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ABSTRACT

Enhancing semantic grounding abilities in Vision-Language Models (VLMs) often
involves collecting domain-specific training data, refining the network architectures,
or modifying the training recipes. In this work, we venture into an orthogonal
direction and explore semantic grounding in VLMs through self-correction, without
requiring in-domain data, fine-tuning, or modifications to the network architec-
tures. Despite the concerns raised in the self-correction of LLMs, we find that if
prompted and framed properly, VLMs can correct their own semantic grounding
mistakes even without the access to the oracle feedback. We also show an identi-
fied self-correction framework in an iterative setting which consistently improves
performance across all models investigated. Overall, iterative self-correction consis-
tently improves VLM performance by up to 8.4 accuracy points across all models
investigated; yet, after several rounds of feedback, strong models like GPT-4V
and GPT-4o still exhibit significant error rates, indicating promising directions for
further research.

1 INTRODUCTION

The evolution of Large Language Models (LLMs) to encompass multimodal inputs has given rise to an
emerging paradigm of general-purpose models that can solve multimodal understanding problems via
user-prompt interaction (Touvron et al., 2023; Team et al., 2024; 2023; Yang et al., 2023b; McKinzie
et al., 2024). Vision-Language Models (VLMs) are a growing family of multimodal models that
simultaneously understand both visual and language cues. These models have demonstrated strong
zero-shot performance on tasks including image classification (Deng et al., 2009), captioning (Young
et al., 2014), visual question answering (Antol et al., 2015; Goyal et al., 2017), reasoning (Yu et al.,
2016; Yuksekgonul et al., 2023) and robotics (Cui et al., 2024; Nasiriany et al., 2024b).

Despite VLMs’ strong visual-language understanding abilities, fine-grained visual grounding remains
a challenge. Specifically, VLMs struggle to understand region-specific information within complex
scenes, for example, when the models are prompted to describe specific objects within a crowded
image (Chen et al., 2023; Yang et al., 2023a; You et al., 2023) (See Fig.1). Prior works address
this limitation with additional in-domain data (Guo et al., 2024; Lin et al., 2023; Li et al., 2023),
finetuning, or architectural changes (Li et al., 2024; Liu et al., 2024). However, these approaches
demand considerable cost in compute (Cai et al., 2023; You et al., 2023). Therefore, enhancing VLMs
for fine-grained visual grounding without significant computational overhead remains a challenge.

On the other hand, the adjacent LLMs literature has demonstrated that LLMs can correct their own
mistakes (Madaan et al., 2024; Shinn et al., 2023), suggesting a potential way to improve VLMs
without additional training. This behavior is coined as self-correction, a framework that refines
responses from LLMs using LLMs during inference, possibly with external tools or knowledge (Chen
et al., 2024; Gou et al., 2024). However, follow-up works in LLMs Kamoi et al. (2024); Huang et al.
(2023) argue that LLMs struggle to self-correct without the access to oracle feedback. Up to now,
there is no clear consensus on when LLMs can effectively perform self-correction (Kamoi et al.,
2024). Prior work suggests self-correction is limited by feedback quality (Gou et al., 2024; Olausson
et al., 2024) and is more reliable with tools like search engines or compilers (Huang et al., 2023).

In this work, we explore self-correction in VLMs with a focus on multi-modal understanding
connecting language to visual concepts—a largely unexplored area to date. Specifically, we investigate
self-correction within semantic grounding tasks, as illustrated in Fig.1 . Semantic grounding is well-
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User: What is inside the specified region?

VLM: It is a modern style armchair.

Agent: It is a modern style dinning table in a living room.

Agent: It is a modern style armchair.

System: A verifier disagrees with your prediction. 
Review the image again. 

System: Does the specified region contain a modern 
style dining table in a living room?
Verifier: No the specified region does not.

Automated feedback-based verification

System: Does the specified region contain a modern 
style armchair?
Verifier: Yes.

Figure 1: Enhancing semantic grounding in VLMs through self-correction. We explore to improve
semantic grounding in VLMs through self-correction, without the needs of in-domain data, fine-
tuning, or architectural changes. For self-correction, we adopt the setup involving explicit feedback
generation. When provided with an image and a specified region, a VLM identifies the semantic
properties of the image region. An automated feedback-based verification mechanism facilitates an
interaction between the VLM and a ‘Verifier’ to improve the VLM’s initial understanding.

suited for this exploration because it demands the integration of language and visual concepts,
requires fine-grained visual understanding, and involves multi-modal reasoning, all of which have
significant real-world applications as well as the task itself (Vasudevan et al., 2018; Mitchell et al.,
2013; Deruyttere et al., 2019). More importantly, VLMs have demonstrated the ability to provide
useful feedback in some visual tasks (Lu et al., 2024; Zhang et al., 2023a), leaving the door open for
self-correction in VLMs. Specifically, we focus on two key questions: (Q1) Can VLMs receive and
understand grounding feedback? (Q2) Can VLMs provide grounding feedback? We then combine
the key findings from Q1 and Q2 to evaluate whether VLMs can self-correct their mistakes by
leveraging another instance of the same model during inference. To mitigate the high difficulty of
generating reliable feedback, we identify that semantic grounding can be decomposed into easier
binary verification tasks, therefore, getting more reliable feedback.

