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ABSTRACT

Determining the shape of 3D objects from high-frequency radar signals is analyti-
cally complex but critical for applications like aerospace and autonomous driving.
Previous methods using deep learning have successfully been applied to this task,
but the radar response in practical applications contains noise, which is hard to
model deterministically. In addition, we often only observe the 3D object from
partial viewing angles, leading to a complex one-to-many mapping task. In this
work, we demonstrate that diffusion models are a suitable learning paradigm for
radar inverse modeling due to their probabilistic learning and denoising proper-
ties. We present the radar2Shape model, which approximates the distribution of
shape parameters conditioned on radar responses that are representative of prac-
tical applications. In addition to being more accurate than a deterministic com-
petitive baseline across levels of noise, we show that the probabilistic nature of
radar2Shape is important to capture the uncertainty associated with object recon-
struction with partial data.

1 INTRODUCTION

Radar is a reliable sensing mechanism in adverse light and weather conditions, offering wide-ranging
applications such as robotics Barnes & Posner (2020), autonomous driving Bilik et al. (2019), and
remote sensing Bergen et al. (2002). Radar-based object characterization and reconstruction still
presents a challenging inverse learning task. At long ranges, radar signals are often noisy and provide
poor resolution Kissinger (2012). Furthermore, radar sensors often do not fully observe an object at
all aspect angles, which introduces uncertainties for the reconstruction process.

Many existing deep learning algorithms developed for radar object characterization primarily in-
fer object class rather than full shape. They typically encode the spatial information utilizing 1D
convolutional neural networks (CNNs) Lundén & Koivunen (2016); Wan et al. (2020) or recur-
rent neural networks (RNNs) Xu et al. (2019). Some of these approaches also apply attention to
spatial encodings Pan et al. (2022); Wan et al. (2020); Xu et al. (2019), increasing model perfor-
mance. In Muthukrishnan et al. (2023), a custom transformer model was designed to encode both
the spatial and temporal structure of the radar signature to reconstruct the full shape. However, the
radar-based reconstruction process remains a challenging task with high sensitivity across geome-
tries and noisy, partial observability settings. Generative models, such as Generative Adversarial
Networks (GANs) Truong & Yanushkevich (2019) offer an alternative approach, but suffer from
training instability problems and limited generalization Becker et al. (2022).
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Diffusion models have emerged as the model of choice to address some of these challenges (Ho et al.,
2020). Their applications ranging from domains like bioinformatics (Guo et al., 2024) to climate
science (Li et al., 2024; Bassetti et al., 2024) demonstrate their versatility, even when subject to
noisy inputs (Webber & Reader, 2024). They have been shown to outperform GANs and generate
diverse high-fidelity images for super-resolution and inpainting (Rombach et al., 2022; Dhariwal &
Nichol, 2021).

In this work, we present the radar2Shape model, an extension of the Denoising Diffusion Probabilis-
tic Model (DDPM). Radar2Shape denoises in the space of parametric roll-symmetric shapes and is
conditioned on radar signatures of the shape. The robustness and versatility across domains moti-
vates the use of diffusion models to model radar object characterization in noisy, partially observable
settings, where there is high uncertainty about the surfaces of the shape that are not observed by the
radar. We find that conditioning the denoising process on radar responses is robust under noise and
partial observability, which leads to improvements over a competitive transformer-based (Vaswani,
2017) baseline. We also empirically quantify how well the predicted distribution matches the ground
truth distribution of shapes, which is typically difficult for inverse problems such as these. Addi-
tionally, we explore the versatility of the model to instead condition on shapes and produce radar
responses, which it is capable of doing to a high degree of accuracy.

2 BACKGROUND

2.1 RADAR MODELING AND SIMULATION

Techniques for radar 3D object modeling depend on the relative size of the object l and the radar
wavelength λ. Most commercial and defense-related applications use high-frequency radar wave-
forms. This leads to the optical regime, l >> λ, where radar sensors provide a signal complemen-
tary to optical imaging techniques while providing a capability that, for automotive applications,
penetrates fog and smoke with scattering particle sizes smaller than the wavelength. Addition-
ally, scattering can often be reduced to a summation of discrete scattering centers taking advantage
of the Geometric Theory of Diffraction (GTD) Keller (1962). This allows the use of parametric,
component-based, scattering models that reduce the radar modeling to simulating each component.
Examples of components are discrete points, spheres, rings, and triangles. This paper will focus on
the use of triangles.

2.2 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) are generative models that
leverage a forward diffusion process and a reverse denoising process to generate samples. The
forward process adds Gaussian noise to a clean data sample x0 over T timesteps, creating a noisy
sample xt. The reverse process aims to recover the clean data distribution by progressively denoising
xt. The training objective of DDPMs is to minimize the variational lower bound of the negative log-
likelihood of the generated data matching the true data distribution, over all timesteps 1 to T . For a
more comprehensive background on training DDPMs, see Appendix B.

2.3 DENOISING DIFFUSION IMPLICIT MODELS

Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2021) introduce a non-Markovian refor-
mulation of the reverse process in DDPMs, enabling faster and deterministic sampling while main-
taining high sample quality. Unlike DDPMs, which rely on a stochastic Markov chain to generate
samples, DDIMs parameterize the reverse process using a deterministic mapping, effectively skip-
ping intermediate steps without additional training. This makes DDIMs particularly useful for appli-
cations where fast sample generation is important. For further details on DDIMs see Appendix B.6.
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3 METHOD

3.1 RADAR MODELING

We utilize Physical Optics (PO) Balanis (2012) to model electromagnetic scattering from perfectly
electrically conducting metallic meshes composed of triangular facets for high-frequency applica-
tions. To generate a range profile, a common view for radars, we calculate the scattering response of
a mesh over a linear set of frequencies, such as those used in the common Linear Frequency Modu-
lated (LFM) waveform Skolnik (1962). Details of our PO model are provided in Appendix C.2.

