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ABSTRACT

Electrocardiogram (ECG), a non-invasive and affordable tool for cardiac mon-
itoring, is highly sensitive in detecting acute heart attacks. However, due to the
lengthy nature of ECG recordings, numerous machine learning methods have been
developed for automated heart disease detection to reduce human workload. De-
spite these efforts, performance remains suboptimal. A key obstacle is the in-
herent complexity of ECG data, which includes heterogeneity (e.g., varying sam-
pling rates), high levels of noise, demographic-related pattern shifts, and intricate
rhythm-event associations. To overcome these challenges, this paper introduces
AnyECG, a foundational model designed to extract robust representations from
any real-world ECG data. Specifically, a tailored ECG Tokenizer encodes each
fixed-duration ECG fragment into a token and, guided by proxy tasks, converts
noisy, continuous ECG features into discrete, compact, and clinically meaningful
local rhythm codes. These codes encapsulate basic morphological, frequency,
and demographic information (e.g., sex), effectively mitigating signal noise. We
further pre-train the AnyECG to learn rhythmic pattern associations across ECG
tokens, enabling the capture of cardiac event semantics. By being jointly pre-
trained on diverse ECG data sources, AnyECG is capable of generalizing across
a wide range of downstream tasks where ECG signals are recorded from vari-
ous devices and scenarios. Experimental results in anomaly detection, arrhythmia
detection, corrupted lead generation, and ultra-long ECG signal analysis demon-
strate that AnyECG learns common ECG knowledge from data and significantly
outperforms cutting-edge methods in each respective task.

1 INTRODUCTION

The electrocardiogram (ECG) is a widely used test that records the heart’s electrical activity, facili-
tating the monitoring and diagnosis of various cardiac conditions. Due to variations in ECG devices,
recording conditions, patient characteristics, the length of recorded ECG signals, the number of
leads, the sampling rates, as well as the signal-to-noise ratio (SNR), can vary significantly. For ex-
ample, in non-clinical settings, wearable devices typically collect long-term single-lead or dual-lead
ECG signals at lower sampling rates, covering a variety of human activity scenarios, which often
results in higher noise levels (Abbaspourazad et al., 2023} |Ansari et al.,|2023). In contrast, standard
devices used in hospital outpatient clinics capture high-resolution eight-, twelve-, or eighteen-lead
ECG signals in a resting state for diagnostic purposes (Herman et al., 2024). Additionally, the noise
in ECG data can originate from device artifacts, baseline wander, muscle noise, as well as external
interference (Singh & Sharmal [2022). These heterogeneity and complexity present major challenges
in developing a unified model that can effectively handle ECG signals recorded across various de-
vices, scenarios, and clinical purposes.

Sequence models, such as large language models, developed using large-scale data in the wild
have shown significant advantages in learning robust representations and demonstrated robustness in
downstream tasks. However, adapting sequence model pre-training approaches to ECG data in real-
world settings poses unique challenges: (1) Heterogeneity: real-world ECG signals vary in length,
sampling rate, and the number of channels due to differences in devices and scenarios. A unified
model (e.g., with fixed tokenizer settings) is needed to effectively manage this diversity while main-
taining temporal resolution and avoiding the introduction of artifacts. (2) Low SNR: ECG signals
inherently have a low SNR, and pathological waveforms are often subtle, making it easy for noise
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to interfere with the understanding of critical features. (3) Demographic shift: ECG waveforms
can vary due to patient demographics (e.g., age, sex, ethnicity). For instance, pediatric ECGs differ
from adults in disease presentation and heart rate (Chen et al., |2024), and distinct ethnic groups
may exhibit unique ECG characteristics (Jain et al., 2010), which hinder models from generalizing
across diverse populations. (4) Implicit rhythm-event association: The systematic arrangement
of rhythm patterns may indicate some cardiac events. ECG analysis depends on identifying these
rhythm associations and event patterns. However, noisy real-world ECG data make it difficult for
models to capture sequential relationships, hindering the accurate cardiac event detection.

To overcome these challenges, we introduce AnyECGs, a family of ECG foundational models de-
signed for robust representation learning on ECG signals in diverse, real-world settings. The de-
velopment of AnyECG involves two main pre-training phases: the ECG Tokenizer pre-training and
the entire AnyECG foundation model pre-training. The first phase captures key local rhythmic pat-
terns from noisy ECG signals, while the second learns associations across the rhythmic patterns
that implies cardiac events. Specifically, we first pad any ECG signals to unified length, segment a
signal into a collection of fixed-duration fragments, project each fragment into a token orderly, and
pad missing channels, standardizing the diversity in sampling rates, lengths, and channel numbers.
We further design a new hierarchical modeling approach to tackle ultra-long ECG signal (solving
challenge (1)). In the ECG Tokenizer pre-training phase, a Rhythm Codebook is established
to capture the key local morphological and frequency features inherent in ECG signals. The ECG
Tokenizer extracts ECG features that are closely aligned with these Rhythm Codes, effectively
reducing noise by matching the input patches to those representative codes (solving challenge (2)).
Additionally, the extracted ECG features are also required to recover demographic information about
the patient (addressing challenge (3)). Then, we apply ‘masked modeling’ approach in the AnyECG
pretraining phase, where the model predicts Rhythm Code indices to fill in masked patches. This
approach encourages the recovery of masked ECG patches based on their relationship with un-
masked ECG patches, enabling the model to learn cardiac event semantics that are essential for
downstream tasks, thus addressing challenge (4). With these designs, AnyECG can facilitate knowl-
edge transfer across various ECG sources in the wild, enabling to learn shared ECG and cardiac
event knowledge that is applicable to downstream tasks. Our contributions are listed below.

* ECG Foundational Model: We introduce AnyECG, a foundational ECG model that uni-
fies representation learning by capturing important local rhythm patterns in ECG signals
and their semantic relationships, providing a flexible framework adaptable to any ECG
signals for various downstream applications.

* ECG Tokenizer: We present an ECG tokenizer that extracts compact, noise-resilient
Rhythm Codes utilizing the Multi-View Synergistic Decoder that reconstructs these
codes from Morphology, Frequency, and Demography perspectives to capture essential
diagnostic features and improve generalization across diverse populations.

