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Summary
Fairness is important in multi-objective reinforcement learning (MORL), where policies

must balance optimality and equity across objectives. While single-policy MORL methods can
learn fair policies for fixed user preferences using welfare, they fail to generalize for differ-
ent user preferences. To address this limitation, we propose a novel framework for fairness
in multi-policy MORL, which learns a set of fair policies. Our theoretical analysis establishes
that for concave and piecewise-linear welfare functions, fair policies remain in the convex
coverage set (CCS). Additionally, we demonstrate that non-stationary and stochastic policies
improve fairness over stationary and deterministic policies. Building on our theoretical analy-
sis, we introduce three scalable methods: an extension of Envelope for fair stationary policies,
a non-stationary counterpart using state-augmented accrued rewards, and a novel extension for
learning stochastic policies. We validate our methods through extensive experiments across
three domains and show that our methods fairer solutions as compared to MORL baselines.

Contribution(s)
1. We introduce a novel framework for fairness in multi-policy MORL, which enables learning

a set of fair policies for varying user preferences.
Context: Prior work on fairness in MORL has mainly focused on a single policy for pre-
defined preference weights via some welfare functions. Our framework generalizes fairness
across multiple policies, which allow end users to select any policy provided by their pref-
erence weights.

2. We provide theoretical analysis demonstrating that for concave, piecewise-linear welfare
functions, fair policies remain in the convex coverage set (CCS). Additionally, we establish
that non-stationary and stochastic policies can enhance fairness over stationary and deter-
ministic policies, respectively.
Context: Existing work has explored fairness in RL for predefined preference weights
but has not theoretically analyzed how non-stationary and stochastic policies can improve
fairness for varying preference weights.

3. We propose three scalable methods for learning fair policies in MORL using a single pa-
rameterized network: (i) an extension of Envelope (Yang et al., 2019) for learning fair
policies, (ii) a non-stationary extension that incorporates state-augmented accrued rewards
to adaptively improve fairness, and (iii) a novel stochastic policy learning method that fur-
ther enhances fairness.
Context: Unlike prior work on MORL, which typically learns Pareto optimal policies, our
methods efficiently learn a set of fair policies while maintaining scalability.
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Abstract

Fairness is an important aspect of decision-making in multi-objective reinforcement1
learning (MORL), where policies must ensure both optimality and equity across mul-2
tiple, potentially conflicting objectives. While single-policy MORL methods can learn3
fair policies for fixed user preferences using welfare functions such as the generalized4
Gini welfare function (GGF), they fail to provide the diverse set of policies necessary for5
dynamic or unknown user preferences. To address this limitation, we formalize the fair6
optimization problem in multi-policy MORL, where the goal is to learn a set of Pareto-7
optimal policies that ensure fairness across all possible user preferences. Our key tech-8
nical contributions are threefold: (1) We show that for concave, piecewise-linear wel-9
fare functions (e.g., GGF), fair policies remain in the convex coverage set (CCS), which10
is an approximated Pareto front for linear scalarization. (2) We demonstrate that non-11
stationary policies, augmented with accrued reward histories, and stochastic policies12
improve fairness by dynamically adapting to historical inequities. (3) We propose three13
novel algorithms, which include integrating GGF with multi-policy multi-objective Q-14
Learning (MOQL), state-augmented multi-policy MOQL for learning non-statoinary15
policies, and its novel extension for learning stochastic policies. To validate the per-16
formance of the proposed algorithms, we perform experiments in various domains and17
compare our methods against the state-of-the-art MORL baselines. The empirical re-18
sults show that our methods learn a set of fair policies that accommodate different user19
preferences.20

1 Introduction21

Multi-objective reinforcement learning (MORL) is an important topic in the area of reinforcement22
learning (RL) that focuses on designing control policies to optimize multiple objectives simultane-23
ously. While traditional MORL methods focus on learning Pareto optimal solutions—ensuring no24
objective can be improved without sacrificing another—they often neglect fairness, which requires25
equitable treatment of all objectives or users in our context. For example, in healthcare, a policy26
may aim to maximize overall patient outcomes (optimality) while ensuring equal treatment across27
different demographic groups (fairness). A common approach to solving fairness in MORL is to use28
utilitarian welfare functions, where user utilities are aggregated, typically via weighted sum, into29
a scalarized objective. Despite its simplicity, this approach struggles with fairness, as some users’30
utilities may be significantly reduced to achieve overall efficiency. An alternative approach is to31
employ an egalitarian welfare function, which prioritizes the least advantaged user by maximizing32
the minimum utility. While this approach improves fairness, it often leads to inefficient solutions33
overall, as it optimizes only the lowest utility without ensuring fairness across all objectives.34

Several works have explpored fairness in the single-policy RL setting (Weng, 2019; Siddique et al.,35
2020; Zimmer et al., 2021; Chen & Hooker, 2021; Do & Usunier, 2022; Fan et al., 2022; Yu et al.,36
2023b; Nashed et al., 2023), where only a single policy is learned. For instance, the work in (Weng,37
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2019) and (Siddique et al., 2020) enforced fairness by utilizing the generalized Gini social welfare38
function as a scalarized function and assigning appropriate weights to different objectives to en-39
sure their equitable treatment. Extensions have been explored in multi-agent RL (Zimmer et al.,40
2021; Siddique et al., 2024b) and preferential treatment under known preference weights (Yu et al.,41
2023b). Recently, fairness has been studied in multi-policy MORL (Cimpeana et al., 2023; Michai-42
lidis et al., 2024) where Cimpeana et al. (2023) defined several fairness notions, while (Michailidis43
et al., 2024) proposed the Lorenz Condition Network (LCN), an extension of the Pareto Conditioned44
Network (PCN), which trains a policy network in a supervised manner to map states to desired re-45
turns. Despite these works, the investigation of fairness in RL still poses some limitations, including46
(1) learning a single fair policy, (2) required knowledge of the welfare function (e.g., scalarized47
function) with preference weights a prior, and (3) training a conditioning network on specific return48
targets, limiting their ability to generalize to unseen preferences. Hence, the existing methods oper-49
ate under fixed/predefined preference weights and cannot be generalized for all possible preferences.50