The range profile is a collection of real and imaginary scattering responses across a discrete set of
NR range bins and different viewing directions u denoted

R(u) = {Ri(u)}, for i = 1, . . . , NR, (1)

where u is the observational unit vector given in spherical coordinates as u =
(sinα cosϕ, sinα sinϕ, cosα) for α ∈ [0, π] and ϕ ∈ [0, 2π].

We consider 3D, roll-symmetric geometries, parameterized by vectors (r, z), corresponding to radial
and axial parametrization parameters (see Figure 1 for an illustration). Since the geometry is roll
symmetric, the radar response R is identical across all ϕ and it is sufficient to index R by range bin
and aspect angle α. We discritize α into Nα bins such that R ∈ RNα×NR .

3.2 INVERSE RADAR MODELING VIA CONDITIONED DIFFUSION

We employ a Denoising Diffusion Probabilistic Model (DDPM) as described in Section 2.2 to gen-
erate 3D shapes conditioned a radar response in order to solve the radar-to-geometry inverse learn-
ing task. Our model is a latent space diffusion model consisting of three networks fenc, fdec, and
ϵθ. Figure 2 contains an overview. The shape encoder fenc : (r, z) 7→ h maps the geometry
parametrization to a latent vector h ∈ RNα and the shape decoder fdec : h 7→ (r, z) performs the
reverse mapping. The encoder consists of a single linear layer followed by a ReLU nonlinearity, and
the decoder is linear.

Our latent shape diffusion model uses a U-Net (Ronneberger et al., 2015) as its noise prediction
network ϵθ. See Appendix G for specific architecture details. In order to condition the diffusion
model on the radar response R, at each step in the denoising process, we concatenate the latent
shape vector ht ∈ RNα with R along the range dimension giving xt = [ht R] ∈ RNα×(NR+1). The
U-Net is a 1-dimensional convolutional network which convolves over the Nα-dimensional aspect
angle axis and treats the range axis as NR + 1 channels.

Figure 1: Cross section of a roll-symmetric frusta object parameterized by the radial and axial co-
ordinates (left), the true shape cross section (middle) and the radar response including noise (right).
The bright values in the right plot correspond to specular returns when the observation vector is
perpendicular to the frustum section on the left.

By design, the U-Net ϵθ : xt 7→ ϵ outputs a noise vector ϵ ∈ RNα×(NR+1) of the same shape as
the input xt. However, we only wish to denoise the latent shape vector ht, and so we disregard the
component of the noise vector corresponding to R. Denote the components of ϵ corresponding to h
and R as ϵ = [ϵh ϵR]. The loss function then becomes

L =
1

Nα

Nα∑
i=0

(ϵh − [ϵθ(xt, t)]h)
2. (2)
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During inference, since only h changes and R remains constant, the denoising process is defined

xt−1 =
1

√
αt

(
xt −

√
1− αt√
1− ᾱt

[ϵθ(xt, t)h 0]

)
. (3)

The tensor [ϵθ(xt, t)h 0] denotes ϵθ(xt, t) with ϵR set to 0. The denoised sample is defined h =
[x0]h. See Appendix B for more details on the diffusion process including the scales αt and ᾱt.

Figure 2: Overview of the radar2Shape model. To generate shapes that have a given radar response,
parameters (r, z) are generated by denoising latent shape vectors ht from random noise hT . This
is done by iteratively sampling from the distribution p(ht−1|ht) until t = 0. To train the model,
a small amount of noise using q is added to each latent vector. The U-Net learns to denoise this,
conditioned on the radar response. In successful cases, after denoising is completed at t = 0, the
predicted shape’s radar response is almost identical to the ground truth response that the model was
conditioned on.

3.3 DATASET GENERATION

In this work consider the Frusta dataset introduced in Muthukrishnan et al. (2023); Kohler et al.
(2023). We generate 3D geometries, where each corresponding mesh is a combination of roll-
symmetric frusta stacked together, parameterized by a sequence of radial and body axis coordinates
(r, z). For futher details on dataset generation, see Appendix F.

3.4 OBSERVABILITY SETTINGS

We consider two observability settings controlling for the number of aspect angles or viewing ori-
entations on the 3D object. In the fully observed regime, the diffusion model is conditioned on the
full radar signal (0 ≤ α ≤ π). For the partially observed setting, a mask is chosen to expose less
than 70% of the object’s surface such that the unmasked region is contiguous in aspect. We incor-
porate masking information into our dataset by setting masked aspects to a constant value of 0, and
generate three randomly masked radar responses for a given shape to promote generalization.

3.5 METRICS OF EVALUATION

We develop multiple methods to evaluate the accuracy of shape samples generated by radar2Shape.
Given the complex phenomenology of radar we aim to develop metrics that capture the model’s
ability to estimate the geometric shape, the shapes impact on radar phenomenology, and matching
of the shape topology. Additionally, we aim to examine the ability of diffusion models to predict an
accurate distribution of shapes. The following is a brief description of metrics used to evaluate these
characteristics.
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3.5.1 IOU-S: SHAPE OVERLAP

This metric evaluates the quality of shape predictions using the binary mask intersection-over-union
(IoU). Ground truth and predicted shape parameters, (r, z)gt and (r, z)pred, are used to generate
corresponding mesh representations, which are then converted into 2D binary images of the shapes
as shown in the middle plot of Figure 1. The IoU is computed to quantify the overlap between the
predicted and ground truth image corresponding to the object cross-section, a value defined in the
range of 0 and 1 where 0 indicates no overlap in shape and 1 is perfect overlap.

