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Summary
Proto-value functions originally introduced Laplacian eigenvectors as an effective feature

basis for learning value functions. While recent advances have extended Laplacian embeddings
to high-dimensional observations—primarily leveraging them as intrinsic rewards for option
discovery—they are typically used as auxiliary signals rather than as direct inputs for value
estimation. In this work, we take a more direct approach by integrating learned Laplacian
representations into the value function and empirically evaluating their effectiveness across 23
Atari games.

Contribution(s)
1. We empirically demonstrate that Laplacian eigenvectors learned online can be useful fea-

tures for model-free RL in high-dimensional, large-scale environments, such as ALE (Belle-
mare et al., 2013).
Context: Prior model-free online RL work has relied on Laplacian features only in tabular
settings or via offline pre-training, or treated them merely as auxiliary reward signals.

2. We show that state-action representations can provide benefit over state-only q-learning
methods in ALE. We report the performance of methods based on state-action representa-
tions under a behavior policy and a uniform-random policy.
Context: State–action representations have traditionally been confined to continuous or
variable-action domains and remain underexplored in discrete-action settings.

3. We explain the contribution of different embeddings within our Fusion architecture using
Shapley values (Shapley et al., 1953).
Context: To assess the importance of Laplacian within our Fusion architecture, we use
Shapley values as a principled metric to attribute the impact of each head in the Q-value
prediction.
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Abstract
Proto-value functions (PVFs) (Mahadevan & Maggioni, 2007) introduced Laplacian
embeddings as an effective feature basis for value-function approximation; however,
their utility remained limited to small, fully known state spaces. Recent work has scaled
Laplacian embeddings to high-dimensional inputs, using them for reward shaping and
option discovery in goal-directed tasks, yet only as auxiliary signals, rather than di-
rectly using them as features for value functions. In this paper, we learn Laplacian
eigenvectors online and employ them as features for Q-learning in 23 Atari games. We
empirically demonstrate that these online–learned embeddings substantially improve
model-free RL in large, high-dimensional domains. We demonstrate that enriching state
representations with action embeddings yields additional gains under both behavior-
policy and uniform-random policies. Additionally, we introduce the Fusion architec-
ture, which augments the representation with useful inductive bias at the embedding-
level. To assess the usefulness of each embedding used in the Fusion architecture, we
use Shapley values analysis.

1 Introduction

Representation learning has become a cornerstone of modern machine learning, enabling models
to extract compact, informative, and generalizable features from high-dimensional data (Bengio
et al., 2013; LeCun et al., 2015). In supervised learning, well-structured representations have led
to significant improvements in generalization under limited data. In Reinforcement Learning (RL),
however, the challenge of representation learning is compounded by the sequential nature of decision
making, sparse reward signals, and the non-i.i.d. structure of data collected from agent–environment
interactions (Dulac-Arnold et al., 2021; Lake et al., 2017).

A critical open question in RL is how to learn representations that capture the underlying structure of
the environment in a way that facilitates policy learning. Traditional value-based methods, such as
Q-learning or actor-critic algorithms, rely heavily on reward signals to shape representations (Mnih
et al., 2015; Schulman et al., 2017). However, in sparse or delayed reward settings, this can lead
to inefficient or unstable learning. To address this, recent work has investigated auxiliary learning
objectives—unsupervised or self-supervised tasks used to shape representations that are useful for
control. These include tasks such as predictive modeling (Gelada et al., 2019), contrastive learning
(Laskin et al., 2020), mutual information maximization (Laskin et al., 2022), and spectral learning
(Machado et al., 2018b; Wu et al., 2019).

Among these, manifold learning techniques, particularly those based on spectral graph theory, offer
a powerful inductive bias for capturing the geometry of the state space (Belkin & Niyogi, 2003; Coif-
man & Lafon, 2006; Chandak et al., 2023). These methods postulate that the high-dimensional ob-
servations in an environment lie on a lower-dimensional manifold with meaningful structure—e.g.,
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connectivity, bottlenecks, or clusters of behaviorally similar states. By embedding the state space
into a smooth, low-dimensional latent space that reflects these geometric properties, manifold learn-
ing can enhance exploration (Klissarov & Machado, 2023; Machado et al., 2018b), generalization
(Adhikary et al., 2024), and reward propagation (Klissarov & Precup, 2020).

In this context, the Graph Laplacian provides a principled operator for encoding the geometry of a
graph induced by the environment’s transition dynamics. Laplacian-based methods, such as Proto-
Value Functions (PVFs) (Mahadevan & Maggioni, 2007), utilize the eigenvectors of the Laplacian
of the transition graph to derive smooth basis functions over the state space, which can be used for
approximating value functions. These representations capture long-range dependencies and global
connectivity patterns, and can be learned even in the absence of reward signals, making them espe-
cially useful as auxiliary tasks.

