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Unsupervised Learning of 3-colorings using
Simplicial Higher-Order Neural Networks

Anonymous Authors1

Abstract
We propose Higher-Order Networks (HONs) for
historically challenging problems for Graph Neu-
ral Networks (GNNs), such as Constraint Satisfac-
tion Problems (CSPs). We apply a simple exten-
sion of GNNs to HONs and show its advantages
for solving 3-coloring.

1. Introduction
GNNs have demonstrated state-of-the-art performance in
molecular property estimation (Satorras et al., 2021), 3D
object classification (Hanocka et al., 2018; Gong et al., 2019;
de Haan et al., 2020), protein folding (Jumper et al., 2021),
and query plan optimization (Marcus and Papaemmanouil,
2018). However, GNNs have also been shown to have funda-
mental limitations arising from their neighborhood message-
passing. There is a deep connection between GNNs and
the Weisfeiler-Lehman(1-WL) isomorphism test, a powerful
test that distinguishes broad classes of graphs. Similar to
GNNs, the 1-WL test iteratively updates a node features by
aggregating information from its 1-hop neighbors. 1-WL
has been shown to have equivalent expressivity as GNNs
resulting in GNNs inheriting the limitations of 1-WL.

In addition, GNN model depth affects the receptive field,
how far node information propagates. For a GNN with
depth d, node information propagates up to d-hops away.
While deeper GNNs have higher modeling capacity, increas-
ing depth does not monotonically improve GNN perfor-
mance. Deep GNNs are prone to ”over-smoothing” where
the learned features for nearby nodes are nearly identi-
cal (Oono and Suzuki, 2021). Over-smoothing results in
GNNs which cannot distinguish neighboring nodes and lose
information about the local topology.

These structural limitations and practical challenges of
GNNs cause them to struggle on many common tasks such
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as clique detection, shortest path approximation, and graph
coloring (Loukas, 2019; Morris et al., 2018). Some meth-
ods have been proposed that augment a standard GNN with
non-local information (Li et al., 2020; Morris et al., 2018;
Bodnar et al., 2021) but they suffer from possibly combi-
natorial computational complexity and explicitly remove
locality, a key property of GNNs.

Recent work has proposed using higher-order interactions
while still maintaining locality through a special higher-
order network (HON) called a simplicial complex (Glaze
et al., 2021; Hajij et al., 2020). Simplicial complexes are
useful because they enforce a geometry that has nice topo-
logical properties. By combining higher-order interactions
and maintaining locality, simplicial complexes have been
able to outperform GNNs on path approximations, and can
distinguish between graphs that are indistinguishable by
GNNs (Glaze et al., 2021). It is not well understood when
HONs are capable of outperforming GNNs.

In this work, we propose using HONs to learn graph 3-
colorings, a historically challenging problem for GNNs.
This paper begins by defining message-passing and how it
is performed for simplicial complexes. We then formulate a
node contrastive loss and define an unsupervised learning
approach for 3-coloring. The performance of HONs and
GNNs are evaluated and compared on unsupervised learning
3-colorings. The experiments test how both models perform
across number of layers, size of training dataset, and number
of training epochs. We find that HONs significantly outper-
form GNNs, reducing the number of coloring collisions by
37% on average.

2. Background
2.1. Simplicial Complexes

A simplicial complex is a topological structure that gener-
alizes graphs. In a graph, vertices are adjacent if they are
connected by an edge. Conversely, an edge can be thought
of as a line where the vertices are its endpoints. In this way,
a vertex is 0-dimensional since it is a point whereas an edge
is 1-dimensional since it is a line. Simplicial complexes ex-
tend this relationship to higher dimensions by generalizing
vertices and edges to simplexes. I will first begin with an
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Figure 1. Example of boundary matrices between nodes and edges,
and between edges and triangles.

intuition and then formally define simplicial complexes.

Drawing upon the earlier intuition, an edge is a line which
is bounded by two vertices. This idea can be extended
to 2-dimensions where a triangle is a 2-dimensional face
bounded by three edges. Two vertices were adjacent because
they formed the boundaries of an edge. Similarly, three
edges could be adjacent because they formed the boundaries
of a triangle. This idea can be extended to higher dimen-
sions. For example a tetrahedron is a 3-dimensional polygon
bounded by 4 triangular faces. This geometric intuition is
the core foundation behind how simplicial complexes gener-
alize the topology of graphs.