We evaluate the effectiveness of self-correction in our context by repurposing panoptic segmentation
datasets from ADE20k (Zhou et al., 2017) and COCO (Lin et al., 2014) for semantic grounding (Yang
et al., 2023a; Zhang et al., 2024). We analyze three state-of-the-art open-source VLMs (LLaVA-
1.5 Liu et al. (2023a), ViP-LLaVA Cai et al. (2024), and CogVLM Wang et al. (2024)) and two
proprietary VLMs (GPT-4V Yang et al. (2023b) and GPT-4o) to identify consistent trends. Finally,
with no additional finetuning and no access to the oracle feedback, we show that the self-correction
framework improves semantic grounding performance in VLMs by up to 8.4 accuracy points.

Below, we summarize the key findings in our exploration:

1. VLMs can receive and understand feedback to improve semantic grounding. With a single
round of oracle binary feedback, open-source VLMs improve their semantic grounding performances
up to 9 accuracy points, suggesting the feedback potentials to improve grounding performance in
VLMs (Sec. 4.1).

2. VLMs can provide high-quality feedback for themselves. By decomposing semantic grounding
into an easier binary verification step and adopting visual prompts, the identified binary verification
mechanism improves feedback quality up to an 18-point in F1 score compared to the baseline
(Sec. 4.2).

3. Under the iterative self-correction framework, VLMs improve semantic grounding accuracy
up to 8.4 accuracy points without the access to the oracle. Across five VLMs, including three open-
source and two proprietary, GPT-4V and GPT-4o, our findings consistently indicate that feedback
enhances semantic grounding in VLMs (Sec. 5.2).
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4. Open-source VLMs make errors in semantic grounding even if feedback explicitly states the
ground truths. The fact that some models could fail in approximately 25% of cases in this scenario
highlights a deficiency in prompt-following capabilities that should be investigated further (Sec. 4.1).

5. Strong proprietary VLMs show significant improvement but still retain limited capability
in leveraging ground-truth oracles. After three rounds of binary oracle feedback, GPT-4V and
GPT-4o improve grounding accuracy substantially but still maintain error rates above 40% on the
ADE20k dataset (Sec. 5.2).

2 RELATED WORK

Self-Correction in LLMs: LLMs have shown some ability to criticize, refine, and correct their
responses through prompt-based feedback (Kim et al., 2023; Madaan et al., 2023; Gou et al., 2024),
supervised finetuning (Havrilla et al., 2024; Zelikman et al., 2022; Singh et al., 2024) or reinforcement
learning (Kumar et al., 2024). This work examines whether VLMs can self-correct via prompt-based
feedback. There remains little consensus on whether LLMs can effectively self-correct through
additional prompts (Havrilla et al., 2024). While previous studies suggest promise in prompt-based
self-correction, they often rely on oracle feedback (Kim et al., 2023; Shinn et al., 2023), or weak
prompts for initial responses (Madaan et al., 2023; Bai et al., 2022). Follow-up research suggests
that feedback generation limits self-correction (Havrilla et al., 2024). On the other hand, prompt-
based self-correction generally excels when useful external tools, such as code executors or search
engines, are accessible (Huang et al., 2023; Chen et al., 2024; Gou et al., 2024; Gao et al., 2023);
however, these tools are often unavailable in many scenarios. Fact-checking also shows success, as
demonstrated by CoVe, which decomposes generation tasks into simpler verification steps, yielding
robust feedback (Dhuliawala et al., 2023). Drawing from the extensive literature on LLM self-
correction, we analyze whether VLMs can self-correct, focusing on semantic grounding.

Prompting in LLMs and VLMs: In-context learning in LLMs (Brown et al., 2020) has led to
new prompting techniques such as Chain-of-Thought (CoT) (Wei et al., 2022), Least-to-Most (Zhou
et al., 2023), and StepBack (Zheng et al., 2024) to enhance reasoning capabilities. CoT, in particular,
showcases multiple reasoning paths to aid LLMs in solving complex tasks (Yao et al., 2023; Wang
et al., 2023). However, these methods may be less effective in VLMs due to their limited in-context
learning, especially in visually instructed VLMs (Zhao et al., 2024; Zeng et al., 2024). Conversely,
zero-shot CoT promotes model reasoning without the reliance on in-context learning by simply
adding a guiding sentence before model responses (Kojima et al., 2022). For VLMs, prompting has
predominantly involved visual cues. Studies have shown that models, when trained on extensive web
data, can recognize specific visual markers, like red circles (Shtedritski et al., 2023). More recently,
Set-of-Marks (SoM) prompting has enabled the GPT-4V to ground multiple objects by overlaying
object identifiers on images (Yang et al., 2023a; Nasiriany et al., 2024a). Our work incorporates these
techniques to provide semantic grounding feedback to VLMs.