* Various Downstream Tasks Adaptability: By pretrained to learn the associations among
ECG tokens, our AnyECG is sensitive to potential cardiac events, demonstrating strong
generalization capabilities across various downstream tasks, including anomaly detection,
arrhythmia detection, corrupted lead generation, and ultra-long ECG signal analysis.

2 METHODOLOGY

Our proposed AnyECG adopts a common Transformer architecture, incorporating a novel attention
module and a special tokenizer that can be adapted to both the self-supervised learning pretrain-
ing pipeline and various downstream tasks for any ECG signals, as shown in The self-
supervised learning process of AnyECG is divided into two phases: pretraining the ECG Tokenizer
and pretraining the AnyECG backbone.

2.1 ANYECG ARCHITECTURE

ECG Signal Pre-Processing. To preserve the natural characteristics of the ECG signals, we ap-
plied minimal pre-processing steps aimed at reducing noise while maintaining signal integrity. First,
we used a bandpass filter between 0.1 Hz and 75 Hz to remove low-frequency noise, followed by a
notch filter at 50 Hz to eliminate power-line interference. The ECG signals were then resampled to
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Figure 1: Overall architecture and pre-training pipeline of AnyECG. AnyECG is pre-trained in
two steps. The Patient Attribute Tokenizer is pre-trained through proxy tasks to embed morphol-
ogy, frequency, and demography into tokens (up). Then, the entire AnyECG, along with the Patient
Attribute Tokenizer, is further pre-trained by predicting the code indices of the masked tokens to
learn the semantic relationships between tokens (bottom-left). The Cross-Masking approach re-
stricts interactions of patches from the same lead or from the same position across different leads
(bottom-right). LN: LayerNorm, Conv: 1D convolution with kernel size of 15.

300 Hz to standardize the sampling rate across all data sources, as 300 Hz is considered sufficient
for diagnosing most cardiac conditions based on the Nyquist-Shannon sampling theorem. Finally,
wavelet-based denoising was performed using the ‘db6’ wavelet, following (Ma et al.l [2022). To
align with the Transformer input format, a multi-channel ECG signal X € RY*? (where L repre-
sents the number of ECG leads (channels), and T' denotes the total number of recorded temporal
points) was segmented along the time axis into fixed-duration patches of size w. This divides each
lead into P patches, where P is the minimal positive integer satisfying P x w > T. If T is not di-
visible by s, we pad the signal with zeros at the end to reach a length of Ps. Each patch z; ;, € R?® is
defined as zj 1, = X (k_1)s11:ks» Where j = 1,2,..., L denotes the lead indexand k = 1,2,..., P
denotes the patch index along the time axis. The total number of patches is N = L x P, and we
flatten them into a patch sequence X’ € RV*% of length N before feeding it into the model.

ECG Tokenizer. The objective of ECG Tokenizer is to effectively capture both the temporal and
spatial features of ECG signals and generate an embedding H € RV X9 from X’. We firstly use a
temporal encoder to learn local temporal patterns by independently processing each ECG patch ;1.
The temporal encoder consists of one 1D convolution, a group normalization, and a GELU activation
function. Then, a spatial encoder with 4 Transformer blocks is used. Each patch x; ; is processed
by the temporal encoder and spatial encoder sequentially to obtain an embedding h;-’ s € R?. To
enhance the model’s understanding of the temporal sequence and leads relationships, learnable tem-
poral position encoding 7, € R and lead position encoding o; € R are along the temporal dimen-
sion k and channel dimension j, separately. The output of the ECG Tokenizer is the temporal-spatial
encoding h; , = h;)k + 7 + 0.

Cross-Mask Attention (CMA). Unlike other sequential data like text, ECG signals typically in-
clude multiple leads, with the signals at the same positions across leads providing complementary
information (Chen et al.| 2021)). Therefore, in contrast to conventional multi-head self-attention, we
introduce CMA, which differentiates the structure of our AnyECG. CMA allows each patch to in-
teract only with patches within relevant channels (i.e. leads) and temporal contexts. We apply CMA
as the attention module within the Transformer blocks of both the ECG Tokenizer and AnyECG
backbone. Given input H, () = LayerNorm(H)Wq, K = LayerNorm(H)Wg, V = HWy,, where
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Wo, Wi, Wy, € R¥¥dnoat are learnable projection matrices, LayerNorm(-) denotes layer normal-
ization, and dpoqel 1s the model dimension. The CMA is computed as:

QK" + M 0,  ifjeA®)
_ o M : = 1
CMA(Q, K, V) = softmax < Nz Ve Mg —o0, otherwise M

where, dj,cqq is the number of attention head; M € RY* is the attention mask matrix. .A(4) in-
cludes patches from the same lead j or the same position, as illustrated in Figure [T| bottom right.
Notably, a positional tolerance (mask width) is used to improve the model’s robustness, account-
ing for slight delays in certain leads caused by variations in cardiac signal conduction, which is
particularly significant for some diseases. In AnyECG, we adopt the multi-head attention version.

2.2 ECG TOKENIZER PRETRAINING
2.2.1 ECG TOKENIZER WITH RHYTHM CODEBOOK

Motivation. ECG signals are inherently high-dimensional time-series data, often characterized by a
low SNR due to sparse key information and contamination from various types of noise. To address
these issues, we propose a vector-quantized rhythm codebook that transforms raw ECG signals into
compact, discrete tokens, enabling robust and noise-resistant representation learning. The transfor-
mation of rhythm codebook enhances low-SNR signals into a high-SNR representation, accurately
capturing true cardiac activity while minimizing the effects of noise.