To address these limitations, we propose a novel framework to address fairness in multi-policy51
MORL, rather than the traditional single-policy MORL that is the focus of the existing work. Our52
methods are highly scalable as they leverage a single parameterized network to learn an undominated53
set of policies, specifically a convex coverage set (CCS), by sampling the entire preference space in54
MORL. In particular, to address fairness, we apply the welfare function (e.g., GGF) during learning55
for each sampled preference weight to ensure that each learned policy treats its objectives fairly. We56
further introduce non-stationary action selection using the state-augmented accrued rewards to en-57
hance fairness by effectively utilizing historical information. We further demonstrate the benefits of58
learning stochastic policies for fairness. Motivated by hindsight experience replay (Andrychowicz59
et al., 2017), we incorporate resampling of random preference weights across different preference60
conditions to improve sample efficiency in MORL, as it is done in (Yang et al., 2019).61

The main contributions of this paper are as follows:62

1. We introduce a novel framework for fairness in multi-policy MORL, enabling users to select any63
fair policy based on their specific preferences, thereby enhancing user satisfaction( Section 3.2).64

2. We provide theoretical analysis establishing that for concave, piecewise-linear welfare functions65
(e.g., GGF), fair policies remain in CCS. Additionally, we demonstrate that non-stationary poli-66
cies can improve fairness by adapting to historical disparities and that stochastic policies further67
improve fairness over deterministic policies( Section 4).68

3. Building on our theoretical insights, we propose three scalable methods for learning fair poli-69
cies in MORL using a single parameterized network: (i) an extension to Envelope (Yang et al.,70
2019) for learning fair stationary policies, (ii) a non-stationary counterpart that incorporates state-71
augmented accrued rewards to adaptively improve fairness over time, and (iii) a novel extension72
for learning stochastic policies, which further enhances fairness( Section 5).73

4. We experimentally validate our methods and demonstrate their effectiveness compared to state-74
of-the-art MORL and fairness methods across three different domains( Section 6).75

2 Related Work76

Fairness in machine learning (ML) has become a significant research direction (Dwork et al., 2012;77
Zafar et al., 2017; Sharifi-Malvajerdi et al., 2019; Singh & Joachims, 2019; Chierichetti et al., 2017;78
Busa-Fekete et al., 2017; Agarwal et al., 2018; Nabi et al., 2019; Zhang & Liu, 2021). Several79
studied have addressed fairness in model predictions (Speicher et al., 2018), recommender sys-80
tems (Leonhardt et al., 2018), classification (Dwork et al., 2012; Zafar et al., 2017; Agarwal et al.,81
2018; Kim et al., 2019), and ranking (Singh & Joachims, 2019). While much of the literature fo-82
cuses on the principle of “equal treatment of equals”, other aspects, such as proportionality (Bei83
et al., 2022) or envy-freeness (Chevaleyre et al., 2006) and its multiple variants (e.g., (Beynier et al.,84
2019; Chakraborty et al., 2021)), have been considered in ML. In contrast, our work is grounded in85
distributive justice (Rawls, 1971; Brams & Taylor, 1996; Moulin, 2004), with a focus on optimiz-86
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ing a welfare function for fairness considerations. This principled approach has also been recently87
advocated in several papers (Heidari et al., 2018; Speicher et al., 2018; Cousins, 2021).88

Recently, fairness in RL has gained significant attention with the work by (Jabbari et al., 2017),89
which ensures fairness in state visitation using scalar rewards. The work of (Jiang & Lu, 2019), pro-90
posed FEN a hierarchical decentralized method using a gossip algorithm to ensure fairness across91
agents involved in a system. Similarly, (Chen et al., 2021) proposed to incorporate fairness into92
actor-critic RL algorithms, optimizing general fairness utility functions for real-world network op-93
timization problems. Considering the multi-objective nature of many RL problems, the study of94
fairness in multi-objective reinforcement learning (MORL) has been widely studied. In particular,95
(Siddique et al., 2020) proposed multiple adaptations to deep RL algorithms that optimize the gen-96
eralized Gini social welfare. (Zimmer et al., 2021; Siddique et al., 2024a) extended this work to the97
decentralized cooperative multi-agent setting. (Fan et al., 2022) proposed to optimize the Nash wel-98
fare function using scalarized expected return criterion. (Do & Usunier, 2022) proposed a method99
for generalized Gini welfare function optimization in rankings. (Yu et al., 2023b; Qian et al., 2025)100
proposed methods that learn a fair policy providing preferential treatment to some users while ensur-101
ing equal treatment of all others under the assumption that these preferential weights are known in102
advance. (Siddique et al., 2023) proposed FPbRL, a fairness-enhanced method in preference-based103
RL to learn fair policies in the absence of true rewards. Recently, fairness has been considered in104
multi-policy MORL with (Michailidis et al., 2024) propose learning Lorenz Condition networks,105
which ensures fairness through Lorenz domination and adds an extra parameter λ, however, we use106
the welfare function to learn a set of fair optimal policies.107