Multimodal Evaluation and Verification: Recent large-scale VLMs like CLIP (Radford et al., 2021)
and GPT-4V (Yang et al., 2023b) have introduced a new paradigm in multimodal evaluation. For
example, traditional metrics struggle to accurately evaluate image captions (Kilickaya et al., 2017;
Cui et al., 2018). CLIPScore (Hessel et al., 2021) leverages web-scale VLMs to assess the similarity
between images and captions, aligning evaluations more closely with human judgments. Similarly,
LLMScore (Lu et al., 2023) combines an image captioner with an off-the-shelf object detector to
measure alignment for text-to-image models directly. More recently, GPT-4V has been applied as an
automatic evaluator for vision language tasks, such as text-to-3D generation and embodied question
answering (Zhang et al., 2023b; Wu et al., 2024; Majumdar et al., 2024). Motivated by the potential
of using large VLMs as evaluators, we investigate their capability to evaluate and verify their own
predictions, marking a shift from earlier approaches that separated predictors from verifiers.

3 SELF-CORRECTION IN VLMS FOR SEMANTIC GROUNDING

In this section, we first define semantic grounding and introduce the adopted self-correction framework
for VLMs in Sec. 3.1. We then introduce the key research questions on whether VLMs can correct their
own grounding mistakes through self-correction in Sec. 3.2. Finally, we summarize the evaluation
metrics, datasets, and models comprising our experiment protocol in Sec. 3.3.
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(1) Semantic Grounding

VLM:  
\id{2} \box{[0.4, 0.51, 0.94, 0.82]} \class{grass}

User: Your goal is to determine the class names 
for objects within a provided image. … Here are 
the object(s): \id{2} \box{[0.4, 0.51, 0.94, 0.82]} 
…

2

(2) Provide Feedback (3) Revise Predictions

User: Your goal is to determine the class names for 
objects within a provided image and leverage the 
insights from expert analyses. The expert analyses 
offer detailed information on the inferred class names 
for each object in the provided image. … 

Expert analysis: The prediction is incorrect, please 
adjust the class name 
…

VLM:  
\id{2} \box{[0.4, 0.51, 0.94, 0.82]} \class{car}

2

Binary feedback:  
The prediction is incorrect, please adjust the 
class name.

Class label feedback:  
The prediction is incorrect. It’s a car!

Verifier:  
No, the cropped image does not feature grass.

Prompt: Does this cropped image feature 
or contain “grass"? Answer yes or no.

Oracle feedback

Automated feedback

Figure 2: Semantic grounding and self-correction framework. Left (Semantic Grounding):
Given an image and a text prompt that specifies a region of interest, a VLM is tasked to identify the
semantic class best describing the image region. Center (Feedback Generation): For completeness,
we explore both oracle and automated feedback generated from VLMs themselves. Oracle Binary
Feedback: An oracle provides feedback only on the correctness of the predictions. Oracle Class
Label Feedback: An oracle provides explicit feedback on the correct class labels. Automated Binary
Feedback: A VLM acts as a ‘Verifier’, confirms or rejects the previous predictions. Right (Feedback
Integration): VLMs correct their own mistakes by taking the feedback.

3.1 SETUP: SEMANTIC GROUNDING AND SELF-CORRECTION

Semantic Grounding. We study semantic grounding (Zhang et al., 2024; Yang et al., 2023a),
mapping image regions to text, which Lee et al. (2024) strongly correlates with visual reasoning
abilities in VLMs. Formally, consider an image x 2 Rh⇥w⇥3 where h and w denote the image’s
height and width, respectively. There exists a priori image partition function that takes an image
and produces N semantically distinct regions {ri}N

i=1, where each ri 2 [0, 1]h⇥w. A general-purpose
VLM is then tasked to take the image x, the image region ri , a text prompt q, and to output text
oi = VLM(x, ri, q) that best describes the image region. The output format depends on the evaluation
metrics of interest. Fig 2 (left) shows an example task prompt.

Following prior works (Yang et al., 2023a; Zhang et al., 2024), we use ground truth segmentation
masks as semantically distinct image regions {ri}N

i=1. We evaluate semantic grounding ability by
whether the VLM can estimate the ground truth class label for each region in every scene.

