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ABSTRACT

This paper addresses the challenge of robotic grasping of general objects. Similar
to prior research, the task reads a single-view 3D observation (i.e., point clouds)
captured by a depth camera as input. Crucially, the success of object grasping
highly demands a comprehensive understanding of the shape of objects within the
scene. However, single-view observations often suffer from occlusions (includ-
ing both self and inter-object occlusions), which lead to gaps in the point clouds,
especially in complex cluttered scenes. This renders incomplete perception of
the object shape and frequently causes failures or inaccurate pose estimation dur-
ing object grasping. In this paper, we tackle this issue with an effective albeit
simple solution, namely completing grasping-related scene regions through local
occupancy prediction. Following prior practice, the proposed model first runs by
proposing a number of most likely grasp points in the scene. Around each grasp
point, a module is designed to infer any voxel in its neighborhood to be either void
or occupied by some object. Importantly, the occupancy map is inferred by fus-
ing both local and global cues. We implement a multi-group tri-plane scheme for
efficiently aggregating long-distance contextual information. The model further
estimates 6-D grasp poses utilizing the local occupancy-enhanced object shape
information and returns the top-ranked grasp proposal. Comprehensive experi-
ments on both the large-scale GraspNet-1Billion benchmark and real robotic arm
demonstrate that the proposed method can effectively complete the unobserved
parts in cluttered and occluded scenes. Benefiting from the occupancy-enhanced
feature, our model clearly outstrips other competing methods under various per-
formance metrics such as grasping average precision.

1 INTRODUCTION

General object grasping (Fang et al., 2020; Wang et al., 2021; Liu et al., 2022; Xu et al., 2023) plays
a critical role in a variety of robotic applications, such as manipulation, assembling and picking. Its
success lies in the ability to generate accurate grasp poses from visual observations, without requir-
ing prior knowledge of the scene’s exact structure. In recent years, substantial advancements have
occurred in this domain, leading to the widespread adoption of object grasping in both industrial
and service sectors. Most of modern object grasping methods rely on either point clouds (Fang
et al., 2020), RGB-D multi-modal images (Mahler et al., 2017) and voxels (Breyer et al., 2020)) as
inputs for predicting the best grasp point / pose. To attain high success rate of grasping operations,
it is crucial to have a full perception of the object shapes locally around each proposed grasp point.
Nevertheless, since most methods only exploit a single snapshot of the target scene. The desired
shape information is often incomplete owing to self-occlusion under specific camera viewpoint or
mutual occlusion across adjacent objects. This causes lots of crucial volumtric clue unavailable
when conducting object grasping, and thus leads to various failing cases. Figure 1 shows an illus-
trative case where in a failure the gripper collides with a target object (the red hair dryer) due to
incompletely-estimated object shapes under the single-view setting.

There are multiple potential solutions to resolve the aforementioned issue, including the adoption
of multi-view scene snapshots or multi-modal learning (e.g., the joint optimization over color im-
age and point clouds). This paper tackles this challenge by adhering to a depth-based scene rep-
resentation in a single view, recognizing the practical limitations often associated with employing
multi-view or multi-modal data. For example, in many cases the robotic arm is required to conduct
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Figure 1: Illustration of local occupancy-enhanced object grasping. Top: The gaps in point clouds heavily
affect the accuracy of estimated grasp poses, leading to a failure under self-occlusion in this case. Bottom: In
our proposed method, grasp pose is estimated using local occupancy-enhanced features, which essentially infer
the complete object shape locally around the grasp point by fusing global / local cues.

swift grasp estimation or physically constrained to observe the scene from a restricted set of viewing
angles. To restore the occluded or unobserved portions of the objects, it is a natural idea to resort
to some point cloud completion works (Yuan et al., 2018; Xia et al., 2021; Jiang et al., 2023; Gong
et al., 2021). However, most of them focused on the fine-grained object-level completion and are
compute-intensive. We instead adopt a voxel-based, relatively coarse-grained scene representation,
and formulate the problem of object shape completion as inference over occupancy maps.