Despite their promise, Laplacian representations have traditionally relied on matrix-based eigende-
compositions under a fixed, often uniform policy (Mahadevan & Maggioni, 2007). This limits their
applicability in high-dimensional, non-stationary or online settings, which are typical of modern RL
applications. Recent advances in learning eigenvectors for kernels (Wu et al., 2019; Wang et al.,
2021; Gomez et al., 2024) address these limitations by enabling scalable, online learning of Lapla-
cian embeddings using sampled transitions. This opens the door to learning spectral representations
in a model-free RL setting, where the agent lacks access to a known transition model and must rely
solely on its interactions with the environment.

Recent work has demonstrated the utility of Laplacian-based representations in deep RL (Klissarov
& Machado, 2023; Farebrother et al., 2023). Klissarov & Machado (2023) introduced Deep Cover-
ing Eigenoptions (DCEO), which learn eigenvectors online for guiding exploratory option selection,
but do not use them for value estimation. In contrast, Proto-Value Networks (Farebrother et al.,
2023) employ Laplacian features as inputs to the value function, but only under a uniformly random
policy and using offline data.

Building on this progress, our work unifies and extends these approaches by learning Laplacian
representations for both the evolving behavior policy and the uniformly random policy, using data
collected solely from the behavior policy. Unlike prior methods, we incorporate these represen-
tations directly into online value function approximation in a model-free setting. Specifically, we
adopt the Parallelized Q-Networks (PQN) framework (Gallici et al., 2025), which enables efficient
deep Q-learning without the need for a replay buffer or target networks. Within this framework, we
demonstrate that Laplacian representations can be learned jointly with value estimates during train-
ing. This formulation broadens the applicability of Laplacian-based auxiliary objectives and pro-
vides a scalable method for learning structured representations in high-dimensional environments.

2 Background

We consider the model-free RL setting, where an agent interacts with the environment without
access to its transition dynamics—neither given nor learned explicitly. While traditional model-free
methods do not explicitly leverage the environment’s transition structure, our goal is to extract useful
structural information from interaction data in the form of temporal representations, which can be
used to improve sample efficiency in value-based learning.

Markov Decison Process: Let M = (S,A,R,P, γ) be a Markov Decision Process (Puterman,
1994) with set of states S, action set A, a scalar reward function R, probability transition function
P and a discount factor γ ∈ [0, 1). For simplicity, let S and A be finite, R ∈ R|S| be the reward
vector and P ∈ R|S|×|A|×|S| be the transition tensor, where P(s, a, s′) = Pr(s′ | s, a), and let
π : S → ∆(A) be a policy.

Let Vπ(s) ∈ R denote the value of a state associated with policy π and it is defined as following:

Vπ(s) = Eπ,P

[ ∞∑
k=0

γkR(St+k+1)|St = s

]
. (1)
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The goal of RL is to find the policy that maximizes the expected cumulative discounted reward, i.e.,
π∗ = argmaxπVπ(s0), where s0 follows the initial state distribution of the environment.

Parallelized Q-network: We define state-action values as Q-values, i.e., Qπ(s, a) =
Eπ,P

[∑∞
k=0 γ

kR(St+k+1)|St = s,At = a
]
. One approach to learn Qπ∗ is through the Bell-

man equation (Sutton & Barto, 2018), Q(st, at) ← (1 − α)Q(st, at) + αδ, where δ = rt +
γmaxaQ(st+1, a) is often referred to as the temporal-difference target. Parallelized Q-network
(PQN, Gallici et al. 2025) combines parallelized environments, layer-normalized neural networks,
and λ-returns to learn Qπ∗ in MDPs with large state-spaces. The agent interacts with I par-
allel environments for T timesteps, following an ϵ-greedy policy, collecting trajectories τ i =
(sit, a

i
t, r

i
t, s

i
t+1, . . . , s

i
t+T ), and updating a neural network Qψ parametrized by ψ, by minimizing

(Qψ(st, at)− JδψK)2 over batches sampled from τ . We define J·K as the stop-gradient operator.

Successor Matrix The value function under a fixed policy π can be expressed recursively in matrix
form as:

Vπ = R+ γPπVπ

Vπ = (I − γPπ)−1︸ ︷︷ ︸
Mπ,γ

R (2)

where Mπ,γ ∈ R|S|× |S| is known as the successor matrix and Pπ(s′|s) =
∑
a π(a|s)P (s′|s, a)

denotes the stochastic state transition matrix corresponding to policy π’s Markov chain. This for-
mulation enables computation of the value function using only the immediate reward vector:

V (s) = ⟨Mπ,γ(s, :), R⟩ =
∑
s′

Mπ,γ(s, s
′)R(s′) (3)

In this expression, the row Mπ,γ(s, :) ∈ R|S| serves as a rich state representation where the entries
M(s, s′) encode the discounted expected number of visits to state s′ starting form state s. This
follows from the expansion of the geometric series i.e Mπ,γ(s, s

′) =
∑∞
k=0 γ

kP tπ(s, s
′). However,

computing and storing Mπ,γ becomes intractable in large or continuous state-spaces.

