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Abstract

The development of increasingly robust machine learning models for computational
material science is escalating interest in integrating these models into real-world
simulation workflows. Despite reporting strong model performance, the evaluation
benchmarks typically only report a single error metric for the model’s designated
task. It is therefore difficult to predict how these models will perform in common
workflows such as atomistic relaxations. Because of this, a more comprehensive set
of testing benchmarks is needed to evaluate models performance on these dynamic
tasks. A relaxation test is applied to three widely used models, namely: CHGNet,
M3GNet, and MACE. The performance of these models showcase that although
similar benchmark metrics are reported, models can exhibit significantly varied
behavior in the relaxation test, even when trained on similar or identical datasets.

1 Introduction

Recent works have shown that evaluating the leading machine learning interatomic potential (MLIP)
models solely on their performance of predicting energy and forces is not enough to provide insight
into whether the models are usable for real-world tasks [1, 2]. It is therefore necessary to more
thoroughly evaluate MLIPs with a wider range of tasks, tests, and evaluations to understand their
capabilities for computational material science. Models trained to predict diverse material properties
based on a given atomic structure can be useful as regression tools [3–6], however, those same
models are often not practical for elementary downstream tasks, such as simulating the relaxation of a
structure or predicting its elastic constants [1]. While some recent work [7–9] has claimed integration
of MLIPs into real-world simulation workflows, much of that work remains difficult to verify and
reproduce given the closed nature of the MLIPs and the associated benchmarks. Hence, there exists a
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clear need for an open-source, utilitarian benchmark to evaluate new and existing MLIPs based on a
collection of elementary material science simulation tasks.

2 Background and Related Work

Duval et al. [10] provides a detailed review of how many MLIPs leverage geometric deep learning
methods to encode concrete inductive biases based on geometric information. Many of the diverse
set of architectures described in Duval et al. [10], however, have only been trained on energy and
force prediction and often become unstable in materials simulation [1, 2]. While many deep learning
architectures have been proposed for materials property prediction on various benchmarks [6, 5, 11],
fewer have thoroughly evaluated the capabilities of MLIPs in real-world computational materials
science tasks [1, 2]. While Bihani et al. [1] provides a valuable assessment of various deep learning
models, the number of systems studied is limited compared to the broader availability of known
materials systems [12, 13]. Some of the more promising MLIPs proposed [14, 7, 15, 16, 9] are
geometric deep learning models trained on relaxation of bulk structure from the Materials Project
(MP) [13, 14]. Given the importance of MP in training effective MLIPs, we leverage the framework
in ColabFit [17] and OpenKIM [18] to create a testing benchmark for assessing the capabilities of
MLIPs by performing atomistic relaxations based on crystals contained in MP.

3 Benchmarking Pretrained Models

3.1 Relaxation Test

OpenKIM provides a useful starting point for building out a benchmarking suite. It contains a robust
set of tests for computing bulk, cluster, wall, line, and point properties of materials for >600 IPs.
Nearly all IPs available on OpenKIM, however, are classical in nature, typically supporting just a
few elements each. In addition, models must be made to be compatible with the KIM API [19], a
standard developed to enhance portability of models across simulator platforms, e.g., LAMMPS [20],
ASE [21], DL_POLY [22], etc. Therefore, it is desirable to build upon this framework and provide an
extensible, user-centric benchmarking toolkit for robust and reproducible testing of MLIPS.

As an initial proof of principle we focus on the relaxation of crystal structures using predicted MLIP
atomic forces, with a particular emphasis on convergence behavior. We focus on this test as it is
typically a dependency of further property calculations, and as such it is important to understand
a model’s performance here before moving to higher-level static and dynamic properties. The test
itself is adapted from OpenKIM’s EquilibriumCrystalStructure test driver [23] and uses the FIRE2
[24] optimization algorithm present in ASE [21] via a Calculator interface to perform symmetry-
constrained relaxation of positional and cell degrees of freedom. Note, we do not attempt to fine-tune
this procedure for each individual model. Rather, we select a general optimization framework that
should behave reasonably well for all models considered here.

