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Screener: Self-supervised Pathology Segmentation Model for 3D Medical Images
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Abstract

Accurate segmentation of all pathological find-
ings in 3D medical images remains a significant
challenge, as supervised models are limited to de-
tecting only the few pathology classes annotated
in existing datasets. To address this, we frame
pathology segmentation as an unsupervised visual
anomaly segmentation (UVAS) problem, lever-
aging the inherent rarity of pathological patterns
compared to healthy ones. We enhance the ex-
isting density-based UVAS framework with two
key innovations: (1) dense self-supervised learn-
ing (SSL) for feature extraction, eliminating the
need for supervised pre-training, and (2) learned,
masking-invariant dense features as condition-
ing variables, replacing hand-crafted positional
encodings. Trained on over 30,000 unlabeled
3D CT volumes, our model, Screener, outper-
forms existing UVAS methods on four large-scale
test datasets comprising 1,820 scans with diverse
pathologies. Code and pre-trained models will be
made publicly available.

1. Introduction
Accurate identification, localization, and classification of
all pathological findings in 3D medical images remain a
significant challenge in medical computer vision. While su-
pervised models have shown promise, their utility is limited
by the scarcity of labeled datasets, which often contain an-
notations for only a few pathologies. For example, Figure 1
shows 2D slices of 3D computed tomography (CT) images
(first row) from public datasets (Armato III et al., 2011; Tsai
et al., 2020; Heller et al., 2019; Bilic et al., 2023) providing
annotations of lung cancer, kidney tumors or liver tumors,
while annotations of other pathologies, e.g., pneumothorax,
are missing. This restricts the functionality of supervised
models to narrow, task-specific applications.
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Unlabeled CT images, however, are abundant: large-scale
datasets (Team, 2011; Ji et al., 2022; Qu et al., 2024) are pub-
licly available but often remain unused for training. Leverag-
ing these datasets, we aim to develop an unsupervised model
capable of distinguishing pathological regions from normal
ones. Our core assumption is that pathological patterns are
significantly rarer than healthy patterns in CT images. This
motivates framing pathology segmentation as an unsuper-
vised visual anomaly segmentation (UVAS) problem, where
anomalies correspond to pathological regions.

While existing UVAS methods have been explored exten-
sively for natural images, their adaptation to medical imag-
ing is challenging. One obstacle is that uncurated CT
datasets include many patients with pathologies, and there
is no automatic way to filter them out to ensure a training
set composed entirely of normal (healthy) images — a com-
mon requirement for synthetic-based (Zavrtanik et al., 2021;
Marimont & Tarroni, 2023) and reconstruction-based (Baur
et al., 2021; Schlegl et al., 2019) UVAS methods.

Density-based approaches are better suited for this setting
because they model the distribution of image patterns proba-
bilistically and assume that abnormal patterns are rare rather
than entirely absent in the training dataset. To model the
density of image patterns, these methods encode them into
vector representations using a pre-trained encoder. The exist-
ing methods (Gudovskiy et al., 2022; Zhou et al., 2024) rely
on encoders pre-trained on ImageNet (Deng et al., 2009),
and their performance degrades when applied to medical
images due to the significant domain shift. One could us-
ing medical domain-specific supervised encoders, such as
STU-Net (Huang et al., 2023). However, our experiments
show that this approach also works poorly, likely because
the features learned by supervised encoders are too specific
and do not contain information needed for distinguishing
between pathological and healthy image regions.

To address these challenges, we propose using dense self-
supervised learning (SSL) methods (O. Pinheiro et al., 2020;
Wang et al., 2021; Bardes et al., 2022; Goncharov et al.,
2023) to pre-train informative feature maps of CT images
and employ them in the density-based UVAS framework.
Thus, our model learns the distribution of dense SSL em-
beddings and assigns high anomaly scores to image regions
where embeddings fall into low-density regions.
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Screener: Self-supervised Pathology Segmentation Model for 3D Medical Images

Figure 1. Examples of 2D slices of 3D medical CT images (the first row), the ground truth masks of their pathological regions (the second
row) and the anomaly maps predicted by our fully self-supervised Screener model (the third row). Note that, the second image from the
left contains pneumothorax, missed by ground truth annotation mask, but detected by our model.

Inspired by dense self-supervised learning, we also general-
ize the idea of conditioning in density-based UVAS meth-
ods. Existing works (Gudovskiy et al., 2022; Zhou et al.,
2024) use hand-crafted conditioning variables like standard
positional embeddings. We propose to replace them by pre-
trained dense self-supervised features capturing context, i.e.
global characteristics, of individual image regions, e.g. their
anatomical position, patient’s age. At the same time, we
eliminate local information about presence of pathologies
from the learned conditioning variables by enforcing their
invariance to image masking.