Formally, let V be a set of vertices. A simplicial complex
S is a collection of subsets of V . For any subset σ ∈ S,
all subsets of σ are also in S. A subset that fulfills this
condition is called a simplex. A simplex σ is called a k-
simplex if |σ| = k+ 1. Connecting back to graphs, a vertex
is a 0-simplex, and an edge is a 1-simplex, a triangle is a
2-simplex, and so on. Connecting to graphs, a k-simplex is
a (k + 1)-clique.

The simplexes in a simplicial complex are connected
through boundary relations. A k-simplex will have a
boundary formed by (k − 1)-simplexes. For example, a
1-simplex(edge) has two 0-simplexes(vertices) as its bound-
ary. Similarly a 2-simplex has a boundary of three 1-
simplexes(edges). The boundary relations are contained
within boundary matrices or lower incidence matrices. The
boundary matrix Bk

↓ is a binary matrix where Bk
↓ij = 1 if

k − 1-simplex i is part of the boundary of k-simplex j. See
Figure 1 for an example of boundary matrices.

In addition to boundaries, simplexes have co-boundary rela-
tions. The co-boundary relation is intuitively the reverse of
the boundary. For example, an edge is in the co-boundary of
the two vertices it connects. Similar to the boundary matrix,
a co-boundary matrix Bk

↑ is a binary matrix where Bk
↑ij = 1

if simplex i is in the co-boundary of j. Since the boundary

and co-boundary are opposite relations, their matrices are
related by transpose: Bk

↑ = Transpose(Bk+1
↓ ).

3. Methods
3.1. Higher-order networks and simplicial

message-passing

Message-passing over simplicial complexes is very similar
to graphs. In a graph, messages are passed between adjacent
nodes and aggregated over neighborhoods. Instead of ad-
jacency, a simplicial complex passes messages through the
boundaries and co-boundaries. The messages are then aggre-
gated over the boundaries and co-boundaries separately. See
Figure 2 for an illustration of simplicial message-passing.

More formally, let i be a k-simplex in simplicial complex S .
Let N↓(i) be the set of simplexes in the boundary of i and
N↑(i) be the set of simplexes in its co-boundary. Simplex i
will receive a message m↓ij from simplex j ∈ N↓(i) in the
boundary of i and a messages simplex m↑ig from simplex
g ∈ N↑(i). These messages are computed similarly to the
message in graph message-passing:

m↓ij = Φk
↓(hi, hj , b

k
↓ij)

m↑ig = Φk
↑(hi, hg, b

k
↑ig)

In this definition Φk
↓,Φ

k
↑ are both functions which take the

simplex feature vectors and the boundary connection weight
as inputs. These two messages are both aggregated sepa-
rately into vectors:

m↓i =
∑

j∈N↓(i)

m↓ij

m↑i =
∑

g∈N↑(i)

m↑ig

Both of these messages are then combined into a single
incoming message mi by concatenating them. Then just
like with graphs, the feature vector hi is updated using the
function Φk

h(hi,mi).

HONs use this message-passing scheme but they learn the
functions Φk

↓,Φ
k
↑,Φh,k(hi,mi) by parameterizing them as

multi-layer perceptrons(MLPs). Each layer of an HON
performs an iteration of message-passing. The depth of an
HON is the number of layers it has. The update equations
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(a) Messages from nodes to edges. (b) Messages from nodes and triangles to edges. (c) Messages from edges to triangles.

Figure 2. Simplicial message-passing: Messages from the boundaries (in orange) and messages from the co-boundaries (in green).

for layer t are formally defined as:

mt
↓ij = Φk

↓
t
(ht

i, h
t
j , b

k
↓ij)

mt
↑ig = Φk

↑
t
(ht

i, h
t
g, b

k
↑ig)

mt
↓i =

∑
j∈N↓(i)

mt
↓ij

mt
↑i =

∑
g∈N↑(i)

mt
↑ig

mi = Combine(mt
↓i,m

t
↑i)

ht+1
i = Φk

h

t
(ht

i,m
t
i)

This message-passing layer is used to learn features for all
of the simplexes in the complex. For graph-coloring the
final node features were set to be 3-dimensions and passed
through a softmax to convert them into a color distribution.

3.2. Unsupervised Learning of 3-colorings

In graph colorings each node must be assigned a color so
that no two adjacent nodes have the same color. This can be
achieved by using a GNN or HON to learn color probability
distributions for each node as feature vectors by setting the
output feature vectors to be 3-dimensional. The softmax
is taken to normalize the output node features into color
probability distributions ci. A node will be colored as the
color that has the maximum probability. We used a node
contrastive loss based on cosine similarity to perform unsu-
pervised learning. The loss function is defined as

loss =
1

|E|
∑

(i,j)∈E

ci · cj

The loss function measures the cosine similarity between
the learned color distributions ci, cj for adjacent nodes. In a
fully correct solution, adjacent nodes will be assigned dif-
ferent colors so their color distributions will be orthogonal.
The minimum cosine similarity between color distributions
is achieved when they are orthogonal so this loss function
correctly matches the goal of 3-coloring.