In this work we develop a local occupancy-enhanced object grasping method utilizing multi-group
tri-planes. There are a vast literature on occupancy estimation neural networks (Song et al., 2017;
Peng et al., 2020; Zhang et al., 2023) that recover the voxel-level occupancy of the scene from a
single-view RGB / RGB-D image or point cloud. We argue that directly deploying these models
are not computationally optimal for the task of object grasping, since most of them operate over the
full scene and are not scalable to large scenes. There are two key considerations in expediting and
improving the occupancy estimation. First, this work follows previous practice in object grasping
that first generates a sparse set of most confident 3-D grasp points for a scene. For obtaining the
optimal pose of the gripper, the geometry around current grasp point is centrally informative. The
compute-demanding occupancy estimation is restricted to be within some local neighborhood of the
grasp point, striking an accuracy / efficacy balance. Secondly, holistic scene context plays a pivotal
role for precisely inferring the state of each voxel. However, learning over 3-D volumes is neither
computationally feasible (the large number of voxels is not amenable to intensive convolutions or
attention-based operations) nor necessary (most voxels are void and should not been involded in the
computation). To effectively aggregate multi-scale information, we propose an idea of multi-group
tri-plane projection to extract shape context from point clouds. Each tri-plane constructs three fea-
ture planes by projecting the scene along its three coordinates, providing a compact representation
of the scene. Features on each plane are obtained by aggregating the information from partial ob-
servation along an axis. Since such projection is information lossy, we utilize multi-group tri-planes
that are uniformly drawn from SO(3) and collectively preserve the major scene structures via diverse
snapshots. When predicting the occupancy of an arbitrary voxel, a feature querying scheme fusing
global and local context is proposed. Both the tri-plane based occupancy estimation and grasp pose
estimation are jointly learned through an end-to-end differetiable optimization.

2 RELATED WORK

Object grasping. Most of the object grasping methods (Jiang et al., 2011; Lenz et al., 2015; Mahler
et al., 2017; Morrison et al., 2018; Liang et al., 2019; Mousavian et al., 2019) leverage RGB-D image
or point cloud to extract shape features for estimating grasp poses in cluttered scenes. Among them,
Jiang et al. (2011); Lenz et al. (2015); Asif et al. (2018) take RGB-D images as input to estimate
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Figure 2: Model architecture of the proposed local occupancy-enhanced object grasping. It first identifies a
number of interested local occupancy regions. Then multi-group tri-plane aggregates the scene context for local
occupancy estimation. Finally the occupancy-enhanced local shape feature in each grasp region is extracted by
fusing the information of both explicit voxels and implicit queried features, and is decoded to grasp poses.

grasp poses with rotated boxes. Liang et al. (2019); ten Pas et al. (2017); Ni et al. (2020); Qin et al.
(2019) generate dense grasp poses and evaluate them to elect the best one. Fang et al. (2020) propose
an end-to-end 6-D pose-estimating model from point clouds, and Wang et al. (2021) improve grasp
point sampling via grasp-oriented affordance segmentation. Though several works (e.g., Lundell
et al. (2019; 2020); Varley et al. (2017)) have explored object completion to facilitate object grasping,
these completions are essentially object-centric and not jointly optimized with grasping, preventing
them from promoting grasp quality further and being applied to complex scenes.

Occupancy network. Several relevant networks (Mescheder et al., 2019; Cao & de Charette, 2022;
Tian et al., 2023; Huang et al., 2023) have emerged recently to complete the scene from incom-
plete observations. Song et al. (2017) proposes a 3-D convolutional network in voxel form. Some
works (Zhang et al., 2018; Cheng et al., 2020; Li et al., 2020) devise lighter and more expressive
3D convolutions for scene completion. Zhang et al. (2023); Li et al. (2023) propose to predict oc-
cupancy from RGB images through attentional modules. Huang et al. (2023) reduces the attention
memory cost by tri-plane representation. Nevertheless, these methods need to predict occupancy
densely for the whole scene, which is unnecessary and overburdened for grasping tasks.

Tri-plane representation. A few works (Chan et al., 2022; Gao et al., 2022; Noguchi et al., 2022;
Skorokhodov et al., 2022; Shue et al., 2023; Anciukevicius et al., 2023) have utilized tri-plane as
compact 3-D scene representation. Chan et al. (2022) and Peng et al. (2020) bring up the idea of
representing a scene as three orthogonal feature planes for 3D rendering and occupancy prediction.
Huang et al. (2023) uses the tri-plane representation for scene completion in outdoor autonomous
driving tasks. Wang et al. (2023) improves the tri-plane performance by adding positional encoding
to it. Hu et al. (2023) attempts to enrich the 3D information by lifting tri-plane to tri-volume. All of
these methods only considered to aggregate context to a single group tri-plane. It will suffer from
information loss in complex and occluded grasping scenes with limited views.

