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Abstract: Detecting road obstacles is essential for autonomous vehicles to navigate dynamic and complex traffic envi-
ronments safely. Current road obstacle detection methods typically assign a score to each pixel and apply a
threshold to generate final predictions. However, selecting an appropriate threshold is challenging, and the
per-pixel classification approach often leads to fragmented predictions with numerous false positives. In this
work, we propose a novel method that leverages segment-level features from visual foundation models and
likelihood ratios to predict road obstacles directly. By focusing on segments rather than individual pixels,
our approach enhances detection accuracy, reduces false positives, and offers increased robustness to scene
variability. We benchmark our approach against existing methods on the RoadObstacle and LostAndFound
datasets, achieving state-of-the-art performance without needing a predefined threshold.

1 INTRODUCTION

Detecting road obstacles is critical for ensuring the
safe maneuvering of automated vehicles. Deep Neu-
ral Networks (DNNs) have demonstrated impressive
performance on various perception tasks in automated
driving, such as traffic sign recognition, road segmen-
tation, and object detection. However, DNN-based
approaches tend to perform poorly on detecting ob-
jects not encountered in their training data (Nguyen
et al., 2015a). This presents a significant safety con-
cern, as including all potential road obstacles in the
training data is impractical and can lead to potentially
hazardous situations on the road if a road obstacle is
missed.

For the task of semantic segmentation, learned
features are densely mapped to a pre-defined set of
classes by a pixel-level classifier, allowing for accu-
rately detecting and localizing every object in the im-
age. Since training a segmentation model for all pos-
sible road obstacles is infeasible, road obstacle de-
tection has been commonly addressed as an out-of-
distribution (OoD) detection task. Previous methods
for OoD detection in semantic segment networks have
primarily focused on per-pixel reasoning (Di Biase

et al., 2021; Tian et al., 2022; Nayal et al., 2024),
where each pixel is processed independently without
considering the objectness of the segment to which
the pixel belongs. More recent work (Ackermann
et al., 2023; Nayal et al., 2023) attempted to resolve
this issue by using mask-based semantic segmenta-
tion networks. These methods have shown promising
results in preserving the objectness of objects in the
training set and accurately identifying anomalous pix-
els. However, they still struggle to segment the OoD
object as a whole effectively. We argue that while
these methods are trained to detect instances of the
in-distribution classes, the OoD objects are detected
only as the residual pixels not detected by any of the
masks. As an alternative in this work, we tackle the
road obstacle detection task in semantic segmentation
networks using segment-level reasoning and features
obtained from visual foundation models.

Previous methods provide pixel-level scoring for
discriminating between in-distribution classes and
OoD objects. The separability of this score is then
used as the main evaluation metric for per-pixel met-
rics. The standard per-pixel metrics (i.e., Aver-
age Precision, and FPR95) allow for evaluating per-
formance in situations with a significant imbalance



Figure 1: Road Obstacle Segmentation Overview. From the input image (anomaly highlighted with a green box), current
SOTA per-pixel methods (e.g., UEM (Nayal et al., 2024)) produce high anomaly scores for unknown objects (column two),
but when a threshold is applied the output is fragmented with multiple false positives or with false negatives if the threshold is
set too low or too high (column three and four). SAM produces high-quality segment masks for all image segments but lacks
semantic information. Our method (column five) uses the object priors used in SAM to learn the semantic distribution of the
segments and detect the road obstacle segments based on the likelihood ratios.

among classes, which is often the case for road ob-
stacles. However, they tend to be biased towards
larger obstacles, which is suboptimal as road obsta-
cles can vary substantially in size, and each is equally
important to detect. Component-level metrics are al-
ternative evaluation metrics that serve as an indirect
measure for object-level segmentation, assessing the
overlap between the predicted and actual regions of
anomalies. From a practitioner’s perspective, these
are the more interesting metrics to consider since
most downstream tasks would need detections and not
confidence scores. Identifying the optimal threshold
is often a challenging and complex task. Setting the
threshold too low or too high can lead to either mul-
tiple false positives or missing detections (see Fig-
ure 1).