4. Experiments on 3-coloring
4.1. Generating 3-colorable Graph Dataset

We generated a dataset of 26,000 3-colorable graphs with
between 40 and 60 nodes using the algorithm from (Lemos
et al., 2019). This algorithm was chosen because it pro-
duces difficult coloring instances. The graph instances are
constructed by constructing graphs on the verge of phase-
transition: a 3-colorable graph G where there exists an edge
that can be added to G that breaks 3-colorability. This is
achieved by generating a random graph and using a CSP
solver to verify it is 3-colorable. Edges are then added one
at a time until the CSP solver cannot find a 3-coloring. The
last 3-colorable instance is then returned.

The input node features were set to be a color distribution
vector with equal 1

3 for each color. For the HON, the data
was pre-processed by constructing the simplicial complex
up to rank 2 (triangles) of the input graphs. The rank
was chosen because a 3-colorable graph cannot contain any
simplexes of rank greater than 2. All of the edge and triangle
features were set to 1 as an uninformative input.

4.2. Model Configurations

The GNN used 32 dimensions for the hidden node features
before outputting a final 3-dimensional color distribution.
The HON used 8 dimensions for the hidden features for the
nodes, edges, and triangles with the final layer outputting a
3-dimensional node color distribution. These dimensions
were chosen to keep the number of trainable parameters per
layer equal between the two models.

4.3. Experiments

For 3-coloring, we measure the task performance as the
proportion of nodes which do not share a color with their
neighbors. This constitutes how close the model was to
achieving a valid 3-coloring. The performance of the HON
and GNN are compared in two experiments.

In the first experiment we swept over model depths
[4, 8, 12, 16] both the HON and GNN. These models were
trained for 30 epochs using a subset of 5000 training exam-
ples and evaluated using 500 test examples. The highest
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(a) HON and GNN training loss (b) HON and GNN test performance.

Figure 3. Comparison of HON and GNN in 5-fold cross validation experiment. HON reaches lower training loss and achieves higher test
performance compared to GNN.

performing depth for both was then used in the second ex-
periment.

In the second experiment we performed a 5-fold cross val-
idation which partitions the full dataset into 5 sets. Both
models are then trained for 50 epochs using 4 of the sets
with the remaining one being used as a test set. We repeated
this 5 times choosing a different test partition each time and
report the average performance achieved by the HON and
GNN models over these 5 runs. We also report the average
training epoch time for both the HON and GNN.

5. Results
5.1. 5-Fold Cross Validation

Model Training Loss Test % Solved sec per epoch
GNN 0.071 ± 4.1e-4 0.62 ± 0.03 3.38s
HON 0.031 ± 6.7e-3 0.91 ± 0.02 17.32s

Table 1. 5-Fold Experiment results. HON outperforms GNN but
requires almost 6x training time.

The results shown in Figure 3 largely match those from
the depth study. When using the full dataset, the HON
increases its test performance to 91% as seen in Table 1.
The variance in the HON results are caused by one of the
runs where the model training loss and test performance
suddenly drop after 20 epochs before rising back up again.
It is not clear what caused this as the other 4 runs were very
stable. Despite this, the HON continues to significantly
outperform the GNN but it does incur almost 6x the training
time per epoch as seen in Table 1.

6. Conclusion
In this paper we have demonstrated the improved capability
of HONs to tackle the graph coloring problem as archetyp-
ical example of a constraint satisfaction problem (CSP).
Simplicial complexes allow HONs to propagate information
through higher-order structures while still maintaining the
core property of locality. We studied the impacts of both
model depths and compared their highest performing con-
figurations in a 5-fold cross validation. In these tests the
HON consistently outperformed the GNN and converged
with fewer training epochs.

These improvements do come at a significant computational
cost. The HON takes almost 6x the training time when
compared to the GNN despite similar numbers of trainable
parameters. The increased costs may become a bottleneck
for HONs when scaled to larger problems where concerns
about GPU memory usage and training complexity are more
relevant.

In this work we restricted the task to 3-colorings and 3-
colorable graphs which allowed us to limit the HON to
triangles. It could be that the performance of my HON
models degrade when used to solve coloring graphs with
higher chromatic numbers. This could be an interesting
direction of future analysis to better understand how HONs
can be scaled up to more complex structures.
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