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Abstract— Monocular Visual-Inertial SLAM (VISLAM) algo-
rithms are very popular solutions for accurate indoor localization.
However, they may suffer from speed divergence when the system
is at rest as illustrated on Figure 1. In this paper we propose
to tackle this issue. For that we investigate the detection of time
epochs when a visual-inertial sensor rig is stationary. Two kind
of stops are deduced from raw sensor data. SoftStop when the
system is at rest with a slight movement noise (e.g a human
at rest holding the system) and HardStop when the system is
perfectly at rest (e.g a robot at rest holding the system). We
propose an inertial detector and a visual detector to decide if the
system is on move, on SoftStop or HardStop and describe how to
take advantage of this additional information in a VISLAM. A
significant accuracy gain and better robustness against divergence
is demonstrated on our datasets.

I. INTRODUCTION

Monocular Visual-Inertial SLAM (VISLAM) algorithms are
the most widespread and efficient solutions to solve indoor
localization problem. Both cameras and Inertial Measurement
Units (IMU) are quite cheap and are easily found together
in smartphones for example. These sensors are very com-
plementary. On one hand IMU brings robustness to visual-
only localization giving a motion prediction at each frame
and tackling the issue of camera denial of service (e.g motion
blur, light saturation, pitch black). On the other hand camera
reduce the divergence of cheap IMU-only localization systems
and allows to observe gyroscope and accelerometer bias.
There are a lot of implementation of VISLAM, which can
be split in two main families, the filter-based [5] [11] and
the graph optimization-based [6] [4] algorithms (called bundle
adjustment).

However, this sensors combination, despite being efficient,
has its own flaws. For monocular case, when the sensor
rig is at rest, the visual constraints are poor since new 3D
points cannot be accurately reconstructed. They do not prevent
from velocity divergence induced by integration of noise
preponderant inertial data as illustrated on Figure 1.

Velocity drift is well known in inertial-only localization
literature. Two major procedures used to avoid velocity diver-
gence are Pseudo Velocity Update and Zero Velocity Update
(ZUPT) [10]. The former can be directly used in VISLAM
since the only pre-requisite is to know dynamic limit of the
system. The latter needs to detect when the system is at rest.
Since a human can detect he is at rest through his eyes and

Fig. 1. Speed estimation of monocular VISLAM algorithms with the
visual-inertial system described in (Section V). The velocity norm of
the ground truth is represented in green, the one estimated by the
MSCKF algorithm [5] in red and the velocity norm estimated by the
proposed solution i.e MSCKF + Stationary Detector in blue. When
velocity starts to diverge, SoftStop Measurement prevents velocity
from growing, allowing for a better velocity estimation when the
system moves again.

internal ear, a monocular visual-inertial sensor rig should be
able to do the same.

Thus we decided to find a visual-inertial criterion to deter-
mine if the system is at rest and to distinguish between Soft-
Stop, i.e the system is at rest with residual motion noise, and
HardStop, i.e the system is perfectly at rest. This additional
information is inserted in a Multi State Constraint Kalman
Filter (MSCKF) [5] framework in order to reduce velocity
drift, thus increasing accuracy and robustness to divergence.
We choose MSCKF since the Kalman Filter framework is
well suited to add any kind of measurements, and it is one
of the fastest VISLAM algorithm of the state of the art.
The Stationary Detector can be also used in a graph based
VISLAM algorithm [6] [4], in the keyframe selection strategy
for example. The contributions of this paper are:

1) The distinction between SoftStop and HardStop with an
inertial criterion [9]

2) A visual criterion to determine a SoftStop and an Hard-
Stop

3) An HardStop measurement
4) The addition of stationary information in the MSCKF
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The outline of this paper is as follow. In Section II, the basis
of the MSCKF are briefly reminded. Section III describes the
design of the Stationary Detector. Then, Section IV focuses on
properly using stationary measurement in MSCKF framework.
Finally, Section V presents experimental results on our visual-
inertial dataset.