Initially, each patch x;; € R® represents a portion of the signal over w time steps in lead j. The
tokenizer processes these patches into feature representations, yielding embeddings hj ), € RY,
where d is the dimension of each embedding. To discretize these continuous embeddings into tokens
suitable for subsequent processing, we employ a quantizer that maps each embedding h; ;. to the
nearest codeword in a predefined codebook V. The codebook V € RE*4 consists of K codes

v1, %2, ...,Vk. The quantization process is defined as:
2
. _ B Vs
i* = argmin ij - )
ietr2, k|| 1hgkll2 ol

where || - ||2 denotes the ¢o-norm, and normalization ensures that the distance measure is equivalent
to maximizing the cosine similarity. The assigned discrete token index for the patch x; ;, is index ¢*.
This process effectively quantizes the ECG signal into a sequence of discrete tokens {z; 1, }, reducing
the influence of noise and enhancing the signal quality.

By transforming the ECG data into a low dimension and high-SNR tokenized representations z; x,
the ECG Tokenizer enables the model to focus on the meaningful aspects of the cardiac signal, such
as heartbeat patterns and rhythms, which improves the model’s ability to generalize across different
datasets.

2.2.2 MULTI-VIEW SYNERGISTIC DECODER

To better capture the demographic variations and morphological changes inherent in ECG signals,
we propose a Multi-View Synergistic Decoder containing three decoders for different proxy tasks.

Morphology Decoder aims to reconstruct the original temporal ECG signals, focusing on preserv-
ing time-domain information critical for identifying features like QRS complexes and arrhythmia.
By reconstructing the time-domain signals, we ensure that the essential temporal characteristics of
the cardiac cycles are retained, providing a foundation for accurate heartbeat analysis. The recon-
struction loss for the Morphology Decoder is defined as:

L P 5
Emorphology = Z Z HO?:LIC - ‘rjvk||2 (3)

j=1k=1

where o is the output of the Morphology Decoder for patch ;.
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Frequency Decoder predicts the frequency characteristics of ECG signals by incorporating
frequency-domain information, which is essential for capturing periodic and spectral features as-
sociated with cardiac conditions. Unlike traditional methods that focus solely on time-domain or
frequency features, this decoder leverages the Discrete Wavelet Transform (DWT)(Shensa et al.,
1992)) to analyze the signals simultaneously in both time and frequency domains. For each ECG
patch x; . € R?, corresponding to lead j and patch index &, we apply the DWT to decompose
the time-domain signal into wavelet coefficients, capturing localized frequency content. The DWT
performs a multi-scale decomposition of the signal recursively, obtaining features across different
frequency ranges. The wavelet decomposition process consists of two main parts. At the initial
stage, the original signal is the approximation coefficients at level zero, cff) = x; 1. Then, at the
Recursive Decomposition stage, for each level [ (I = 1,2,..., L,,), we use the approximation co-
efficients from the previous level cﬁfl) to obtain the current level’s approximation coefficients c%)

and detail coefficients 053) through convolution and downsampling:

(l) Z (- 1) g[2n —m] c%) [n] = ch_l)[m] - h[2n —m] 4)

m

where g[-] and h[-] are the coefficients of the low-pass and high-pass filters, respectively, n is the
index of the downsampled coefficients, the convolution operation captures the signal’s features in
the corresponding frequency range, and downsampling reduces the resolution, focusing on lower-
frequency components. We obtain a hybrid time-frequency representation of the ECG signal through
multi-scale decomposition by performing these operations on the approximation coefficients 054 b
at each level, simultaneously capturing both the low-frequency (approximation coefficients) and
high-frequency (detail coefficients) information of the signal. For stable convergence during train-
ing, we apply z-score normalization to the frequency magnitudes within each patch. The reconstruc-

tion loss for the Frequency Decoder is defined as:
2 2
| )
2 2

and c(l) are the predicted approximation and detail coefficients at level [, respectively,

and c%) "™ are the corresponding normalized actual coefficients. The loss is computed

across all decomposition levels [ from 1 to L,,.

A C(l) norm

L’UJ
Lireq = Z ( Ca A

é([l)) . C(lé) norm

where 654)

(1) norm
and c

Demography Decoder predicts patient-specific attributes (e.g., age, weight, or other demographic
factors), represented as a vector a € R% . By jointly predicting these attributes, the model gains a
personalized understanding of the patient’s condition. This personalized aspect allows the model to
better account for inter-patient variability, which is critical in making accurate clinical predictions.
The loss for the Demography Decoder is defined as:

£demography = Hoa - a”; ©)

where 0% represents the predicted patient-specific attributes, and a is the ground truth patient at-
tribute vector.

Overall Loss Function for ECG Tokenizer In addition to reconstruction loss functions from all
decoders, we also include codebook loss and commitment loss to ensure that the quantized tokens
remain faithful to the original signal and stabilize the training process. The codebook loss and
commitment loss are defined as:

c rP c P
Lcodebook = Z Z ||bg 3, k) — Uz ||§ Lcommitment = 3 Z Z ’h] k—Sg UZJ k) H2 @)
j=1k=1 J=1 k=1
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where h; i is the embedding of the patch x; , v, , is the codebook vector corresponding to the
token z; 1, sg(-) denotes the stop-gradient operator, and (3 is a weighting coefficient for the commit-
ment loss. The overall loss function combines all components:

£T = £morphology + Efrequency + Edemography + [fcodebook + Ecommitmem (8)

This loss function requires the reconstruction of both the temporal and frequency components of the
ECG signal, while also ensuring the recovery of patient-specific factors for personalized modeling.
Experiments in Appendix [7.4]shows the importance of each component in the total loss function.

2.3 ANYECG MASKED PRE-TRAINING

Inspired by self-supervised learning from masked modeling in NLP (Kenton & Toutanova, [2019)
and vision (Bao et al., 2021; |He et al.| 2022), we design a hybrid-scale masked ECG modeling
strategy, where random segments of ECG signals are masked and the model is learned to reconstruct
missing parts.