We refer to the resulting model as Screener and train it
on over 30,000 unlabeled CT volumes spanning chest and
abdominal regions. As shown in Figure 1 (third row), our
model successfully segments pathological regions across
different organs. We demonstrate the Screener’s superior
performance compared to baseline UVAS methods on four
large-scale test datasets comprising 1,820 scans with diverse
pathologies. As shown in Figure 1, Screener, being a fully
unsupervised model, demonstrates remarkable performance
across diverse organs and conditions.

Our key contributions are three-fold:

• Self-supervised encoder in density-based UVAS. We
demonstrate that dense self-supervised representations
can be successfully used and even preferred over super-
vised feature extractors in density-based UVAS meth-
ods. This enables a novel fully self-supervised UVAS
framework applicable in domains with limited labeled
data.

• Learned conditioning variables. We introduce novel
self-supervised conditioning variables for density-
based models, simplifying the estimation of conditional
distributions and achieving remarkable segmentation
performance using a simple Gaussian density model.

• First large-scale study of UVAS in CT images. This
work presents the first large-scale evaluation of UVAS
methods for CT images, showing state-of-the-art per-
formance on unsupervised semantic segmentation of
pathologies in diverse anatomical regions, including
lung cancer, pneumonia, liver and kidney tumors.

2. Background & notation
2.1. Density-based UVAS

The core idea of density-based UVAS methods is to assign
high anomaly scores to image regions containing rare pat-
terns. To implement this idea they involve two models,
which we call a descriptor model and a density model. The
descriptor model encodes image patterns into vector repre-
sentations, while the density model learns their distribution
and assigns anomaly scores based on the learned density.

The descriptor model fθdesc is usually a pre-trained fully-
convolutional neural network. For a 3D image x ∈
RH×W×S , it produces feature maps y ∈ Rh×w×s×ddesc

,
where each position p ∈ P corresponds to a descrip-
tor y[p] ∈ Rddesc

. Here, position set P = {p | p ∈
[1, . . . , h]× [1, . . . , w]× [1, . . . , s]}.

The density model qθdens(y) estimates the marginal density

2
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qY (y) of descriptors (Y denotes the descriptor at a random
position in a random image). For an abnormal pattern at po-
sition p, the descriptor y[p] is expected to lie in a low-density
region, yielding a low qθdens(y[p]). Conversely, normal pat-
terns correspond to high density values. During inference,
the negative log-density values, − log qθdens(y[p]) are used
as anomaly segmentation scores.

This framework can be extended using a conditioning mech-
anism. For each position p, one can introduce an auxiliary
variable c[p], referred to as a condition. Then, instead of
modeling the complex marginal density qY (y), the condi-
tional density qY |C(y | c) is learned for each condition c
(C denotes the condition at a random position in a random
image). At inference, the negative log-conditional densities,
− log qθdens(y[p] | c[p]), are used as anomaly scores. State-
of-the-art methods (Gudovskiy et al., 2022; Zhou et al.,
2024) adopt this conditional framework and use sinusoidal
positional encodings as conditions.

2.2. Dense joint embedding SSL

Joint embedding self-supervised learning (SSL) methods
learn meaningful image representations without labeled data
by generating positive pairs—multiple views of the same
image created through augmentations like random crops
and color jitter. These methods learn embeddings that cap-
ture mutual information between views, ensuring they are
informative (discriminating between images) and invariant
to augmentations (predictable across views). Contrastive
methods, e.g., SimCLR (Chen et al., 2020), explicitly push
apart embeddings of different images, while non-contrastive
methods, e.g., VICReg (Bardes et al., 2021), avoid degen-
erate solutions through regularization. Details on SimCLR
and VICReg objectives are in the Appendix A.

Dense joint embedding SSL methods extend this idea by
learning dense feature maps—pixel-wise embeddings that
encode information about different spatial locations in an
image. Instead of treating the entire image as a single en-
tity, these methods define positive pairs at the pixel level:
two embeddings form a positive pair if they correspond
to the same absolute position in the original image but
are predicted from different augmented crops. During
training, dense SSL enforces similarity between positive
pairs while avoiding collapse by encouraging dissimilar-
ity between embeddings from different images or positions.
DenseCL (Wang et al., 2021) and VADER (O. Pinheiro et al.,
2020) use contrastive objectives, while VICRegL (Bardes
et al., 2022) adopts a non-contrastive approach, regulariz-
ing the covariance matrix of embeddings to increase infor-
mational content. These methods excel at capturing fine-
grained spatial information, making them ideal for tasks like
object detection and segmentation.

3. Method
Our method introduces two key innovations to the density-
based UVAS framework, described in Section 2.1: self-
supervised descriptor model, and self-supervised condition
model. The following Sections 3.1 and 3.2 describe these
modules, while Section 3.3 describes details of density mod-
eling. Figure 2 illustrates the overall training pipeline.