II. MSCKF FRAMEWORK

This section describes briefly the MSCKF Framework [5]
and demonstrate its weakness during stationary period. We use
the following abbreviation for 3D transformations:

PAfromB = PAB =

[
RAB tAB
01×3 1

]
∈ SE(3),

where RAB ∈ SO(3) is the rotation from frame B to frame
A, tAB ∈ R3 is the 3D coordinate of frame B in A and qAB is
the quaternion which represents the same rotation as RAB . Let
G be the gravitational frame, where the gravity is alongside
the z axis, B be the body frame of our sensor rig, I be the
inertial frame and C be the camera frame. For simplicity, we
consider that B and I are the same frame and only use I in
the following.

A. Filter State

There is two parts in the MSCKF state, the first part is the
Current body state xC :

xC =
[
q>GI t>GI v>GI b>g b>a

]>
,

where vGI ∈ R3 is the velocity of the sensor rig expressed in
G, vectors bg ∈ R3 and ba ∈ R3 are the biases of the measures
of angular velocity and linear acceleration from the IMU.

The second part of the MSCKF state is the Window xW of
the N last body states associated to the N last images recorded
by the camera:

xi =
[
qi>GI ti>GI

]>
xW =

[
x1> · · · xN>

]>
.

So the full MSCKF state is:

x =
[
x>C x>W

]>
.

B. Propagation Model

The IMU includes a 3 axis gyroscope and a 3 axis ac-
celerometer. The gyrometer allows to predict qGI through
angular velocity integration and accelerometer is used to
predict vGI through acceleration integration. The MSCKF uses
the following sensor model for IMU propagation:

ω̃I = ωI + bg + ηg

ãI = aI −R>GIgG + ba + ηa, (1)

where ω̃I ∈ R3 and ãI ∈ R3 are the gyroscope and
accelerometer raw measurements and ωI ∈ R3 and aI ∈ R3

are the angular velocity and acceleration experienced by the
IMU. gG is the local gravity vector with magnitude g. ηg
and ηa are the gyroscope and accelerometer noise. From this

equation, the predicted state xk+1|k and covariance Pk+1|k at
time step k + 1 can be estimated, see [11] for details.

C. Measurement Model

The MSCKF measurement consists to perform the classical
Extended Kalman Filter (EKF) equations:

K = Pk+1|kH
>(HPk+1|kH

> + Σz)
−1

δx = K(z − h(x)) (2)
Pk+1|k+1 = (I −KH)Pk+1|k,

where h is the measurement prediction function, H is its Ja-
cobian, z is the sensor output and Σz the covariance of z. The
measurement model of the MSCKF is the comparison between
observed 2D coordinate z and estimated 2D reprojection h(x)
of a 3D point. Each 3D point Qj , j ∈ [|1, ...,M |], expressed
in G has N 2D observations zi,j on the body state window
xW and is estimated via triangulation. Once Qj is known, it
is possible to compute the reprojection function hj(xW ):

hj(xi) = Π(PCIP
i
IG(Qj)) = Π(Xi,j , Y i,j , Zi,j)

Π(Xi,j , Y i,j , Zi,j) =

[
ox
oy

]
+

[
fx 0
0 fy

][
Xi,j

Zi,j

Y i,j

Zi,j

]
(3)

hj(xW ) =
[
hj(x1)> · · · hj(xN )>

]>
,

where Xi,j , Y i,j and Zi,j are 3D coordinates of Qj in frame
C at timestamp i, Π is the 2D reprojection function, ox, oy ,
fx and fy are the optical center and the focal of the camera
obtained with intrinsics calibration.

Linearizing the measurement model at the current estimate,
the residual rj of the measurement can be approximated as:

rj = zj − hj(xW ) = Hj
W xW +Hj

QQ
j + ηj , (4)

where Hj
Q the Jacobian of hj with regard to Qj (Hj

Q is
discarded via left nullspace computation). Its formulation can
be found in [11]. The Jacobian Hj

W of hj with regard to xW
is given by:

Hj
W =

[
H1,j>
W · · · HN,j>

W

]>
Hi,j
W = Hi,j

Π RCIR
i
IG

[⌊
Qj − tiGI

⌋
× −I3

]
(5)

Hi,j
Π =

1

Zi,j

[
fx 0 −X

i,jfx
Zi,j

0 fy −Y
i,jfy
Zi,j

]
,

where Hi,j
Π is the Jacobian of Π and b·c× the matrix cross

product operator. All the equations 4 are stacked for each 3D
point observed to obtain r = z−h(x) and all Hj

W are stacked
to obtain H , allowing to perform the EKF equations (2), with
Σz = σ2

camI .