After using ECG Tokenizer process X’ to embeddings H € R™*?  we randomly generate a
mask M € RM*!) where its component m;; € {0,1}. The masked patches are replaced

with a learnable mask token hy; € R? The masked embeddings h;; are defined as: hjj =
(1- mj,k) ~hjr + mji - hye These augmented embeddings iL]k are then reshaped into a
sequential format and fed into a Transformer encoder to generate contextualized representations
B;k € R?. Each contextualized vector fL; & 1s passed through a linear classifier followed by a soft-
max function to produce a probability distribution over the codebook tokens V' = {v1, va, ..., vk }:

p(v; | H) = softmax (Wﬁ; et b) ., where H denotes the collection of all augmented embeddings

h; k. and the subscript 7 refers to the i-th element of the output vector. The training objective for the
masked modeling process is to minimize the negative log-likelihood of predicting the correct tokens
vz, , at the masked positions:

L P

Lask == Y _mjy-logp (vzj,k | ﬁ) ©)

j=1k=1

The masked pretraining facilitates the model in learning generic representations from the input data
by capturing the implicit rhythm-event associations and sequential relationships crucial for ECG
analysis, thereby enhancing its ability to capture the underlying cardiac event patterns in the ECG
signals.

3 DOWNSTREAM APPLICATION

This section evaluates AnyECG’s performance across multiple ECG datasets to prove its generality.
In Section [3.1] we summarize datasets utilized in the experiments. Section [3.2] explains the exper-
imental setup in detail. In Section we present the results of our experiments, benchmarking
AnyECG against state-of-the-art methods across multiple tasks, including anomaly detection, ar-
rhythmia detection, ECG lead generation, and ultra-long ECG sequence recognition. In Section
and([7.3] we also present ablation studies on hyperparameter selection and the necessity of two-stage
pre-training.

3.1 ECG DATASETS

To evaluate the performance of AnyECG and baseline models, we utilized a comprehensive set
of ECG datasets that include all available unlabeled data during pretraining. These datasets cover a
wide spectrum of cardiac conditions, patient demographics, and recording scenarios, ensuring robust
testing across diverse settings. For various downstream tasks, we mixed all datasets together to
minimize biases introduced by individual datasets and to better validate the model’s generalizability.
This approach reduces the discrepancies arising from different data sources and enhances the unified
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Table 1: Summary of ECG Datasets

Dataset Recordings Sampling Rate  Duration Notes

CPSC (Liu et al.;2018) 6877 500 Hz 6-60 s Balanced sex
CPSC-Extra (Liu et al.||2018) 3453 500 Hz 6-60 s Balanced sex

INCART (Tihonenko et al.{[2008) 74 257 Hz 30 min each High-res; arrhythmia

PTB (Bousseljot et al.|[1995) 516 1000 Hz Varies Wide range of pathologies
PTB-XL (Wagner et al.|[2020) 21837 500 Hz 10s Extensive clinical ECGs
GI12EC 10344 500 Hz Varies The Southeast’s unique demographics
Undisclosed Dataset 10000 500 Hz 6-60 s Geographically distinct test set

capability of the model. The detailed data construction of the datasets can be found in Table
All datasets are formatted in WFDB format, including associated binary and text files that detail
signal attributes and clinical annotations using SNOMED-CT codes. Detailed information about the
datasets is provided in Appendix

3.2 EXPERIMENTAL SETUP

Model Configurations. We introduce three configurations of AnyECG: AnyECG-B, AnyECG-
L, and AnyECG-XL, containing 254M, 500M, and 1.7B parameters, respectively. The increase in
parameters is achieved by deepening the Transformer encoder and expanding the hidden layer sizes.
To maintain consistency across all configurations, we set the patch size P = 300, which corresponds
to 1 second of ECG data. The maximum sequence length is fixed at 1,024 tokens, sufficient for most
ECG applications. During ECG Tokenizer training and AnyECG pre-training, sequences shorter
than this length are padded. To preserve data integrity, we mask the attention values associated with
these padding tokens.

Training Environment. The pre-training of AnyECG was conducted on a comprehensive dataset
compiled from seven different sources. For the downstream tasks, data splitting followed stan-
dard procedures, dividing the data into training and validation subsets using an 80/20 ratio. Binary
cross-entropy loss was employed for binary classification tasks, while cross-entropy loss was uti-
lized for multi-class classification tasks. Evaluation metrics for the downstream tasks are detailed
in the Appendix All experiments were executed on a computing cluster equipped with eight
high-performance GPUs. We used the Adam optimizer with a learning rate of le-4 for all models
training. Model selection was based on the best performance on validation sets, and final evalu-
ations were conducted on separate test sets. To ensure the reliability of our results, performance
metrics—including averages and standard deviations—were reported across five random seeds.

3.3 EXPERIMENTAL RESULTS

Anomaly Detection. Table [2{compares AnyECG to state-of-the-art models in the anomaly detec-
tion task. AnyECG consistently outperforms other advanced models across all evaluation metrics.
Specifically, the largest variant, AnyECG-XL, achieves the highest scores in accuracy, AUC-PR,
AUROC, and Weighted F1 Score, demonstrating its strong ability to capture ECG signal character-
istics. In contrast, traditional models like DENS-ECG (Peimankar & Puthusserypady, 2021) and
ContraWR (Yang et al.| 2021) show lower performance. DENS-ECG achieves moderate scores in
accuracy and Weighted F1 Score, while ContraWR falls short in both metrics. Even the smaller
versions of AnyECG, such as AnyECG-B and AnyECG-L, perform competitively and surpass most
baseline models. This indicates that AnyECG maintains high performance across different scales
without requiring extensive model parameters. Notably, the finetuned ECG-FM model (McKeen
et al.,2024) performs at an intermediate to above-average level compared to the baseline. However,
as a pre-trained model, its performance may still be hindered by substantial differences between the
pre-training data and the downstream task dataset, which likely impedes its ability to fully converge.