Despite the significant successes achieved in the field of deep RL and MORL, existing methods heav-108
ily rely on scalarization functions to learn a single policy with fixed preference weights. However,109
such single-policy methods do not work when preferences are unknown or user-specific solutions110
are required. To address this limitation, several works have been proposed to accommodate user-111
specific preferences, including but not limited to those proposed by (Barrett & Narayanan, 2008;112
Van Moffaert et al., 2013; Moffaert & Nowé, 2014; Yang et al., 2019; Alegre et al., 2023; Reymond113
et al., 2022). Notably, these methods aim to learn a set of policies that approximate the Pareto114
frontier of optimal solutions. For instance, (Barrett & Narayanan, 2008) and (Moffaert & Nowé,115
2014) proposed methods to compute policies on the Pareto front’s convex hull, while (Yang et al.,116
2019) introduced envelope Q-learning, learning policies from the convex coverage set (CCS). These117
approaches, however, do not address fairness, which is the focus of this paper.118

3 Preliminaries119

3.1 Multi-Objective Markov Decision Process120

A multi-objective Markov Decision Process (MOMDP) extends the classical Markov Decision Pro-121
cess (MDP) framework to scenarios where an agent must optimize multiple objectives simultane-122
ously. An MDP (Puterman, 1994) is a mathematical model commonly used for sequential decision-123
making problems. Formally, an MDP is defined by a tuple, M = (S,A,P, r, γ), where S is the set124
of states, A is the set of actions available to the agent, Pa,s,s′ ∈ [0, 1] is the probability of transition125
from state s to state s′ after taking action a, i.e., P(s′|s, a) = P[St+1 = s′|St = s,At = a],126
r(s, a) : s × a 7→ r is the immediate reward obtained by taking action a at state s, and γ ∈ [0, 1)127
is the discount factor. An MOMDP can be represented by a tuple M = (S,A,P, r, γ,Ω, fΩ), in128
which the definitions of S,A,P, and γ are the same as in MDP except that the reward r is now a129
vector, with each component corresponding to an objective that the agent seeks to optimize. Here,130
the additional Ω represents the entire space of preferences, and fΩ is the preference function which131
takes a linear form, producing a single utility fω(r) = ωTr(s, a), where ω is a vector representing132
the preference weights for different objectives. In MOMDPs, the objectives may be conflicting, and133
hence it is often difficult to optimize all objectives simultaneously.134
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The goal of an agent in an MOMDP is to either learn a single policy that balances multiple objectives135
or a set of policies that optimize different trade-offs among objectives. These approaches are referred136
to as single-policy MORL and multi-policy MORL, respectively. A policy π is a strategy that maps137
states to actions, which can be deterministic (i.e., ∀s, π(s) ∈ A) or stochastic (i.e., ∀s, a, π(a|s)138
denotes the probability of selecting a in s). In MOMDPs, policies are typically stationary or Marko-139
vian, meaning that action selection probabilities depend solely on the current state, irrespective of140
past states and actions. Conversely, a non-stationary policy π(a|τ, s), also known as an adaptive141
policy, may depend on the agent’s history τ . Standard definitions in MDPs, such as the return G(τ)142
and the value functions V or Q, extend naturally to MOMDPs, albeit represented as vectors and ma-143
trices respectively. The vector return in an MOMDP is expressed as G(τ) =

∑∞
t=1 γ

t−1rt, where144
τ is a trajectory comprising a sequence of states, actions, and rewards following the policy, and rt145
is a vector reward obtained at time step t. The state value function of a policy π in an MOMDP146
is defined as V π(s) = [V π

i (s)] = Eτ∼π

[∑∞
t=1 γ

t−1rt | S0 = s
]
, where all operations (addition,147

product) are applied component-wise.148

In MOMDPs, value functions do not offer a complete ordering over the policy space. This means149
it is possible to encounter scenarios wherein, e.g., V π

i (s) > V π′

i (s) for objective i, while V π
j (s) <150

V π′

j (s) for objective j. Hence, value functions in MOMDPs induce only a partial ordering within the151
policy space, necessitating additional information into objective prioritization for policy ordering.152

Envelope Multi-Objective Q-Learning. The Envelope algorithm (Yang et al., 2019) learns a153
convex coverage set (CCS) by sampling preference weights ω ∈ Ω and optimizing linearly154
scalarized Q-values: Q(s, a,ω) = ωTQ(s, a), where Q(s, a) ∈ RN is the vector of Q-values155
for N objectives. The Bellman optimality equation for Envelope algorithm is: Q∗(s, a,ω) =156
r(s, a)+γmaxa′ ωTQ∗(s′, a′). A single neural network parameterizes Q(s, a,ω) by concatenating157
ω to the state s, enabling efficient learning across all preferences. Despite its scalability, Envelope158
lacks explicit fairness guarantees, as linear scalarization may prioritize dominant objectives.159

3.2 Fairness Formulation160

In MORL, fairness, rooted in distributive justice (Moulin, 2004), is crucial for ensuring equitable161
distribution of rewards. Prior studies in fair optimization within MORL have primarily focused162
on learning a single-policy, commonly referred to as an average policy (Siddique et al., 2020; Fan163
et al., 2022; Yu et al., 2023a; Siddique et al., 2023). In this paper, we adopt a more inclusive view164
of fairness, including efficiency, equity, and impartiality to generate fair optimal solutions for user-165
specific preferences. For discussion on fairness and welfare function, please refer to the Appendix.166