D. Velocity Divergence at rest

In monocular case, when the sensor rig is at rest, the lack of
temporal baseline leads to a very poor estimation of Qj depth,
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e.g all Zi,j are close to the infinite. The Jacobian equations 5
of the MSCKF for the position component T i,j becomes:

T i,j = −Hi,j
Π RCIR

i
IG

T i,j∞ = lim
Zi,j→∞

T i,j = 0.

For the rotation component Ri,j , using the following equality
R buc× = bRuc×R valid for every rotation R ∈ SO(3)
and u ∈ R3:

Ri,j = Hi,j
Π RCIR

i
IG

⌊
Qj
⌋
×
= Hi,j

Π

⌊
RCIR

i
IGQ

j
⌋
×
RCIR

i
IG

= Hi,j
Π

Xi,j

Y i,j

Zi,j


×

RCIR
i
IG.

Computing explicitly the above equation conducts to the
following results:

Ri,j∞ = lim
Zi,j→∞

Ri,j =

[
0 −fx 0
fy 0 0

]
RCIR

i
IG.

Finally:

Hi,j∞
W = lim

Zi,j→∞
Hi,j
W =

[
Ri,j∞ 03×3

]
. (6)

The expression of Hi,j∞
W demonstrates that vision con-

straints only rotation when 3D points are triangulated at the
infinite. That’s why the MSCKF algorithm drift in position
and speed at rest.

III. STATIONARY DETECTOR

To prevent MSCKF algorithm from drifting at rest, the
Stationary Detector will label every images with three values:
Move, SoftStop i.e the system is at rest with residual motion
noise and HardStop, i.e the system is perfectly at rest.

A. Prerequisite

The Stationary Detector aims to decide whether, during a
time interval of N observations between the instants n and
n+N − 1, one sensor is in Move, SoftStop or HardStop.

In [9], the stationary detection problem is formalized as
a binary hypothesis testing problem, where the detector can
choose between the two hypotheses H0 and H1:

H0 : Sensor is moving

H1 : Sensor is stationary.

We use this formulation, the H1 hypothesis will include both
SoftStop and HardStop states. Their distinction will be made
in a second step. Both the false-alarm probability, PFA =
Pr{H1|H0} (i.e., the probability of choosing H1 when H0 is
true) and the probability of detection PD = Pr{H1|H1} (i.e.,
the probability of choosing H1 when H1 is true) determine
the performance of detection. The Neyman-Pearson theorem
allows to maximize PD for a given PFA. Let Zn be the set of
sensor measurements at all instants k ∈ Ωn = [|n, ..., n+N−
1|]. Let p(Zn;H0) and p(Zn;H1) be the Probability Density
Functions (PDF) of the observations for the two hypotheses:

Theorem 1: To maximize PD for PFA = α, choose H1 if

L(Zn) > γ with L(Zn) =
p(Zn;H1)

p(Zn;H0)
, (7)

where the threshold γ is determined from:

PFA =

∫
{Zn:L(Zn)>γ}

p(Zn;H0)dZn = α.

The test (7) is called the Likelihood Ratio Test (LRT). The
function L(Zn) in (7) is known as the likelihood ratio since
it indicates the likelihood of the H1 hypothesis versus the H0

hypothesis. To perform the LRT, the PDFs of the observations
Zn for H0 and H1 must be known, however, it’s impossible to
predict all observations in Zn with onlyH0 orH1 information,
so they have to be approximated by hypotheses test method.

