) = 1 inside the tolerance
band and 0 otherwise), and z(x) is the logit at pixel x. This loss suppresses predictions outside the
valid road region.

3.2.4 SINGLETON LOSS

The singleton loss Lsingleton ensures that only one pixel in each group of predictions is activated.
For each pixel x, let G(x) denote the set of predictions whose offset vectors map them to the same
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ground-truth location. We then assign binary targets tx so that exactly one pixel in each group re-
ceives tx = 1 (the one with the highest logit, ties broken by proximity to the ground truth) and all
others receive tx = 0. These targets are derived deterministically and do not need to be differen-
tiable. Then

Lsingleton =
1∑

x m(x)

∑
x

m(x) CE(z(x), tx), (5)

which encourages the network to concentrate confidence on a single representative pixel per ground-
truth location, reducing redundant predictions and focusing on a single, thin line prediction.

3.3 INTERSECTION-AWARE LOSS

The intersection loss Lintersection enforces structural connectivity at road junctions, where prediction
errors are especially costly. We detect intersections as road pixels that have more than two neighbors
in a designated window. Let Nint denote the number of such ground-truth intersections, and let p(xi)
be the ground-truth patch centered at intersection i. For each intersection, we search within a radius
r for the predicted patch p̂(xj) that minimizes cross-entropy with the ground truth:

Lintersection =
1

Nint

Nint∑
i=1

min
∥xj−xi∥≤r

CE(p̂(xj),p(xi)) . (6)

At junctions, multiple road branches meet, and the offset field becomes unstable, so nearest-neighbor
assignment based on the vector field v(x) may select the wrong prediction. To avoid this, we treat
all predicted points within a search radius as potential matches to an intersection, and supervise
them jointly against the ground-truth patch, ignoring the vector field. This collective supervision
maintains connectivity and yields more reliable learning at intersections.

Figure 3: Intersection detection and targeted supervision. Intersections (blue dot) with U-
Net+CE (top row) vs. CenterlineNet (bottom row). Improved intersection awareness is shown with
green overlays (prediction aligned with ground truth) for CenterlineNet, versus red overlays (pre-
diction outside tolerance) for the baseline.

4 EXPERIMENTAL EVALUATION

We conduct comprehensive experiments to evaluate CenterlineNet’s performance on road extraction
and intersection topology preservation. Our evaluation addresses the fundamental challenges of
assessing methods designed to handle spatial misalignment by utilizing specialized metrics that
focus on topological accuracy rather than pixel-perfect correspondence.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 EVALUATION METHODOLOGY

The evaluation of road extraction methods poses fundamental challenges when spatial misalignment
is present. Traditional pixel-wise metrics such as Intersection over Union (IoU), precision, and recall
operate under the assumption of perfect spatial correspondence between predictions and ground truth
annotations. This assumption directly contradicts our method’s core premise of handling spatial
uncertainties and misalignments that are inherent in real-world remote sensing data.

To address this contradiction, we develop a comprehensive evaluation framework that measures ac-
curacy and structural preservation while accounting for reasonable spatial tolerances. Our approach
recognizes that for road network extraction, the preservation of connectivity, intersection structure,
and overall network structure is more critical than pixel-perfect alignment.

Our primary evaluation approach employs skeleton-based bipartite matching to assess road network
quality independent of minor spatial offsets. Both predicted road networks and ground truth an-
notations undergo morphological thinning operations to produce nearly one-pixel-wide centerline
representations. This preprocessing step removes large variations in road width prediction and fo-
cuses evaluation on the fundamental network structure and connectivity patterns.

We establish correspondences between predicted and ground truth skeleton pixels using the Hungar-
ian algorithm for optimal bipartite matching. The matching process operates within varied distance
threshold of pixels, which reflects realistic spatial tolerances for satellite imagery while accounting
for typical registration errors, annotation inconsistencies, and the inherent uncertainties in manual
road labeling. Table ?? highlights performance differences across method types.

Table 1: Quantitative Results (Centerline1M): Combined evaluation metrics on skeletonized pre-
dictions and ground truth centerlines. Combined Loss is combination of CE, Patch Alignment,
Reciprocal, and Intersection Aware Loss.