3.1. Descriptor model

The descriptor model plays a crucial role in our method.
It must generate descriptors that effectively differentiate
between pathological and normal positions; otherwise, these
positions cannot be assigned distinct anomaly scores within
the density-based UVAS framework. At the same time,
the descriptors should minimize the inclusion of irrelevant
information. For instance, if the descriptors capture noise –
a common artifact in CT images – the density model may
assign high anomaly scores to healthy regions with extreme
noise values, leading to false positive errors.

To pre-train the descriptor model, we use dense joint em-
bedding SSL methods described in Section 2.2, which allow
explicit control over the information content of the repre-
sentations. Specifically, we penalize descriptors for failing
to distinguish between different positions within or across
images, ensuring they capture spatially discriminative fea-
tures. Simultaneously, we enforce invariance to low-level
perturbations, such as cropping and color jitter, to eliminate
irrelevant information.

The descriptor model training pipeline is illustrated in the
upper part of Figure 2. From a random CT volume x, we ex-
tract two overlapping 3D crops of random size, resize them
to H ×W × S, and apply random augmentations, such as
color jitter. The augmented crops, denoted as x(1) and x(2),
are fed into the descriptor model, producing feature maps
y(1) and y(2).

From the overlapping region of the two crops, we randomly
select n positions. For each position p, we compute its co-
ordinates p(1) and p(2) relative to the augmented crops and
extract descriptors y(1) = y(1)[p(1)] and y(2) = y(2)[p(2)].
These descriptors form a positive pair, as they correspond
to the same position in the original image but are predicted
from different augmentations.

Repeating this process for m different seed CT volumes
yields a batch of N = n ·m positive pairs, denoted as
{(y(1)i , y

(2)
i )}Ni=1. Given this batch, we optimize the descrip-

tor model with standard SSL objectives: InfoNCE (Chen
et al., 2020) or VICReg (Bardes et al., 2021), detailed in
Appendix A.

Conceptually, our descriptor model is similar to dense SSL
models described in Section 2.2. However, our implementa-
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Screener: Self-supervised Pathology Segmentation Model for 3D Medical Images

Figure 2. Illustration of Screener. First, we pre-train a self-supervised descriptor model to produce informative feature maps which are
invariant to image crops and color jitter. Second, we train a self-supervised condition model in the same way as the descriptor model,
but also enforcing invariance to masking of random image blocks. Thus, condition model feature maps are ignorant about anomalies
and contain only the information that can be always inferred from the unmasked context. Third, density model learns the conditional
distribution pY |C(y | c) of feature vectors Y = y[p] and C = c[p] produced by descriptor and condition models at random image
position p. To obtain a map of anomaly scores we apply density model in a pixel-wise manner, which can be efficiently implemented
using 1× 1× 1 convolutions.

tion have many important differences. In contrast to (Wang
et al., 2021; O. Pinheiro et al., 2020; Bardes et al., 2022),
our model has a UNet-like architecture and its output feature
maps have very high resolution (h×w× s = H ×W ×S),
which is a common standard for 3D medical image segmen-
tation. (Wang et al., 2021; O. Pinheiro et al., 2020) do not

treat embeddings from the same image as negatives as we
do. We do not employ any auxiliary global SSL objectives,
like (Wang et al., 2021; Bardes et al., 2022). And we do not
obtain position-wise descriptors by concatenating features
from feature pyramid, as in (Goncharov et al., 2023). Other
implementation details are described in Appendix D.
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3.2. Condition model

Our self-supervised condition model is inspired by a thought
experiment: imagine a region of a CT image is masked,
and we attempt to infer its content based on the visible
context (see masked crops in Figure 2 for illustration). In
most cases, we would assume the masked region is healthy
unless there is explicit evidence suggesting otherwise. This
assumption reflects our model of the conditional distribution
over possible inpaintings given the context. If the actual
content deviates significantly from this distribution, we treat
it as an anomaly.

This intuition suggests that the condition c[p] in the condi-
tional density-based UVAS framework should capture the
global context of the image position p. Global implies that
c[p] must be inferable from various masked views of the
image. At the same time, conditions should vary across dif-
ferent images and regions within the same image to encode
position-specific or patient-specific information effectively.

To achieve these properties, we propose learning conditions
c[p] using a self-supervised condition model gθcond . This
model shares the same fully convolutional architecture as
the descriptor model and produces conditions {c[p]}p∈P

in the form of feature maps c ∈ Rh×w×s×dcond
. To ensure

conditions are inferable from any masked image view, we
enforce feature maps invariance with respect to random
image masking during training. Thus, the training procedure
mirrors the training of the descriptor model (Section 3.1),
with masking incorporated as part of the augmentations. An
illustration of this approach is shown in the middle part of
Figure 2.