A common approach to threshold selection is to
analyze the pixel-level precision-recall curve and se-
lect the value that maximizes the F1 score on a per-
pixel basis. However, this approach requires a ded-
icated validation dataset and doesn’t always result
in optimal segment-level performance (Chan et al.,
2021). Furthermore, even with the optimal thresh-
old, the output masks produced by per-pixel detection
methods often need further refinement, as some pix-
els may have inaccurate anomaly scores, resulting in
fragmented or discontinuous masks.

In this work, we utilize the strong object priors
in visual foundation models and present a method
for road obstacle detection using segment-level fea-
tures derived from the Segment Anything Model
(SAM) (Kirillov et al., 2023). Our approach gener-
ates more coherent and integrated segment-level pre-

dictions by focusing on segment features rather than
individual pixels, addressing the inherent limitations
of per-pixel predictions that often result in fragmented
predictions. The final predictions are based on the
likelihood ratio of two learned distributions: free-
space and object segments. This allows us to miti-
gate the challenges associated with manual threshold
selection and improves the overall robustness of the
detection process.

In summary, we summarize our contributions as
follows:

• We introduce a novel road obstacle segmenta-
tion approach that leverages segment-level fea-
tures from visual foundational models, moving
beyond the pixel-level evaluation employed by ex-
isting methods.

• Our method utilizes a likelihood ratio between
learned distributions, eliminating the need for
manual threshold selection.

• We evaluate different approaches for learning the
free-space and obstacle segment distributions and
show that a non-parametric approach for approxi-
mating gives the best results.

• We demonstrate the effectiveness of our method
in generalizing to unseen road obstacles and com-
pare it to previous approaches on two bench-
marks, outperforming all other methods on
component-level metrics for both benchmarks.



2 Related Work

2.1 Road Obstacle Detection

Previous approaches for road obstacle detection relied
on multiple sensor modality setups to detect road ob-
stacles. (Williamson and Thorpe, 1998) used trinoc-
ular stereo vision and performed two types of stereo
matching to determine whether a pixel belongs to a
vertical or horizontal surface. (Pinggera et al., 2015)
used statistical hypothesis tests on local geometric
features captured from a stereo vision system to detect
obstacles. However, multi-camera systems present
additional challenges, such as requiring exact calibra-
tion to perform image wrapping and computing the
disparity between frames. In practice, vehicle vibra-
tion can complicate the calibration process since dif-
ferent cameras can move independently.

Other approaches required special types of sensors
like Light detection and ranging (LiDAR) or radio
detection and ranging (RADAR). (Tokudome et al.,
2017) used LiDAR sensors to measure the reflection
intensity of objects and detect road users. (Popov
et al., 2023) used RADAR signals for obstacle and
free space detection. While utilizing special sensor
modalities like LiDAR or RADAR signals could ben-
efit obstacle detection, these specialized sensors are
not always available in all vehicle perception systems
due to costs and hardware limitations.

In this work, we focus only on methods that oper-
ate on single-frame images captured by standard in-
vehicle cameras as a promising alternative.

2.2 Road Obstacle Segmentation

The common approach for road obstacle segmen-
tation relies on a robust closed-world segmentation
model. This model is trained to detect a set of pre-
defined classes and to quantify an OoD score for each
pixel that may belong to a different class. The per-
pixel OoD score can be interpreted as a form of pre-
dictive uncertainty on the given training set. Earlier
approaches modeled the uncertainty through maxi-
mum softmax probabilities (Hendrycks and Gimpel,
2017), ensembles (Lakshminarayanan et al., 2017),
Bayesian approximation (Mukhoti and Gal, 2018), or
Monte Carlo dropout (Gal and Ghahramani, 2016).
However, the posterior probabilities produced by a
model trained in a closed-word setting may not al-
ways be well-calibrated, often resulting in overly
confident predictions for unseen categories (Nguyen
et al., 2015b; Guo et al., 2017; Minderer et al., 2021;
Jiang et al., 2018). In this work, we utilize the strong
object priors that visual foundation models learn dur-

ing their training and utilize this to predict road obsta-
cles directly, without having a closed-world segmen-
tation model.