Dataset Models Bipartite Matching (3-px tolerance) Intersection Structure
Precision (↑) Recall (↑) F1 (↑) Structural IoU (↑)

Centerline1M U-Net + CE Loss 0.276 0.695 0.395 0.108
DeepLabV3 + CE Loss 0.329 0.647 0.436 0.111

DeepLabV3 + Dice Loss 0.379 0.626 0.472 0.102
CenterlineNet + CE Loss 0.612 0.463 0.527 0.114

CenterlineNet + CE + Patch Alignment Loss 0.822 0.497 0.619 0.151
CenterlineNet + CE + Patch Alignment + Reciprocal Loss 0.668 0.537 0.596 0.157

CenterlineNet + Combined Loss 0.841 0.524 0.646 0.151

4.2 INTERSECTION STRUCTURE EVALUATION

Road intersections represent critical structural features that define network connectivity and deter-
mine practical utility for navigation applications. Unlike road segments, intersections present unique
evaluation challenges due to their small spatial extent, complex geometric structure, and high im-
portance for overall network functionality. We detect intersections in skeletonized road networks as
pixels in the ground truth having more than two neighbors within their local morphological neigh-
borhood. For evaluation, we employ a patch-based approach that directly compares the local road
structure around intersection locations.

For each ground truth intersection, we extract a local pixel patch centered at the intersection location
from the ground truth skeleton. We then find the spatially closest predicted intersection within a
predetermined radius and extract a corresponding patch from the predicted skeleton. The matching is
based purely on Euclidean distance between intersection centers, ensuring that the subsequent patch
IoU evaluation provides an unbiased measure of structural similarity. If no predicted intersection
exists within the specified radius, the ground truth intersection is considered unmatched for recall
calculation.

The intersection quality is evaluated using the Intersection over Union (IoU) between these spa-
tially matched patches, which captures both the spatial accuracy of the intersection location and the
preservation of the local road network structure. This patch-based evaluation measures fundamen-
tally different aspects of intersection quality compared to the bipartite matching approach used for
road segments.
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While bipartite matching focuses on whether individual skeleton pixels can be paired within a dis-
tance threshold, the patch-based IoU captures the local geometric shape and structure of intersec-
tions. It evaluates whether the predicted intersection preserves the correct angular relationships
between incident road segments, maintains proper connectivity patterns, and reproduces the overall
geometric configuration of the intersection. For example, a T-junction with specific arm angles and
lengths will have a characteristic patch pattern that must be preserved to achieve high IoU scores.

The predetermined patch size is large enough to capture the full intersection structure including the
immediate approach segments, while remaining focused on the local neighborhood. This approach
naturally handles variations in intersection geometry, missing or extra road segments, and small
spatial offsets while providing a direct measure of how well the predicted network preserves the
local connectivity structure and geometric shape around intersections. The evaluation encompasses
structural IoU (average IoU of matched intersection patches), results shown in Table ??.

4.3 EXPERIMENTAL SETUP AND DATASETS

All experiments were run on two NVIDIA TITAN RTX GPUs (24 GB each). We trained Center-
lineNet on Centerline1M, our 1 m-resolution dataset of U.S. road centerlines automatically derived
from USGS imagery (M2M API) and OpenStreetMap. Centerline1M intentionally retains the noisy,
misaligned nature of crowd-sourced labels: OpenStreetMap vectors were rasterized into nearly one-
pixel binary masks (anti-aliasing off), keeping only drivable road types (e.g., highway=primary,
secondary, residential, tertiary) and ignoring service and non-drivable classes. No
manual correction or alignment refinement was applied. The dataset comprises 10,845 tiles (8,579
training, 2,266 validation).

To test generalization, we evaluated on a well-known dataset. SpaceNet Roads1 offers multi-city,
multi-resolution satellite imagery together with road vector annotations (centerline graphs), provid-
ing a complementary test of geographic and sensor transfer (Van Etten et al., 2018). We rasterized
and skeletonized these vector road networks in order to align with our own evaluation pipeline.

Additionally, we tested against RoadTracer, which combines aerial imagery with OpenStreetMap
road graphs and evaluates performance using a graph-based junction metric (Bastani et al., 2018).

Table 2: Quantitative Results (SpaceNet and RoadTracer): Bipartite evaluation metrics on
SpaceNet and RoadTracer dataset with CoANet and CenterlineNet.