That’s why θi, the set of unknown parameters for each
hypothesis Hi with i ∈ {0, 1} must be introduced. The LRT is
performed by substituting θi with their Maximum Likelihood
Estimates (MLE) θ̂i assuming Hi is true. The test is called
Generalized Likelihood Ratio Test (GLRT) and consists in
selecting H1 if:

L(Zn) > γ with L(Zn) =
p(Zn; θ̂1,H1)

p(Zn; θ̂0,H0)
. (8)

The proposed Stationary Detector is based on two main
criteria, an inertial criterion and a visual criterion. Let’s define
Zn, θi, θ̂i and p(Zn; θ̂i,Hi) for each sensor to compute the
GLRT and select between H0 and H1. Once H1 is detected,
the sensor is either in SoftStop or in HardStop. A second
test must be performed after the GLRT to distinguish between
those two states.

B. IMU Stationary Criterion

The same modelization as [9] will be used for the inertial
GLRT. The IMU sensor model is simpler as the one of equa-
tion 1 since only raw data are used in the GLRT. The presence
of bg and ba, which depend of the localization algorithm,
may corrupt the GLRT during localization divergence. So let
yk ∈ R6 and sk ∈ R6 be the vector

yk =

[
yka
ykω

]
=

[
ãkI
ω̃kI

]
and sk =

[
ska
skω

]
=

[
akI − gI
ωkI

]
(9)

denoting respectively the output of the IMU and the IMU-
experienced specific force and angular rate at time instant
k ∈ Ωn. Thus, the set of IMU measurements Zn is equal
to {yk}k∈Ωn The following simple model is applied to yk:

yk = sk + ηk,

where
ηk =

[
ηa
ηω

]
.

Here, gI is the local gravity vector in IMU frame, and ηk

corresponds to the accelerometer and gyroscope noise. The
noise is assumed to be independent identically distributed
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Fig. 2. Inertial Stationary Criterion on a dataset obtained with a
DUO MLX (Section V). A SoftStop, two HardStops and a SoftStop
are performed consecutively and labeled by hand. Top: T (Zn) allows
to distinguish between Move and any stop but it is impossible to
distinguish between SoftStop and HardStop. Middle: σT (Zn), it is
possible to distinguish between SoftStop and HardStop. Bottom: IMU
stationary decision (blue) and the ground truth stationary decision
(green).

zero-mean, Gaussian with covariance matrix:

Σimu = E{ηkηk>} =

[
σ2
aI3 03

03 σ2
gI3

]
,

with σa and σg denoting the accelerometer and gyroscope
noise densities. Those values can be computed with Allan
variance [1].

The inertial GLRT [9] is given by :

L(Zn) = exp

− ∑
k∈Ωn

1

2σ2
a

||yka − g.
yna
||yna ||

||2 +
1

2σ2
g

||ykω ||2
 , (10)

where

yna =
1

N

∑
k∈Ωn

yka .

There is no need to compute exponential function since the
logarithm is monotonically increasing, the GLRT can be
simplified into:

T (Zn) < γ′ with T (Zn) = − 2

N
lnL(Zn).

Thus:

T (Zn) =
1

N

∑
k∈Ωn

(
1

σ2
a

||yka − g.
yna
||yna ||

||2 +
1

σ2
g

||ykω||2
)

. (11)

This can be interpreted as follows, the GLRT chooses the
hypothesis that the IMU is stationary if the weighted sum of a
gyroscopic score and an accelerometric score falls below the
threshold γ′ = − 2

N ln(γ). The gyrometric score is low when
the gyrometer output is close to zero, e.g when there is no
angular velocity. The accelerometric score is low when each
accelerometer data are identical vectors of magnitude g. We
analyzed the behavior of T (Zn) in order to find an empiric
value for γ′ and to maximize the stationary detection without
false alarm.

However, this test cannot distinguish between SoftStop or
HardStop. Figure 2 shows that T (Zn) is relatively low during
both SoftStop and HardStop, so it cannot be a relevant crite-
rion. Nevertheless, T (Zn) vibrates way more during SoftStop
than HardStop, so computing the variance σ2

T (Zn) of T (Zn),
is a good way to find a distinctive criterion:

σ2
T (Zn) =

1

N

k=n∑
k=n−N

(
||T (Zk)− T (Zn)||2

)
. (12)

Being given both T (Zn) and σ2
T (Zn), it is possible to accu-

rately find if the system is moving, in SoftStop or in HardStop,
as illustrated in Figure 2.