3.2 Experiment Setup

Three current and widely used models are chosen for evaluation, namely: CHGNet, M3GNet,
and MACE. CHGNet from [14] is an invariant universal network trained on the Materials Project
Trajectory Dataset, and is used to model the universal potential energy surface. M3GNet from [15]
is a universal interatomic potential model with three-body interactions, trained on the collection of
Materials Project structure relaxations. MACE from [9] is an equivariant message passing neural
network model for interatomic potentials trained on the Materials Project Trajectory Dataset.

Table 1: Reported force validation error for the three pretrained models. Taken from Ref. 25

.

Model Force MAE (eV/A)

CHGNet 0.063
M3GNet 0.075
MACE 0.057
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For the following evaluations in 3.4, three different minimum force convergence thresholds for
the structure relaxation, and a maximum number of 500 steps to reach the threshold are used.
Convergence rates for a range of step numbers for each model at three different force convergence
thresholds are reported in tables Table 2, Table 3, and Table 4. The model evaluations are run using
double precision and typically using 4 CPU’s with 12GB of memory available. Due to the large
computational overhead of running over 10,000 evaluations for three models, some tests either do
not get scheduled or fail to run. Only the set of structures that have test results for each model
are presented. Furthermore, models which fail at some point during the test due to out of memory
errors, computation errors in the simulation packages, or other convergence errors (typically large
deformation gradient steps), are counted as failed runs. The percent of tests which converged, percent
of tests which reached the max iteration limit, and percent of tests which fail are reported.

3.3 Benchmarking Data

All benchmarking data is taken from Materials Project, with every structure containing elastic
properties downloaded, amounting to 10,773 structures at the time of download. This choice of
structures was made as benchmarking of elastic properties will be conducted in the near future. It is
important to note that the structures used to initialize relaxation are contained within the Materials
Project Trajectory Dataset. However, other structures along the MLIP relaxation trajectories are
unlikely to be exactly contained within the dataset. Similar analyses of MLIPs using data from MP
have provided analogous “data similarity” disclaimers [9].

3.4 Results

A starting force convergence threshold of 0.1 eV/A with a maximum of 500 steps is used to first
understand model performance in a low fidelity setting in which models can be expected to perform
well based on their reported data. While not as helpful in practice, this initial benchmark is both
faster to compute and insightful for quickly comparing ML models to each other. With this setup, a
total of 4,937 total structures were evaluated by each model.

Despite both being trained on the MP trajectory dataset, MACE has far quicker convergence than
CHGNet, and has a notably higher convergence after just one step of optimization. M3GNet and
CHGNet both perform worse overall, with less test runs meeting the convergence threshold and
taking more steps perform the relaxations.

Figure 1: Cumulative density function using only the tests which reached the convergence threshold
of 0.1 eV/A for each model. At this low force threshold, the model’s performance is spread out, with
MACE both relaxing the most structures successfully, and performing the relaxations in fewer steps.

An intermediate force threshold of 1e-3 eV/A is analyzed to get a sense of model performance in a
more utilitarian regime. As machine learning and classical molecular dynamics simulation techniques
begin to compliment each other, this convergence threshold represents a middle ground where the ML
and classical techniques may be used together by first relaxing structures in the direction of a stable
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Table 2: Model performance overview including percent of all tests which converged, reached the
iteration limit, and failed. The cumulative density function section is built by only taking the tests
which reached the convergence threshold of 0.1 eV/A. Notably, MACE is able to fully relax over
50% of the structures in only one step, and relaxes over 95% of all structures. CHGNet is only able
to relax 40.9% of structures, and does so slower than MACE.

Model %Converged %Max Steps %Failed 1 50 100 150 200 250 300 350 400 450 500

CHGNet 40.9% 4.7% 54.4% 0.001 0.372 0.650 0.780 0.848 0.894 0.926 0.949 0.971 0.989 1
M3GNet 62.6% 3.6% 33.8% 0.004 0.542 0.734 0.825 0.877 0.919 0.943 0.966 0.981 0.991 1
MACE 95.1% 0.1% 4.7% 0.502 0.958 0.987 0.994 0.998 0.999 0.999 0.999 1 1 1

configuration with the ML model, and then handing off the configuration to a classical model to finish
out the simulation. With this threshold, a total of 10,700 structures are evaluated. MACE remains the
most performant model, relaxing 84.6% of evaluated structures, while CHGNet and M3GNet both
struggle to converge more than 26.2% and 38.5% of structures respectively.