The learned conditions c[p] are designed to ignore the pres-
ence of pathologies, as such information cannot be consis-
tently inferred from masked views. Instead, the condition
model likely encodes patient-level attributes (e.g., age, gen-
der) and position-specific attributes (e.g., anatomical region,
tissue type) that are predictable from the context. Condition-
ing on these variables simplifies density estimation, as con-
ditional distributions are often less complex than marginal
distributions.

3.3. Density model

The conditional density model qθdens(y | c) can be viewed
as a predictive model, which tries to predict descriptors
based on the corresponding conditions. In this interpretation,
anomaly scores {− log qθdens(y[p] | c[p])}p∈P are position-
wise prediction errors. Also note, that marginal density
model qθdens(y) is a special case of conditional model with
constant condition c[p] = const.

To train a conditional density model qθdens(y | c), we sample
a batch of m random crops, {xi}mi=1, each of size H×W ×

Table 1. Summary information on the datasets that we use for
training and testing of all models.

Dataset # 3D images
Annotated
pathology

NLST (Team, 2011) 25,652 –
AMOS (Ji et al., 2022) 2,123 –
AbdomenAtlas (Qu et al., 2024) 4,607 –

LIDC (Armato III et al., 2011) 1017 lung cancer
MIDRC (Tsai et al., 2020) 115 pneumonia
KiTS (Heller et al., 2019) 298 kidney tumors
LiTS (Bilic et al., 2023) 117 liver tumors

S, from different CT images. Each crop is passed through
the pre-trained descriptor and condition models to produce
descriptor maps, {yi}mi=1, and condition maps, {ci}mi=1.
Then we optimize the conditional negative log-likelihood
loss:

min
θdens

1

m · |P |

m∑
i=1

∑
p∈P

− log qθdens(yi[p] | ci[p]).

At inference, an input CT image is divided into M over-
lapping patches, {xi}Mi=1, each of size H × W × S. For
each patch, we apply the descriptor, condition, and con-
ditional density models to compute the anomaly map,
{− log qθdens(yi[p] | ci[p])}p∈P . These patch-wise anomaly
maps are upsampled to H ×W × S and aggregated into a
single anomaly map for the entire CT image by averaging
predictions in patches’ overlapping regions.

We explore two parameterizations for the density model:
Gaussian, as a straightforward baseline, and normalizing
flows, similar to (Gudovskiy et al., 2022; Zhou et al., 2024),
as an expressive generative model enabling tractable den-
sity estimation. These parameterizations and the details of
their implementation in the context of UVAS framework are
further described in Appendix C.

4. Experiments & results
4.1. Datasets

We train all models on three CT datasets: NLST (Team,
2011), AMOS (Ji et al., 2022) and AbdomenAtlas (Qu et al.,
2024). Note that we do not use any image annotations
during training. Some of the datasets employed additional
criteria for patients to be included in the study, i.e. age,
smoking history, etc. Note that such large scale training
datasets include diverse set of patients, implying presence
of various pathologies.

We test all models on four datasets: LIDC (Armato III
et al., 2011), MIDRC-RICORD-1a (Tsai et al., 2020),
KiTS (Heller et al., 2019) and LiTS (Bilic et al., 2023).
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Figure 3. Qualitative comparison of anomaly maps produced by baseline UVAS methods and Screener. First column contains CT slices,
columns 2 to 6 are baseline methods’ predictions, column 7 is Screener’s prediction. Last column depicts ground trught annotation mask.

Table 2. Quantitative comparison of Screener and the existing unsupervised visual anomaly segmentation methods on four test datasets
with different pathologies.

Model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

Autoencoder 0.71 0.65 0.66 0.68 0.31 0.21 0.24 0.25 0.59 0.24 0.26 0.37
f-AnoGAN 0.82 0.66 0.67 0.67 0.52 0.21 0.24 0.22 0.46 0.18 0.24 0.22
DRAEM 0.63 0.72 0.82 0.83 0.21 0.31 0.50 0.51 0.17 0.20 0.50 0.57
MOOD-Top1 0.79 0.79 0.77 0.80 0.43 0.43 0.40 0.46 0.32 0.29 0.40 0.32
MSFlow 0.70 0.66 0.64 0.64 0.26 0.20 0.18 0.17 0.21 0.14 0.19 0.17
Screener (ours) 0.96 0.87 0.90 0.93 0.88 0.64 0.68 0.80 0.65 0.40 0.67 0.63

Annotations of these datasets include segmentation masks
of certain pathologies. Any other pathologies that can be
present in these datasets are not labeled. We summarize the
information about the datasets in Table 1.