(Hendrycks et al., 2019a) introduced outlier expo-
sure as a strategy for enhancing the performance of
OoD detection. Outlier exposure leverages a proxy
dataset composed of outliers to discover signals and
learn heuristics for OoD samples. (Nayal et al., 2023)
used a proxy dataset to train the model to produce low
logit scores on unknown objects. We follow a similar
approach in our work, relying on a proxy dataset, but
we explicitly try to model the proxy distribution of
potential road obstacles and use this to differentiate
between free-space and obstacle segments.

2.3 Nearest-Neighbour OoD Detection

Retrieval-based methods have been explored for
anomaly detection (Reiss et al., 2021; Roth et al.,
2022; Zou et al., 2022), relying on large samples of
in-distribution datasets to identify anomalies as devi-
ations from the expected data patterns. (Sun et al.,
2022) highlighted the potential of using k-nearest-
neighbors (KNN) for OoD detection in deep neu-
ral networks. They used KNNs to calculate the dis-
tance between the embedding of each test image and
the training set, then applied a threshold-based cri-
terion to decide whether an input is OoD. However,
their exploration was limited to an image recognition
context, which is characterized by single-instance,
object-centric images. (Galesso et al., 2023) extended
the application of KNN to transformer-based repre-
sentations, achieving state-of-the-art performance on
common driving-focused anomaly detection bench-
marks. One limitation of their approach was its low
resolution, which limits its utility and applicability.
Our work adopts a similar strategy and uses KNNs to
learn feature representations from transformer-based
models. However, we learn two explicit distributions:
one for free-space and another for road obstacles.
This approach enhances the model’s ability to distin-
guish between road obstacles and road segments more
precisely.

2.4 Open-World Segmentation

Open-world segmentation seeks to segment all ob-
jects in the image, even those not in their training
dataset. Recent advancements in large-scale, text-
guided training for classification (Jia et al., 2021;
Radford et al., 2021) have inspired several studies
to adapt and extend these methodologies to the do-
main of open-world segmentation (Rao et al., 2022;
Zheng Ding, 2023; Xu et al., 2022). However, a lim-



itation of these approaches is their reliance on text
prompts to segment objects. SEEM (Zou et al., 2023)
and Segment Anything Model (SAM) (Kirillov et al.,
2023) build upon previous work and allow for var-
ious types of prompts. In our approach, we leverage
SAM to generate and represent regions. Similar to our
work, (Nekrasov et al., 2023) also used SAM for road
obstacle detection, but they relied on an OoD seg-
mentation model to identify unknown regions and use
this to prompt SAM. In our approach, we directly use
SAM features to detect road obstacles which stream-
lines the process and potentially reduces reliance on
secondary models.

3 Method Description

We present our method in this section (see fig. 2); we
first give an overview of SAM and how we extract
segment-level feature representations. Next, we intro-
duce our task formulation for road obstacle detection,
focusing on how we leverage likelihood ratios to dif-
ferentiate between two learned distributions: one for
free-space segments and another for proxy road ob-
stacles. This approach allows us to detect road obsta-
cles more robustly by directly operating on segment-
level features, which mitigates the issues commonly
encountered with per-pixel predictions.

3.1 Preliminaries: Overview of SAM

SAM was recently introduced as a foundational vi-
sion model for general image segmentation. It was
trained on the large-scale SA-1B dataset, which con-
tains over 1 billion masks from 11 million images.
SAM’s architecture comprises three main modules: 1)
an image encoder for extracting image features, 2) a
prompt encoder that encodes positional information
from the input, and 3) a mask decoder that combines
the image features and prompt tokens to generate final
mask predictions. Experimental results show power-
ful zero-shot capabilities to segment a wide range of
objects, parts, and visual structures across diverse sce-
narios. Therefore, an interesting question arises: can
we utilize SAM’s strong object priors for learning se-
mantic features of objects and regions?

However, efficiently extracting semantics from vi-
sual foundation models is a non-trivial challenge.
While a simple solution might be to use feature em-
beddings directly from the image encoder, we argue
that the prompt priors contained in the prompt tokens
are critical for accurately segmenting object bound-
aries. Therefore, we extract segment-level represen-
tations from the intermediate layers of the mask de-

coder, specifically after the transformer decoder lay-
ers and convolution (blue arrow in fig. 2). Each
segment-level representation is a vector of size 2048,
encoding both the intersection over union prediction
and mask positions.