3.5.2 IOU-IM: RADAR SIGNAL OVERLAP

This metric evaluates the ability of the predicted shapes to generate the ground truth RF phenomenol-
ogy, specifically speculars. Speculars occur when segments of the frustum are perpendicular to the
observation vector u. To detect the location of speculars across the aspect angle α, we develop a
method that generates a binary mask used for intersection-over-union (IoU) calculations.

Ground truth and predicted shape parameters, (r, z)gt and (r, z)pred, are used to generate cor-
responding mesh representations. For a given aspect angle, the sum of the projected area of all
triangles in a mesh perpendicular to the observation is computed as PS(u) (see Appendix C.2 for
more details). A binary mask is then crated for both predictions and ground truth by setting values
to 1 when PS(u) > 0.05 and 0 otherwise. The IoU is calculated to measure how accurately the
prediction captures the bright specular reflections. Similar to IOU-S, IOU-IM is in the [0, 1] range,
with 1 indicating the shape will produce speculars at the correct aspect angles.

3.5.3 MATCH: SHAPE MATCHING COST

This metric evaluates the matching accuracy between ground truth and predicted shape segments, ex-
cluding the hemisphere elements, corresponding to shapes parametrized by (r, z)gt and (r, z)pred.
Let Sgt denote the number of ground truth segments and Spred the number of predicted segments.
The linear sum assignment problem Crouse (2016) is solved to minimize the matching error cost,
min

∑Sgt

i

∑Spred

j Ci,jXi,j , where X is a binary matrix such that Xi,j = 1 when ground truth seg-
ment i is assigned to predicted segment j, and Ci,j is the cost of matching i to j. The MATCH
metric is defined as the total cost of the assignments represented by the above sum divided by the
number of assigned segments, min{Sgt, Spred}.

3.5.4 DIST-MATCH: DISTRIBUTION ACCURACY METRIC

This metric evaluates how well the predicted distribution of our diffusion model matches the ground
truth distribution, important in partially observable settings. Define the deterministic radar simula-
tion used to generate R as f : X → Y , where X represents shape parameters and Y represents the
radar response. There exists a set f−1(y) = {x ∈ X|f(x) = y}, in other words, all the possible
shapes that correspond to an observed radar response. Our diffusion models h can be framed as
trying to estimate this set (as samples from a conditional distribution), h(y) = f̂−1(y), which we
must compare to the ground truth f−1(y).

However, in practice, it is difficult to obtain the ground truth because it is an ill-posed problem, and
there is no model that can reliably extrapolate unknown shape information into a radar response that
matches our masked observation. This is analogous to inverse problems in computer vision, like
image inpainting and deblurring, that diffusion variants like DDRM (Kawar et al., 2022) attempt to
solve. However, image quality and perceptual metrics like Frenchet Inception Distance and Peak
Signal-to-Noise Ratio are not correlated well with evaluations on latent shape vectors that we use in
this work, as they mostly focus on 2D RGB images. Even these metrics do not necessarily capture
f̂−1(y) coverage of the ground truth distribution when large amounts of inpainting are required, be-
cause similarity to training set may not necessarily correlate with accuracy of generated pixels (Chen
et al., 2024). For the radar domain, we must estimate both the accuracy of our produced shapes for
the aspect angles in which they are observable, as well as the coverage of our diffusion model’s
shape estimations over the unknown shape distribution. Therefore, this metric is composed of two
parts: ACC and COV.
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Define a data sample (xj , yj) for shape j in the test set, with unmasked aspect angles (visible regions
of the radar response) denoted as y0j and masked angles as y1j . yj without a superscript denotes both
masked and unmasked aspect angles are included. We generate N samples from our diffusion model,
conditioned on yj , which takes the form h(yj) = x̂ij such that xi ∈ ̂f−1(yj). We can obtain a radar
response ŷij for this shape by running the radar simulation in Section 3.3. Equipped with a metric
to measure distance in the space of y, the accuracy takes the form,

ACC =
1

M

M∑
j=0

1

N

N∑
i=0

||ŷ0ij − y0j ||2. (4)

For coverage, we want to evaluate how accurately our generated shape distribution fits the true
distribution of possible shapes under low observability. More accurate generated shape samples will
be closer to the shape sample we have from the ground truth distribution xj ∈ f−1(yj) where in
practice, xj is the (r, z) parametrization. Across M shape samples with varying levels of partial
observability, we can estimate coverage as the following,

COV =
1

M

M∑
j=0

min
i
(||x̂ij − xj ||2). (5)

We similarly must choose a metric to measure distance in the space of x. The min operator takes
the distance between the generated sample that is closest to xj among our N generated samples.
Intuitively, this metric ignores high variance in samples, and rewards such behavior when at least
one of the samples is close to xj - therefore, it should be observed in tandem with ACC. We do not
have the distribution that xj belongs to, so when we average over M samples, we average over the
distribution of possible shapes (if M is sufficiently large) therefore becoming a proxy for coverage.

4 EXPERIMENTS

We measure how accurately radar2Shape can predict Frusta shapes, conditioned on a noisy and
partially observable radar responses. We compare across a variety of sampling methods, noise levels
and observability levels. Our models are trained on a variety of noise levels and observability settings
indicated in Table 1 as data augmentations.

The training datasets consist of 25000 shape samples, each with three randomly applied masks, for
a total of 75000 data samples. We set the number of timesteps for the diffusion process to 1000.
Training is done for 120000 steps, using the Adam optimizer with an initial learning rate of 6e−5,
exponential decay every 400 steps with γ = 0.985. Once the diffusion models are trained, we
evaluate our metrics with standard DDPM sampling, as well as DDIM sampling with 100 timesteps
and η = 0. These methods are benchmarked against the InvRT transformer (Muthukrishnan et al.,
2023) trained with our mask and observability augmented dataset described in Section 3.3.