Figure 2: Only taking the tests which reached the convergence threshold of 1e-3 eV/A, the cumulative
density function is shown across the range of allowed steps. The performance gap between models
widens as M3GNet and CHGNet begin to relax fewer structures, and take more steps to do so. MACE
still shows strong performance, and is able to relax 51.4% of structures after the first step.

Table 3: Model performance overview including percent of all tests which converged, reached the
iteration limit, and failed. The cumulative density function section is built by only taking the tests
which reached the convergence threshold of 1e-3 eV/A.

Model %Converged %Max Steps %Failed 1 50 100 150 200 250 300 350 400 450 500

CHGNet 26.2% 13.3% 60.5% 0 0.139 0.319 0.506 0.636 0.733 0.804 0.864 0.920 0.964 1
M3GNet 38.5% 17.0% 44.4% 0.020 0.196 0.413 0.583 0.700 0.782 0.849 0.898 0.937 0.966 1
MACE 84.6% 2.0% 13.4% 0.514 0.871 0.972 0.986 0.991 0.993 0.996 0.997 0.998 0.999 1

A final force threshold of 1e-6 eV/A is used as a more practical benchmark value for the scenario
where ML models are to be used to fully perform a relaxation. The maximum allowed steps is kept
at 500, and all other hyper-parameters remain the same. In this setting, the differences in model
performance becomes more distinct and provides deeper insight into where the top performing model,
MACE, starts to struggle.A total of 10,665 structures are evaluated in all three models. For MACE,
55.8% of tests are still able to converge after the first step of optimization, however the convergence
rate slows down as the model works to find the minimum force configuration. Similarly, the total
number of converged tests for M3GNet and CHGNet are drastically reduced, with M3GNet able to
relax 0.29% of structures, and CHGNet able to relax 0.05%.
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(a)

Figure 3: The performance of M3GNet and CHGNet is drastically reduced, with both models relaxing
less than 1% of structures. MACE is still able to relax 68.4% of structures, while still maintaining a
convergence rate for relaxed structures of over 50% at step 1.

Table 4: Model performance overview including percent of all tests which converged, reached the
iteration limit, and failed. The cumulative density function section is built by only taking the tests
which reached the convergence threshold of 1e-6 eV/A. CHGNet and M3GNet performance is
dramatically worse than the previous thresholds.

Model %Converged %Max Steps %Failed 1 50 100 150 200 250 300 350 400 450 500

CHGNet 0.05% 27.5% 72.4% 0 0 0.400 0.400 0.400 0.400 0.600 0.800 0.800 0.800 1
M3GNet 0.29% 38.8% 60.9% 0.258 0.387 0.452 0.548 0.581 0.613 0.774 0.774 0.806 0.968 1
MACE 68.4% 11.7% 19.9% 0.558 0.612 0.829 0.963 0.981 0.987 0.991 0.995 0.997 0.998 1

To better understand the high convergence of structures in the first step for MACE, we relaxed a subset
of the data (1000 structures) again, first perturbing the initial positions of each structure using ASE’s
rattle function (stdev=0.001, 0.1, 10, 1000). In all cases, including no perturbations to the same
1000 structures, the percentage of structures which converged after one step remained consistently
near 37%. Despite all three models being trained on data that overlaps with the benchmarking
structures, MACE appears to be much better fit near minima without being overfit to exactly the final
relaxed structures.

4 Discussion

With an increase in robustness in ML model predictions for energy and forces, models begin to
demonstrate the ability to serve as a supplement to downstream computational materials science tasks
such as structure relaxation. Despite an increase in robustness, a static evaluation metric is not enough
to quantify how well models may perform in practice, and thus a larger range of benchmark tasks
must be employed to gather more performance data using these models. In this work, three models are
evaluated against a relaxation test with varying levels of convergence fidelity. Comparing two models
trained with the same dataset, CHGNet and MACE, the performance is drastically different, even at
the lowest force convergence threshold. M3GNet, trained on a similar but not identical dataset, shows
an intermediate level of performance despite having higher reported error metrics. The evaluation of
MLIPs on the relaxation task reveals far more information about the model’s capability than a static
benchmarking number can show. This may lead to a deeper understanding of why certain models
perform better, how best to perform training, and which hyper-parameters may be most important for
learning to perform tasks which go beyond static predictions.
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