3.2 Road Obstacle Detection Using
Likelihood Ratios

A simple approach for road obstacle detection is to
learn a density model p f ree for free-space segments
and predict an obstacle when the likelihood p f ree(x)
of the input features x for is low (i.e., there is little
training data in the region around x ). However, since
we utilize neural networks that abstract information
and produce a condensed representation for each in-
put, utilizing only a single distribution for the task
may lead to unreliable results. As shown by (Nalis-
nick et al., 2019), a density estimate learned on one
dataset may assign higher scores to inputs from a
completely different dataset (i.e., one distribution may
sit inside of another distribution due to the feature ex-
traction process). This behavior suggests that using
a single distribution may fail to distinguish between
free-space and road obstacles effectively.

We formulate the road obstacle detection task as
a model selection task between two distributions rep-
resenting the free-space segments Pf ree and obstacles
Pobstacle. Given a feature vector x, consider the null
hypothesis H f ree that x was drawn from Pf ree, and an
alternate hypothesis Hobstacle that x was drawn from
Pobstacle. By the Neyman-Pearson lemma (Neyman
and Pearson, 1933), when fixing type-I errors (false-
positives), the test with the smallest type-II errors
(false-negatives) is the likelihood ratio test.

LR =
pobstacle(x)

p f ree(x)
(1)

(Zhang and Wischik, 2022) showed that the same
conclusion holds for a Bayesian perspective. Di-
rectly predicting the final output from this ratio is a
formulation of the Maximum Likelihood (ML) deci-
sion rule (Fahrmeir et al., 1996) from decision the-
ory. Since road obstacles are very rare in practice,
this would mean that the ML would overestimate the
likelihood of road obstacles. However, from a safety
perspective, basing the detections only on the most
likely observed features would be more desirable than
potentially biasing our decision based on prior knowl-
edge.

While it is infeasible to estimate the true distribu-
tion Pobstacle for every potential road obstacle—given
the wide variability in obstacle types—we adopt the
concept of outlier exposure (Hendrycks et al., 2019b)
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Figure 2: Approach For Segment-Level Road Obstacle Detection: Our approach for road obstacle detection uses visual
foundation models like SAM (Kirillov et al., 2023) to generate segment-level masks. The segment-level feature representa-
tions are obtained from the transformer decoder layer, which processes the image and prompts embeddings. During inference,
we generate masks for the entire image using a grid of point prompts over the image and filter low-quality and duplicate masks
outside the region of interest. For each remaining mask, we compute the likelihood ratios of these learned representations to
produce final predictions using two learned estimates trained to estimate free space and obstacles.

to approximate Pobstacle using a proxy dataset. This
proxy dataset captures a diverse set of possible ob-
stacles, allowing us to model the distribution without
accounting for every scenario. Importantly, in our for-
mulation, the obstacle distribution does not need to
be perfectly precise. Rather, it only needs to exhibit
greater similarity to the proxy dataset than to the dis-
tribution of free-space segments, making it sufficient
for effective obstacle detection.

3.3 Distribution Estimation Methods

We build two reference feature datasets for the free-
space segments and out-distribution datasets. Both
datasets are obtained from an internal dataset that
contains labeled road obstacles captured from a real-
world test vehicle in both urban and highway driving
conditions. The reference feature datasets are denoted
as R f ree ∈ RN×C and R obstacle ∈ RM×C where N and
M are the number of reference features and C is the
dimensionality of each reference features. For both
datasets, the dimensionality C is 2048, and the num-
ber of reference features is 10k. We evaluate three
distinct approaches for estimating the distributions of

these datasets: Gaussian Mixture Models (GMMs),
which provide log-likelihood estimates; Normalizing
Flows, which offer exact density estimates; and k-
Nearest Neighbours (k-NN), which compute odds es-
timates based on neighborhood distances of the fea-
ture representations. We dive into the details of each
method in this section.