Definition 3.1. Efficiency states that among two solutions, if one solution is (weakly or strictly)167
preferred by all users, then it should be preferred to the other one, e.g., V ≻ V ′ ⇒ ϕ(V ) > ϕ(V ′),168
where ϕ(V ) is the scalar utility function by using the ϕ that specifies the value of a solution.169

The efficiency property specifies that given all else equal, one prefers to increase a user’s utility. In170
the MORL setting, the efficiency property simply means Pareto dominance. More specifically, a171
solution is considered efficient if it is not dominated by any other solution for all objectives.172

Definition 3.2. For a given pair of solutions V ,V ′ ∈ RN , V weakly Pareto-dominates V ′ if173
∀i, Vi ≥ V ′

i , ∀i ∈ {1, · · · , N}, where N is the total number of objectives. Besides, V Pareto-174
dominates V ′ if Vi ≥ V ′

i ,∀i and ∃j, Vj > V ′
j . For brevity, we denote Pareto dominance as ≥ for175

the weak form and > for the strict form.176

Essentially, a solution V (weakly) Pareto-dominates another solution V ′ if the former’s value ϕ(V )177
(weakly) Pareto-dominates that of the latter ϕ(V ′). A solution V ∗ is said to be Pareto-optimal178
if no other solution V Pareto-dominates it. Pareto front (F) is defined as the set of Pareto-optimal179
solutions, which may consist of infinitely many solutions, especially when policies can be stochastic.180
A typical way to approximate (F) is to compute the convex coverage set (CCS), defined below.181
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Definition 3.3. A solution in CCS has a maximal scalarized value in a weighted sense if there exists182
a weight vector ω ∈ Ω such that the scalarized utility ωTV is weakly preferred to the scalarized183
utility ωTV ′ for all other solutions V ′ in the Pareto front. Formally speaking, V ∈ CCS ⇐⇒184
∃ ω ∈ Ω s.t. ωTV ≥ ωTV ′,∀ V ′ ∈ F .185

Next, we discuss the significance of the equity property, a stronger property than efficiency and often186
associated with distributive justice, as it refers to the fair distribution of resources or opportunities.187
This property ensures that a fair solution follows the Pigou-Dalton principle (Moulin, 2004), which188
states the transferring of rewards from more advantaged users to less advantaged users.189

Definition 3.4. A solution satisfies the Pigou-Dalton principle if for all V , V ′ equal except for190
Vi = V ′

i + δ and Vj = V ′
j − δ where V ′

i − V ′
j > δ > 0, ϕ(V ) > ϕ(V ′).191

Finally, the impartiality property, which is rooted in the principle of “equal treatment of equals”192
states that individuals sharing similar characteristics should be treated similarly.193

Definition 3.5. In a system, individuals with similar characteristics should be treated similarly,194
i.e., the solution should be independent of the order of its arguments ϕ(V ) = ϕ(Vσ), where σ is a195
permutation and Vσ is the vector obtained from vector V permuted by σ.196

To ensure fairness that satisfies the above three properties, we use a well-known generalized Gini197
welfare function (GGF) (Weymark, 1981), which can be defined as:198

ϕGGF(u) =
∑
i∈N

ωiu
↑
i , (1)

u ∈ RN represents the utility vector of a size N for N objectives, ω ∈ RN is a fixed weight vector199
with positive components that strictly decrease (i.e., ω1 > . . . > ωN ) with

∑
i wi = 1, and u↑200

denotes the vector by sorting the components of u in an increasing order (i.e., u↑
1 ≤ . . . ≤ u↑

N ). GGF201
satisfies the aforementioned three fairness properties. As the weights are positive, it is monotonic202
with respect to Pareto dominance, thus satisfying the efficiency property. Since the utility vector203
is reordered, it is also symmetric and therefore satisfies the impartiality property. Furthermore, the204
positive and decreasing weights ensure that GGF is Schur-concave, i.e., monotonic with respect to205
Pigou-Dalton transfers, therefore satisfies the impartiality property.206

GGF has been studied and used in MORL extensively (Siddique et al., 2020; Mandal & Gan, 2022;207
Yu et al., 2023a; Qian et al., 2025), however, all of these works used it for single-policy setting. We208
are the first ones to use it in a multi-policy MORL setting. In multi-policy MORL, the usual approach209
is to find all Pareto non-dominated solutions (Mukai et al., 2012; Van Moffaert & Nowé, 2014).210
This approach may work for small problems, however, for large-scale problems, the Pareto non-211
dominated solutions grow exponentially. A better way to achieve scalable and multiple solutions to212
approximate the Pareto front is possibly to arrive at the solutions that form the convex envelope and213
thus form a convex coverage set.214

4 Fairness in MORL215

Since we are in a multi-policy MORL setting, where an agent learns a set of Pareto optimal policies,216
fairness becomes more important as different stakeholders may have different preferences and during217
inference, any solution can be used from the Pareto non-dominated solutions given the stakeholder218
preferences. We formalize this sophisticated multi-policy fair optimization problem as:219