Throughout these experiments, we denoise in the latent shape representation defined by the autoen-
coder fenc and fdec defined in Section 3.2. It is pretrained for a single epoch (to convergence) with
500 samples, using a mean squared error reconstruction loss, Adam (Kingma & Ba, 2015) optimizer,
learning rate of 0.01, and batch size of 32.

4.1 FULLY OBSERVED

In the fully observed setting, our model has the radar response from every aspect (or viewing) angle
of the shape - therefore, we can expect all metrics to be better across the board. We show in Table 1
our model’s ability to reconstruct the radial and axial profile (and thus, the shape) across noise levels.
In the high-noise setting, DDPM outperforms InvRT by a large margin on the IOU of the shape and
it’s associated radar response, as well as the matching error between the predicted and ground truth
shape. In the low and medium noise settings, DDPM still shows improvement over InvRT, but the
performance gap is slightly smaller. Since performance is observed to increase as noise increases, it
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Table 1: Performance of our diffusion models (DDPM and DDIM) compared to the baseline trans-
former InvRT. DDPM, DDIM, and InvRT are trained and tested against different noise levels (low
=−80dB, medium =−60dB, and high =−40dB), with randomly sampled masks up to 70%. In the
full observability setting, metrics are computed over data with no applied mask. In the partial observ-
ability setting, we uniformly apply masks in all aspect of sizes between 0% and 70% with a starting
aspect uniformly sampled. Metrics are averaged across 20 random (frusta shape, radar response)
pairs.

Full Observability Partial Observability

Noise Model IOU-IM (↑) IOU-S (↑) MATCH (↓) IOU-IM (↑) IOU-S (↑) MATCH (↓)

low
DDPM 0.67 ± 0.22 0.73 ± 0.24 0.11 ± 0.09 0.62 ± 0.24 0.67 ± 0.25 0.12 ± 0.12
DDIM 0.61 ± 0.24 0.68 ± 0.27 0.12 ± 0.12 0.58 ± 0.24 0.63 ± 0.26 0.13 ± 0.12
InvRT 0.70 ± 0.13 0.66 ± 0.20 0.16 ± 0.11 0.61 ± 0.25 0.66 ± 0.20 0.18 ± 0.21

medium
DDPM 0.71 ± 0.18 0.76 ± 0.20 0.11 ± 0.11 0.66 ± 0.21 0.71 ± 0.24 0.12 ± 0.11
DDIM 0.64 ± 0.24 0.69 ± 0.24 0.12 ± 0.14 0.63 ± 0.22 0.68 ± 0.24 0.14 ± 0.15
InvRT 0.70 ± 0.24 0.64 ± 0.18 0.18 ± 0.09 0.63 ± 0.23 0.66 ± 0.15 0.19 ± 0.12

high
DDPM 0.77 ± 0.16 0.79 ± 0.17 0.10 ± 0.10 0.70 ± 0.19 0.74 ± 0.21 0.14 ± 0.12
DDIM 0.68 ± 0.20 0.74 ± 0.21 0.14 ± 0.16 0.66 ± 0.21 0.71 ± 0.22 0.13 ± 0.15
InvRT 0.70 ± 0.20 0.72 ± 0.13 0.26 ± 0.22 0.63 ± 0.23 0.67 ± 0.17 0.27 ± 0.20

is possible that DDPM overfits to the structure of the radar response in low noise settings, while in
high noise settings, the model is forced to learn the most robust features.

DDIM exhibits slightly lower accuracy across metrics compared to DDPM, of about 0.05 IOU, but
we observe an inference time improvement from 116.6 to 11.8 seconds on a single V100 GPU (with
100 DDIM steps), which can be more useful in certain remote sensing applications. We note that this
drop off is somewhat smaller than the shape conditional radar response generation in Appendix A.
We also show the limits of the models’ performance under noise in Figure 5 for DDPM and Figure 6
for DDIM. They exhibit extremely consistent performance under the IOU metrics until around -20
dB, where a drop off of ∼ 0.1 IOU occurs across samples.

4.2 PARTIALLY OBSERVED

Compared to deterministic models, diffusion models theoretically perform better when conditioned
on partially observable radar responses, as they naturally model the uncertainty of unobserved sur-
faces. We evaluate radar2Shape by measuring prediction accuracy against test data and assessing its
distributional properties.

In Table 1, we can see that our DDPM model outperforms InvRT on all metrics in the high noise
setting - this highlights how robust diffusion modeling is to noise, and suggests that the U-Net style
encoding of the radar response is also beneficial. In the low and medium noise setting, DDPM still
shows slightly better performance across metrics, and DDIM seems to match the performance of In-
vRT. IOU-IM and IOU-S typically exhibit decreases and MATCH increases from full observability
to partial observability for a given model and noise level, especially in medium and high noise levels.
This indicates slightly worse performance as expected for partial data. Both diffusion models and in-
vrt show about equal performance drops across observability. Instead of averaging over mask levels,
we also consider observing performance for a given object as masking increases - these results can
be seen in Figure 7 for DDPM and Figure 8 for DDIM. We fix an arbitrary noise level to the medium
setting of −60dB. There is little observed difference in the performance drop between DDPM and
DDIM sampling. Overall, the model’s strength is that it remains consistent in performance to about
a mask fraction of 0.5, when a slight drop off of 0.1 to 0.2 IOU occurs for most objects in the mask
fraction range of 0.5 to 0.7. Objects that are predicted with high accuracy in the fully observed
setting also tend to have a sharper performance drop off as the mask fraction increases, compared
to objects that have a lower accuracy in the fully observed setting - this is especially apparent in the
left of Figure 8.