C. Visual Stationary Criterion

The visual stationary criterion is based on 2D points anal-
ysis. Each tracked 2D point contributes to the state decision
(Move, SoftStop or HardStop). For each tracked 2D point, the
following model is used, let yk ∈ R2 be the vector of the 2D
coordinates of one 2D point on image k ∈ Ωn and sk ∈ R2

be the 2D coordinates corresponding to the reprojection of the
real 3D points on the camera image k:

yk =

[
ykx
yky

]
and sk =

[
skx
sky

]
.

The set of camera measurements Zn is equal to {yk}k∈Ωn
.

Similarly to the IMU, the following signal model is applied:

yk = sk + ηk, (13)

where
ηk =

[
ηx
ηy

]
.

Here, ηk aggregates the image noise and the pixel detection
noise. ηk is always depicted as an independent identically
distributed zero-mean Gaussian with the same intensity on x
and y axis:

Σcam = E{ηkηk>} = σ2
camI2. (14)

If the camera is stationary, then each tracked 2D points
should be exactly the same with the exception of those
associated to moving objects. Mathematically, the visual signal
fulfills the following condition:

H0 : ∃k, k′ ∈ Ωn so that sk 6= sk
′

H1 : ∀k, k′ ∈ Ωn , sk = sk
′

= sn.

So it follows that under the hypothesis H0, the signal is totally
unknown and cannot be predicted, whereas underH1, only one
2D coordinate is unknown, the knowledge of this coordinate
allows to predict the entire signal:

H0 : θ = {sk}k∈Ωn

H1 : θ = sn.

Since all measurements yk are considered independent and
according to the camera sensor described in 13 and 14, the
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expression of p(Zn; θ,Hi) is given by:

p(Zn; θ,Hi) =
∏
k∈Ωn

p(yk; θi,Hi) (15)

p(yk; θi,Hi) =
1

2πσ2
cam

exp

(
− 1

2σ2
cam

||yk − sk||2
)

.

The MLE θ̂i is calculated by maximizing (15) with respect
to the unknown parameters θi. Under H0, the result is
straightforward since all the signal is completely unknown and
θ̂0 = {sk}k∈Ωn

, so:

p(Zn; θ̂0,H0) =
1

2πσ2
cam

. (16)

Under H1, the MLE of θ̂1 = sn is calculated by maximizing
p(Zn; sn,H1) with respect to sn ∈ R2:

p(Zn; sn,H1) =
1

2πσ2
cam

exp

(
− 1

2σ2
cam

||yk − sn||2
)

.

(17)

The maximization of p(Zn; sn,H1) leads to ŝn:

ŝn = arg max
s∈R2

(p(Zn; s,H1))

= arg min
s∈R2

(
∑
k∈Ωn

||yk − s||2)

= arg min
s∈R2

(
∑
k∈Ωn

(||yk||2 − 2s>yk + ||s||2))

= arg min
s∈R2

(||s||2 − 2s>yn) = yn, (18)

where

yn =
1

N

∑
k∈Ωn

yk.

Substituting ŝn into (17) gives:

p(Zn; θ̂
1 = ŝn,H1) =

1

2πσ2
cam

exp

(
−

1

2σ2
cam

||yk − yn||2
)

. (19)

Finally, the GLRT is computed with equations (8), (16) and
(19):

L(Zn) = exp

(
− 1

2σ2
cam

∑
k∈Ωn

||yk − yn||2
)

(20)

T (Zn) =
1

N

∑
k∈Ωn

(
1

σ2
cam

(||ykx − ynx ||
2 + ||yky − yy

n||
2)

)
. (21)

It is difficult to interpret this test unless the covariance matrix
of the data Zn = {yk}k∈Ωn

is introduced:

ΣZn
= E[(y − E[y])(y − E[y])>] =

[
σ2

x σxy
σxy σ2

y

]
.