Arrhythmia Detection. Table 3] presents a performance comparison between AnyECG and other
leading models in arrhythmia detection. The results show that AnyECG, particularly the AnyECG-
XL variant, consistently outperforms competing models across all metrics. This demonstrates
its strong ability to handle arrhythmia detection effectively. In contrast, models like DENS-
ECG (Peimankar & Puthusserypady, 2021) and ContraWR (Yang et al.l 2021) exhibit lower per-
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Table 2: Results Comparison with State-of-the-Art Models in Anomaly Detection
Methods Pretrain Accuracy 1 AUC-PR 1 AUROC 1 Weighted F1 Score 1

DENS-ECG (Peimankar & Puthusserypady||2021) X 0.7928+0.0019  0.9319+£0.0019  0.8488+0.0070 0.7928+0.0009
ContraWR (Yang et al./|2021) X 0.7551£0.0011  0.9374+£0.0001  0.8153+0.0002 0.7611£0.0003
XResNetlD (He et al./2019) X 0.7768+0.0115  0.9217+0.0045  0.7522+0.0121 0.7606+0.0093
CNN-Transformer (Peh et al.[[2022) X 0.7401£0.0019  0.9340+0.0011  0.8074+0.0034 0.7444+0.0005
RNNID (Salloum & Kuo![2017) X 0.799240.0017  0.9284+0.0006  0.7868+0.0015 0.7838+0.0012
FFCL (Li et al.[[2022) X 0.6709+£0.0012  0.8682+0.0003  0.6423+0.0018 0.6746+0.0003
Inception1D (Strodthoft et al.|[2020) X 0.8001£0.0029  0.9408+0.0004  0.8097+0.0015 0.7868+0.0018
ST-Transformer (Song et al.[|2021) X 0.8070£0.0017  0.9471£0.0007  0.8406+0.0004 0.8048+0.0004
ECG-FM (McKeen et al.[|2024) v 0.7788+0.0029  0.9036+0.0197  0.7693+0.0028 0.7321£0.0112
AnyECG-B v 0.8188+0.0025 0.9517+0.0049  0.8502+0.0026 0.8863+0.0022

AnyECG-L v 0.8241£0.0043  0.9535+0.0030  0.8483+0.0025 0.8898+0.0026
AnyECG-XL v 0.8255+£0.0035  0.9538+0.0012  0.8550+0.0016 0.8912+0.0033

formance. Notably, although ECG-FM (McKeen et al., [2024) employs pretraining, it achieves sig-
nificantly lower accuracy. This underscores AnyECG’s robustness, as its consistent performance
across all metrics confirms its suitability for real-world arrhythmia detection.

Table 3: Results Comparison with State-of-the-Art Models in Arrhythmia Detection
Methods Pretrain Accuracy 1 AUC-PR 1 ‘Weighted F1 Score 1 Precision 1

DENS-ECG (Peimankar & Puthusserypady|[2021) X 0.3202+0.0074  0.1514+0.0042 0.2669+0.0085 0.2866+0.0069
ContraWR (Yang et al.|[2021} X 0.3075£0.0035  0.1359+0.0048 0.2802+0.0055 0.2794+0.0083
XResNet1D (He et al.|[2019) X 0.1822+0.0058  0.1044+0.0011 0.1765+0.0031 0.1746+0.0124

CNN-Transformer (Peh et al.[[2022) X 0.3284+0.0202  0.1417+0.0071 0.2685+0.0290 0.2641+0.0061
RNNID (Salloum & Kuo{[2017) X 0.2511£0.0019  0.0911+0.0005 0.2164+0.0011 0.1986+0.0010
FFCL (L1 et al.[[2022) X 0.1823+0.0035  0.0832+0.0050 0.1770+0.0052 0.1736+0.0013
Inception1D (Strodthoff et al.!|2020) X 0.2770£0.0031  0.1280+0.0006 0.2487+0.0031 0.2371+0.0021
ST-Transformer (Song et al.|[2021) X 0.2011£0.0057  0.0941+0.0046 0.1996+0.0053 0.2018+0.0027
ECG-FM (McKeen et al.[[2024) v 0.2212+0.0015  0.1037+0.0042 0.2285+0.0064 0.2386+0.0153
AnyECG-B v 0.3339+0.0029  0.1524+0.0069 0.2747+0.0046 0.3350+0.0052

AnyECG-L v 0.3358+0.0077  0.1542+0.0035 0.2636+0.0040 0.3339+0.0080
AnyECG-XL v 0.3449+0.0095  0.1635+0.0028 0.2833+0.0033 0.3449+0.0075

Corrupted Lead Generation. We evaluated AnyECG against CGAN (Mirza, [2014) and
WGAN (Adler & Lunz, 2018)) in generating corrupted ECG leads (see Table E] and Figure . Us-
ing metrics like PSNR, SSIM, and MAE, AnyECG-L achieved the highest PSNR (32.7372 dB)
and SSIM (0.8738), outperforming both CGAN and WGAN. Smaller models like AnyECG-L and
AnyECG-B offer a better balance between capacity and generalization compared to AnyECG-XL.
Due to limitations in its model architecture, ECG-FM (McKeen et al.| 2024) could not be applied
to this task. Although the AnyECG models did not achieve the lowest MAE, this may be because
they prioritize capturing abstract rhythms and morphological patterns over minimizing pixel-level
errors in detailed, noisy signals. This suggests that while AnyECG effectively captures the over-
all structure and rhythm of ECG signals, it is somewhat less precise in reproducing finer details.
Figure [2] shows the ECG signals generated by WGAN, CGAN, and AnyECG. Both WGAN and
CGAN can capture general morphology but fail to accurately reproduce certain rhythms, leading to
unsuccessful signal generation in those cases. AnyECG leverages two stage pre-training to capture
complex rhythmic features, resulting in morphology closer to the original signals. However, it lacks
detailed feature extraction in finer wave bands, leading to poorer reconstruction in these regions and
higher MAE. These observations suggest that while AnyECG excels in preserving overall rhythmic
and morphological integrity, there is room for improvement in reconstructing fine-grained details.

Ultra-Long ECG Recognition.

Recognizing ultra-long ECG signals

is challenging due to their extended Table 4: Results Comparison with State-of-the-Art Models
duration, rhythm variability, and in Corrupted Lead Generation.

noise, which require models to be  pethods PSNRT SSIM+ MAE |
robust and generalizable. Traditional

ti . del ft t 1 CGAN (Mirza.|2014) 30.1762  0.8591 0.0142
1me  series models olten SUUgEle  ywGAN (Adler & Lunz]2018)  27.5074  0.7907  0.0199
with high computational complexity,

memory constraints, and difficulty ﬁﬁygggg g%;;;g 82%3 8835%
in capturing long-term dependencies. An§ ECGXL A6 08529  0.0376

Therefore, We proposed a hierarchi-
cal modeling approach that adapts to ultra-long ECG data by employing a sliding window method.
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Figure 2: Visualization of Corrupted Lead Generation among WGAN (top), CGAN (middle),
AnyECG (bottom).