In addition to heldout test data, it is also important to understand that these ground truth data points
are samples from a larger ground truth distribution. Therefore, we must also compare our predictions
to the underlying data distribution, which gets wider as mask fraction increases. We expand upon
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Table 2: Results for DIST-MATCH accuracy (ACC) and coverage (COV) metrics, with Peak-Bin
as described in Appendix A as the distance between two radar responses y0ij and y0j , and IOU-S as
the distance between two shapes xj and x̂ij . N and M are set to 20. We compare across different
noise levels (low =−80dB, medium =−60dB, and high =−40dB and use random masks uniformly
sampled up to 70% to induce uncertainty. On average, the diffusion model can generate samples that
theoretically cover more of the ground truth distribution than a deterministic model such as InvRT,
while maintaining accurate shape predictions corresponding to visible regions of the radar response.

Noise Model ACC : Peak-Bin (↓) COV : IOU-S (↑)

low DDPM 1.23± 1.40 0.91± 0.03
InvRT 1.25± 0.68 0.72± 0.16

medium DDPM 1.32± 1.49 0.85± 0.03
InvRT 3.04± 2.51 0.74± 0.13

high DDPM 1.66± 1.71 0.86± 0.01
InvRT 9.47± 5.22 0.72± 0.11

this concept in terms of our masked radar response dataset by introducing the DIST-MATCH metric
in Section 3.5.4, and discuss the results here. In Table 2, ACC : Peak-Bin shows that the diffusion
model more accurately models the visible portion of the object than InvRT. COV: IOU-S also shows
that it generates samples that theoretically cover more of the ground truth data distribution, while
maintaining accuracy under visible regions of the radar response. We note that InvRT is deterministic
so will produce the same results across N in these experiments, which inherently highlights the
advantage of probabilistic modeling to properly model distribution variance.

Additionally, we measure radar2Shape’s correlation between variance of generated shapes and the
mask level (uncertainty) of the conditional radar response. Using the notation from Section 3.5.4,
and defining ym as a radar response with mask percentage m taken from the test dataset, we compute
the mean of xi − ym where xi ∈ ̂f−1(ym). We obtain samples xi by sampling repeatedly from
ym, and compare this mean and its variance across noise levels (low, medium, high) in Figure 9,
Figure 10, Figure 11 respectively. We do indeed see a positive correlation between masking and
variance of generated samples across noise levels. This means our model accurately represents the
level of uncertainty in it’s diffusion process, as domain knowledge suggests that the difficulty of the
inverse problem increases drastically after m = 0.5 due to lack of specular information as defined
in Section 3.5.2.

5 CONCLUSION

We present a novel method of using denoising diffusion models for radar object characterization,
which in many settings, proves to be more accurate than deterministic modeling. Our object es-
timations also show robustness under perturbations of the conditional variables, which are high-
frequency radar responses that are partially observable and contain varying amounts of noise. Ad-
ditionally, although quantifying a ground-truth distribution to benchmark models against remains
a challenge in probabilistic modeling for inverse problems, we develop a domain-specific metric
to show that the probabilistic nature of diffusion modeling accurately represents the one-to-many
mapping between partially observable radar responses and corresponding objects. Speeding up in-
ference for these models with DDIM sampling maintains relatively strong performance in these
settings. Future work can further evaluate our diffusion model in radar settings outside the optical
regime, improve sampling time by using one-step distillation approaches, include more complex
shapes with more general representations, and incorporate the geometric characteristics of far-field
radar to improve sample-efficiency and performance.
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Table 3: Test performance of our diffusion model used for shape conditional static pattern gener-
ation. Results are averaged over 20 random (frusta shape, radar response) pairs. DDPM sampling
proves to generate much higher quality samples than DDIM (with η = 0), also evidenced by Figure 3
and Figure 4.

Sampling Inference Steps (↓) Inference Time (s) (↓) RMSE (dB) (↓) Peak-Bin (↓)
DDPM 1000 224.0 22.99± 3.03 0.52± 0.36
DDIM 100 22.1 23.66± 2.30 5.68± 1.65

A APPENDIX: SHAPE-CONDITION DIFFUSION FOR STATIC PATTERN
GENERATION

The nature of the denoising process makes the DDPM framework very flexible, allowing it to model
arbitrary signals. The U-Net noise prediction backbone used in this work denoises both the shape
latent vector and the shape’s radar response, but as shown in Section A.1, we adjust our weights only
according to the noise prediction for the shape component. For the following experiments, we use a
different objective to only train the network to predict noise in the radar response space.

A.1 OBJECTIVE FUNCTION

We condition our diffusion model on the latent shape vector h defined in Section 3.2, with goal
of denoising the shape’s radar response R ∈ RNα×NR . The UNet ϵθ : xt → ϵ predicts noise
ϵ ∈ RNα×(NR+1) from the signal xt ∈ RNα×(NR+1), which is the concatenation of h ∈ RNα×1 and
R ∈ RNα×NR . However, instead of predicting noise for h as in inverse modeling, we only want our
objective to train the model to predict noise for R. Denote the components of ϵ corresponding to h
and R as ϵ = [ϵh ϵR]. The loss function then becomes

L =
1

Nα

Nα∑
i=0

(ϵR − [ϵθ(xt, t)]R)
2. (6)

During inference, since only R changes and h remains constant, the denoising process is defined

xt−1 =
1

√
αt

(
xt −

√
1− αt√
1− ᾱt

[0 ϵθ(xt, t)R]

)
. (7)

The tensor [0 ϵθ(xt, t)R] denotes ϵθ(xt, t) with ϵh set to 0. The denoised sample is defined R =
[x0]R. We note that this objective does not take full advantage of the probabilistic nature of diffusion
models, since the mapping between shapes and full observations is one-to-one. However, they still
generally outperform GANs and other generative techniques in sample quality. We can see evidence
of the high sample quality in Figure 3 and Table 3, which show the high accuracy of our model
with standard sampling. The RMSE metric between two radar responses is a naive metric that
overly emphasizes the more trivial sidelobe effects, so we also use the Peak-Bin metric used in
Kohler et al. (2023), which calculates the locations of the k local maxima with the highest overall
magnitude, then uses this to the measure the average difference of the range bins between the local
maxima in the prediction and ground truth. Lower Peak-Bin is better, as with RMSE.