The surface area S = det(ΣZn
) = σ2

xσ
2
y − σ2

xy corresponds
to the vibration of the 2D point around its mean. If the
camera does not move, S = 0, and S grows bigger when

Fig. 3. Camera Stationary Criterion on a dataset obtained with DUO
MLX (Section V). A SoftStop, two HardStops and a SoftStop are
performed consecutively and labeled by hand. Top: T (Zn) for one
tracked 2D feature (Harris features matched with SURF descriptors),
it is possible to distinguish between SoftStop and HardStop. Middle:
percentage of SoftStop points (magenta) and HardStop points (red),
this criterion is much more stable than for a single point. Bottom:
camera stationary decision (blue) and the ground truth stationary
decision (green).

the movement is stronger. S and T (Zn) are correlated:

(T (Zn))2 =

(
σ2
x + σ2

y

σ2
cam

)2

(σ2
x + σ2

y)2 > 4σ2
xσ

2
y

> 4(σ2
xσ

2
y − σ2

xy)

> 4S.

Finally:

T (Zn) > 2

√
S

σ2
cam

. (22)

According to inequality 22, if T (Zn) is minimized, S de-
creases. Since S is notably correlated to the movement of the
camera, it points out a good physical interpretation for T (Zn).

We once again analyzed the behavior of T (Zn) in order
to find an empiric value for γ′, exhibiting the maximum
stationary detection without false alarm. Depicted on figure 3,
a two threshold approach allows to distinguish SoftStop and
HardStop: if T (Zn) > γsoft , the camera moves

if γsoft > T (Zn) > γhard , the camera is in SoftStop
if γhard > T (Zn) , the camera is in HardStop.

After computing the decision of every tracked 2D points,
a global decision is taken. If more than 80 percents of
every tracked point conclude SoftStop or HardStop, then this
decision is taken. This threshold should be carefully chosen to
avoid false alarm. The visual criterion for stationary detection
is taken into account if the number of 2D tracked points is
sufficient (more than 50 points).
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D. Visual-Inertial Stationary Test

Despite their efficiency, both inertial and visual stationary
criteria have limitations. If the IMU operates on a constant
velocity platform, the observation would be the same as being
at rest and the inertial stationary test could be tricked that way.

If the camera moves towards a scene at the infinite, the
observation is the same as being at rest and the visual
stationary test could also be tricked. Moreover, the visual test
fails if the observed scene is moving.

The Stationary Detector consists in combining both visual
and inertial decisions, thus avoiding those drawbacks:

Softsystem = (Softimu AND Softcam) OR Hardimu

Hardsystem = Hardcam AND Hardimu,

with the following property (by construction of inertial and
visual criteria):

Hardimu =⇒ Softimu

Hardcam =⇒ Softcam.

It is mandatory that the Stationary Detector is as restrictive as
possible, a wrong SoftStop or HardStop measurement could
drastically degrade localization. That’s why the system needs
both sensor to detect SoftStop or HardStop instead of just one
of them. That way, if one sensor is tricked with one of the
two above drawbacks, the system will stay in Move and not
insert wrong stationary measurement. Both sensor can still be
tricked at the same time, but it is much more harder than
just one of them. It is not an issue if SoftStop or HardStop
are not detected during the entire time the system is at rest,
since sporadic measurement is sufficient to correct diverging
localization.

The inertial HardStop criterion is very sensitive to any kind
of move and difficult to obtain, so if it occurs when the vision
says move, we still consider that it is a SoftStop. This way, if
the visual criterion is corrupted by a moving scene, the system
will not diverge thanks to SoftStop measurement.

The visual ineterial stationary test has a negligeable impact
on the MSCKF executation time. In fact the most computa-
tional process, i.e the detection and the matching of 2D points,
is already perfomed by the MSCKF and is thus reused by our
Stationary Detector.

IV. STATIONARY MEASUREMENT

This section describes the measures to include in the
MSCKF framework when the Stationary Detector finds a
SoftStop or an HardStop. For both stationary state, h, z and
Σz are described. Once those values are known, the classical
EKF measurement equation (2) can be performed.