4.2. Evaluation metrics

We use standard quality metrics for assessment of vi-
sual anomaly segmentation models which are employed
in MVTecAD benchmark (Bergmann et al., 2021): pixel-
level AUROC and AUPRO calculated up to 0.3 FPR. We
also compute area under the whole pixel-level ROC-curve.
Despite, our model can be viewed as semantic segmenta-
tion model, we do not report standard segmentation metrics,
e.g. Dice score, due to the following reasons. As we men-
tion in Section 4.1, available testing CT datasets contain
annotations of only specific types of tumors, while other
pathologies may be present in the images but not included
in the ground truth masks. It makes impossible to fairly esti-
mate metrics like Dice score or Hausdorff distance, which
count our model’s true positive predictions of the unanno-
tated pathologies (see second image from the left in the
Figure 1 for example) as false positive errors and strictly

penalize for them. However, the used pixel-level metrics are
not sensitive to this issue, since they are based on sensitivity
and specificity. We estimate sensitivity on pixels belonging
to the annotated pathologies. To estimate specificity we use
random pixels that do not belong to the annotated tumors
which are mostly normal, thus yielding a practical estimate.

4.3. Main results

We compare Screener with baselines that represent differ-
ent approaches to unsupervised visual anomaly segmenta-
tion. Specifically, we implement 3D versions of autoen-
coder (Baur et al., 2021), f-anoGAN (Schlegl et al., 2019)
(reconstruction-based methods), DRAEM (Zavrtanik et al.,
2021), MOOD-Top1 (Marimont & Tarroni, 2023) (methods
based on synthetic anomalies) and MSFlow (density-based
method on top of ImageNet features). Quantitative com-
parison is presented in Table 2. Qualitative comparison is
shown in Figure 3.

The analysis of the poor performance of the reconstruction-
based methods is given in Appendix E. Synthetic-based
models yield many false negatives because during training
they were penalized to predict zero scores in the unlabeled
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Table 3. Ablation study of the effect of conditional model for the fixed descriptor model (VICReg) and different conditional density
models (gaussian and normalizing flow). None in Condtion model column means that results are given for a marginal density model.

Descriptor model Condition model Density model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

VICReg, ddesc = 32 None Gaussian 0.81 0.81 0.61 0.71 0.41 0.47 0.12 0.22 0.46 0.62 0.13 0.28
Sin-cos pos. Gaussian 0.82 0.80 0.74 0.77 0.45 0.42 0.26 0.34 0.40 0.50 0.27 0.32

VICReg, ddesc = 32 APE Gaussian 0.88 0.80 0.78 0.86 0.67 0.46 0.34 0.56 0.43 0.38 0.35 0.55
VICReg, ddesc = 32 Masking-equiv. Gaussian 0.96 0.84 0.87 0.90 0.90 0.58 0.58 0.71 0.64 0.41 0.57 0.48

VICReg, ddesc = 32 None Norm. flow 0.96 0.89 0.88 0.93 0.89 0.68 0.62 0.78 0.67 0.46 0.62 0.65
VICReg, ddesc = 32 Sin-cos pos. Norm. flow 0.96 0.89 0.90 0.94 0.89 0.68 0.69 0.80 0.66 0.46 0.68 0.66
VICReg, ddesc = 32 APE Norm. flow 0.96 0.88 0.89 0.94 0.87 0.65 0.67 0.80 0.64 0.43 0.66 0.66
VICReg, ddesc = 32 Masking-equiv. Norm. flow 0.96 0.87 0.90 0.93 0.88 0.64 0.68 0.80 0.65 0.40 0.67 0.63

Table 4. Ablation study of the effect of descriptor model. In these experiments we do not use conditioning and use normalizing flow as
a marginal density model. We include MSFlow to demonstrate that descriptor model pre-trained on ImageNet is inappropriate for 3D
medical CT images.

Descriptor model Condition model Density model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

ImageNet Sin-cos pos. MSFlow 0.70 0.66 0.64 0.64 0.26 0.20 0.18 0.17 0.21 0.14 0.19 0.17
STU-Net (Huang et al., 2023) None Norm. flow 0.52 0.44 0.52 0.64 0.02 0.01 0.03 0.05 0.02 0.01 0.04 0.03

SimCLR, ddesc = 32 None Norm. flow 0.96 0.87 0.87 0.91 0.90 0.65 0.58 0.71 0.68 0.43 0.58 0.60
VICReg, ddesc = 32 None Norm. flow 0.96 0.89 0.88 0.93 0.89 0.68 0.62 0.78 0.67 0.46 0.62 0.65
VICReg, ddesc = 128 None Norm. flow 0.96 0.90 0.87 0.93 0.90 0.72 0.60 0.77 0.70 0.52 0.60 0.65

real pathological regions which may appear in training im-
ages. Meanwhile, MSFlow heavily relies on an ImageNet-
pre-trained encoder which produces irrelevant features of
3D medical CT images. Our density-based model with
domain-specific self-supervised features outperforms base-
lines by a large margin.