3.3.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) assume that the
feature vectors in a dataset are generated from a mix-
ture of several Gaussian distributions. Each Gaussian
distribution in the mixture represents a different clus-
ter, characterized by its own mean vector and covari-
ance matrix. Formally, the probability density func-
tion of a GMM is expressed as:

p(x | λ) =
K

∑
i=1

πiN (x | µi,Σi)

where K is the number of Gaussian compo-
nents, πi represents the mixing coefficients (such that
∑

K
i=1 πi = 1), µi is the mean, and Σi is the covariance

matrix of the i-th component.



We fit two separate GMMs, on R in and on R out ,
to model the in-distribution and out-distribution fea-
ture sets, respectively. The GMM parameters λin =
{πin

i ,µ
in
i ,Σ

in
i } are estimated from R in, while the pa-

rameters λout = {πout
i ,µout

i ,Σout
i } are estimated from

R out .
During inference, we compute the likelihood

of each segment-level feature t under both the in-
distribution and out-distribution models. This is done
by calculating the likelihood of t under each GMM:

p(t | λ
in) =

K

∑
i=1

π
in
i N (t | µin

i ,Σ
in
i )

p(t | λ
out) =

K

∑
i=1

π
out
i N (t | µout

i ,Σout
i )

We then compare the odds estimate of both dis-
tributions. If p(t | λin)/p(t | λout) ≥ 1, we predict
that the test sample t belongs to the in-distribution.
Otherwise, we classify it as belonging to the out-
distribution.

We use a GMM with K = 50 components and
a diagonal covariance matrix, which balances model
complexity and accuracy in distinguishing between
in-distribution and out-distribution samples. The
parameters of the GMM are estimated using the
Maximum Likelihood estimator for the observed
data using the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977) with initialization done
using K-means clustering.

3.3.2 Normalizing Flows

Normalizing Flows (NF) are a class of generative
models that use a sequence of invertible transforma-
tions to map a simple prior distribution (e.g., Gaus-
sian) to a more complex distribution that fits the data.
Each transformation in the flow is designed to be both
invertible and differentiable, allowing for the com-
putation of both the density and sampling (Kobyzev
et al., 2021). We learn a flow for each distribution and
use the density estimates to predict which distribution
the sample belongs to.

In our approach, we use Neural Spline
Flows (Durkan et al., 2019), specifically cou-
pling layers based on rational quadratic splines. The
splines parameterize piecewise invertible functions,
making mapping between simple and complex
distributions possible. The transformations are
conditioned on half of the input dimensions, which
are learned via a four-layer MLP.

The overall flow is constructed by a sequence
of three blocks, where each block includes an act-
norm layer, an Invertible 1x1 Convolution (Hooge-
boom et al., 2019), and a Neural Spline Flow. The

flow is designed to map the input data distribution
to a standard Gaussian prior N (0,1). During infer-
ence, each segment-level feature t is passed through
the model transforms, and the log probability score
is computed for each model approximating the free-
space and road obstacle. If the log probability scores
for road obstacle model is larger than the log proba-
bility scores for the free-space model, then we predict
the segment to be an obstacle.

3.3.3 K-Nearest Neighbors

k-Nearest Neighbors relies on the computation of dis-
tances between feature representations as a measure
of estimation. More formally, each segment-level
feature t of the image is extracted, and the distance
to each of the features in R in and R out denoted as
dist(t,xin) and dist(t,xout). We then find the k sam-
ples with the highest cosine similarity values to t in
R in and R out . Let Nk

R in(t) and Nk
R out (t) be the sets of

the top-k most similar samples to t based on the co-
sine similarity values. The average cosine similarity
between t and the top-k most similar samples in R are
calculated as:

dist(t,Nk
R (t)) =

1
k ∑

xi∈Nk
R (t)

dist(t,xi) (2)

If
dist(t,Nk

R obstacle (t))

dist(t,Nk
R f ree (t))

≥ 1 we predict that the test sample

t is more likely to be an obstacle. We use the cosine
similarity as a distance metric and find k equal to five
to give the best results.