Self-Correction. The term ‘self-correction’ are broadly adopted in LLMs (Kamoi et al., 2024).
In this paper, we explore the setup involving explicit feedback generation from the same VLMs.
Namely, we use a ‘Verifier’ instantiated from the same VLM to provide feedback on the previous
predictions. If feedback suggests further refinement, the VLMs then take the feedback to refine their
own predictions. Fig. 2 highlights the feedback dynamics between VLMs and Verifier.

For an image x and an image region ri, we refer the initial predictions without feedback as base
predictions oi,0. For completeness, we study both oracle feedback f⇤ and self-generated feedback
fVLM. The feedback can be converted into text or visual marks to help VLMs correct their own
mistakes. Please refer to Appendix D for the complete prompt templates.

3.2 RESEARCH QUESTIONS

Recently, LLMs have demonstrated significant improvements in performance on complex language
semantic tasks such as coding and math reasoning by leveraging self-correction (Chen et al., 2024;
Nathani et al., 2023; Dhuliawala et al., 2023; Kim et al., 2023). We note that VLMs can process
diverse visual and text inputs while simultaneously sustaining a dialogue from multiple input rounds
similar to LLMs. To explore whether VLMs behave similarly to LLMs in self-correcting their errors
in semantic grounding, we break it into two research questions (Q1) can VLMs receive and understand
oracle feedback to improve semantic grounding? and (Q2) can VLMs provide high-quality binary
feedback for themselves? We study binary feedback due to its lower task complexity, leading to a

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(2) Visual prompt

User: Your goal is to determine the class 
names for objects within a provided image and 
leverage the insights from expert analyses. … 

Expert analysis: The prediction is incorrect, 
please adjust the class name 
… 
VLM: After examining the image and the 
expert analysis

VLM: [VLM generates to complete]

(1) Textual prompt: Zero-shot CoT

Visual 
Marks

SoM

RoI 
Crop

Image

Figure 3: Examples of prompting techniques. Left: Zero-shot CoT prepends a guiding sentence (in
red) before VLMs’ output. Right: We apply various visual prompting techniques including RoI crop,
visual marks, and SoM to modify input images to VLMs to guide the models’ attention.

more reliable feedback signal for self-correction. By systematically analyzing these two questions,
we pave the way to improve semantic grounding in VLMs through self-correction without the access
to oracle feedback in Section 4.2.

For the rest of this section, we elaborate the questions and setups.

3.2.1 CAN VLMS RECEIVE AND UNDERSTAND ORACLE GROUNDING FEEDBACK?

We start by asking if VLMs can receive and understand oracle grounding feedback f⇤ to improve
the base predictions. Although it is an unrealistic setup, it provides us an upper bound to improve
semantic grounding in VLMs through self-correction. We study this question from two aspects: the
types of feedback and the ways to prompt feedback to VLMs.

Feedback types. We ask: what type of feedback yields the best improvements in grounding
performance? We consider two alternatives: (i) class label feedback – directly providing the ground
truth class labels in a text prompt; and (ii) binary feedback – providing a message on whether the
previous prediction is correct. Fig. 2 (center) visualizes the two feedback types.

Ways to prompt feedback to VLMs. We ask: how should the feedback be prompted to a VLM? We
consider several alternatives and visualize them in Fig. 3: (i) Zero-shot Chain-of-Thought (CoT):
Motivated by Kojima et al. (2022) that shows that simply prepending a guiding sentence ‘Let’s think
step-by-step’ before generation can strongly guide the LLMs for desired tasks, we use the guiding
sentence ‘After examining the image and the expert analyses, the final answer is [output_template]’
for the semantic grounding tasks. Here, the feedback is referred as expert analyses to encourage the
model to follow the feedback. (ii) Visual Marks: Shtedritski et al. (2023) shows that Internet-scale
vision-language encoders are biased to attend to visual marks (e.g., red circles). (iii) Set-of-Mark
(SoM): Yang et al. (2023a) shows that overlaying object identifiers on the image improves visual
grounding.

3.2.2 CAN VLMS GIVE BINARY GROUNDING FEEDBACK FOR THEMSELVES?

Prior works in LLMs suggest that feedback generation is the bottleneck in self-correction (Gou
et al., 2024; Olausson et al., 2024). The survey paper in LLMs (Kamoi et al., 2024) identifies
that decomposing complex generation tasks into easier verification tasks enables successful self-
correction (Dhuliawala et al., 2023). Following this insight, we study binary feedback, a message on
whether the previous prediction is correct. We refer the VLMs performing verification to as ‘Verifier’.
We study binary feedback verification by comparing it with generation-based verification (Madaan
et al., 2023; Kim et al., 2023) referred to as “intrinsic self-correction” in prior work (Huang et al.,
2023). Furthermore, we also study the proper ways to prompt the Verifier.