4.4. Condition and density models’ ablation

Table 3 demonstrates ablation study of our proposed condi-
tion model. We compare our condition model with two base-
lines: vanilla sin-cos positional encodings and anatomical
positional embeddings (Goncharov et al., 2024), described
in Appendix B. We evaluate condition models in combina-
tion with different density models, described in Section 3.3.
We use the VICReg descriptor model with ddesc = 32 as it
shows slightly better results than contrastive objective as
reported in Section 4.5.

When we use expressive normalizing flow density model,
all conditioning strategies yield results comparable to each
other and to the unconditional model. However, in exper-
iments with simple Gaussian density models, we see that
the results significantly improve as the conditioning vari-
ables becomes more informative. Noticeably, our proposed
masking-invariant condition model allows Gaussian model
to compete with complex flow-based models and achieve
very strong anomaly segmentation results.

4.5. Descriptor models’ ablation

We also ablate descriptor models in Table 4. We compare
contrastive and VICReg models with ddesc = 32. To ablate
the effect of the descriptors’ dimensionality, we also include
VICReg model with ddesc = 128. To demonstrate the superi-
ority of our domain-specific self-supervised descriptors over
supervised feature extractors pre-trained on natural images,
we compare with MSFlow (Zhou et al., 2024). Addition-
ally, we evaluate STU-Net (Huang et al., 2023) – a UNet
pre-trained in a supervised manner on anatomical structure
segmentation tasks – as a descriptor model in our frame-
work. However, it performs even worse than MSFlow, likely
because the feature maps from the penultimate UNet layer
are too specific to the pre-training task and lack information
about the presence of pathologies.

5. Related work
5.1. Visual unsupervised anomaly localization

In this section, we review several key approaches, each
represented among the top five methods on the localization
track of the MVTec AD benchmark (Bergmann et al., 2021),
developed to stir progress in visual unsupervised anomaly
detection and localization.

Synthetic anomalies. In unsupervised settings, real
anomalies are typically absent or unlabeled in training im-
ages. To simulate anomalies, researchers synthetically cor-
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rupt random regions by replacing them with noise, random
patterns from a special set (Yang et al., 2023), or parts
of other training images (Marimont & Tarroni, 2023). A
segmentation model is trained to predict binary masks of
corrupted regions, providing well-calibrated anomaly scores
for individual pixels. While straightforward to train, these
models may overfit to synthetic anomalies and struggle with
real ones.

Reconstruction-based. Trained solely on normal images,
reconstruction-based approaches (Baur et al., 2021; Kingma
& Welling, 2013; Schlegl et al., 2019), poorly reconstruct
anomalous regions, allowing pixel-wise or feature-wise dis-
crepancies to serve as anomaly scores. Later generative ap-
proaches (Zavrtanik et al., 2021; Zhang et al., 2023; Wang
et al., 2024) integrate synthetic anomalies. The limitation
stemming from anomaly-free train set assumption still per-
sists – if anomalous images are present, the model may learn
to reconstruct anomalies as well as normal regions, under-
mining the ability to detect anomalies through differences
between x and x̂.

Density-based. Density-based methods for anomaly de-
tection model the distribution of the training image patterns.
As modeling of the joint distribution of raw pixel values
is infeasible, these methods usually model the marginal or
conditional distribution of pixel-wise deep feature vectors.

Some methods (Roth et al., 2022; Bae et al., 2023) per-
form a non-parametric density estimation using memory
banks. More scalable flow-based methods (Yu et al., 2021;
Gudovskiy et al., 2022; Zhou et al., 2024), leverage normal-
izing flows to assign low likelihoods to anomalies. From
this family, we selected MSFlow as a representative base-
line, because it is simpler than PNI, and yields similar top-5
results on the MVTec AD.

5.2. Medical unsupervised anomaly localization

While there’s no standard benchmark for pathology localiza-
tion on CT images, MOOD (Zimmerer et al., 2022) offers a
relevant benchmark with synthetic target anomalies. Unfor-
tunately, at the time of preparing this work, the benchmark
is closed for submissions, preventing us from evaluating our
method on it. We include the top-performing method from
MOOD (Marimont & Tarroni, 2023) in our comparison, that
relies on synthetic anomalies.

Other recognized methods for anomaly localization in
medical images are reconstruction-based: variants of AE
/ VAE (Baur et al., 2021; Shvetsova et al., 2021), f-
AnoGAN (Schlegl et al., 2019), and diffusion-based (Pinaya
et al., 2022). These approaches highly rely on the fact that
the the training set consists of normal images only. How-
ever, it is challenging and costly to collect a large dataset of

CT images of normal patients. While these methods work
acceptable in the domain of 2D medical images and MRI,
the capabilities of the methods have not been fully explored
in a more complex CT data domain. We have adapted these
methods to 3D.