As shown in Table[5] AnyECG, particularly the AnyECG-XL, achieves the highest scores across all
evaluation metrics. This demonstrates its superior ability to capture complex patterns and maintain
high accuracy when analyzing ultra-long ECG signals. Compared to state-of-the-art models like
Inception1D (Strodthoff et al.l [2020) and RNN1D (Salloum & Kuo} [2017), AnyECG-XL shows a
clear advantage, especially in AUROC and AUC-PR. Even the smaller variants, AnyECG-B and
AnyECG-L, outperform most baseline models, highlighting AnyECG’s adaptability and scalability.
The absence of results for the other pretrained ECG foundation model ECG-FM (McKeen et al.,
2024) is due to its inability to handle ultra-long sequence data, making it unsuitable for this task. In
contrast, AnyECG’s consistent performance across all scales confirms its effectiveness in capturing
key features of ultra-long ECG signals.

Table 5: Results Comparison with State-of-the-Art Models in Ultra-Long ECG Recognition
Methods Adaptation Accuracy 1 AUC-PR 1 AUROC 1 Weighted F1 Score 1

DENS-ECG (Peimankar & Puthusserypady![2021) X 0.3202+£0.0074  0.1514£0.0042  0.2669+0.0085 0.2866+0.0069
ContraWR (Yang et al.[|2021) X 0.3075£0.0035  0.1359+0.0048  0.2802+0.0055 0.2794+0.0083
XResNet1D (He et al.|[2019) X 0.6611£0.0812  0.6916+0.0797  0.6499+0.1353 0.6453+0.0922

CNN-Transformer (Peh et al.|[2022) X 0.3284+0.0202  0.1417+0.0071  0.2685+0.0290 0.2641+0.0061
RNNID (Salloum & Kuo![2017) X 0.7444+0.0102  0.7724+0.0102  0.8679+0.0291 0.738620.0640
FFCL (Li et al.[|[2022) X 0.1823+0.0035  0.0832+0.0050  0.17700.0052 0.1736+0.0013
Inception1D (Strodthoft et al.|[2020) X 0.5000+£0.0017  0.5154+0.0492  0.3197+0.0573 0.3432+0.0038
ST-Transformer (Song et al.|[2021}) X 0.2011£0.0057  0.0941£0.0046  0.1996+0.0053 0.2018+0.0027
AnyECG-B v 0.6944+0.0016  0.7482+0.0025  0.6759+0.0056 0.5639+0.0124

AnyECG-L v 0.7777+£0.0077  0.9075+0.0072  0.9104+0.0039 0.7500+0.0072
AnyECG-XL v 0.8055£0.0034  0.9088+0.0027  0.9104+0.0147 0.7741+0.0068

4 RELATED WORKS

Heterogeneous ECG Signal Analysis and Classification. The application of deep learning tech-
niques has significantly advanced the analysis and classification of ECG signals. However, the
heterogeneity of ECG data poses a major challenge for model generalization; models trained on one
dataset often do not perform well on others. Consequently, researchers have focused on design-
ing specialized models tailored to specific datasets, employing architectures such as convolutional
neural networks (CNNs) (Prathipati & Malyavantham, 2023} |Kucukseymen et al., [2022)), recurrent
neural networks (RNNs) (Kumar et al., 2023} |Din et al., | 2024), and transformer-based models (Shah
et al.| 2024} Ji et al.l 2024). While these efforts have led to incremental performance improvements
(Srivastava et al., 2023} [Jasvitha et al., [2024; Ribeiro et al., [2020; (Gao et al., |2021)), the gains are
often not statistically significant due to the limited size and scope of the datasets used. The absence
of a unified model capable of handling the diverse nature of ECG data underscores the need for new
approaches that can provide more substantial and broadly applicable performance improvements.
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Self-supervised ECG Representation Learning. Self-supervised learning has emerged as a
promising approach for extracting representations from unlabeled ECG signals, enabling the use
of large amounts of raw data without manual annotations. Methods such as signal reconstruction,
contrastive learning, and masked signal modeling have been explored (Yun et al.| [2024; Wu et al.,
2024; L1 et al., 2024). However, existing self-supervised learning methods often struggle to general-
ize across heterogeneous ECG datasets, especially when faced with varying lead configurations and
noise levels. For example, contrastive methods (Kiyasseh et al.,2021; [Wang et al.,|2023)) encourage
similar representations for compatible signal segments but do not adequately account for variability
introduced by different lead setups. Moreover, the low SNR inherent in ECG data can cause models
to focus on reconstructing noisy or redundant signal components due to high correlations among
leads, rather than capturing critical physiological information. Models like contrastive predictive
coding (CPC) (Mehari & Strodthoff], 2022) and masked autoencoders (Zhang et al., 2022} Na et al.,
2024) often inadvertently emphasize less relevant features, diminishing their effectiveness in cap-
turing essential signal characteristics. This focus on less informative aspects can limit the models’
ability to extract meaningful representations that transfer effectively to unseen data or datasets with
different characteristics.

5 DISCUSSION

Social Impacts. ECG is one of the most commonly used diagnostic tools in healthcare, with over
100 million ECG reports obtained annually in the United States alone (Tison et al.,2019). Despite its
widespread use, unlike other biomedical signals such as electroencephalograms (EEG) (Yang et al.,
2024; Jiang et al.,2024)), there is a scarcity of foundation models specifically designed for ECG data.
This limitation hampers the potential for advanced analysis and interpretation of ECG signals on a
large scale. In this work, we propose AnyECG, the largest ECG foundation model family to date.
Compared to prior works (McKeen et al., 2024} Song et al., 2024; [Fu et al.,|2024), AnyECG adapts
to diverse downstream tasks and achieves significantly better performance. By providing a robust
and generalizable model for ECG data, AnyECG has the potential to greatly enhance diagnostic
accuracy, facilitate early detection of cardiovascular diseases, and improve patient outcomes on a
broad scale.