A. SoftStop Measurement

In this case, the measurement consists in applying a Zero
Velocity Update (ZUPT) [10]:

z = 03×1 , h(x) = vGI and Σz = σsoftI3. (23)

However, the ZUPT measurement is fundamentally wrong
in SoftStop state since vGI 6= 0 due to residual movement. It is
not a problem for an inertial only navigation system since the
estimated velocity is often way more wrong than fixing vGI =
0. However, monocular visual-inertial system may estimate a
very low velocity at rest by themselves, depending on IMU
quality and the duration of stationary periods. That’s why a χ2

95% activation test is required to check if a ZUPT is needed:

v>GIΣ
−1
z vGI < χ2(3, 95). (24)

If this test is true, it means the system is already observing
the good velocity so it is useless to add wrong information
with the ZUPT. Else, the velocity of the system is diverging
and requires to be fixed.

B. HardStop Measurement

When an image is labeled HardStop, it is possible to add
more information in the localization than with a single ZUPT.
Since the system is supposed to be totally at rest, the inertial
equations 1 simplify as follows:

ω̃I = bg + ηg

ãI = −R>GIgG + ba + ηa.

Moreover, if the HardStop lasts during a sufficient time, it is
possible to compute the mean of those equations, eliminating
the sensor noise:

ω̃I ≈ bg
ãI ≈ −R>GIgG + ba. (25)

From this observation, the HardStop output z and the mea-
surement prediction function h are deduced:

z =

03×1

ω̃I
ãI

 and h(x) =

 vGI
bg

−R>GIgG + ba

 . (26)

As for Σz , the velocity is perfectly null so an arbitrary low
value such as σv = 0.0003m/s will fit well. For the gyroscope
bias and accelerometer bias, gyroscope and accelerometer
random walks σwg and σwa are a good estimation of the
covariance. Those values can be computed with Allan variance
[1]. Finally:

Σz =

σ2
vI3 03 03

03 σ2
wgI3 03

03 03 σ2
waI3

 .

To conclude, the HardStop measurement not only resets
velocity to 0, it also allows to reestimate bg , and to correct
R>GI and ba.

V. EXPERIMENTS

It would have been interesting to validate the proposed
Stationary Detector on well known visual-inertial datasets such
as EuRoC Mav [3] or TUM [8]. However, they do not exhibit
any stationary period during sequences. The system is at rest
only at the beginning and at the end of each acquisition. That’s
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Fig. 4. DUO MLX, a stereo camera/IMU with fish-eye lens and a
3 cm baseline.

Fig. 5. Our 4 cameras/IMU helmet. Copyright c©CEA, NEXTER,
ANR, DGA

why we designed our own dataset with two visual-inertial
sensor systems. We present here two acquisitions of relevant
use case scenario, a robot trajectory and a pedestrian trajectory.

A. Sensor sets

Our main system is a head-mounted 4-cameras system, with
a front and a back 30 cm baseline stereo. Each camera is a
FLIR Blackfly S with a global shutter sensor (Figure 5). The
IMU of the helmet is the SBG Ellipse-N. The localization
obtained by a 4-cam/imu MSCKF is accurate enough to be
considered as a ground truth for every trajectories and to
observe small velocities at rest (due to stereo baseline). To
evaluate our proposed solution, only the IMU and one frontal
camera of the system is used. We compare the standard
MSCKF [11] with and without the proposed Stationary De-
tector.

We also use the DUO MLX, which is a stereo camera
with fish-eye lens and a 3 cm baseline (Figure 4). Its IMU
is an InvenSense MPU-6050. This device (the IMU and the
left camera) is only used to generate test datasets for inertial
and visual stationary criteria analysis (Figures 2 and 3), and
their thresholds γimusoft, γ

imu
hard, γcamsoft, γ

cam
hard estimation. Those

values are then used by the helmet system to demonstrate the
genericity of the Stationary Detector.

Both sensor sets were calibrated with the open source
camera/IMU calibration framework Kalibr [7].

B. Robot trajectory

For this use case scenario, we put the helmet on a robot. It
performs a 183 m long trajectory inside a corridor environment
(Figure 6) with several stops of 30 seconds as illustrated on
Figure 7. At each stop, the monocular MSCKF estimates an

Fig. 6. Illustration of the robot sequence.