3 THE PROPOSED METHOD

This section elaborates on the proposed local occupancy-enhanced object grasping model in details.
The model is fed with single-view point clouds and returns multiple optimal 6-D grasp poses. In
specific, we use the grasp pose formulation in Fang et al. (2020), defining a 6-D grasp pose via
grasp point, grasp direction, in-plane rotation, grasp depth and grasp width. Figure 2 illustrates the
framework of our model.

3



Under review as a conference paper at ICLR 2024

3.1 LOCAL OCCUPANCY REGIONS

To begin with, we encode the input point cloud P ∈ R3×N with a 3-D UNet backbone network and
obtain the point cloud embedding FP ∈ RCP×N , where N and CP are the count of points and the
number of feature channels respectively. Assume G to be the collection of candidate grasp points. To
construct G, we employ a grasp affordance segmentation procedure Wang et al. (2021) on observed
point clouds, and sample a fixed number of possible grasp points (1,024 in our implementation)
from the affordance area into G. For the grasp direction, we regress the view-wise affordance of
each grasp point and choose the view with the maximum affordance as its grasp direction. Through
these, areas with a large probability of having high quality grasp poses are selected to predict local
occupancy and facility grasp pose estimation.

For a 2-fingered gripper, knowing its radius r and grasp depth interval [dmin, dmax], we define a
local grasp region S in the coordinate frame centered at the grasp point to be a cylinder reachable
to the gripper S = {(x, y, z) | x2 + y2 ≤ r2, dmin ≤ z ≤ dmax}. Let Rg ∈ R3×3 be the rotation
matrix derived by the grasp direction of grasp point pg ∈ R3, the total possible grasp region S̃ in
the camera frame is formulated as:

S̃ = {Rgx+ pg | x ∈ S, pg ∈ G}. (1)

We voxelize the possible grasp region S̃ with a fixed voxel size v and get voxel set S̃v , which is
treated as the local occupancy prediction region.

3.2 MULTI-GROUP TRI-PLANE

Computation over the entire 3-D scene volume is computationally forbidden for large scenes. To
avoid it, we devise a scheme of multi-group tri-plane projection for holistic / local scene context
extraction in cluttered scenes. Each group of tri-plane is composed of three feature planes that pool
the spatial features projected onto three orthogonal coordinates in some frame. Specifically, we
implement the feature on each plane as the aggregation of both point cloud embeddings and the
point density along an axis. Importantly, the above process of tri-plane projection is lossy, thus we
further propose to use multiple groups of tri-planes that differ in 3-D rotations and share the same
origin, thereby more key information can be preserved via diverse aggregations.

To ensure the diversity across different tri-planes, we conduct a spherical linear interpolation of
quaternion (Shoemake, 1985) to draw multiple tri-plane coordinate rotations uniformly in the rota-
tion group SO(3). Given the start and the end quaternions q1, q2 ∈ R4 with ||q1|| = ||q2|| = 1, and
the number of tri-plane groups K, the interpolated coordinate frame rotations are:

qi =
sin[(1− i

N )ϕ]q1 + sin( i
N ϕ)q2

sinϕ
, i = 0, 1, ...,K − 1, (2)

where ϕ = arccos(qT
1 q2). Then the quaterion qi = (xi, yi, zi, wi) can be transformed to a rotation

matrix Ri ∈ R3×3 by:

Ri =

1− 2z2i − 2w2
i 2yizi + 2xiwi 2yiwi − 2xizi

2yizi − 2xiwi 1− 2y2i − 2w2
i 2ziwi + 2xiyi

2yiwi + 2xizi 2ziwi − 2xiyi 1− 2y2i − 2z2i

 . (3)

In practice we set q1 as the identity rotation and q2 to be the rotation that rotates 90◦ along x-axis
first and follows by a second 90◦ rotation along y-axis to generate diverse tri-plane rotations.