6. Conclusion
This work explores a fully self-supervised approach to
pathology segmentation in 3D medical images using a
density-based UVAS framework. Existing UVAS meth-
ods rely on anomaly-free training datasets or supervised
feature extractors, which are unavailable for CT images.
To address these limitations, we introduce Screener, ex-
tending the density-based UVAS framework with two key
innovations: (1) a self-supervised representation learning
descriptor for image features, and (2) a trainable condition-
ing model that enhances simpler density models. Screener,
being domain-specific and self-supervised, overcomes the
limitations of earlier methods and achieves superior perfor-
mance, as demonstrated by our empirical results.

Limitations. This work serves as a proof-of-concept for
two hypotheses: (1) pathology segmentation in CT im-
ages can be approached as UVAS, and (2) density estima-
tion in dense self-supervised feature spaces yields mean-
ingful anomaly scores. However, unsupervised approach
inevitably has limitations. Statistically abnormal visual
patterns do not always align with clinically significant ab-
normalities, leading to unavoidable false positives and neg-
atives. Additionally, our training dataset is biased toward
chest CTs, resulting in more false positives in abdominal
regions. Generalization to other anatomical regions requires
training on corresponding datasets.

Future work. While the performance gains compared to
baselines are already significant, we note that further im-
provements might be achieved from increasing descriptors
and conditions dimensionality and experiments with multi-
scale representations (e.g. by building feature pyramids).
Another possible avenue for future work is to study scal-
ing laws, i.e. self-supervised models typically scale well
with increasing pre-training dataset sizes. Distillation of
Screener into UNet and subsequent supervised fine-tuning
is also an interesting practical application of our work but
needs further exploration.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Self-Supervised Learning

InfoNCE. In contrastive learning, batch of positive pairs {(y(1)i , y
(2)
i )}Ni=1 is passed through a trainable MLP-projector

gθproj and l2-normalized: z(k)i = gθproj(y
(k)
i )/∥gθproj(y

(k)
i )∥ ∈ Rd, where k = 1, 2 and i = 1, . . . N . Then, the key objective

is to maximize the similarity between embeddings of positive pairs while minimizing their similarity with negative pairs. To
this end, InfoNCE loss written as:

min
θ

N∑
i=1

∑
k∈{1,2}

− log
exp(⟨z(1)i , z

(2)
i ⟩/τ)

exp(⟨z(1)i , z
(2)
i ⟩/τ) +

∑
j ̸=i

∑
l∈{1,2} exp(⟨z

(k)
i , z

(l)
j ⟩/τ)

. (1)

VICReg. VICReg objective enforces invariance among positive embeddings while constraining embeddings’ covariance
matrix to be diagonal and variance to be equal to some constant:

min
θ

α · Linv + β · Lvar + γ · Lcov. (2)

The first term Linv = 1
N ·D

∑N
i=1 ∥z

(1)
i − z

(2)
i ∥2 penalizes embeddings to be invariant to augmentations. The second term

Lvar =
∑

k∈{1,2}

1
D

D∑
i=1

max

(
0, 1−

√
C

(k)
i,i + ε

)
enforces individual embeddings’ dimensions to have unit variance. The

third term Lcov =
∑

k∈{1,2}
1
D

∑
i ̸=j

(
C

(k)
i,j

)2

encourages different embedding’s dimensions to be uncorrelated, increasing

the total information content of the embeddings. In VICReg embeddings {z(k)i } are not l2-normalized and obtained through
a trainable MLP-expander which increases the dimensionality up to 8192.

B. Baseline condition models
Sin-cos positional encodings. The existing density-based UVAS methods (Gudovskiy et al., 2022; Zhou et al., 2024) for
natural images use standard sin-cos positional encodings for conditioning. We also employ them as an option for condition
model in our framework. However, let us clarify what we mean by sin-cos positional embeddings in CT images. Note that
we never apply descriptor, condition or density models to the whole CT images due to memory constraints. Instead, at all
the training stages and at the inference stage of our framework we always apply them to image crops of size H ×W × S, as
described in Sections 3.1, 3.3. When we say that we apply sin-cos positional embeddings condition model to an image crop,
we mean that compute sin-cos encodings of absolute positions of its pixels w.r.t. to the whole CT image.

Anatomical positional embeddings. To implement the idea of learning the conditional distribution of image patterns at
each certain anatomical region, we need a condition model producing conditions c[p] that encode which anatomical region
is present in the image at every position p. Supervised model for organs’ semantic segmentation would be an ideal condition
model for this purpose. However, to our best knowledge, there is no supervised models that are able to segment all organs
in CT images. That is why, we decided to try the self-supervised APE (Goncharov et al., 2024) model which produces
continuous embeddings of anatomical position of CT image pixels.