For DDIM sampling, we use η = 0 due to the deterministic nature of the radar response genera-
tion problem. We observe a sharp drop in sample quality compared to DDPM as shown in Table 3
and Figure 4. This is likely due to the high dimensionality of the radar response denoising space
compared to the shape latent space as previously explored. Since DDIM’s denoising trajectory is de-
terministic, it may miss critical modes which compound if the denoising space is high dimensional.
This also suggests that, for the radar-to-shape problem, DDIM may have issues with denoising
higher dimensional shape representations than what was presented in this work.
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Figure 3: Test performance of the shape conditioned static pattern model in zero-noise setting with
standard DDPM sampling. Two sets of four semantic comparison between generated static patterns
(top) and ground truth static patterns (bottom) are shown, conditioned on heldout shapes. Approx-
imations are semantically extremely accurate, with slight variations in the width and locations of
speculars.

B APPENDIX: DIFFUSION MODELING BACKGROUND

B.1 REVERSE PROCESS

We define βt is the noise variance schedule for timestep t, and ᾱt =
∏t

s=1(1−βs) as the cumulative
product of noise scales. The forward diffusion process is defined as the marginal distribution of xt

given the clean data x0,

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (8)

The reverse process aims to denoise xt back to x0 and is parameterized as,

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (9)
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Figure 4: Test performance of the shape conditioned static pattern model in zero-noise setting with
faster DDIM sampling (with η = 0). Two sets of four semantic comparison between generated
static patterns (top) and ground truth static patterns (bottom) are shown, conditioned on heldout
shapes. Approximations of the response have incorrect scatterer locations and incorrect specular
locations throughout samples, showing DDIM sampling is not as effective in this higher dimensional
denoising space, compared to the static pattern conditioned shape model in Table 1.

where µθ(xt, t) and Σθ(xt, t) are learned parameters of the model. To reduce the model’s complex-
ity, the covariance matrix is typically set to a fixed diagonal matrix Σθ(xt, t) = βtI , where βt is a
fixed noise variance.

B.2 VARIATIONAL LOWER BOUND LOSS

The training objective of DDPMs is to minimize the variational lower bound (VLB) of the negative
log-likelihood. The VLB can be expressed as a sum of KL divergence terms over all timesteps,

LVLB = Eq

[
T∑

t=1

Lt + L0 + LT

]
,
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where Lt = KL
(
q(xt−1 | xt, x0) || pθ(xt−1 | xt)

)
, which measures how well the model ap-

proximates the posterior at each timestep t. L0 = − log pθ(x0 | x1), which accounts for the final
reconstruction of the clean image. LT = KL(q(xT | x0) || p(xT )), which ensures consistency with
the prior distribution of noise at T .

In practice, L0 is typically ignored since a separate decoder handles the reconstruction (Nichol &
Dhariwal, 2021). LT is ignored because the prior is a standard Gaussian, and its contribution is
negligible during optimization. This simplifies the training objective to primarily minimizing Lt,
which governs the intermediate denoising steps,

Lsimple = KL(q(xt−1|xt, x0)||pθ(xt−1|xt)). (10)

B.3 FORWARD PROCESS POSTERIOR DISTRIBUTION

To minimize Lsimple, we can analytically compute the posterior distribution of q(xt−1 | xt, x0)
during the forward process as,

q(xt−1 | xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI),

where:

µ̃(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

and β̃t =
1−ᾱt−1

1−ᾱt
βt. In practice, we usually fix the variance βt to a schedule.

B.4 REVERSE PROCESS SIMPLIFIED MEAN PARAMETERIZATION

Recall Equation 9, which we also need to analytically compute to minimize Lsimple. The reverse
process should similarly predict the mean µθ(xt, t), defined as,

µθ(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

where x0 is the clean image, and ᾱt, βt, and αt are terms derived from the noise schedule. Since x0

is unavailable during the reverse process, it is replaced using the reparameterization trick,

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
, (11)

where ϵθ(xt, t) is the model’s prediction of the added noise at timestep t. Substituting this expression
for x0 into µθ(xt, x0) allows the reverse process to operate entirely in terms of xt and ϵθ(xt, t),
without explicitly requiring x0. Finally, we get,

µθ(xt, x0) = µθ(xt, t) =
1√
ᾱt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)).

B.5 OBJECTIVE FUNCTION

The training objective is the variational bound on the negative log-likelihood, which simplifies to a
weighted sum of KL divergences. For this simplified case, when we compare just the noise, the loss
can be expressed as,

Lsimple := Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] ,
which reduces to:

Lsimple := Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, (12)

where ϵ ∼ N (0, I) represents the added noise, and ϵθ(xt, t) is the model’s prediction of the noise.
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B.6 DENOISING DIFFUSION IMPLICIT MODELS

To define the DDIM process, we introduce its alternative formulation of the reverse distribution.
Instead of sampling from the learned Gaussian transition in DDPMs, DDIM defines the reverse step
deterministically as,

xt−1 =
√
ᾱt− 1x0 +

√
1− ᾱt− 1ϵθ(xt, t), (13)

where x0 is reconstructed using the same reparameterization trick as in DDPMs (Equation 11). The
key insight of DDIM is that by choosing an implicit deterministic trajectory, we can generate high-
quality samples in fewer steps.