Baseline approach: intrinsic self-correction. We adopt prior work in LLMs self-correction (Kim
et al., 2023) to semantic grounding task. Here, we prompt the verifier to ‘Carefully review and refine
your answer’ right after the base predictions to automatically correct grounding predictions. Although
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Zero-shot CoT Visual Prompt LLaVA-1.5 ViP-LLaVA CogVLM

Base Predictions N/A No 35.86 35.86 15.98
+ Class Label Feedback No No 94.80+58.94 74.99+39.13 77.04+61.06

No No 41.04 40.36 16.25
Yes No 43.30 42.00 18.25
Yes SoM 42.41 44.53 18.64+ Binary Feedback

Yes Visual marks 45.38+9.52 45.21+9.35 19.46+3.48

Table 1: VLMs use oracle feedback to improve grounding accuracy. We explore how oracle
Class Label Feedback and Binary Feedback improve semantic grounding in VLMs. For each type
of feedback and VLM, we highlight the largest improvements w.r.t. the performance of its base
predictions.

intrinsic self-correction doesn’t explicitly generate binary feedback, a binary signal can be obtained
by comparing the alignment of grounding predictions before and after correction

Ways to prompt the Verifier. We consider several techniques and visualize them in Fig 3: (i)
Visual marks: The verifier receives the image with a highlighted object of interest and a prompt to
determine if the predicted class label accurately describes the object (Shtedritski et al., 2023). (ii)
RoI crop: Prior work (Gu et al., 2022) distills features of cropped regions to the object detectors.
Inspired by this, we design the verifier to receive a cropped image isolating the object of interest. (iii)
A combination of Visual Marks and RoI crop.

3.3 EXPERIMENT PROTOCOLS

Datasets. We analyze the panoptic segmentation dataset from ADE20k (Zhou et al., 2017), which
was not previously used for instruction tuning in the open-source VLMs under study. This dataset
includes a validation set comprising 2k complex, crowded scenes with over 30k masks across
150 distinct categories. We further validate our results in the iterative setting of COCO panoptic
segmentation (Kirillov et al., 2019; Lin et al., 2014). Although the COCO dataset is a standard in
visual grounding, most VLMs train on a visual instruction dataset derived from COCO, making
it in-domain, unlike ADE20k. The COCO validation set consists of 5k images. Consistent with
previous VLM grounding research (Yang et al., 2023a), we utilize the same subset of 100 images
from both ADE20k and COCO for our analysis.

VLMs. We analyze three state-of-the-art open-source VLMs including LLaVA-1.5 (Liu et al., 2023a),
ViP-LLaVA (Cai et al., 2024) and CogVLM (Wang et al., 2024). LLaVA-1.5 is a successor of
LLaVA (Liu et al., 2023b), a visual instruction tuned VLM, and has scaled up to a larger model and a
larger training dataset. ViP-LLaVA shares the overall model architecture and training strategy with
LLaVA, but focuses on synthesizing a diverse set of visual marks in the training dataset, effectively
improving the model performance when using visual prompts and allowing for a more user-friendly
interface. CogVLM is a generalist VLM with highlights on integrating image and text features
without sacrificing any performance on NLP tasks.

Grounding metrics. We evaluate semantic grounding performance by measuring classification
accuracy. We use off-the-shelf sentence embeddings (Huggingface) to map the VLM outputs oi to the
label from the class label list with the largest cosine similarity. We then report accuracy aggregated
over all regions ri for each scene in the dataset. While it is not idea, our quantitative analysis in
Appendix B demonstrates that the errors are within a reasonable range.

Feedback metrics. We assess the VLM verifier’s capability to generate a binary feedback signal
by measuring the F1 scores, considering the imbalanced distribution of oracle binary feedback. In
Appendix H.1, we show that F1 is a more representative metric than accuracy for evaluating feedback
quality.
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Visual prompt LLaVA-1.5 ViP-LLaVA CogVLM

Intrinsic Self-Correction N/A 51.12 48.19 21.87

VLM Binary Verification
Visual marks 56.16 60.47 39.16

RoI crop 61.71 58.18 40.68
Visual marks + RoI crop 61.14 59.6 39.79

Table 2: VLM binary verification provide higher-quality binary feedback (higher F1 scores)
compared to intrinsic self-correction. The choices of visual prompting techniques should be
tailored to the specific VLMs. We bold the best performances of each VLM.

4 EMPIRICAL FINDINGS

In this section, we experiment on the ADE20k dataset to study the questions in Sec. 3.2. All
experiments are run on three different seeds and we report the average performances. We release the
code at here.