Laplacian representations: One approach to reflect the long-term dynamics encoded inMπ,γ with-
out explicitly constructing it is to leverage the spectral structure of the environment dynamics, via
the transition matrix Pπ . The Laplacian of Pπ is defined as Lπ = I − Pπ , and provides a graph-
based view of the environment, where states are nodes and transitions define edges. Importantly,
Pπ , Lπ , and Mπ share the same eigenvectors, though they differ in their eigenvalues (Stachenfeld
et al., 2014). This spectral alignment enables the use of any of these matrices to derive mean-
ingful low-dimensional representations of states. We focus on the eigenvectors of Lπ to construct
state embeddings. When Pπ corresponds to an irreducible and aperiodic Markov chain, its spectral
decomposition exists and reveals useful structural information about the environment. The eigenvec-
tors associated with the smallest d eigenvalues of the Laplacian yield smooth, global representations
over the state space, capturing properties such as bottlenecks, clusters, and overall connectivity.
These embeddings, denoted ϕ(s) ∈ Rd, are then used as input to a function approximator fa for
estimating Q-values:

Qπ(s, a) = Qψ(ϕ(s)). (4)

Online Laplacian representations: In this work, we utilize Laplacian representations to serve as
both state and state-action embeddings, in the spirit of Proto-Value Functions (PVFs), but applied to
significantly larger state spaces with high-dimensional pixel observations. Recent advances (Deng
et al., 2022; Wu et al., 2019) in spectral learning with neural networks have introduced optimization
techniques that approximate eigenvectors of kernels using only sampled transitions, making them
practical in environments where the full transition matrix is unknown or too large to store.

We specifically leverage recent advances (Wu et al., 2019; Wang et al., 2021; Gomez et al., 2024)
built upon the graph drawing objective (Koren, 2003) to extract eigenvectors of the graph Laplacian
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kernel L as given below. The d minimal values (fi,∀i = 1, ..., d) of the objective approximate the d
smallest orthonormal eigenvectors of L, where δij is the Kronecker delta:

minimize
f∈Rd×|S|

d∑
i=1

fTi Lfi

s.t. fTi fj = δij ,∀i, j = 1, ..., d.

(5)

To handle settings where the state space S is continuous or uncountable (e.g., Rn) and inputs are
high-dimensional (e.g., raw pixels), we employ the Augmented Lagrangian Laplacian Objective
(ALLO) (Gomez et al., 2024). ALLO generalizes the graph drawing objective by replacing the finite
vectors fi with real-valued functions fi : S → R, making it suitable for function approximation via
neural networks. The objective is:

max
β

min
f∈Rd×|S|

d∑
i=1

⟨fi, Lfi⟩+
d∑

m=1

m∑
m=1

βmn (⟨fm, JfnK⟩ − δmn) + b

d∑
m=1

m∑
n=1

(⟨fm, JfnK⟩ − δmn)2 ,

(6)

where b is the barrier coefficient and β ∈ Rd(d+1)/2 is the lower-triangular matrix of dual variables,
both penalizing deviation from orthonormality constraints (the second and third term in the loss).
And the first term is a similarity constraint term, which forces nodes that are connected to be similar
in the L2 space. The minimum of ALLO’s objective uniquely corresponds to the exact eigenvectors,
unlike its predecessors’ works, which do not contain the eigenvectors as unique solutions, but only
provide the subspace they span or correspond to the rotations of the eigenvectors.

Although originally designed for symmetric Laplacian matrices under fixed policies, we empirically
evaluate the ALLO method in asymmetric settings, specifically on the ALE benchmark, where the
agent’s behavior policy, which provides data for learning the Laplacian embeddings, changes over
time with learning.

3 Related work

Despite recent successes of RL, sample inefficiency remains a considerable challenge, especially
for problems with large state-spaces such as raw pixel data. Learning state representations to im-
prove sample efficiency has thus become an essential aspect of RL research (Tomar et al., 2023).
Many self-supervised approaches aim to learn representations by implicitly modeling dynamics.
One successful approach is through contrastive learning (Laskin et al., 2020; Schwarzer et al., 2021;
Mazoure et al., 2020; Zheng et al., 2023), or using latent dynamic models (Zhang et al., 2018; Guo
et al., 2020; Zhao et al., 2023). However, these methods do not explicitly leverage the global diffu-
sion properties of the MDP’s transition dynamics, which are central to Laplacian embeddings, and
require careful design of the optimization dynamics to learn meaningful representations (Tang et al.,
2023).