Limitations. Although we pre-trained AnyECG using a large amount of data across seven
datasets, there remains a significant gap between AnyECG and current foundation models like LLMs
in the general domain. This gap is primarily due to the difficulty in obtaining extensive healthcare
data. Additionally, the model size of AnyECG-XL (1.7B parameters) is considerably smaller than
that of foundation models in natural language processing and computer vision fields. Despite these
limitations, it is important to highlight that training a large-scale ECG foundation model with a two-
stage self-supervised learning approach and more data does yield appreciable performance gains
compared to existing methods developed for specific downstream tasks, even if it may be computa-
tionally costly. Exploring the trade-off between employing larger AnyECG models and enhancing
downstream task performance will be a focus of our future work.

6 CONCLUSION

In this paper, we proposed AnyECG, a foundation model family that learns universal embeddings
through a two-stage self-supervised pre-training on seven diverse ECG datasets. AnyECG effec-
tively handles the heterogeneity of ECG data through the design of a novel ECG Tokenizer, which
includes a rhythm codebook and a multi-view synergistic decoder to learn representations from
different proxy tasks. Additionally, the masked modeling in the second-stage pre-training plays a
crucial role in enabling effective representation learning of both temporal and lead features of ECG
signals. We validated various sizes of AnyECG models on multiple downstream tasks, including
anomaly detection, arrhythmia detection, ECG lead generation, and ultra-long ECG signal recogni-
tion. Our experiments demonstrate that AnyECG outperforms all state-of-the-art methods in their
respective fields, highlighting its effectiveness and versatility in ECG signal analysis.
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7.1 ECG DATASETS

To evaluate the performance of AnyECG and baseline models, we utilized a comprehensive set of
ECG datasets that cover a wide spectrum of cardiac conditions, patient demographics, and recording
scenarios, ensuring robust testing across diverse settings. The datasets include:

CPSC and CPSC-Extra Databases (Liu et al., 2018): These consist of 12-lead ECG recordings
ranging from 6 to 60 seconds in duration, sampled at 500 Hz, and include a balanced mix of male
and female subjects.

INCART Database (Tihonenko et al), 2008): This database provides 74 annotated recordings
extracted from 32 Holter records, each 30 minutes long and sampled at 257 Hz, offering high-
resolution data ideal for arrhythmia classification.

PTB (Bousseljot et al.,[1995) and PTB-XL Databases (Wagner et al.,[2020): The PTB Diagnostic
ECG Database includes 516 recordings sampled at 1000 Hz, while PTB-XL contains 21,837 12-lead

ECGs sampled at 500 Hz, each 10 seconds long, encompassing a wide range of cardiac pathologies.
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Georgia 12-lead ECG Challenge (G12EC) Database: Comprising 10,344 recordings from the
Southeastern United States, sampled at 500 Hz, this dataset adds demographic diversity to our eval-
uation.

Undisclosed Database: This dataset contributes an additional 10,000 ECG recordings, providing a
geographically distinct test set to further validate the model’s performance without data leakage.

By employing this diverse collection of datasets, we thoroughly assess AnyECG’s ability to gener-
alize across different patient populations, signal qualities, and clinical conditions.

7.2 EVALUATION METRICS

We conducted four distinct experiments, each utilizing a specific set of evaluation metrics tailored
to the task:

1. Anomaly Detection: Evaluated using Accuracy, AUC-PR (Area Under the Precision-Recall
Curve), AUROC (Area Under the Receiver Operating Characteristic Curve), and Weighted F1
Score. These metrics assess the model’s ability to correctly identify anomalies and handle class
imbalances effectively.

2. Arrhythmia Detection: Assessed with Accuracy, AUC-PR, Weighted F1 Score, and Preci-
sion. This combination of metrics evaluates the model’s performance in detecting various types of
arrhythmias, emphasizing both overall accuracy and the precision of positive predictions.

3. Corrupted Lead Generation: Measured using PSNR (Peak Signal-to-Noise Ratio), SSIM
(Structural Similarity Index), and MAE (Mean Absolute Error). These metrics quantify the quality
of the generated ECG signals by comparing the reconstructed signals to the original ones, focusing
on signal fidelity and structural similarity.

4. Ultra-Long ECG Recognition: Evaluated with PSNR, SSIM, and MAE, similar to the cor-
rupted lead generation task. These metrics ensure that the model maintains high-quality signal
reconstruction and accurate recognition over extended ECG recordings.

The definitions of the evaluation metrics used across these experiments are as follows: Accuracy:
The proportion of correctly predicted instances out of all instances, indicating the overall effective-
ness of the model. Precision: The ratio of true positive predictions to the total number of posi-
tive predictions, reflecting the model’s ability to avoid false positives. AUC-PR (Area Under the
Precision-Recall Curve): Measures the trade-off between precision and recall for different threshold
settings, particularly useful for imbalanced datasets. AUROC (Area Under the Receiver Operating
Characteristic Curve): Represents the model’s ability to distinguish between classes across all clas-
sification thresholds. Weighted F1 Score: The harmonic mean of precision and recall, weighted
by the number of true instances for each class, providing a balanced evaluation of the model’s per-
formance. PSNR (Peak Signal-to-Noise Ratio): Indicates the quality of signal reconstruction by
comparing the maximum possible signal power to the power of reconstruction noise, with higher
values signifying better quality. SSIM (Structural Similarity Index): Assesses the similarity be-
tween two signals in terms of luminance, contrast, and structure, with values closer to 1 indicating
higher similarity. MAE (Mean Absolute Error): Represents the average absolute difference between
predicted and actual values, serving as a measure of prediction accuracy. By employing these tai-
lored metrics across different experiments, we ensure a comprehensive evaluation of our model’s
performance in various aspects of ECG signal processing and classification.