4.1 CAN VLMS RECEIVE AND UNDERSTAND ORACLE GROUNDING FEEDBACK?

Table 1 summarizes the base predictions for each model and the improved grounding accuracies after
receiving oracle grounding feedback.

Findings of feedback types. We first compare the improvement in accuracy with no additional
prompting techniques (i.e., zero-shot CoT or visual prompts). Table 1 shows that oracle class label
and binary feedback improve grounding accuracy by up to 61.06 and 5.18, respectively. We find that
VLMs can receive and understand oracle feedback to improve performance, without requiring any
additional data, training time, or architectural modifications.

Intuitively, oracle class label feedback yields the most improvement, since it directly reveals the class
labels and consequently reduces the semantic grounding task to a text retrieval problem. Perhaps
surprisingly, oracle class label feedback does not automatically improve accuracy to 100%. This
outcome highlights a limitation in open-source VLMs’ ability to perform tasks based solely on
language understanding, indicating a potential area for improvement in these models (Lin et al., 2023).
Indeed, some models fail in approximately 25% of cases in this scenario, demonstrating a significant
deficiency in prompt-following capabilities that warrants further investigation. (see Table 1, Class
Label Feedback)

Findings of ways to prompt feedback to VLMs. Table 1 shows that zero-shot CoT augments oracle
binary feedback for every model considered by up to 2.26 accuracy points. This aligns with trends in
LLMs that suggest the effectiveness of CoT to improve reasoning (Wei et al., 2022; Kojima et al.,
2022). On the other hand, visual prompting with SoM (Yang et al., 2023a) does not significantly
improve beyond zero-shot CoT for models that were not already pre-trained with data featuring visual
prompting cues (e.g., LLaVa-1.5). In contrast, ViP-LLaVA was specifically trained for interpreting
visual cues; this model improves with both SoM and visual marks (e.g., red circles). Notably, the
combination of zero-shot CoT and visual marks emerges as the most effective strategy, increasing by
7.45 grounding accuracy points relative to the base predictions. Thus, for open-source VLMs, we
identify that the best way to introduce binary feedback in semantic grounding is to combine visual
marks and zero-shot CoT.

4.2 CAN VLMS GIVE BINARY GROUNDING FEEDBACK FOR THEMSELVES?

We assess the quality of binary feedback using F1 scores due to potentially imbalanced oracle
feedback. Table 2 provides F1 scores of intrinsic self-correction and the binary feedback produced by
a VLM Verifier.

Results. We first assess the effectiveness of intrinsic self-correction, which involves continuing
another round of conversation by asking ‘Carefully review and refine your answer’ to the VLM and
directly outputting the revised predictions. We derive the binary feedback by comparing whether
the revised predictions differ from the initial predictions. When evaluated in accuracy, intrinsic
self-correction achieves low accuracies at 47.03, 47.13, and 59.5 on LLaVA-1.5, ViP-LLaVA, and
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VLM Binary feedback source Dialogue round

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Intrinsic Self-Correction 35.86 30.92 29.64 28.54�7.32 - -
VLM Verification (ours) 35.86 37.97 38.93 39.27 39.54 40.29+4.43LLaVA-1.5

Oracle Verification (ours) 35.86 45.42 47.95 51.55 52.04 53.2+17.34

Intrinsic Self-Correction 35.86 27.72 26.7 25.68�10.18 - -
VLM Verification (ours) 35.86 35.14 36.06 36.37 36.16 36.47+0.39ViP-LLaVA

Oracle Verification (ours) 35.86 47.45 47.64 50.54 51.82 53.13+17.27

Intrinsic Self-Correction 15.98 8.33 8.6 9.08�6.9 - -
VLM Verification (ours) 15.98 17.13 17.96 18.09 18.5 18.64+2.66CogVLM

Oracle Verification (ours) 15.98 19.6 20.96 21.51 21.82 22.12+6.14

Intrinsic Self-Correction 40.36 22.33 25.2 22.95�17.41 - -
VLM Verification (ours) 40.36 41.8 43.23 42.4+2.04 - -GPT-4V

Oracle Verification (ours) 40.36 50 52.45 53.27+12.91 - -

Intrinsic Self-Correction 33.81 34.01 39.13 37.5+3.68 - -
VLM Verification (ours) 33.81 39.13 40.98 41.18+7.36 - -GPT-4o

Oracle Verification (ours) 33.81 49.59 54.91 57.78+23.91 - -

Table 3: Iterative VLM binary feedback improves grounding accuracy in ADE20k. We highlight
the performance difference w.r.t. the performance of the base predictions and if the performances are
below the performance of the base predictions, we use red-colored font.

CogVLM, respectively. The VLMs results here are aligned with previous studies on LLMs Kamoi
et al. (2024) that LLMs struggle to improve via intrinsic self-correction out-of-the-box.