Alternatively, Successor features (SFs, Barreto et al. 2017) model the expected future occupancy
of features under a policy, enabling generalization across tasks. However, Touati et al. (2023) in-
vestigate the zero-shot RL capacities of SFs when using various representation learning methods to
construct the basic feature maps, which embeds the underlying states. They argue that SFs show in-
consistent performance when the basic feature maps are derived from auto-encoders, inverse curios-
ity (Pathak et al., 2017), transition models, low-rank transition matrix (Ren et al., 2023), contrastive
learning (Chen et al., 2020; Tian, 2022), or diversity (Eysenbach et al., 2018; Hansen et al., 2020).
They highlight that the SFs are most effective when paired with representations based on Forward-
Backward (FB) learning (Touati & Ollivier, 2021) and Laplacian eigenfunctions (Wu et al., 2019),
the focus of our work.

Separately, Forward–Backward (FB) representations have emerged as an effective alternative to suc-
cessor features, capturing richer dynamics by jointly modeling transitions in both temporal direc-
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tions (Touati & Ollivier, 2021; Sun et al., 2025; Jeen et al., 2024). However, unlike Klissarov &
Machado (2023) and our method, FB-based approaches typically rely on alternating phases of data
collection and representation learning, which limits their applicability in fully online reinforcement
learning settings.

Motivated by recent advances in spectral optimization using graph drawing objectives (Gomez et al.,
2024), we investigate the feasibility of learning Laplacian eigenfunctions in an online, model-free
RL setting where the behavior policy is non-stationary. Additionally, drawing inspiration from
PVFs, we extend this framework to learn representations corresponding to a uniform random pol-
icy over the state-action space. These are obtained using importance sampling corrections applied
to data collected under the non-uniform behavior policy, without requiring access to a uniformly
random data collection policy or control over initial state distributions.

4 Methodology

In this section, we build on the Augmented Lagrangian Laplacian Objective (ALLO, Gomez et al.
2024) to define a multi-hop graph drawing objective for learning Laplacian representations online
using batches of k-step transitions sampled from a nonstationary behavior policy. We then extend
this formulation to the state-action graph, showing how the d smoothest eigenvectors of its Laplacian
under a uniform random policy can be learned using data collected from an evolving policy without
requiring a uniformly random data collection strategy.

State Laplacian eigenvectors: For this work, we adopt PQN (Gallici et al., 2025), using the par-
tial trajectories {τ1t:t+T , . . . , τ It:t+T } collected to update Qψ to also learn Laplacian representations.
Specifically, we define a K-hop Laplacian loss using pairs of states (st, st+k) from each environ-
ment trajectory, where 1 ≤ k ≤ K ≤ T . The first term of the graph drawing loss is defined over
these temporal edges. We use {τ1t:t+T , . . . , τ It:t+T } to perform one update to the Laplacian network’s
parameters θ. The orthogonality constraints in ALLO (linear and quadratic penalties) are computed
only for the initial state st in each trajectory.

min
θ

K∑
k=1

(fθ(st)− fθ(st+k))2 (6)

State-action Laplacian eigenvectors: We next extend this formulation to the state-action space.
Here, each node in the graph corresponds to a state-action pair, and the agent’s policy defines the
edge transitions. For an ϵ-greedy behavior policy, the temporal edges connect (st, at ∼ π(st)) to
(st+1, at+1 ∼ π(st+1)). The similarity terms for the ϵ-greedy is given below.

min
θ

K∑
k=1

(fθ(st, at)− fθ(st+k, at+k))2 (7)

tIn the uniformly random policy case, the Laplacian is defined over a graph where each state-action
node (st, at) is connected to all state-action nodes {(st+1, a) for every action a ∈ A, with uniform
edge weights }. However, in practice, the data is collected under a non-uniform, non-stationary
behavior policy µ, such as ϵ-greedy. Therefore, the loss must be corrected using importance sam-
pling (Precup et al., 2000) to account for the discrepancy between the behavior policy and the uni-
form target policy. Given a k-step trajectory (s0, a0, s1, a1, . . . , sk, ak), the importance sampling
weight to correct from the behavior policy µ to the uniform random policy πuni(a|s) = 1/|A| is:
wk =

∏k
j=0

πuni(aj |sj)
µ(aj |sj) . The corrected similarity term for the uniformly random policy is:

min
θ

K∑
k=1

(1/|A|)k+1∏k
j=0 p(sj , aj)

(
fθ(si, ai)−

1

|A|
∑
a

fθ(si+k, a)

)2

(8)
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We implement the state-action embedding using Film (Perez et al., 2018) technique where the mod-
ulated embedding is defined as fs,a = αes + β, with α = f1(ea) and β = f2(ea) where ea is a
continuous action embedding and es is a continuous state embedding. For illustrations of the mod-
els, refer to the supplementary material: Figure 3 shows the baseline PQN-S architecture; Figure 4
illustrates the state-action variant; and Figure 5 details the FiLM conditioning module.

Laplacian-based models: We explore two architectural approaches to integrate Laplacian eigen-
vectors with Q-learning while preventing the TD-error gradients from altering the Laplacian repre-
sentation.