4 Experiments

4.1 Experimental Setup

Metrics: The standard metrics for pixel-level seg-
mentation are Average Precision (AP) and False Pos-
itive Rate at a True Positive Rate of 95% (FPR95).
These are all threshold-independent metrics, which
help evaluate the usability of a method irrespective
of the chosen threshold. However, in practice, a
threshold must always be selected for any down-
stream task that utilizes an OoD detector (Maag et al.,
2022; Shoeb et al., 2024). Therefore, we focus on
the three component-level metrics used in the Seg-
mentMeIfYouCan (SMIYC) benchmark (Chan et al.,
2021) (sIoUgt , PPV, and mean F1) as our main com-
parison metric. sIoUgt is the average intersection over
union, measuring how well the prediction road obsta-
cle overlaps with the ground truth. PPV is the average



Table 1: Performance on SMIYC-Obstacle and SMIYC-LostAndFound Benchmarks: We compare the performance of
the top-five state-of-the-art methods across both datasets. The best results are highlighted in bold, and the second best are
underlined. Our method achieves state-of-the-art performance on the F1 score and PPV in the component-level metrics. On
pixel-level metrics, our method is not as competitive as state-of-the-art pixel segmentation networks due to obstacles that are
missed and assigned as a road by default.

Method SMIYC-Obstacle SMIYC-LostAndFound

AP ↑ FPR95 ↓ sIoUgt ↑ PPV ↑ F1 ↑ AP ↑ FPR95 ↓ sIoUgt ↑ PPV ↑ F1 ↑
UEM (Nayal et al., 2024) 94.40 0.10 49.80 76.80 67.2
UNO (Delić et al., 2024) 93.19 0.16 70.97 72.17 77.65
RbA (Nayal et al., 2023) 95.12 0.08 54.34 59.08 57.44
EAM (Grcić et al., 2023) 92.87 0.52 65.86 76.50 75.58
Mask2Anomaly (Rai et al., 2023) 93.22 0.20 55.72 75.42 68.15

NFlowJS (Grcić et al., 2023) 89.28 0.65 54.63 59.74 61.75
PixOOD (Vojı́ř et al., 2024) 85.07 4.46 30.18 78.47 44.41
Road Inpainting (Lis et al., 2023) 82.93 35.75 49.21 60.67 52.25
SynBoost (Di Biase et al., 2021) 81.71 4.64 36.83 72.32 48.72
DaCUP (Vojı́ř and Matas, 2023) 81.37 7.36 38.34 67.29 51.14
LR (KNN) -ours- 92.0 0.20 62.9 81.9 78.4 83.70 - 49.70 95.90 72.60
LR (GMM) -ours- 91.90 0.20 59.5 84.2 76.90 83.50 - 47.40 92.00 69.20
LR (NF) -ours- 77.10 33.70 46.50 77.5 62.70 76.90 - 44.70 73.50 61.00

positive predictive value, and this asses how accurate
the predicted road obstacles are (precision). Finally,
mean F1 is a balanced measure combining both sIoU
and PPV. It is calculated at multiple thresholds and
then averaged; this provides a single value reflecting
both the ability to detect and the accuracy of these de-
tections.
Datasets: We evaluate our method on SMIYC-
RoadObstacle, and SMIYC-LostAndFound. Both
datasets represent realistic and hazardous obstacles
on the road ahead that are critical to detect for
an autonomous vehicle. SMIYC-RoadObstacle con-
tains a total of 327 privately withheld images, which
are used to evaluate different methods. SMIYC-
LostAndFound is a filtered and refined- version of Lo-
stAndFound (Pinggera et al., 2016).

4.2 Comparison to State-of-the-Art

We evaluate our proposed method with different dis-
tribution estimation methods, as shown in Table 1.
Each approach is compared against the top five
state-of-the-art methods on the SMIYC-Obstacle and
SMIYC-LostAndFound datasets. Our results demon-
strate that our method achieves competitive perfor-
mance across all three distribution estimation tech-
niques, with the non-parametric k-nearest neighbor
approach yielding the best results on both datasets.
The most significant improvement is observed on
SMIYC-LostAndFound, where our method achieves
a PPV of 95.9 and an F1 score of 72.60, outperform-
ing the previous best method by 17.43 and 10.85, re-
spectively.