Next, all tri-planes aggregate the point cloud embeddings and the point density along each axis sepa-
rately. Let FTij

∈ RCP×H×W and Dij ∈ N1×H×W be the aggregated point cloud embeddings and
the point density on the i-th (i ∈ {0, 1, 2}) plane of the j-th (j ∈ {0, ...,K − 1}) group respectively,
where H and W define the resolution of the plane. The aggregated point cloud embedding and the
density located at (x, y) are calculated as:

FTij
(x, y) = A({1proji(Rjp, x, y) · fp | p ∈ P }), Dij(x, y) =

∑
p∈P

1proji(Rjp, x, y), (4)

where fp ∈ RCP is the p’s corresponding embedding in FP , 1proji(·, x, y) is the indicative
function showing whether a point’s normalized projected point along the i-th axis locates at (x, y),
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and A(·) could be any kind of aggregation function (we choose max-pooling). Afterwards, Dij

is normalized via soft-max and obtain density D̃ij ∈ [0, 1]1×H×W . Ultimately, three 2-D plane-
oriented encoders Ei (i ∈ {0, 1, 2}) shared by all groups fuse the aggregated embedding and density
into multi-group tri-plane context F̃Tij

∈ RCT×H×W by:

F̃Tij
= Ei(FTij

⊕ D̃ij), (5)

where ⊕ refers to concatenation and CT is the number of feature channels of each plane.

The utilization of multi-group tri-plane approximately captures global scene context in a concise
way. On the one hand, more aggregation views improve the possibility of restoring features for
the occluded parts and enriches the 3-D shape clues. On the other hand, it significantly reduces the
data size during calculation and avoids the direct operation on dense 3D volume features. The spatial
resolution of tri-planes can thus be set to be larger for better representing delicate shape information.

3.3 LOCAL OCCUPANCY QUERY

We further propose a feature query scheme for efficiently fusing the global and local context of the
scene, for the sake of occupancy estimation. The target points to be queried Pq ∈ R3×M are the
centers of the voxels in local occupancy region S̃v , where M is the number of the voxels in S̃v . For
each queried point pq ∈ Pq , its global context fG is the fusion of the bi-linear interpolated features
on the projection points of different planes. Specifically, an encoder Ẽ1 shared by all tri-plane groups
will first fuse the three interpolated features from j-th group into fTj , and an another encoder Ẽ2
will then fuse the features from different groups into fG:

fij = BI(F̃Tij
, proji(Rjpq)), fTj

= Ẽ1(
⊕
i

fij), fG = Ẽ2(
⊕
j

fTj
), (6)

where proji(·) is the function which calculates the normalized projected point along the i-th axis,
BI(·, ·) is the bi-linear interpolation function and

⊕
denotes the concentration. While global con-

text fG contains the long-distance context related to the quering point, it still needs delicate local
shape context to predict occupancy. For this reason, the local context fL draws the information from
observed point clouds and the position embeddings of the relative translation to the nearest grasp
point. We first find pq’s nearest neighbour p′ in G and the corresponding point cloud embedding
fp′ , then the local context fL is calculated as:

fL = fp′ ⊕ EPE(pq, p
′, pq − p′), (7)

where EPE is an MLP to generate position embedding. At last, the queried feature fpq ∈ RCQ

is obtained by fpq = fG ⊕ fL where CQ is the number of feature channels, and an MLP based
decoder predicts the occupancy probability of pq according to fpq .

3.4 GRASP POSE ESTIMATION WITH COMPLETED LOCAL SHAPE

Having obtained the completed shape around grasp-related regions, the local occupancy-enhanced
grasp pose estimation is done in three sequential steps: extracting occupancy-enhanced local shape
feature, refining grasp direction and decoding shape feature into grasp poses.

Occupancy-enhanced local shape feature extraction. With the queried features and the occupancy
probability of a grasp region, we can extract local occupancy-enhanced feature from completed
shape information in local regions. For each grasp point pg ∈ G, we conduct the cylinder crop as
in Fang et al. (2020) and get the predicted occupied voxels in its local grasp region. Assume the
center points of occupied voxels in one local grasp region are Po ∈ R3×No and their corresponding
queried features are Fo ∈ RCQ×No , where No is the number of occupied voxels in local grasp
region. Next, as Po is an explicit form of local shape, a shape encoder composed of 4 point set
abstraction layers proposed in Pointnet++ Qi et al. (2017) extracts the delicate shape feature from Po.
In addition, some important implicit shape information may have been embedded in Fo, therefore
we randomly sample a few key points from Po. Their corresponding queried features in Fo are
processed with max-pooling as the holistic feature of the local region. Finally, these two kinds of
features are concatenated as the local occupancy-enhanced shape feature.
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Grasp direction refinement. From the experiments, we observe that compared with the other grasp
pose parameters, grasp directions have a greater impact on the quality of the grasp poses. However,
the grasp directions predicted for local grasp regions previously only consider the information from
the incomplete single view point cloud. Therefore, due to the lack of complete scene information,
the previously predicted directions may result in bad grasp poses and increases the risk of collision,
especially in occluded areas. To address this, we propose to refine the grasp direction based on
complete local shape information. To this end, after local occupancy prediction, we extract the local
shape feature of the grasp region with the method mentioned above, and then use it to re-estimate
the grasp direction. With the complete shape information, a refined grasp direction can be inferred.
Then, we extract local shape feature again in the new grasp region for grasp pose estimation. It
should be noted that after refining the grasp direction, there is no need of querying occupancy again
in the new grasp region. This is because we find the densely sampled grasp points make the grasp
region S̃v cover almost every occupied voxels around the grasp affordance areas, which means the
refined local region rarely contains undiscovered occupied voxels.