• Laplacian-Only models (see Appendix A, Figure 6): The Laplacian embeddings are used as
input features to an MLP that predicts Q-values. This is a decoupled architecture, where only the
MLP (Q-network) is updated during training; the Laplacian encoder remains fixed.

• Fusion models (see Appendix A, Figure 7): Both the Laplacian and PQN-derived embeddings are
computed separately and concatenated before being passed through a shared MLP. In this case,
only the PQN encoder is updated via TD-loss gradients, while the Laplacian encoder remains
unchanged.

5 Experiments

We evaluate the impact of learning Laplacian state-action representations in an online setting. To
isolate and understand the contribution of each component in our methodology, we design multiple
ablation baselines. Our evaluation is conducted on 23 Atari games from the Atari Learning Environ-
ment (ALE) (Bellemare et al., 2013; Machado et al., 2018a), using five random seeds per game. This
subset includes 10 games known to be representative of the full suite (Aitchison et al., 2023) and
13 additional games with diverse characteristics (e.g., stationary, dynamic, and progressive environ-
ments) as categorized in (Delfosse et al., 2024). Following standard practices in Atari benchmarks,
we report human-normalized scores (HNS) and use the aggregation metrics from Agarwal et al.
(2021), computed with the publicly available library rliable.

5.1 Methods

We evaluate three families of methods, all of which share the same convolutional encoder architec-
ture applied to four stacked frames (Mnih et al., 2015):

• PQN-only: Standard Q-learning using the Parallelized Q-Network (PQN) framework without
auxiliary representation learning. These methods are prefixed with PQN:. Models with doubled
encoder capacity (for fair comparison against fusion models) are suffixed with -2x.

• Laplacian-only: Q-values are predicted directly from fixed Laplacian representations learned via
the ALLO objective. These methods are prefixed with L:.

• Fusion: Combines PQN embeddings with Laplacian embeddings via feature concatenation. Only
the PQN branch is updated with the TD error. These methods are prefixed with F:.

Each method is further categorized by whether it uses state-only (S) or state-action (SA) representa-
tions. Laplacian features are trained either under the behavior policy (BP) or using uniform-policy
alignment (UNI) via importance sampling corrections.

5.2 Results

We present the aggregate results in Figure 1 and provide per-game performance in Table 1 of the
supplementary material.

Laplacian-Only models: Overall, we observe that all Laplacian-only methods—S-BP, SA-BP, and
SA-UNI—fail to reach human-level performance on average, though they achieve strong results in
a subset of games. Unlike prior work that integrates representation learning as an auxiliary ob-
jective—allowing the learned embeddings to be shaped by the temporal-difference (TD) loss—we

https://github.com/google-research/rliable
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Figure 1: Comparison of PQN-only (PQN:), Laplacian-only (L:), and Fusion (F:) architectures on
23 Atari games with Human-Normalized Scores (HNS). State-action (SA) consistently outperforms
state-only (S) models. Laplacian-only methods occasionally succeed but fail to reach human-level
performance overall. Fusion models benefit from the inductive bias of Laplacian structure and are
more robust, especially in games where PQN struggles, as indicated by the reduced optimality gap.

train Laplacian representations independently of the value function. While this separation preserves
the spectral structure of the learned features, it limits their ability to adapt to task-specific reward
signals. We hypothesize that the Laplacian embeddings may capture spurious or task-irrelevant
temporal structures, especially under a tight dimensionality budget (512). This was supported em-
pirically: increasing the embedding dimension led to improved performance in several games, yet
in others, performance plateaued early or failed to improve regardless of dimensionality.

PQN and Fusion Models: In contrast to the Laplacian-only variants, methods based on PQN and
Fusion architectures consistently learn high-performing policies across the Atari suite.

Among state-based methods, the fusion variant F:S-BP outperforms both PQN:S and PQN:S-2x
across all aggregate metrics—including median, interquartile mean (IQM), mean, and optimality
gap—demonstrating the utility of incorporating fixed Laplacian features even without direct gradient
updates from the TD loss.

Across all model types, state-action variants (e.g., PQN:SA, F:SA-BP, F:SA-UNI) consistently out-
perform their state-only counterparts. This suggests that incorporating action-conditioning improves
the quality of representation and downstream Q-values.

Among the top-performing models, PQN:SA, F:SA-BP, and F:SA-UNI achieve similar performance
in terms of mean, median, and IQM. However, F:SA-UNI, which incorporates uniform policy Lapla-
cian representations, yields a noticeably lower optimality gap. Examining the performance pro-
files in Figure 1 (right), F:SA-UNI achieves the highest proportion of runs with human-normalized
score (HNS) exceeding thresholds τ ∈ [0, 1.5], indicating more robust performance. Notably, while
PQN:SA occasionally fails to learn meaningful policies in a few games, F:SA-UNI avoids these fail-
ures. This suggests that the Laplacian component in the Fusion architecture helps mitigate policy
collapse, likely by providing a stable temporal structure as an inductive bias.