However, in pixel-level metrics such as aver-
age precision (AP) and false positive rate (FPR),
our method is less competitive compared to state-
of-the-art pixel segmentation networks like RbA and

NFlowJS. This discrepancy can be attributed to the
limitations of our model in detecting smaller or am-
biguous obstacles, which are sometimes not detected
as separate segments by SAM as seen in Figure 3.
Additionally, this causes the FPR95 metric to fail on
the SMIYC-LostAndFound dataset as more than 5%
of the obstacles are not detected as separate segments
and are considered free space by default. Despite this,
the superior performance in component-level metrics
suggests that our method is highly effective at distin-
guishing between larger and more well-defined obsta-
cles, which is critical for real-world applications of
road obstacle detection.

Figure 3: Failure Case Examples: The left column shows
the input image with the road obstacles highlighted in green
bounding boxes, and the right column shows scenarios
where the masks generated by SAM miss detecting the road
obstacle as a separate segment.

4.3 Ablations

For each estimation method, we visualize the sepa-
ration between the two learned distributions on the
training data in Figure 4. The first row visualizes the
likelihood of sampling from each GMM, the second



Figure 4: Comparison of Gaussian Mixture Models (first row) Normalizing Flows (second row), and K-nearest neighbors
(third row) on the training set. The first column visualizes the learned distributions of the free-space model, the second
visualizes the learned distributions of obstacles, and the third visualizes the likelihood ratio between both. The likelihood
ratio provides better separation than any of the models separately at the threshold value 1.

row visualizes the density estimates for each normal-
izing flow model, and the final row visualizes one mi-
nus the average distance to the 5 nearest neighbors.
For all three methods, utilizing the likelihood ratio
between the two distributions provides a better sep-
aration than utilizing any one model on its own. We
also find that the normalizing flow models provide the
best separation of the training data. However, it does
not generalize as well as the GMM or the k-nearest
neighbors.

5 Conclusion & Outlook

In this paper, we propose a novel approach to address
the road obstacle segmentation problem at the seg-
ment level. Our method leverages strong object priors
from visual foundational models to generate segment-
level features. We estimate the probability distribu-
tions for both free-space and obstacle segments and
utilize the likelihood ratios as a binary classifier to
detect road obstacles. We evaluate several methods
for estimating these distributions, including GMMs,
normalizing flows, and k-nearest neighbors, finding
that k-nearest neighbors produce the best results.
Our approach achieves state-of-the-art performance
on standard benchmarks (SegmentMeIfYouCan and
LostAndFound) in terms of component-level metrics
without requiring a predefined threshold. Limita-
tions and Future Work: Despite the strong perfor-

mance in component-level metrics, our approach still
suffers from a relatively high false-negative rate due
to small objects not being detected as separate seg-
ments by SAM. This is due to the prompting strategy
we deploy; the equally spaced grid may miss small
objects that lie between the point prompts. Restricting
the prompts to only regions where the model is uncer-
tain could potentially resolve this issue, but then the
segments that the model incorrectly classifies as the
road will also be missed from the road obstacle de-
tection module. Additionally, the efficacy of the best-
performing method (k-nearest neighbours) relies on
the number and quality of reference features selected.
In this work, we utilized all available reference fea-
tures without examining the impact of selecting dif-
ferent subsets of these features. Future work would
investigate the application of more sophisticated tech-
niques, such as core-set approaches (Tereshchenko
and Zakala, 2024), to choose the set of reference fea-
tures selectively. By optimizing the selection process,
we anticipated that the inference time of our models
could be significantly enhanced without loss in per-
formance.

Acknowledgements

The research leading to these results is funded by the
German Federal Ministry for Economic Affairs and
Climate Action within the project “just better DATA”.



N.N. is funded by the KUIS AI Center, F.G. by the Eu-
ropean Union (ERC, ENSURE, 101116486). Views
and opinions expressed are however those of the au-
thor(s) only and do not necessarily reflect those of the
European Union or the European Research Council.
Neither the European Union nor the granting author-
ity can be held responsible for them.

REFERENCES

Ackermann, J., Sakaridis, C., and Yu, F. (2023). Masko-
maly: Zero-shot mask anomaly segmentation. In The
British Machine Vision Conference (BMVC).

Chan, R., Lis, K., Uhlemeyer, S., Blum, H., Honari, S.,
Siegwart, R., Fua, P., Salzmann, M., and Rottmann,
M. (2021). Segmentmeifyoucan: A benchmark for
anomaly segmentation. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.
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