Fig. 7. The robot sequence. In green , 4-cam/imu MSCKF localiza-
tion that constitutes our ground truth. In blue, 1-cam/imu MSCKF
localization with stationary measurement. In red standard 1-cam/imu
MSCKF [11] localization. The black cross indicates the places where
HardStops occur. Adding HardStop stationary measurements in the
MSCKF framework results in a more accurate localization due to the
absence of divergence at rest.

increasing velocity between 0.4 m/s and 0.7 m/s as illustrated
on Figure 8. These speed divergence at rest induce errors in
position up to 5 m. When the system moves again, the MSCKF
partially succeed to reestimate an accurate speed and thus to
correct the position drift. However, adding the stationary test
to the MSCKF allows to estimate correctly the velocity at rest
resulting in a much better velocity estimation when the system
moves again. This results in a more accurate localization. In
fact, errors in position at the end of the sequence are 1.1m and
2.37m for the MSCKF with and without stationary detector
respectively. Hardstop are detected whenever the robot is at
rest on this sequence. This is only possible for robots whose
engines do not cause strong vibrations, otherwise SoftStop
may be detected rather than HardStop.

C. Pedestrian trajectory

For this use case scenario, the helmet is worn by a human
who walks during a 326 m long trajectory inside a hall
environment (Figure 9). In this configuration, it is impossible
to detect HardStop since there is constantly human noise
movement on the head, only SoftStop are detectable. Figure 10
shows the trajectory performed and where SoftStops occur.
SoftStop measurement allows the MSCKF to limit velocity
divergence as illustrated on Figure 1 (for one stop of the se-
quence corresponding to the lower right part of the Figure 10).
However, contrary to a MSCKF with HardStop measurement,
the velocity estimated at rest with SoftStop is not exactly zero
since the confidence in its measure σsoft = 0.045m/s is less
strong than the HardStop one σhard = 0.0003m/s, resulting in



2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 30 Sept. - 3 Oct. 2019, Pisa, Italy

Fig. 8. The robot sequence. In green , velocity norm estimated by
the 4-cam/imu MSCKF that constitutes our ground truth. In blue,
velocity norm estimated by the 1-cam/imu MSCKF with stationary
measurement. In red velocity norm estimated by the standard 1-
cam/imu MSCKF [11] velocity. HardStops measurement allows the
monocular MSCKF to avoid velocity divergence and to accurately
estimate the speed during the whole sequence.

Fig. 9. Illustration of the pedestrian sequence.

a weaker speed constraint. Thus the position at rest cannot be
completely removed during a SoftStop even if it is drastically
reduced compared to no stationary detection. When the system
moves again, the velocity is more accurately estimated with
the proposed solution yielding a more accurate localization.
Indeed, the standard MSCKF has a 13.1 m position error and
the MSCKF with Stationary Detector a 4.8 m position error
at end of the sequence.

VI. CONCLUSION

In this paper, we present a Stationary Detector which
can be integrated in any monocular VISLAM algorithms. It
takes advantage of the rawest inertial and visual data, so
it does not depend on localization status and keep working
when divergence occurs. We present how to insert stationary
measurement in the MSCKF framework. A gain of precision
and robustness to velocity divergence is demonstrated on our
own dataset. Further work will improve the visual stationary
criterion with semantic image segmentation, to focus only on
2D points of the static parts of the scene. An other perspective
is to adaptatively estimate σsoft by using a deep leraning based
approach inspired of [2].

Fig. 10. The pedestrian sequence. In green , 4-cam/imu MSCKF
localization that constitutes our ground truth. In blue, 1-cam/imu
MSCKF localization with stationary measurement. In red standard
1-cam/imu MSCKF [11] localization. The black cross indicates the
places where SoftStops occur. Adding SoftStop stationary measure-
ments in the MSCKF framework results in a more accurate localiza-
tion due to restrained divergence at rest. Figure 1 plots velocity norm
of the trajectory zoom on the right.
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