Notably, this improvement is not simply due to increased network capacity: PQN-SA-2x, which
matches F:SA-UNI in architecture and parameter size but lacks Laplacian input, does not match its
optimality gap. Nevertheless, the added parameters in PQN-SA-2x do benefit learning, as evidenced
by its strong median score, the highest among all evaluated methods.

5.2.1 Impact of the Laplacian representation in the Fusion architecture

To better understand how each representation contributes to decision-making in the Fusion model,
we analyze the influence of each head in our two-branch Q-network using Shapley values (Shapley
et al., 1953). Originally developed in cooperative game theory, Shapley values attribute credit to
individual agents in a collaborative setting; here, we treat each embedding head in the Q-network as
a "player" contributing to the predicted Q-value.

In our setting, the Fusion Q-network receives two inputs: (i) a representation from the policy-driven
encoder (denoted PQN), which is trained end-to-end with TD loss, and (ii) a fixed representation
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from a Laplacian encoder (denoted LAP), which is pretrained via ALLO and kept frozen during TD
training. The combined embeddings are concatenated and passed through a shared Q-network head.

We define the Shapley contribution (ShapC) of the LAP head for a given state-action pair (s, a) as:

SCLAP(s, a) =
1

2

(
[Q(eLAP, ∅; s, a)−Q(∅, ∅; s, a)] + [Q(eLAP, ePQN; s, a)−Q(∅, ePQN; s, a)]

)
(9)

where ∅ denotes the replacement of an embedding with its expected value over the dataset (i.e.,
Eπ[e·]). SCPQN(s, a) is defined analogously. This attribution quantifies how much each embedding
contributes to the final Q-value relative to a baseline of state-independent (mean) embeddings. We
report these values under the data distribution induced by the policy at the end of training.

We report the average ShapC across 100 evaluation episodes and time steps, aggregated over five
random seeds per game, in the supplementary section (Appendix C, Figure 8). In the main text, we
highlight four representative games in Figure 2. In these examples, the Laplacian embedding head
consistently contributes more to the final Q-value prediction than the PQN head. This aligns with
the quantitative results in Table 1 of Appendix B, where Laplacian-only models (Lap:) outperform
PQN-only models (PQN:) in these games.

For instance, in Pong, both PQN and Laplacian representations are sufficient to solve the task
individually. However, Shapley analysis reveals that the final Q-network prediction relies almost
entirely on the Laplacian branch. In Skiing, Tutankham and Bowling, where Lap:* methods
outperform their PQN:* counterparts, the Laplacian head provides a more influential and beneficial
inductive bias for Q-value estimation.

Figure 2: Average Shapley contribution (ShapC) of each head in the Fusion Q-network across four
Atari games. A higher magnitude ShapC indicates stronger influence on the final Q-value prediction.

6 Conclusion and Future Work

In this work, we explored the integration of Laplacian-based representations into the value func-
tion approximation pipeline of reinforcement learning. Building on the foundation of Proto-Value
Functions (PVFs), we demonstrated that spectral representations—learned online and over the state-
action space—can serve as effective bases for deep Q-learning across a diverse set of environments
in the Atari Learning Environment (ALE) benchmark. Our approach departs from prior work by
learning these representations in a fully online manner, without relying on auxiliary rewards or
cyclic training phases. Furthermore, we showed that Laplacian representations corresponding to
both the behavior and uniform policies can be learned from interaction data alone and leveraged ef-
fectively in large-scale settings. Looking ahead, a promising direction for future work is to evaluate
the impact of uniform-policy Laplacian representations in multi-task or transfer learning scenarios.
Since these representations are task-independent, they are naturally suited for reuse across different
tasks and environments, potentially offering improved sample efficiency and generalization.
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A Architecture diagrams

Figure 3: State PQN Figure 4: State-Action PQN Figure 5: FiLM SA Encoder

Figure 6: Laplacian-Only PQN, with
stop-grad connection (arrow with
crossed lines) between the encoder and
Q-network

Figure 7: Fusion PQN, that concate-
nates TD-loss differentiable PQN em-
bedding and fixed Laplacian embedding
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B Game-wise results of methods

Table 1: Average Human Normalized Scores across 23 Atari games.