Estimating grasp poses. Up to now the grasp point and direction have been determined. For the
rest parameters of a grasp pose, including in-plane rotation, grasp depth and width, we use a grasp
pose decoder with the same structure in Wang et al. (2021) to decode the occupancy-enhanced local
shape feature. It regresses the grasp width and the grasp score for several combinations of in-plane
rotations and grasp depths. Finally, the parameter combination with the maximum grasp score is
regarded as the grasp pose estimation result of each grasp region.

3.5 LOSS FUNCTION

Our model is optimized in an end-to-end fashion and supervised by the ground-truth local occupancy
labels and grasp pose labels. The loss function is a multi-task loss consisting of local occupancy loss
and grasp pose loss. Assume the occupancy prediction in local grasp regions is o, the corresponding
occupancy ground truth ogt is generated by cropping the total scene occupancy with the predicted
local region, then the occupancy loss is a binary cross-entropy loss Lo(o,ogt). The grasp pose loss
consists of the affordance segmentation loss La, view-affordance loss Lv , grasp width loss Lw and
grasp score loss Ls. Following common practice, La is a binary cross-entropy loss and the rested
losses are smooth-L1 losses. Putting all together, assume gt to be the ground-truth, the total loss
is written as L = Lo(o,ogt) + λ1La(a,agt) + λ2Lv(v,vgt) + λ3(Lw(w,wgt) + Ls(s, sgt)),
where λ1, λ2, λ3 are loss weights and a,v,w, s denote predicted affordance segmentation, view-
affordance, grasp width and grasp score respectively.

4 EXPERIMENTS

Dataset. We evaluate the proposed grasping model on GraspNet-1Billion benchmark (Fang et al.,
2020). It is a large-scale real-world grasping dataset containing 190 cluttered grasping scenes and
97,280 RGB-D images captured by 2 kinds of RGB-D cameras from 256 different views. 88 objects
with dense grasp pose annotations are provided. The test set is divided into 3 levels (seen / similar
/ novel) according to the familiarity of objects. For the occupancy label, we utilize the Signed
Distance Function (SDF) of each object and the object pose annotations to generate scene level
occupancy.

Baselines. We run several state-of-the-art competing methods on GraspNet 1Billion (Fang et al.,
2020) benchmark, including Morrison et al. (2018); Chu et al. (2018); ten Pas et al. (2017); Liang
et al. (2019); Fang et al. (2020); Gou et al. (2021); Qin et al. (2023); Ma & Huang (2022); Wang
et al. (2021). For fair comparison, all baseline models only read single-view point clouds as ours.

Metrics. For grasp pose estimation, we report the grasp AP of the top-50 grasp poses after grasp
pose-NMS. The grasp AP is the average of APµ, where µ is the friction coefficient ranging from 0.2
to 1.2 and APµ is the average of Precision@k for k ranges from 1 to 50. For the local occupancy
prediction, we report the F1-Score and the volumetric IOU in the predicted local occupancy region.
F1-Score is the harmonic average of the precision and recall and volumetric IOU is the intersection
volume over the union volume for occupancy prediction and ground truth.

Implementation details. As the number of voxels varies across different scenes, for the conve-
nience of mini-batch training, we randomly sample 15,000 voxels for occupancy prediction. For the
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Table 1: Experimental results on GraspNet-1Billion benchmark for baselines and our proposed model. Since
each scenario in GraspNet-1Billion was captured by two kinds of devices (RealSense or Kinect), for each
experiment the two scores correspond the results for RealSense / Kinect respectively. Avg. means average, CD
is collision detection and - means not being reported. Best scores are displayed in red.