In Table 2, we identify that binary verification mechanism for VLM using RoI crop significantly
improves the F1 score for all three models, by up to 18.81 points. This observation aligns well with
the strong self-evaluation capabilities in LLMs. We may also augment this binary verification with
visual marks such as red circles. Additionally, the choice of visual prompting technique should be
tailored to the specific VLM. For instance, RoI crop tends to be more effective for networks not
trained on visual marks (e.g., LLaVA-1.5 and CogVLM), while visual marks yield better results for
models accustomed to such cues (e.g., ViP-LLaVA).

5 CAN VLMS CORRECT THEIR GROUNDING ERRORS THROUGH
SELF-CORRECTION?

Our key findings in Sec. 4 show that (1) VLMs can receive and understand oracle feedback and (2)
VLMs can given binary feedback for themselves. We now combine them to evaluate whether VLMs
can self-correct their mistakes by leveraging another instance of the same model. Furthermore, can
VLMs iteratively perform self-correction to trade compute for performances?

5.1 SETUP: ITERATIVE SELF-CORRECTION IN VLMS

We introduce an iterative dialogue loop between a VLM agent and Verifier, where at the first timestep
t = 0, the VLM obtains base predictions {oi,0}N

i=1 for every scene (Sec. 3.1). We then prompt the
Verifier to generate a binary feedback signal for every prediction fVLM(x, ri, oi,0) (Sec. 3.2.2). In the
next timestep, the VLM agent uses this binary feedback to revise predictions (Sec. 3.2.1). We repeat
these steps to a maximum iteration count or until the verifier agrees with the prediction.

In our experiments, we use the textual prompts (i.e., zero-shot CoT) and the visual prompts (i.e., red
circles for open-source VLMs and SoM for proprietary VLMs) to encourage feedback receiving and
use RoI crop when VLMs provide binary feedback. Consistent with prior work (Yang et al., 2023a),
we use the same subset of 100 images for ADE20k and COCO for our analysis.

Baselines. We adopt the same baseline used in Sec. 3.2.2: intrinsic self-correction adopted from
prior work in LLMs (Kim et al., 2023). To identify the self-correction upper bounds of each VLM,
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we also report the performances of self-correction with the access to oracle binary feedback, referred
to as Oracle Verification.

Proprietary VLMs. Open-source VLMs often suffer from shorter context window or limited
instruction following capabilities. We, therefore, experiment the identified self-correction framework
using GPT-4V (Yang et al., 2023b) and its successor GPT-4o.

Base predictions generation. The self-correction survey in LLMs (Kamoi et al., 2024) finds that
the weak initial predictions can lead to false promises in self-correction. We attempted to improve
open-source VLMs by adding SoM prompt, but observed significant performance drops compared
to using bounding boxes alone. For LLaVA-1.5, the base predictions achieve 35.86 in ADE20k.
However, adding SoM and using RoI crop result in 11.06 and 19.67, respectively. This may be
because most open-source VLMs, including the three in our study, are trained to identify image
regions using bounding boxes (Zhang et al., 2024; You et al., 2023). In contrast, proprietary VLMs
have shown strong improvements with SoM (Yang et al., 2023a). Therefore, we adopted SoM to
generate base predictions for GPT-4V and GPT-4o.

5.2 MAIN RESULTS

Open-source VLMs. Tables 3 and 4 illustrate that multiple rounds of oracle binary feedback
consistently enhance the performance of all open-source VLMs, with gains ranging from 6.14
to 17.34 in ADE20k and 6.45 to 15.28 in COCO. Additionally, multiple self-correction increase
grounding accuracy by up to 7.78 and 7.64 points on ADE20k and COCO, respectively, compared to
a single round (i.e., t = 1). The identified VLM binary verification, despite producing noisy feedback,
also consistently improves grounding accuracy by 0.39 to 4.43 points in ADE20k and 1.91 to 4.04
points in COCO. These gains are consistent across all three open-source VLMs, underscoring the
benefits of iterative feedback for zero-shot improvements in grounding accuracy, even with noisy
feedback.

In sharp contrast, intrinsic self-correction decreases downstream grounding in all settings by up to 10
points, except where base predictions are weak, such as with CogVLM in COCO. We empirically
find that self-correction cannot reliably identify the alreadily correct predictions.

GPT-4V and GPT-4o. GPT-4V and GPT-4o improve predictions with both VLM binary feedback and
oracle binary feedback, even more than the open-source VLMs do. In particular, GPT-4o significantly
improves and sometimes surpasses GPT-4V, especially when incorporating oracle binary feedback.
However, perhaps surprising, even with oracle binary feedback indicating prediction correctness,
strong GPT-4V and GPT4o fail to provide correct responses after three turns with less than 60 points
accuracy overall in ADE20k.