C. Density Models
Below, we describe simple Gaussian density model and more expressive learnable Normalizing Flow model.

Gaussian marginal density model is written as

− log qθdens(y) =
1

2
(y − µ)⊤Σ−1(y − µ) +

1

2
log detΣ + const, (3)

where the trainable parameters θdens are mean vector µ and diagonal covariance matrix Σ.

Conditional gaussian density model is written as

− log qθdens(y | c) = 1

2
(y − µθdens(c))⊤ (Σθdens(c))

−1
(y − µθdens(c)) +

1

2
log detΣθdens(c) + const, (4)
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where µθdens and Σθdens are MLP nets which take condition c ∈ Rdcond
as input and predict a conditional mean vector

µθdens(c) ∈ Rddesc
and a vector of conditional variances which is used to construct the diagonal covariance matrix Σθdens(c) ∈

Rddesc×ddesc
.

As described in Section 3.3, at both training and inference stages, we need to obtain dense negative log-density maps. Dense
prediction by MLP nets µθdens(c) and Σθdens(c) can be implemented using convolutional layers with kernel size 1× 1× 1.
In practice, we increase this kernel size to 3 × 3 × 3, which can be equivalently formulated as conditioning on locally
aggregated conditions.

Normalizing flow model of descriptors’ marginal distribution is written as:

− log pθdens(y) =
1

2
∥fθdens(y)∥2 − log

∣∣∣∣det ∂fθdens(y)

∂y

∣∣∣∣+ const, (5)

where neural net fθ must be invertible and has a tractable jacobian determinant.

Conditional normalizing flow model of descriptors’ conditional distribution is given by:

− log pθdens(y | c) = 1

2
∥fθdens(y, c)∥2 − log

∣∣∣∣det ∂fθdens(y, c)

∂y

∣∣∣∣+ const, (6)

where neural net fθ : Rddesc × Rdcond → Rddesc
must be invertible w.r.t. the first argument, and the second term should be

tractable.

We construct fθ by stacking Glow layers (Kingma & Dhariwal, 2018): act-norms, invertible linear transforms and affine
coupling layers. Note that at both training and inference stages we apply fθ to descriptor maps y ∈ Rh×w×s×ddesc

in a
pixel-wise manner to obtain dense negative log-density maps. In conditional model, we apply conditioning in affine coupling
layers similar to (Gudovskiy et al., 2022) and also in each act-norm layer by predicting maps of rescaling parameters based
on condition maps.

D. Other implementation details
For our Screener model, we pre-process CT volumes by cropping them to dense foreground voxels (thresholded by −500HU),
resizing to 1.5× 1.5× 2.25 mm3 voxel spacing, clipping intensities to [−1000, 300]HU and rescaling them to [0, 1] range.
As an important final step we apply CLAHE (Pizer et al., 1987). CLAHE ensures that color jitter augmentations preserve
information about presence of pathologies during descriptor model training (otherwise, the quality of our method degrades
largely).

We train both the descriptor model and the condition model for 300k batches of m = 8 pairs of overlapping patches with
N = 8192 positive pairs of voxels. The training takes about 3 days on a single NVIDIA RTX H100-80GB GPU. We use
AdamW optimizer, warm-up learning rate from 0.0 to 0.0003 during first 10K batches, and then reduce it to zero till the end
of the training. Weight decay is set to 10−6 and gradient clipping to 1.0 norm. Patch size is set to H×W ×S = 96×96×64.

During the density model training we apply average pooling operations with 3 × 3 × 2 stride to feature maps produced
by the descriptor model as well as the condition model, following (Gudovskiy et al., 2022; Zhou et al., 2024). Thus
h×w× s = 32× 32× 32. We inject gaussian noise with 0.1 standard deviation both to the descriptors and to the conditions
in order to stabilize the training. We train the density model for 500k batches each containing m = 4 patches. This training
stage again takes about 3 days on a single NVIDIA RTX H100-80GB GPU. We use the same optimizer and the learning rate
scheduler as for the descriptor and condition models.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Screener: Self-supervised Pathology Segmentation Model for 3D Medical Images

E. Analysis of reconstruction-based models

Figure 4. The figure shows 2D slices of CT images (first column) alongside reconstructions and anomaly maps generated by two methods:
an Autoencoder (Baur et al., 2021) (second and third columns) and f-AnoGAN (Schlegl et al., 2019) (last two columns). Autoencoder
overfits for pixel reconstruction, so it generates pathologies and fails to segment them. Also Autoencoder produces blurry generations,
leading to inaccurate reconstructions of fine details and high anomaly scores on these details (e.g., vessels in the lungs). f-AnoGAN, on
the other hand, avoids generating pathologies, but the generation quality still is insufficient for precise segmentation of only pathological
voxels. GANs are known to be unstable and sensitive to hyperparameters, necessitating careful tuning and experimentation to achieve
optimal results.
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