Dataset Models Bipartite Matching (3-px tolerance)
Precision (↑) Recall (↑) F1 (↑)

SpaceNet CoANet 0.521 0.501 0.492
CenterlineNet 0.546 0.465 0.624

RoadTracer CoANet 0.189 0.195 0.167
CenterlineNet 0.603 0.419 0.744

We had also planned to evaluate on DeepGlobe Road Extraction (8,570 RGB images of size 1024×
1024, with per-pixel road vs. background masks at 50 cm resolution) (Demir et al., 2018), but due
to lack of availability of pretrained CoANet weights, we opted to use SpaceNet and RoadTracer
instead.

4.4 OCCLUSIONS

A critical challenge in road centerline extraction from satellite imagery is the presence of occlusions
caused by trees, buildings, shadows, or cloud cover, which obscure parts of the road network. These
occlusions introduce gaps in visual continuity and spatial misalignment between predictions and
ground truth. To improve resilience under these conditions, we augment our training data with
synthetic occlusions in addition to naturally occluded scenes.

For each training tile we randomly select a road pixel from the ground-truth mask (or a random
location if no road pixel exists) and center a rectangular occlusion over that point. The occlusion

1https://spacenet.ai/datasets/
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size is sampled between 0.5× and 1.0× of a base fraction of the image dimensions (0.25 in our
experiments), producing variable occlusion shapes. Within this rectangle we replace the original
pixel values with the mean color of the entire image rather than black or random noise. The same
occlusion rectangle is applied to all input channels, and we also generate a binary occlusion mask
to record the affected area. Ground-truth road masks themselves are left unaltered so that the model
still receives supervision at occluded locations.

Figure 4: Examples of CenterlineNet predictions on synthetically occluded satellite imagery. For
each scene, the left panel shows the original satellite image with an artificial occlusion (gray rect-
angle), and the right panel shows the corresponding CenterlineNet prediction overlaid on a black
background. Green pixels indicate predicted road centerlines correctly matching ground truth within
the spatial tolerance, while red pixels mark mismatches. These examples illustrate CenterlineNet’s
ability to maintain road connectivity and infer centerlines across missing or obscured regions.

This augmentation forces CenterlineNet to infer road connectivity across missing visual segments,
reduces false negatives in occluded regions, and improves generalization to deployment scenarios
where occlusion is the norm rather than the exception.

4.5 RESULTS AND ANALYSIS

CenterlineNet achieves competitive performance compared to baseline methods across overall road
extraction metrics, with improved Precision, F1, and Structural IoU metric scores. Not only quan-
titatively we can see improvements qualitatively see Fig. 5. In UNet and DeepLab predictions we
can see not structurally correct prediction branches, even though DeepLab with Dice loss seems to
have success over its predecessors CenterlineNet still shows optimal improvements over the later.

We conduct an ablation studies to understand the contribution of each loss component in our ap-
proach. We evaluate a baseline configuration using standard binary cross-entropy loss with pixel-
wise alignment assumptions, then systematically add the patch alignment loss while maintaining
standard assumptions for other components. We further examine the contribution of softmax-in-
group weighting to handle many-to-one mapping scenarios, and finally integrate specialized super-
vision for intersection detection and preservation.

As shown in Table 1, the inclusion of different components leads to varied improvements across
Precision and F1 scores. Notably, the patch alignment loss substantially boosts Precision and F1,
while the reciprocal formulation improves Recall. The addition of intersection supervision further
enhances precision and F1, demonstrating the complementary benefits of various loss combinations.
Despite its improvements, CenterlineNet sometimes struggles with occluded roads, very thin or
low-contrast rural roads, and complex highway interchanges, see supplementary materials.

5 CONCLUSION

We presented CenterlineNet, a weakly supervised approach for road centerline extraction that ad-
dresses spatial misalignment in remote sensing applications. Our patch alignment loss provides
spatial tolerance while maintaining topological accuracy, suitable for real-world scenarios where
perfect annotation alignment cannot be guaranteed. Our contributions include: (1) a patch alignment
loss using vector fields to establish flexible correspondences, (2) a reciprocal formulation handling
many-to-one mappings through softmax-in-group weighting, and (3) an intersection-aware compo-
nent improving network connectivity. Results demonstrate competitive performance with improved
robustness to spatial noise and annotation inconsistencies. The approach enables practical deploy-
ment where spatial uncertainties are inherent. Future work will explore extension to other linear
infrastructure extraction tasks and integration with vector post-processing methods.
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Figure 5: Qualitative Results: Aerial images overlayed with thickened groundtruth and various
model thickened predictions masks showing improved structure accuracy with CenterlineNet.
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