Similar to open-source VLMs, GPT-4V exhibit negative improvements in intrinsic self-correction.
Intriguingly, there are stark differences between GPT-4V and GPT-4o: GPT-4V shows a 17-point
decrease in accuracy in ADE20k, while GPT-4o sees a 7-point increase in COCO. The reasons for
these sharp differences remain unclear due to unknown model architectures and specific training data
used in proprietary models. However, we note that the identified VLM binary verification consistently
improves upon both base predictions and intrinsic self-correction with enough dialogue rounds.

We emphasize that the identified VLM binary feedback verification requires no access to external tool
or oracle. Thus, our results show that VLMs can iteratively self-correct their own grounding mistakes
when prompted in a proper way. We anticipate the improvements from iterative self-correction will
improve with future VLMs.

6 CONCLUSION

In this work, we explore the potentials of self-correction in large vision-language models in the
context of semantic grounding. We break this research question by asking two key questions (Q1) Can
VLMs receive and understand oracle grounding feedback and (Q2) Can VLMs provide grounding
feedback? Throughout our systematic analysis, we find that the answers to both questions are
positive when prompted in a proper way. With two datasets and five VLMs including proprietary
ones, we demonstrate that with the identified VLM binary feedback verification, VLMs can iterative
self-correct their own grounding mistakes. Within five rounds of VLM binary feedback, open-
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VLM Binary feedback source Dialogue round

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Intrinsic Self-Correction 36.3 33.69 32.26 31.63�4.66 - -
VLM Verification (ours) 36.3 35.87 36.94 37.04 37.69 38.21+1.91LLaVA-1.5

Oracle Verification (ours) 36.3 41.55 43.81 46.22 47.55 48.77+12.47

Intrinsic Self-Correction 37.26 32.64 32.4 31.12�6.13 - -
VLM Verification (ours) 37.26 37.84 39.64 39.64 40.01 40.44+3.18ViP-LLaVA

Oracle Verification (ours) 37.26 44.9 48.08 50.15 51.75 52.54+15.28

Intrinsic Self-Correction 14.8 16.23 16.47 15.92+1.11 - -
VLM Verification (ours) 14.8 16.97 17.83 18.3 18.52 18.84+4.04CogVLM

Oracle Verification (ours) 14.8 19.42 20.14 20.7 21.01 21.25+6.45

Intrinsic Self-Correction 40.92 30.89 36.62 32.8�8.12 - -
VLM Verification (ours) 40.92 43.94 44.9 45.38+4.46 - -GPT-4V

Oracle Verification (ours) 40.92 52.7 56.5 57.8+16.88 - -

Intrinsic Self-Correction 39.49 47.13 48.08 46.65+7.15 - -
VLM Verification (ours) 39.49 46.49 47.77 47.92+8.43 - -GPT-4o

Oracle Verification (ours) 39.49 57 62.26 67.19+27.69 - -

Table 4: Iterative VLM binary feedback improves grounding accuracy in COCO. We highlight
the performance difference w.r.t. the performance of the base predictions and if the performances are
below the performance of the base predictions, we use red-colored font.

source VLMs and proprietary VLMs improve up to 4 and 8 accuracy points. We highlight that the
self-correction in VLMs requires no access to oracle or any finetuning or architectural changes.

Limitations. Despite the advances in VLMs’ semantic grounding through self-correction, this
approach trades compute for performance. Appendix C shows the GPT-4o performance-cost tradeoff.
Therefore, in applications requiring low latency, feedback-based reasoning becomes less practical.
Additionally, assessing VLMs’ zero-shot capabilities with close-set vocabularies highlights language
ambiguities. For instance, in ADE20k, similar classes like ‘grass’, ‘field’, ‘plant’, and ‘tree’ exac-
erbate this issue. For proprietary VLMs, we include the class list in the prompt, but this does not
resolve ambiguities as each dataset may interpret classes differently. For open-source VLMs, given
the smaller context window, we rely on off-the-shelf embeddings for mapping, which can introduce
noise. We provide additional quantitative analysis on the errors in class mapping in Appendix B. We
expect future generations of open-source VLMs to achieve significant quantitative improvements in
these tasks.

Ethics Statement. This paper discusses self-correction in VLMs. The identified self-correction
framework promotes a cost-effective way to improve semantic grounding in VLMs and allow
continuous refinement with minimal resources, i.e. require no further fine-tuning. However, the
abilities to take noisy feedback might bring further risks to VLMs with a long context window if the
multiple adversarial feedback are provided as in-context examples, similar to the risks raised in Anil
et al..

Reproducibility Statement. We provide the full prompt in Appendix D and detailed implementation
in Appendix G. The sampled dataset can be access in the official github repository in prior work (Yang
et al., 2023a). We release the code at here.
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