Games
State-Only Methods State-Action Methods

Laplacian PQN Fusion Laplacian PQN Fusion

L:S-BP PQN:S PQN:S-2x F:S-BP L:SA-BP L:SA-UNI PQN:SA PQN:SA-2x F:SA-BP F:SA-UNI

Amidar 0.24 0.49 0.57 0.45 0.19 0.15 0.64 0.77 0.67 0.70
Asterix 1.05 34.26 33.00 31.48 1.30 1.12 36.26 40.01 28.74 29.40
BattleZone 0.64 1.19 1.13 1.18 0.59 0.66 1.22 1.16 1.22 1.23
Bowling 0.05 0.09 0.17 0.02 0.08 0.09 -0.06 -0.08 0.04 0.08
Breakout 4.12 19.58 20.02 18.36 4.90 5.46 17.17 19.63 17.56 16.60
DoubleDunk 2.70 2.07 1.35 2.58 2.89 2.30 1.95 2.84 1.55 1.31
Enduro 0.41 2.64 2.71 2.64 0.29 0.28 2.69 2.67 2.68 2.70
Frostbite 0.33 0.83 0.92 0.84 0.49 0.59 1.08 0.84 1.37 1.12
Jamesbond 1.66 5.73 5.99 4.85 1.54 1.42 5.59 5.04 5.57 5.60
Kangaroo 1.51 4.14 4.27 4.21 1.16 1.18 4.29 4.15 2.53 2.30
KungFuMaster 1.39 1.15 1.11 1.50 1.41 1.41 1.24 1.21 1.49 1.45
NameThisGame 0.54 0.57 0.77 0.69 0.34 0.19 1.48 1.96 1.40 1.59
Phoenix 0.70 5.04 9.90 6.80 0.60 0.58 11.50 15.64 18.19 22.47
Pong 1.16 1.18 1.18 1.16 1.18 1.17 1.18 1.18 1.16 1.18
Qbert 0.77 1.22 1.56 1.24 0.72 0.68 1.76 1.74 1.65 1.68
Riverraid 0.41 1.22 1.29 1.24 0.41 0.35 1.17 1.34 1.39 1.26
Seaquest 0.03 0.29 0.33 0.32 0.03 0.03 0.09 0.09 0.13 0.12
Skiing -1.02 -1.01 -1.01 -1.03 -0.52 -0.49 -0.98 -1.01 -0.27 -0.24
SpaceInvaders 0.21 4.45 8.41 5.63 0.26 0.24 5.61 15.49 12.24 5.11
Tennis 1.37 0.98 1.34 1.47 0.26 0.28 1.23 1.30 0.74 1.30
TimePilot 0.74 2.83 3.15 3.33 0.47 0.02 3.15 3.61 4.28 4.53
Tutankham 0.63 1.28 1.32 1.33 1.13 0.75 0.80 1.26 0.93 1.54
VideoPinball 37.92 332.56 312.43 363.61 14.93 13.30 356.65 367.53 352.83 387.53
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C Shapley Contribution Scores

Figure 8: Average Shapley contribution (ShapC) values for each head in the Fusion model F:SA-UNI
on Atari games. We compare the contributions of the standard PQN head and the Laplacian (LAP)
head toward the final Q-value prediction. A higher positive ShapC indicates a stronger positive
influence on the output Q-value. Each ShapC value represents the mean and standard deviation over
100 evaluation episodes (including all time steps), averaged across 5 training seeds per game.

D Derivations

D.1 State Representation Laplacian

The Graph Laplacian over states is defined as L = D −W with W .
= diag(ρ)Pπ , D = diag(ρ) is

the degree matrix corresponding to W , and Pπ(s′|s) =
∑
a π(a|s)p(s′|s, a) is the transition matrix

induced by policy π. Note that we assume our W is symmetric; for the scenario where it is not
symmetric, we have W = 1

2 (P
π + (Pπ)T ). The vector ρ denotes the stationary distribution of the

Markov chain induced by Pπ , i.e. ρTPπ = ρT . Below we derive the Equation 6 for the Laplacian
of a 1-hop graph.

First we derive the marginal state-transition distribution under a uniform policy, sampled from a
behavior policy. Let πuni and πB denote the uniform and behavior policies respectively.
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Pπ
uni
(s′|s)ρ(s) .= Ea∼πuni [p(S′ = s′|S = s,A = a)ρ(s)]

=
∑
a

πuni(a|s)p(s′|s, a)ρ(s)

=
∑
a

πuni(a|s)p(s′|s, a)ρ(s)π
B(a|s)
πB(a|s)

=
∑
a

πuni(a|s)
πB(a|s)

πB(a|s)p(s′|s, a)ρ(s) , w(s, a)
.
=
πuni(a|s)
πB(a|s)

=
1/|A|
πB(a|s)

=
∑
a

w(s, a)πB(a|s)p(s′|s, a)ρ(s)

= Ea∼πB [w(s, a)p(s′|s, a)ρ(s)].