7.3 PRE-TRAINING PHASE ABLATION STUDY

To evaluate the contribution of each component in our pre-training strategy, we conducted an abla-
tion study focusing on the pre-training phases. Specifically, we analyzed the effects of pre-training
the ECG Tokenizer and the full AnyECG foundation model on anomaly detection performance. Ta-
ble[6] and Figure [3] presents the results of this study. The first configuration is AnyECG-B without
ECG Tokenizer pre-training. The second configuration includes a pre-trained ECG Tokenizer but
skips pre-training the AnyECG foundation model. The final configuration involves full pre-training
of both the ECG Tokenizer and the AnyECG. The results show that pre-training the ECG Tok-
enizer leads to noticeable improvements over the baseline. This indicates that a pre-trained ECG
Tokenizer enhances the model’s ability to capture meaningful representations of the ECG signals.
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When the full AnyECG foundation model is also pre-trained, we observe a significant performance
boost across all metrics. These gains underscore the importance of comprehensive pre-training in
enhancing the model’s anomaly detection capabilities. The fact that full pre-training yields the best
results confirms that both components—the ECG Tokenizer and the AnyECG—contribute positively
to the overall performance. Pre-training the AnyECG foundation model allows it to learn generaliz-
able features that are beneficial for downstream tasks, while the pre-trained ECG Tokenizer ensures
effective encoding of the input signals.

AnyECG-L AnyECG-XL
1. 1.0

= w/o Pre-train AnyECG = w/o Pre-train AnyECG

wfo Tokenizer wfo Tokenizer
m AnyECG . AnyECG
08 08
X 06
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Figure 3: Ablation study of Pre-training Phase in Anomaly Detection with AnyECG-L and
AnyECG-XL

Table 6: Ablation study of Pre-training Phase in Anomaly Detection

Methods Accuracy T AUC-PR1 AUROCT Weighted F1 Score 1
AnyECG-B

I 0.7623 0.9243 0.7729 0.7512
AnyECG-B 0.7810 0.9358 0.8232 0.7826

w/o Pre-train AnyECG

AnyECG-B 0.8188 0.9517 0.8502 0.8863

7.4 L0OSS FUNCTION ABLATION STUDY

To assess the effectiveness of our loss function design, we conducted an ablation study by sys-
tematically removing each component of the loss function. This allowed us to evaluate how each
term contributes to the model’s ability to capture meaningful features from ECG signals. Table [7]
presents the results of this study. The “Full Loss” configuration, which includes all components of
our proposed loss function, serves as the baseline for optimal performance. When we individually
removed each loss component, we observed a decrease in performance across all evaluation met-
rics. Omitting the Morphology Loss resulted in a noticeable decline, indicating its significant role
in helping the model capture the morphological characteristics of ECG signals, which are crucial
for accurate anomaly detection. Excluding the Frequency Loss also led to reduced performance,
suggesting that capturing frequency domain information is important for understanding underly-
ing patterns in ECG signals. Removing the Demography Loss caused a performance drop as well,
though to a lesser extent compared to the Morphology and Frequency losses. This highlights that
incorporating demographic information refines the model’s predictions by accounting for variations
in ECG patterns across different demographic groups. The most significant decrease in performance
was observed when the Codebook Loss was removed. This component is essential for encouraging
diversity and utilization of codebook entries in the vector quantization process, playing a critical
role in the model’s ability to represent ECG signals effectively. Lastly, removing the Commitment
Loss also led to a decline in performance, though the impact was less severe than omitting the Code-
book Loss. The Commitment Loss ensures consistency in the representation of similar inputs by
encouraging the encoder to commit to specific codebook entries. The combination of Morphology,
Frequency, Demography, Codebook, and Commitment losses enables the model to capture compre-
hensive features of ECG signals, leading to improved anomaly detection capabilities. These results
validate the design of our loss function and underscore the importance of each term in capturing
different aspects of the ECG data.
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Table 7: Ablation Study on Loss Function Components in Anomaly Detection

Loss Configuration Accuracy T AUC-PR1T AUROCT Weighted F1 Score 1

Full Loss 0.8188 0.9517 0.8502 0.8863
w/o Morphology Loss 0.8059 0.9373 0.8381 0.8754
w/o Frequency Loss 0.8125 0.9412 0.8475 0.8621
w/o Demography Loss 0.8134 0.9487 0.8445 0.8801
w/o Codebook Loss 0.7522 0.8950 0.7900 0.8150
w/o Commitment Loss 0.7855 0.9275 0.8225 0.8575

7.5 NOTATIONS

Data and Indices

X € REXT Multi-channel ECG signals
L Number of ECG leads

T Total time steps

s Patch size (time steps)

P Number of patches per lead

T, € R® Patch from lead j, index &
N=LxP Total number of patches
j=12...,L Lead index

k=12,...,P Patch index

Embeddings and Positional Encodings

d Embedding dimension

W) € R? Patch embedding

7 € RY Temporal positional encoding
o; € R lead positional encoding

hjx = h;-’k +7,+0; Augmented embedding

Neural Tokenizer and Codebook

V e RExd Codebook of codewords
7" Codeword index

Zjp = 1" Discrete token

K Number of codewords

Attention Mechanism and Transformer Components

H ¢ RVxd Embedding matrix

Q, K,V Query, key, value matrices
Wq, Wk, Wy € Projection matrices

RE> dmodel

LayerNorm(-) Layer normalization

M e RVXN Attention mask

A(i) Attention set for patch ¢
dhead Head dimension

Amodel Model dimension

Decoders and Reconstruction

o7 Morphology Decoder output
CX) [n] Approximation coefficients
c%) n Detail coefficients

CX) norm - (1) norm Normalized coefficients

éx), é%) Predicted coefficients

gl‘], h[] Filter coefficients

a € Rda Demography vector

o Predicted demography
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Lj,k

Reconstructed patch
Decoder function

Loss Functions

‘Cmorphology
freq
demography

£codebook
commitment

Lt

Cmask

Morphology loss
Frequency loss
Demography loss
Codebook loss
Commitment loss
Total tokenizer loss
Masked modeling loss

Masking and Autoregression

mjk € {0, 1}
}}M S R4
hjk

hyg = hjp+7i+0;

Mask indicator

Mask token

Masked embedding
Augmented masked embedding
Contextualized representation
Probability distribution

Other Parameters and Hyperparameters

Decomposition levels
Demography vector dimension
Coefficient index

Masking ratio
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