Method Seen Similar Novel Avg.
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP

w/o CD
Morrison et al. (2018) 15.48/16.89 21.84/22.47 10.25/11.23 13.26/15.05 18.37/19.76 4.62/6.19 5.52/7.38 5.93/8.78 1.86/1.32 11.42/13.11

Chu et al. (2018) 15.97/17.59 23.66/24.67 10.80/12.47 15.41/17.36 20.21/21.64 7.06/8.86 7.64/8.04 8.69/9.34 2.52/1.76 13.01/14.33
ten Pas et al. (2017) 22.87/24.38 28.53/30.06 12.84/13.46 21.33/23.18 27.83/28.64 9.64/11.32 8.24/9.58 8.89/10.14 2.67/3.16 17.48/19.05
Liang et al. (2019) 25.96/27.59 33.01/34.21 15.37/17.83 22.68/24.38 29.15/30.84 10.76/12.83 9.23/10.66 9.89/11.24 2.74/3.21 19.29/20.88
Fang et al. (2020) 27.56/29.88 33.43/36.19 16.95/19.31 26.11/27.84 34.18/33.19 14.23/16.62 10.55/11.51 11.25/12.92 3.98/3.56 21.41/23.08
Gou et al. (2021) 27.98/32.08 33.47/39.46 17.75/20.85 27.23/30.40 36.34/37.87 15.60/18.72 12.25/13.08 12.45/13.79 5.62/6.01 22.49/25.19
Qin et al. (2023) 49.85/47.32 59.67/57.27 42.24/38.55 41.46/35.73 50.31/44.22 33.69/26.99 17.48/16.10 21.83/20.01 7.90/7.81 36.26/33.05

Ma & Huang (2022) 58.95 / - 68.18/ - 54.88/ - 52.97/ - 63.24/ - 46.99/ - 22.63/ - 28.53/ - 12.00/ - 44.85/ -
Wang et al. (2021) 65.70/61.19 76.25/71.46 61.08/56.04 53.75/47.39 65.04/56.78 45.97/40.43 23.98/19.01 29.93/23.73 14.05/10.60 47.81/42.53

Ours 70.85/62.99 82.21/73.47 65.69/56.39 63.37/52.92 76.33/63.52 55.21/45.47 27.29/20.79 36.25/25.74 14.34/12.13 53.84/45.60
w/ CD

Qin et al. (2023) + CD 52.16 / 50.45 62.71/61.22 43.14/40.64 44.69/38.62 54.52/48.75 35.37/28.81 19.26/17.66 23.93/21.94 8.89/8.29 38.70/35.58
Ma & Huang (2022) + CD 63.83 / - 74.25/ - 58.66/ - 58.46/ - 70.05/ - 51.32/ - 24.63/ - 31.05/ - 12.85/ - 48.97/ -
Wang et al. (2021) + CD 67.12/63.50 78.46/74.54 60.90/58.11 54.81/49.18 66.72/59.27 46.17/41.98 24.31/19.78 30.52/24.60 14.23/11.17 48.75/44.15

Ours + CD 72.89 /64.82 85.02/75.61 66.64/57.70 65.29/55.22 79.02/66.47 56.06/46.62 28.37/20.90 35.62/25.89 14.61/11.58 55.52/46.89

inference period, there is no such restriction about the number of voxels. In addition, the view-wise
affordance loss is the averaged of the view-wise affordance before and after grasp direction refine-
ment. The width loss is only calculated when the corresponding grasp score is positive. As for the
occupancy ground truth label, it is generated from the object models in Fang et al. (2020). We first
generate object-level occupancy label by the signed distance function (SDF) of each object. We
sample points with a fixed voxel size in the self coordinate frame of the object, and for each point
x ∈ R3, SDF (x) ≤ 0 means x is an inner point. These inner points are regarded as the centers
of occupied voxels. Then both of the object and table plane voxels are transformed to the camera
frame to generate the scene-level occupancy labels. The object poses in camera frame is annotated
by the dataset providers.