∀ω ∈ Ω, max
π∈Π

ϕGGF(J(π)), (2)

where Ω is the set of valid preference weights sorted in descending order, J(π) = Eπ[
∑∞

t=0 γ
trt] is220

the expected discounted return, and ϕGGF(J) =
∑N

i=1 wiJ(i) with J(1) ≤ · · · ≤ J(n). The concavity221
of GGF makes problem (2) as convex optimization problem, enabling efficient solutions within the222
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CCS. Below, we establish three foundational results, which show that it is always feasible to obtain223
optimal solutions in the CCS corresponding to GGF fair optimization. Next, we demonstrate that224
a non-stationary policy based on accrued rewards is beneficial in yielding improved fairness when225
compared with its stationary counterpart. Here, a policy yields improved fairness or is fairer if a226
higher welfare score, defined in (1), is achieved. Lastly, we show that a stochastic policy may yield227
fairer solutions than a deterministic one.228

Sufficiency of Optimal Solutions in the CCS. The first question relates to the learning of fair229
policies in a multi-policy MORL setting is which subset of policies may be optimal among the set230
of all (possibly non-stationary) policies. Indeed, for linear scalarization function, CCS contains the231
set of Pareto front solutions. Below, we formally state it:232

Lemma 4.1. For any MOMDP with linear preferences over objectives, the CCS contains an optimal233
policy for any linear combination of the objectives.234

While GGF introduces non-linear fairness objectives, its piecewise linearity and concavity allow235
representation as a maximum of linear functions, which ensures that solutions lie within the CCS.236
The following proposition establishes the sufficiency of the CCS in representing optimal policies for237
ϕGGF preference weights.238

Proposition 4.1. For any s ∈ S in an MOMDP and a piecewise-linear concave welfare function239
ϕGGF (e.g., GGF) that can be represented as, ϕGGF(V

π(s)) = minσ∈SN
{
ω⊤

σ V
π(s)

}
, there exists240

a policy π∗ ∈ CCS such that ϕGGF(V
π∗
(s)) ≥ ϕGGF(V

π(s)), ∀π ∈ Π.241
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Figure 1: Examples of 2-objective MOMDP where GGF leads to fairer outcomes.

Example 4.1 To illustrate how the GGF function ensures fairness in MORL, consider a two-242
objective MOMDP with objective values V1 = (3, 1) and V2 = (2, 3) and weights (1, 2).243
For V1, two weighted combinations are possible: A) (3, 1) · (2, 1) = (6, 1) with scalar sum244
6 + 1 = 7, B) (3, 1) · (1, 2) = (3, 2) with scalar sum 3 + 2 = 5. Since the GGF is defined as245
ϕGGF(V

π(s)) = minσ∈SN
{
ω⊤

σ V
π(s)

}
, it selects the lower scalar value, preferring point B over A246

(see left figure of Figure 1). Similarly, for V2: C) (2, 3) · (1, 2) = (2, 6) with scalar sum 2 + 6 = 8,247
D) (2, 3) · (2, 1) = (4, 3) with scalar sum 4+3 = 7. Here, point D is preferred over C. This mecha-248
nism directs the solutions toward the fairer region (grey dotted area in the right figure of Figure 1),249
demonstrating that maximizing the GGF leads to fair Pareto-optimal solutions.250

Fairness of Non-Stationary Policies. In fair MORL, learning non-stationary policies can be par-251
ticularly beneficial, as they leverage historical information to make more informed decisions and252
adapt over time.253

Proposition 4.2. Let the reward r be nonnegative, and ΠS and ΠNS be the sets of stationary and254
non-stationary policies, respectively. For any s ∈ S in an MOMDP and a given ϕGGF, there exists a255
non-stationary policy πNS ∈ ΠNS that achieves a higher welfare score than any stationary policy256
πS ∈ ΠS , i.e., ∃πNS ∈ ΠNS : ϕGGF(V

πNS(s)) ≥ maxπS∈ΠS ϕGGF(V
πS(s)).257
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(10, 0) st−1 st

(0, 10)

(5, 5)

(0, 0)

(0, 0)

Figure 2: Example of MOMDP where actions
lead to different rewards.

Example 4.2 To illustrate the value of learn-258
ing a non-stationary policy, consider a 2-259
objective MOMDP, shown in Fig. 2. At timestep260
t > 0, the agent has accrued a vector reward261
racc = (10, 0) for two objectives. The prefer-262
ence weights, encapsulated within the welfare263
function ϕ, denote decreasing weights, such as264
(0.8, 0.2). With two potential actions, each265
leading to a final state, action a1 yields a re-266
ward of (0, 10), while action a2 yields (5, 5).267
Since st is the absorbing state, we can set dis-268
count factor γ = 1. Under the given welfare function ϕ defined in 1, executing a1 yields a welfare269
score of 2, whereas executing a2 yields a score of 5 if only future rewards are considered. How-270
ever, considering historical data, i.e., racc, a1 yields a higher accrued episodic return of (10, 10)271
and a welfare score of 10. Similarly, a2 yields (15, 5) and 7 episodic return and welfare scores,272
respectively. Note that action a1 is a fairer choice in this case since it balances the two objectives,273
unlike action a2, which fails to achieve a more equitable outcome. Hence, employing historical data,274
namely, accrued rewards in this case, is critical to enable fair policy learning.275

Optimality of Stochastic Policies for Fairness Unlike single-objective RL, in MORL, a deter-276
ministic policy may not be optimal. A fairer solution can often be achieved through randomization.277

Proposition 4.3. Let ΠST be the set of stochastic policies and ΠD be the set of deterministic policies.278
For an MOMDP M and a concave welfare function such as ϕGGF, there exists a stochastic policy279
πST ∈ ΠST such that ϕGGF(V