The DDIM sampling process introduces a hyperparameter η that controls the balance between de-
terminism and stochasticity. When η > 0, controlled noise is injected to retain stochasticity,

xt−1 =
√
ᾱt− 1x0 +

√
1− ᾱt− 1− σ2

t ϵθ(xt, t) + σtzt, (14)

where zt ∼ N (0, I) and σt = η
√

(1− ᾱt−1)/(1− ᾱt). By adjusting η, DDIM can interpolate
between standard DDPM sampling and a fully deterministic process.

The primary advantage of DDIM is that it allows for faster sampling by skipping intermediate steps
while still producing high-quality samples.

C APPENDIX: RADAR MODELING AND SIMULATION

Radar 3d object modeling techniques depend on the relative size of the object l and the radar wave-
length λ. Modeling in the Rayleigh region, when l << λ, is simplified as the entire object con-
tributes to the RCS as a single-point scatterer. For modeling in the resonance regime, where l ≈ λ,
non-parametric numerical methods are often used. In this case, the object’s geometry and materials
all contribute to its RCS as a whole. Popular numeric methods include the Method of Moments Har-
rington (1993), the Fast Multipole Method Martinsson (2015), the Finite-Difference-Time-Domain
Method Yee (1966), and the Transmission-Line-Matrix Method Hoefer (1985). These techniques
provide exact solutions to Maxwell’s equations, creating very accurate models of object scattering.

In most commercial and defense-related applications, objects are often illuminated using high-
frequency radar waveforms. This leads to the optical regime, where l >> λ, where radar sensors
provide a signal complementary to optical imaging techniques while providing a capability that,
for automotive applications, penetrates fog and smoke with scattering particle sizes smaller than
the wavelength. Additionally, scattering can often be reduced to a summation of discrete scattering
centers taking advantage of Geometric Theory of Diffraction (GTD) Keller (1962). This allows the
use of parametric, component-based, scattering models that reduce the radar modeling to simulating
each component. Example of components are discrete points, spheres, rings, and triangles. The
latter will be the focus of this paper.

We will utilize Physical Optics (PO) Balanis (2012) to model electromagnetic scattering from per-
fectly electrically conducting metallic meshes composed of triangular facets for high-frequency ap-
plications. Physical Optics simplifies the electromagnetic scattering problems by assuming that
currents induced on a surface are the same as those in geometrical optics, neglecting edge effects.
When applied to a meshed surface composed of triangular facets, PO calculates the scattered fields
by integrating surface currents over each triangle, making it particularly effective for large, smooth
objects Knott et al. (2004).

For a mesh composed of a collection of triangle facets, {Tt}, the simple operator that describes PO
across the illuminated facet for a monostatic radar is,

Ft(u, f) =
ik

2π

∫
R3

⟨n,u⟩e−i2k⟨u,s⟩ds, (15)

where n is the outward normal unit vector on the surface at the point s, k = 2πf/c is the wave
number, f is the wavefront frequency, c is the speed of light, and the observation unit vector is,

u = (sinα cosϕ, sinα sinϕ, cosα), (16)
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for α ∈ [0, π] and ϕ ∈ [0, 2π]. Given a set of illuminated facets dependent on the observation vector,
Iu, the mesh scattering response is the summation of individual triangle scattering responses,

F (u, f) =
∑
t∈Iu

Ft(u, f). (17)

A common view for radar is the range profile typically calculated using a linear set of frequencies,
such as those used in the common Linear Frequency Modulated (LFM) waveform Skolnik (1962).
To emulate this waveform, define the set of frequencies, {fi}, such that,

fi ∈ [fmin, fmax], for i = 1, . . . , N.

We define the bandwidth of the signal as B = fmax − fmin. The range profile is a collection of range
bins,

R(u) = {Ri(u)}, for i = 1, . . . , N, (18)

calculated by taking the Discrete Fourier Transform (DFT) of the scattering response across fre-
quencies,

Ri(u) =

N−1∑
m=0

F (u, fm)e−i2πim/N . (19)

Without zero padding or applying a taper function, the nominal bin size is the range resolution for
the given bandwidth, ∆r = c/(2B).

C.1 ILLUMINATED TRIANGLES

The set of illuminated triangles is used in Equation 17. Typically, this is done with ray tracing in
order to properly handle shadowing and multi-bounce effects. Yet, ray tracing will often requires a
significant amount of compute resources. For the purposes of this work we utilize a simple calcula-
tion to avoid this computation, namely,

t ∈ Iu iff ⟨−nt,u⟩ > 0.2.

This approach is simple and fast but does limit our ability to handle shadowing and multi-bounce
interactions correctly.

C.2 PROJECTED AREA

Projected area for a mesh given an observation direction is used to calculate the IOU-IM metric. To
calculate the projected area for a given triangle t, compute the area At and the normal nt. Given an
observation unit direction, u, the projected area of a given triangle is

P t
A(u) = ⟨nt,u⟩At.

The total projected area is the sum of illuminated triangle areas projected along the observation
direction,

PA(u) =
∑
t∈Iu

P t
A(u).

For the IOU-IM metric the set of illuminated triangles is defined by finding the triangles whose
normal vector is parallel to the observation vector within some threshold,

IS = {t | ⟨nt,u⟩ > 0.98}.

Then the projected area of triangles contributing to specular responses is

PS(u) =
∑
t∈IS

P t
A(u).
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D APPENDIX: DATASET GENERATION

Object samples are uniformly distributed with a minimum of one and maximum of k = 5 stacked
frusta. Each sample could also have a hemisphere stacked onto either side, along the axis of sym-
metry. Since these shapes are roll-symmetric, we can parameterize them as a sequence of radial and
body axis coordinates. There are a maximum of k + 1 coordinates that parameterize the frustum
section of the object, and two more pairs that represent the radius of the optional side hemispheres.
For diffusion modeling, we flatten and concatenate this parametrization into a vector with a fixed
ordering of (r, z) = [r1, . . . , rk+1, z1, . . . , zk+1, s1, s2] ∈ R2k+4, where each r is the radial com-
ponent of the frusta, z the axial (along the z axis) component, s the hemisphere radius, and k the
maximum number of stacked frusta. When the shape parameter vector is shorter than the maximum
length, or there is no hemipheres, we set the appropriate parameters to a padding value.