The default number of tri-plane groups is set to be 3 and the default tri-plane size H ×W is set as
64× 64. The 3D UNet backbone has 14 layers with the output dimension CP = 256. The tri-plane
encoders {Ei} are 6-layer ResNets with the output dimension CT = 128. For the local grasp regions,
the gripper radius r is 0.05m, dmin and dmax are -0.01m and 0.04m, and the voxel size v is 0.01m.
The number of the queried features’ channels is CQ = 512. For each grasp point, we predict grasp
scores and widths for 12 possible in-plane rotations combined with 4 possible depths. We train our
model on 2 Nvidia TITAN X GPUs for 12 epochs with the Adam optimizer (Kingma & Ba, 2015).
The learning rate is 0.001 and the batch size is 4. The loss weights are λ1 = 10, λ2 = 100, λ3 = 10
without further empirical finetuning.

Experimental results. The grasping performance on RealSense and Kinect RGB-D cameras are
reported in Table 1. Note that Ma & Huang (2022) uses different grasp points sampling strategies
so that it performs better in some cases (e.g., AP0.4 of similar objects). Under the metric of AP, our
method achieves scores of 70.85 / 63.37 / 27.29 on seen / similar / novel scenes using the sensor of
RealSense respectively. This outperforms previous state-of-the-art method by large margins of 5.15 /
9.62 / 3.31. Similar observation holds for the Kinect-captured data. Notice that the promotion of the
similar scenes is the most distinct among three test levels. We give this credit to that the grasp pose
estimation with only incompletely observed shape has a weakness of generalizing to other objects
due to the lack of shape information. With the local occupancy enhancement, grasping module can
associate grasp poses with the completed shape and thus improves the ability to be generalized to the
objects with similar shapes. Moreover, as local occupancy prediction can reconstruct the scene with
an explicit voxel representation, utilizing the predicted occupancy also improves the effectiveness
of collision detection. With an additional post processing to filter out the grasp poses collided with
predicted occupancy, the results are improved by 1.68 AP on average.

To prove the effectiveness of local occupancy prediction, we report the performance of occupancy
prediction in the grasp regions in Table 2. It turns out that the local occupancy prediction is capable
to complete the shape of objects in grasp regions and can be generalized to different scenes.

Next, a comparison of the performance and efficiency between different occupancy prediction strate-
gies (on RealSense set) is shown in Table 3. The grasp AP, volumetric IOU, inference time and
number of calculated voxels are reported. We compare four kinds of strategies with our method ‘Tri-
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Figure 3: Settings of real-world experiments. Left: the configuration of the grasping system. Middle: objects
used for grasping. Right: an example of the grasping scene.

Table 2: Local occupancy estimation performances,
where RS, KN stand for RealSense, Kinect respec-
tively.

Seen Smilar Novel Avg.

F1-Score RS 0.787 0.764 0.708 0.754
KN 0.779 0.763 0.709 0.750

Volumetric IOU RS 0.681 0.645 0.589 0.638
KN 0.683 0.636 0.586 0.635

Table 3: Comparison of different strategiesin occu-
pancy estimation.

Setting AP IOU Time Voxels
w/o Occupancy 49.72 - 0.13s -

3D Conv 51.02 0.567 0.39s 216000
Tri-plane Global 51.75 0.596 0.35s 216000

Ball Query 50.60 0.449 0.16s ∼ 14000
Tri-plane Local 53.84 0.638 0.18s ∼ 14000

Table 4: Ablation study of different modules. VR is
short for ‘view refinement’.

FTij
Dij fL VR AP IOU Time

% ! ! ! 53.03 0.612 0.16s
! % ! ! 53.33 0.626 0.18s
! ! % ! 52.40 0.569 0.16s
! ! ! % 53.61 0.638 0.18s
! ! ! ! 53.84 0.638 0.18s

Table 5: Performance of real-world grasping. Please
refer to the main text for more explanations.