πST) ≥ maxπD∈ΠD ϕGGF(V
πD).280
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Objective 1
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GGF-dominated
Pareto-dominated

Fairness-Improving Direction
E

O
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ec
tiv

e 
2

Objective 1

CCS (deterministic)
Mixture

Figure 3: Left Figure: Point A is always preferred to B due to Pareto dominance; A is always
preferred to C due to the Pigou-Dalton transfer principle (fairer solution); depending on the weights
of GGF, Points D and E can be dominated or non-dominated by A (w.r.t. GGF); with weights (0.3,
0.7), A is preferred to E but not to D. Right Figure: Black points refer to deterministic policy that
in CCS and stochastic policy can be obtained with the mixture of deterministic policies in the CCS,
shown in dotted point. Demonstrate stochastic policy can achieve fairer solution which deterministic
policy cannot.

The proofs of the above lemma and propositions are provided in Section 8. Left figure of Fig-281
ure 3 illustrates GGF on a two-objective optimization task. The optimality of stochastic policies282
implies that restricting the search for fair solutions to deterministic policies is insufficient. Stochas-283
tic policies offer a broader range of solutions and may better capture the trade-offs among multiple284
objectives, enhancing the overall fairness of the policy, shown in the right figure of Figure 3.285
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5 Proposed Algorithms286

In this section, we introduce three novel algorithms that incorporate fairness into MORL based on the287
technical analysis in the previous section. These algorithms optimize the GGF welfare function de-288
fined in (1) to ensure fairness across N fixed users with varying preferences. Our proposed methods289
are scalable and sample-efficient as they utilize a single parameterized network to estimate Q-values290
for all objectives while maintaining a diverse set of Pareto-optimal policies. We present three dis-291
tinct algorithms: Fair Multi-Objective Deep Q-Learning (F-MDQ), its extension with non-stationary292
policies (FN-MDQ), and a novel extension incorporating stochastic policies (FNS-MDQ). This pro-293
gression from stationary to non-stationary to stochastic and non-stationary policies demonstrates our294
systematic approach to enhancing fairness in MORL algorithms, with each method building upon295
and improving the previous one.296

F-MDQ. F-MDQ builds on the Envelope algorithm (Yang et al., 2019) by replacing the linear297
scalarization function with the GGF welfare function ϕ. This ensures fairness while learning policies298
across all preferences ω ∈ Ω. The Bellman optimality equation for F-MDQ is given by:299

Q∗(s, a,ω) = E[r(s, a) + γQ∗(s′, sup
a′∈A

ϕGGF(r(s, a) +Q∗(s′, a′,ω),ω) | s, a],

where Qπ(s, a,ω) represents the expected return vector for policy π, conditioned on prefer-300
ence ω. As the MO Q-function is parameterized, it can be learned by minimizing the loss301
function L = E(s,a,r,s′,ω)∼D

[
∥y −Q(s, a,ω)∥22

]
, where the expectation is taken over expe-302

riences sampled from the replay buffer D. Given that the loss function includes an expecta-303
tion over ω, the preference weights are sampled randomly and are decoupled from the transi-304
tions, allowing increased sample efficiency through a resampling scheme similar to Hindsight Ex-305
perience Replay (HER) (Andrychowicz et al., 2017). The target y is F-MDQ is computed as306
y = r(s, a) + γQ′(s′, supa′∈A ϕGGF(r(s, a) + γQ(s′, a′,ω)),ω), where Q′ represents the tar-307
get multi-objective Q-function, and the supremum is applied over the GGF welfare function ϕGGF308
instead of a linear weighted sum. This ensures that actions are selected based on higher welfare309
scores rather than simply maximizing Q-values.310

FN-MDQ. FN-MDQ extends F-MDQ by incorporating accrued rewards into the state to learn311
non-stationary policies, as discussed in Proposition 8.2. It augments the observed state with accrued312
rewards, allowing the agent to balance reward distribution across users more effectively (as demon-313
strated in Example 2). The augmented state is defined as st = (st, racc), where racc =

∑t−1
i=1 γ

i−1ri314
is the discounted total reward received in the current trajectory. The regression target for FN-MDQ315
is then given by r(st, at) + γQ′(st+1, supa′∈A ϕGGF(Q(st+1, a

′,ω)),ω). Here, the immediate re-316
ward r(st, at) is excluded from the optimal action computation since this signal is already included317
in the augmented state as part of the discounted total reward. This extension enables the agent to318
identify and prioritize users who have received insufficient rewards within an episode.319

FNS-MDQ. Given that stochastic policies can outperform deterministic ones (as established320
in Proposition 8.3), the performance of FN-MDQ can be enhanced by incorporating stochastic poli-321
cies. We now explain how stochastic policies can be integrated into the FN-MDQ algorithm.322

Under the stochastic policies, the target Q-value is adjusted to account for the ex-323
pected Q-values, which reformulates the update as r(st, at) + γQ′(st+1,

∑
a′∈A ϕGGF(π(a

′ |324
st+1)Q(st+1, a

′,ω)),ω), where π(a′ | st+1) is the probability of taking action a′ given the aug-325
mented state st+1. This reformulation considers the distribution of possible actions rather than326
selecting a single best deterministic action, aligning with our theoretical insights.327