We now derive the Laplacian objective under behavior policy:

< f,Lf > = fTLf (10)

=
∑
s,s′

fs(D −W )s,s′fs′ (11)

=
∑
s,s′

fsfs′δs,s′ρ(s)−
∑
s,s′

fsfs′P
π
s,s′ρ(s) (12)

=
∑
s

f2s ρ(s)−
∑
s,s′

fsfs′P
π
s,s′ρ(s) (13)

=
1

2

∑
s

f2s ρ(s) +
1

2

∑
s′

f2s′ρ(s
′)−

∑
s,s′

fsfs′P
π
s,s′ρ(s) (14)

=
1

2

∑
s,s′

Pπs,s′ρ(s)f
2
s +

1

2

∑
s,s′

Pπs,s′ρ(s)f
2
s′ −

∑
s,s′

fsfs′P
π
s,s′ρ(s) (15)

=
1

2

∑
s,s′

Pπs,s′ρ(s)(fs − fs′)2 =
1

2
E s∼ρ(S0)
s′∼Pπ(.|S0)

[(fs − fs′)2] (16)

=
1

2

∑
s,s′

∑
a

πuni(a|s)p(s′|s, a)ρ(s)(fs − fs′)2 (17)

=
1

2

∑
s,s′

∑
a

w(s, a)πB(a|s)p(s′|s, a)ρ(s)(fs − fs′)2 (18)

=
1

2
E s∼ρ(S0)

a∼πB(.|s)
s′∼p(.|s,a)

[w(s, a)(fs − fs′)2], (19)

where we used the fact that ρ is the stationary distribution of Pπ in the 6th equality.

D.2 Equation 7: State-Action Representation

Similar to state representation, we define the Graph Laplacian for state-action as L = D−W , where
D = diag(ρ) and W = diag(ρ)Pπ , and π is the uniform policy. The state–action representation
modifies the underlying graph such that nodes now correspond to state-action pairs, hence the tran-
sition in such a graph becomes Pπ(s′a′|sa) = π(a′|s′)p(s′|s, a) and the stationary distribution is
ρ(sa)

.
= π(a|s)ρ(s). The Laplacian objective for state-action representation under behavior policy

can be derived as follow:
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< f,Lf > = fTLf

=
∑
sa,s′a′

fsa(D −W )sa,s′a′fs′a′

=
∑
sa,s′a′

fsafs′a′δsa,s′a′ρ(sa)−
∑
sa,s′a′

fsafs′a′P
π
sa,s′a′ρ(sa)

=
∑
sa

f2saρ(sa)−
∑
sa,s′a′

fsafs′a′P
π
sa,s′a′ρ(sa)

=
1

2

∑
sa

f2saρ(sa) +
1

2

∑
s′a′

f2s′a′ρ(s
′a′)−

∑
sa,s′a′

fsafs′a′P
π
sa,s′a′ρ(sa)

=
1

2

∑
sa,s′a′

Pπsa,s′a′ρ(sa)f
2
sa +

1

2

∑
sa,s′a′

Pπsa,s′a′ρ(sa)f
2
s′a′ −

∑
sa,s′a′

fsafs′a′P
π
sa,s′a′ρ(sa)

=
1

2

∑
sa,s′a′

Pπsa,s′a′ρ(sa)(fsa − fs′a′)2 =
1

2
E s0a0∼ρ(S0A0)
s′a′∼Pπ(.|S0A0)

[(fsa − fs′a′)2]

=
1

2

∑
sa,s′a′

πuni(a′|s′)p(s′|s, a)ρ(sa)(fsa − fs′a′)2

=
1

2

∑
sa,s′a′

w(s′, a′)πB(a′|s′)p(s′|s, a)ρ(sa)(fsa − fs′a′)2

=
1

2
Esa∼ρ(S0A0)
s′∼p(.|s,a)
a′∼πB(.|s′)

[w(s′, a′)(fsa − fs′a′)2],

We now expand the stationary distribution using the definition:

1

2

∑
sa,s′a′

πuni(a′|s′)p(s′|s, a)ρ(sa)(fsa − fs′a′)2

=
1

2

∑
sa,s′a′

πuni(a′|s′)p(s′|s, a)πuni(a|s)ρ(s)(fsa − fs′a′)2

=
1

2

∑
sa,s′a′

πB(a′|s′)w(s′a′)p(s′|s, a)πB(a|s)w(s, a)ρ(s)(fsa − fs′a′)2

=
1

2
E s∼ρ(S0)

a∼πB(.|s)
s′∼p(.|s,a)
a′∼πB(.|s′)

[w(s, a)w(s′a′)(fsa − fs′a′)2]

Note that we can write the Laplacian objective as bellow where we assume a′ is sampled from
uniform policy. Therefore, we do not need to approximate the expected action distribution via
Monte Carlo, as it can be computed exactly by summing over all actions.
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1

2

∑
sa,s′a′

πB(a′|s′)w(s′a′)p(s′|s, a)πB(a|s)w(s, a)ρ(s)(fsa − fs′a′)2

=
1

2

∑
sa,s′

∑
a′

πuni(a′|s′)p(s′|s, a)πB(a|s)w(s, a)ρ(s)(fsa − fs′a′)2

=
1

2

∑
sa,s′

∑
a′

1

|A|
p(s′|s, a)πB(a|s)w(s, a)ρ(s)(fsa − fs′a′)2

=
1

2|A|
E s∼ρ(S0)

a∼πB(.|s)
s′∼p(.|s,a)

[w(s, a)
∑
a′

(fsa − fs′a′)2]