To calculate the range profile, R(u), for each shape, we first generate a triangular mesh with the
radial and axial parameters defining the surface, then calculate the scattering response using Equa-
tion 15. The illumination set for Equation 17 is set by choosing triangles such that ⟨−n,u⟩ > 0.2.
We define a set of wavefront frequencies, {fi}, to generate the range profile, where the center fre-
quency is fc = 3e9 Hz (S-Band) and the bandwidth is B = 400e6Hz. Given the set of frequencies
we can apply the DFT as shown in Equation 19. To perform the DFT we utilize the Fast Fourier
Transform (FFT) with enough zero padding to ensure a range bin size of 0.2m, while also applying
a Hamming window function Blackman & Tukey (1958) to filter out sidelobes.

The dataset stores the real and imaginary components of the range profile across different observa-
tion vectors u defined in Equation 16. Since the objects are roll-symmetric, we do not need to create
observations across roll angles ϕ, and therefore, we focus on sampling only across aspect angles α.
The range profiles are stored as matrices such that R(u) ∈ RNα×NR , where Nα and NR represent
the aspect and range dimensions, respectively. We use Nα = 360 and NR = 100. For training and
testing, we perform min-max normalization on the magnitudes of the range profiles. We find the
minimum and maximum parameters to be −152.606 and 29.327, respectively.
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E APPENDIX: ABLATIONS FOR DDPM AND DDIM ACROSS NOISE AND
OBSERVABILITY

Figure 5: Performance metrics with standard DDPM sampling conditioned on fully observable radar
responses for 10 different objects (indicated by color). (left) is the IOU metric for shape, (right) is
the IOU metric for specular. Performance should degrade as noise masks signal.

Figure 6: Performance metrics with DDIM sampling conditioned on fully observable radar re-
sponses for 10 different objects (indicated by color). (left) is the IOU metric for shape, (right) is
the IOU metric for specular. Performance should degrade as noise masks signal. Performance is
slightly lower than DDPM sampling, but sampling time is faster as discussed in Section 4.1.
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Figure 7: Performance metrics versus masking percentage with standard DDPM sampling for 10
different objects. The noise floor is set to −60 dB. (left) is the IOU metric for shape, (right) is the
IOU metric for specular. Performance should degrade as noise masks signal.

Figure 8: Performance metrics versus masking percentage with DDIM sampling for 10 different
objects. The noise floor is set to −60 dB. (left) is the IOU metric for shape, (right) is the IOU metric
for specular. Performance should degrade as noise masks signal. Performance is slightly lower than
DDPM sampling, but sampling time is faster as discussed in Section 4.1.

F APPENDIX: VARIANCE OF GENERATED SAMPLES ACROSS NOISE AND
OBSERVABILITY

Figure 9: Performance metrics versus masking percentage with DDPM sampling for 10 different
objects. The noise floor is set to −80 dB. (left) is the mean error of matching segments of the shape,
(right) is the standard deviation of this metric across 20 samples for the diffusion model.
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Figure 10: Performance metrics versus masking percentage with DDPM sampling for 10 different
objects. The noise floor is set to −60 dB. (left) is the mean error of matching segments of the shape,
(right) is the standard deviation of this metric across 20 samples for the diffusion model.

Figure 11: Performance metrics versus masking percentage with DDPM sampling for 10 different
objects. The noise floor is set to −40 dB. (left) is the mean error of matching segments of the shape,
(right) is the standard deviation of this metric across 20 samples for the diffusion model.

G APPENDIX: UNET ARCHITECTURE DETAILS

The network consists of an initial convolutional layer, 4 downsampling blocks, intermediate con-
volution and self attention, upsampling blocks, 1 resnet block, and a final convolution layer. Each
downsampling block has 2 resnet blocks, groupnorm, linear self attention, residual connection, and
a convolutional downsampling layer. Each upsampling block has 2 resnet blocks, groupnorm, linear
self attention (Vyas et al., 2020), residual connection, and a convolutional upsampling layer. All
convolutions are 1 dimensional, so the architecture shares weights across the aspect angle dimen-
sion. Intuitively, this means we can share information across aspects, since the shape is constant
and only viewed from different angles. In practice, this convolutional downsampling acts as a radar
response encoder. We treat the range dimension as channels of the signal. The total size of the model
is 892 million trainable parameters.

20


	Introduction
	Background
	Radar Modeling and Simulation
	Denoising Diffusion Probabilistic Models
	Denoising Diffusion Implicit Models

	Method
	Radar Modeling
	Inverse Radar Modeling via Conditioned Diffusion
	Dataset Generation
	Observability Settings
	Metrics of Evaluation
	IOU-S: Shape overlap
	IOU-IM: Radar signal overlap
	MATCH: Shape matching cost
	DIST-MATCH: Distribution accuracy metric


	Experiments
	Fully Observed
	Partially Observed

	Conclusion
	Appendix: Shape-condition diffusion for static pattern generation
	Objective Function

	Appendix: Diffusion Modeling Background
	Reverse Process
	Variational Lower Bound Loss
	Forward Process Posterior Distribution
	Reverse Process Simplified Mean Parameterization
	Objective Function
	Denoising Diffusion Implicit Models

	Appendix: Radar Modeling and Simulation
	Illuminated Triangles
	Projected Area

	Appendix: Dataset Generation
	Appendix: Ablations for DDPM and DDIM across noise and observability
	Appendix: Variance of generated samples across noise and observability
	Appendix: UNet Architecture details