Unlike F-MDQ and FN-MDQ, which rely on deterministic action selection, FNS-MDQ samples328
actions from a probability distribution over Q-values. This stochastic action selection improves329
fairness by enabling more balanced policy exploration and reducing biases that arise from always330
selecting the highest Q-value action. Note that, during the training phase, all algorithms employ331
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an ϵ-greedy policy during training, however, FNS-MDQ differs in its action-selection strategy by332
using the best learned stochastic policy rather than a deterministic greedy approach. This increased333
flexibility and randomness can lead to more equitable solutions.334

6 Experiments335

To evaluate the proposed methods, we conduct experiments across three domains—each character-336
ized by varying levels of complexity in terms of the number of objectives. These domains, rang-337
ing from low to high in terms of the number of objectives, include species conservation, resource338
gathering, and multi-product web advertising. Each environment presents unique challenges where339
fairness plays a critical role. We first briefly describe each environment (details are available in the340
Appendix B) and then present our experimental results.341

6.1 Environments342

Our first domain is a species conservation (SC) environment, which addresses a critical ecological343
challenge: balancing the populations of two highly interacting endangered species, the sea otter and344
the northern abalone. Both species are at risk of extinction, requiring sophisticated management345
strategies to ensure their survival. We adopt the model proposed by (Chadès et al., 2012), which346
simulates the predation relationship between the species, where sea otters prey on abalones. This347
dynamic presents a unique preservation challenge, as the survival of one species could potentially348
drive the other to extinction if not properly managed. The state space is composed of the current pop-349
ulation sizes of sea otters and northern abalones. The action space includes introducing sea otters,350
enforcing anti-poaching measures, controlling sea otter populations, implementing a combination351
of half-antipoaching and half-controlled sea otters, or taking no action. Each action has significant352
ecological implications. For instance, introducing sea otters may help balance the abalone popula-353
tion, but if mismanaged, could lead to abalone extinction. The reward function is defined by the354
population densities of both species, i.e., N = 2. Fairness in this context is interpreted as achieving355
a balanced distribution of species densities to ensure their preservation.356

Our second environment is a resource-gathering (RG) problem, which is a 5 × 5 grid world that357
contains three types of resources: gold, gems, and stones. These resources are randomly positioned358
on the grid and regenerate randomly upon consumption. The main challenge here is to collect these359
resources, where each resource has a different value: gold and gems are valued at 1, while stones360
have a lower value of 0.4. This creates an intentionally uneven resource distribution, with two stones,361
one gold, and one gem. In this environment, the state is defined by the agent’s current location on the362
grid and the cumulative count of each resource collected during its trajectory. The agent can take four363
actions: up, down, left, and right. The reward function is defined as a vector representing the rewards364
collected for each type of resource. In this environment, fairness is defined as the equitable collection365
of resources, despite their differing values. Note that, this problem is particularly important for366
validating whether the proposed methods can achieve fairer solutions while still reaching Pareto367
optimal solutions.368

Our third domain is a multi-product web advertising (MWP) problem that involves an online store369
offering N = 7 distinct products. Here, the agent decides which advertisement to display: a product-370
specific advertisement for one of the products i ∈ [0, ..., N−1], or a general advertisement that is not371
tailored to any specific product. In this environment, the state space includes the number of products372
available in the store, as well as the number of visits, purchases, and exits. The action space is373
N+1, where actions 0 through N−1 correspond to displaying advertisements for specific products,374
and action N involves showing a general advertisement. This additional action adds complexity,375
requiring the agent to decide the optimal moment to transition between states. The reward function376
is designed so that the agent receives a reward of 1 in the ith dimension of the reward vector if377
a product of the type i is sold after displaying its advertisement. In this environment, fairness is378
defined as balancing the frequency of advertisements shown for each product, ensuring no single379
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Figure 4: Performances of multi-policy MORL baselines and our methods in species conservation.
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Figure 5: Individual densities of Envelope, and our proposed methods during testing with unseen
preferences in species conservation.

product is overly prioritized. The challenge lies in increasing overall rewards while maintaining a380
fair distribution of advertisement exposure across all products.381

6.2 Baselines382

We compare our proposed methods against several multi-policy MORL baselines. Generalized Pol-383
icy Improvement Linear Support (GPI-LS) (Alegre et al., 2023) employs GPI (Barreto et al., 2017)384
to combine policies within its learned Convex Coverage Set (CCS) and prioritize the weight vectors385
on which agents should train at each moment. The Envelope algorithm (Yang et al., 2019) uses a386
single neural network conditioned on a weight vector to approximate the CCS. Pareto Conditioned387
Networks (PCN) (Reymond et al., 2022) utilizes a neural network conditioned on a desired return388
per objective and is trained via supervised learning to predict actions that yield the desired return.389
Hyperparameters for each method were optimized, and experiments were run for five different seeds,390
with average results reported. Further details on experimental configurations and hyperparameters391
are provided in Appendix C.392

6.3 Results393

In this section, we present the experimental results across the three environments presented above.394
The primary objective of these experiments is to assess the effectiveness of our proposed methods395
by addressing the following key research questions: (A) How effective are our methods in learning396
fairer solutions compared to multi-policy MORL baselines? (B) Can our methods generate fair solu-397
tions across different preference settings during inference? (C) What is the impact of our approach398
on the diversity and quality of non-dominated solutions that satisfy fairness criteria? (D) Does the399
incorporation of stochastic policies in MO Q-learning based algorithms contribute to improved fair-400
ness or overall performance?401