Method Objects Attempts Success Rate
Baseline 50 57 87.72%

Ours 50 53 94.34%

plane Local’. The first one is the baseline without occupancy enhancement. The second type ‘3D
Conv’ stands for calculating dense 3D volume features with 3D convolutions proposed in Li et al.
(2020) and predicting occupancy in a predefined region with a resolution of 603. The third kind
‘Tri-plane Global’ denotes to use multi-group tri-plane to capture scene context but to predict occu-
pancy in the predefined region. The forth kind ‘Ball Query’ predicts occupancy in local occupancy
region, but only uses the features from nearby point cloud embedding by conducting ball query
proposed in Qi et al. (2017) to get local context. Note that the ‘3D Conv’ and ‘Tri-plane Global’
models cost too large GPU memory for end-to-end training, thus we first train occupancy prediction
modules and then freeze them during training grasp pose estimator. The result shows that predicting
occupancy within the local grasp regions and aggregating scene context with multi-group tri-plane
are important for reducing the computational cost without losing the performance. Theoretically,
the complexity of multi-group tri-plane aggregation is O(KHW ) and the complexity of local occu-
pancy query is O(KM), while the complexity of learning 3D feature volume is O(HWD), where
D is the depth length. Since the area of grasp regions is far less than the whole scene (statistically
15 times in Table 3), K(HW + M) is smaller than HWD by a non-trivial factor. Therefore the
overhead of occupancy prediction is greatly lightened and the additional inference time is acceptable
for real-time practical application. Besides, demonstrated by the poor performance of ‘Ball Query’,
capturing long-distance scene context is crucial for occupancy prediction in cluttered scenes. These
results prove the effectiveness as well as the efficiency of our method.

Ablation Study. We explore the effect of each design through ablation studies. The default set up
is K = 3, H = W = 64. First we compare the default setting with different modules combinations
in Table 4. From the first two rows, aggregating point cloud embedding and point density are both
helpful for occupancy prediction and grasp pose estimation. The third row shows that local context in
occupancy query is necessary for delicate shape information. The forth row shows the effectiveness
of refining view with completed shape feature. All of these are combined to achieve the highest
performance. Moreover, we compare the performance of different multi-group tri-plane settings. In
specific, K = 1, 3, 5 and H = W = 64, 128, 256 are evaluated respectively. The results show that
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Figure 4: Comparison in real-world test. Left: a tiny bottle is right below the camera so the observation is
severely self-occluded. Middle: due to the lack of complete shape, the grasp pose estimated by the baseline
collides with the bottle. Right: Our method reconstructs the complete shape of the grasp region and succeeds.

Figure 5: Visualization of the predicted local occupancy and grasp poses of our method. Some grasp poses pre-
dicted by the baseline without occupancy enhancement fails in grasping the yellow bottle. More visualization
examples can be found in the Appendix.

with the number of tri-plane groups growing, the volumetric IOU and the grasp AP both increase
(e.g., AP is elevated from 53.14 to 53.89 when K is increased from 1 to 5 with H = W = 64). Our
model chooses K = 3 groups for the balance of computational cost and the performance. However,
we find that higher resolutions of plane is not obviously beneficial to the performance, only noting
trivial changes by varying H,W . We regard this is because the scale of grasping scene in the dataset
is not very large, therefore a lower resolution is sufficient to capture enough scene context.

Real-world grasping. To examine our model’s ability in practical application, we conduct a real-
world visual grasping experiment. As shown in Figure 3, we use an Aubo-i5 robotic arm with
an Intel RealSense D435i RGB-D camera mounted on it to capture point cloud observations. The
gripper is a Robotiq 2F-85 two-finger gripper. The experiment requires the visual grasping system
to estimate grasp poses in cluttered scenes with 5-8 objects on the table and pick them up. We
compare the proposed model with the baseline without occupancy enhancement. This experiment
shows that our method surpass the baseline by 6.62% (see Table 5). Visualization comparisons
between the baseline and our method are shown in Figures 4 and 5. They provide clear evidence for
the importance of reconstructing complete shape in object grasping.

5 CONCLUSION

In this paper, we propose a local occupancy-enhanced grasp pose estimation method. By completing
the missing shape information in the candidate grasp regions from a single view observation, our
method boosts the performance of object grasping with the enhanced local shape feature. Besides,
to infer local occupancy efficiently and effectively, the multi-group tri-plane is presented to capture
long-distance scene context as well as preserving 3D information from diverse aggregation views.
Comprehensive experiments on benchmarks and real robotic arm demonstrate that completed shape
context is essential to grasp pose estimation in cluttered scenes, and our local occupancy prediction
is of significance for promoting the performance of object grasping.
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APPENDIX: VISUALIZATION

Visualization examples of predicted local occupancy and grasp poses are shown in Figures 6 and 7.

Figure 6: Visualizations of predicted local occupancy and grasp poses. Bad grasp poses proposed by the
baseline are marked with red boxes.
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Figure 7: Visualizations of predicted local occupancy and grasp poses.Bad grasp poses proposed by the base-
line are marked with red boxes.
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