Question (A) To evaluate how effective our methods are in learning fair solutions, we conducted402
experiments in the SC, RG, and MWP domains, as shown in Figures 4a, 6a and 7a. We compare our403
proposed methods (F-MDQ, FN-MDQ, and FMS-MDQ) with multi-policy MORL baselines such as404
PCN, GPI, and Envelope during the training phase. We choose these baselines as they are the current405
state-of-the-art MORL baselines. The Key evaluation metrics used include total rewards, Coefficient406
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Figure 6: Performances of multi-policy MORL baselines and our methods in resource gathering.

of Variation (CV) indicating the variations in different objectives’ utilities, and the minimum and407
maximum objective utilities. Moreover, GGF welfare scores were computed to quantify fairness.408
As we are in a multi-policy MORL, an agent learns a set of Pareto optimal policies during learning.409
To show the results, we computed these metrics over the last 50 trajectories for all the Pareto optimal410
policies and reported their normalized scores. Note that, during the last 50 trajectories, all the agents411
are converged so it ensures a fair comparison for multi-policy MORL methods.412

As shown in Figure 4a, PCN performs the worst. GPI outperforms PCN, likely due to its TD3-413
based (Fujimoto et al., 2018) architecture and efficient prioritization scheme in learning the Pareto414
front F . The Envelope algorithm performs better than PCN and GPI as it achieves higher total den-415
sity and, interestingly, lower CV. However, our proposed algorithms outperform all other methods416
by achieving the lowest CV and highest welfare scores Figure 4b, with FN-MDQ outperforming417
F-MDQ, underscoring the value of non-stationary policies. Furthermore, FNS-MDQ outperforms418
both F-MDQ and FN-MDQ as it maximizes the minimum objective utility and demonstrates better419
fairness through optimizing the welfare function ϕGGF. Similar results are observed in RG Fig-420
ure 6a, where PCN performs the worst as it collects the least resources, likely due to its limitations421
in deterministic environments (Reymond et al., 2022). Although GPI performs better than PCN,422
both exhibit low CV alongside poor overall performance and GGF welfare utility Figure 6b. The423
Envelope algorithm achieves better performance in terms of rewards but suffers from the highest424
CV and lower GGF utility scores. In contrast, our proposed methods attain a lower CV compared to425
all baselines, and they achieve the highest GGF scores, highlighting their effectiveness in identify-426
ing fair policies through welfare function optimization. Interestingly, FNS-MDQ exhibits a higher427
CV due to its higher maximum objective and the total resources collected. Nevertheless, it also428
achieves the highest welfare scores. Consistent with our previous results, our proposed methods in429
MVP environment Figure 7a achieve the highest welfare scores, indicating their capacity to ensure430
an equitable distribution of rewards across all objectives. Moreover, they maintain the lowest CV,431
highlighting their robustness in learning fair policies, even in highly stochastic environments with432
a higher number of objectives. Once again, PCN, and GPI perform the worst, further underscoring433
the efficacy of our methods in this context.434

Question (B) To check whether our methods can generate fair solutions across different preference435
settings, we evaluated our algorithms with unseen preferences during testing in the SC environment.436
As shown in Figure 5, which presents the individual species densities (sea otters and abalones) for437
preference configurations (0.1, 0.9), (0.5, 0.5), (0.9, 0.1), the Envelope algorithm fails to produce438
fair solutions, suggesting its limitation in generating fair optimal policies across varying preferences.439
In contrast, F-MDQ generates more balanced solutions, while FN-MDQ and FNS-MDQ achieve440
even fairer outcomes, further validating our earlier findings.441

Question (C) The results discussed in previous questions suggest that our methods can generate442
a range of Pareto optimal non-dominated solutions across varied preference configurations, which443
indicates better coverage of the objective space, thus leading to improved performance across multi-444
ple objectives. For quality, our proposed algorithms consistently achieve the lowest CV and highest445
GGF welfare scores across SC, RG, and MVP domains, indicating that our solutions exhibit more446
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Figure 7: Performances of multi-policy MORL baselines and our proposed methods in the MPW.

equitable distribution of objective utilities while maintaining Pareto optimality compared to base-447
line methods (PCN, GPI, and Envelope). These outcomes align with our theoretical justifications448
(see Section 4).449

Question (D) Finally, to assess the impact of incorporating stochastic policies in MO Q-learning450
algorithms, we refer to the results in Figures 4a, 6a and 7a, where stochastic policies consistently451
improve both efficiency and fairness. Moreover, as shown in Figures 4b, 6b and 7b incorporating452
stochastic policies also enhances MORL metrics, validating the contribution of stochasticity to both453
fairness and overall performance.454

7 Conclusions and Limitations455

In this paper, we presented a novel approach to addressing fairness in the context of multi-policy456
MORL. Our proposed methods leverage a single parameterized network to learn optimized policies457
across the entire space of possible preferences. Both theoretical and empirical analyses demonstrate458
that learning a non-stationary policy significantly improves fairness. Additionally, we highlighted459
the importance of stochastic policies in achieving fair outcomes. Experimental evaluations in three460
domains validated the effectiveness of our approach in yielding more equitable policies compared461
to state-of-the-art MORL and fair baselines.462

Our approach also has some limitations. First, it is limited to MOMDPs with discrete action spaces.463
Second, it assumes that preference weights are linear to learn the CCS, which may not capture the464
concave regions of the Pareto front. Third, the current formulation is focused on individual fairness.465
Given that optimizing a welfare function is a broad framework applicable to various real-world466
MORL problems involving general utilities, an important direction for future research is to extend467
this approach to accommodate more sophisticated objective functions, particularly those related to468
group-level fairness, safety, and risk sensitivity.469
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