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Abstract

Monocular 3D Semantic Scene Completion (SSC) is a chal-
lenging yet promising task that aims to infer dense geomet-
ric and semantic descriptions of a scene from a single im-
age. While recent object-centric paradigms significantly im-
prove efficiency by leveraging flexible 3D Gaussian primi-
tives, they still rely heavily on a large number of randomly
initialized primitives, which inevitably leads to 1) inefficient
primitive initialization and 2) outlier primitives that introduce
erroneous artifacts. In this paper, we propose SplatSSC, a
novel framework that resolves these limitations with a depth-
guided initialization strategy and a principled Gaussian ag-
gregator. Instead of random initialization, SplatSSC utilizes
a dedicated depth branch composed of a Group-wise Multi-
scale Fusion (GMF) module, which integrates multi-scale im-
age and depth features to generate a sparse yet representative
set of initial Gaussian primitives. To mitigate noise from out-
lier primitives, we develop the Decoupled Gaussian Aggrega-
tor (DGA), which enhances robustness by decomposing geo-
metric and semantic predictions during the Gaussian-to-voxel
splatting process. Complemented with a specialized Proba-
bility Scale Loss, our method achieves state-of-the-art per-
formance on the Occ-ScanNet dataset, outperforming prior
approaches by over 6.3% in IoU and 4.1% in mIoU, while re-
ducing both latency and memory consumption by more than
9.3%. The code will be released upon acceptance.

Introduction
3D scene understanding has garnered significant atten-
tion with the rapid evolution of embodied agents and au-
tonomous driving. As a key technology in this domain, 3D
occupancy prediction (Tong et al. 2023; Huang et al. 2023;
Wei et al. 2023; Tian et al. 2023; Li et al. 2023b; Wang et al.
2024c) and 3D Semantic Scene Completion (SSC) (Cao and
de Charette 2022; Miao et al. 2023; Zhang, Zhu, and Du
2023; Li et al. 2023a; Mei et al. 2024) have made remarkable
progress. Early and conventional approaches for these tasks
predominantly rely on grid-based representations. However,
processing dense 3D volumes incurs prohibitive computa-
tional and memory costs. To mitigate this limitation, various
efficiency-driven strategies have been explored, such as ac-
celerating processing with Bird’s-Eye-View (BEV) projec-
tions (Yu et al. 2023; Hou et al. 2024), or leveraging the nat-
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Figure 1: Comparison with prior framework. (a) Recent
transformer-based SSC frameworks start with a large set of
randomly initialized Gaussian primitives, introducing redun-
dancy. (b) Our framework starts with a compact yet targeted
set of Gaussian primitives, guided by geometric priors.

ural sparsity of scenes with sparse voxels (Tang et al. 2024;
Lu et al. 2024; Li et al. 2023a) and points (Shi et al. 2024;
Wang et al. 2024a).

Despite the devoted efforts, such methods remain inher-
ently constrained by their discrete and grid-aligned nature,
which struggle to model the sparse geometry efficiently.
A recent paradigm shift towards object-centric representa-
tions, pioneered by GaussianFormer (Huang et al. 2024),
has achieved a breakthrough. By utilizing flexible 3D Gaus-
sian primitives (Kerbl et al. 2023) to represent the scene,
this approach strikes a new balance between performance
and efficiency. Building upon this foundation, subsequent
works (Huang et al. 2025) have advanced this field by devel-
oping more principled aggregation methods based on Gaus-
sian Mixture Models (GMMs) and adapting the paradigm to
indoor scenes for incremental perception (Wu et al. 2025;
Zhang et al. 2025; Wang et al. 2025a).

While the object-centric paradigm offers a promising di-
rection, its application in vision-only settings faces a foun-
dational challenge: how to efficiently initialize and reliably
supervise 3D primitives using only monocular cues. To en-
sure complete coverage of the target 3D space without ge-



ometric cues, the predominant strategy is to randomly dis-
tribute numerous primitives throughout the 3D volume, as
shown in Figure 1(a). This leads to two critical, coupled
limitations: 1) Inefficient Primitive Initialization. A signif-
icant portion of the model’s capacity is inevitably wasted
on representing empty or unknown space, making the ran-
dom distribution strategy inherently redundant. 2) Fragile
Aggregation of Outliers. Existing Gaussian-to-voxel splat-
ting strategies (Huang et al. 2024, 2025) lack an effective
rejection mechanism to mitigate the impact of outlier prim-
itives. This allows outliers to spurious semantics on distant
voxels, creating “floaters” in otherwise empty space.

To this end, we introduce SplatSSC, a novel framework
designed to tackle inefficient initialization and fragile aggre-
gation in object-centric SSC. Rather than randomly initial-
izing a large number of primitives, SplatSSC leverages ge-
ometric priors to guide the primitive initialization as shown
in Figure 1(b), reducing redundancy while maintaining rep-
resentational capacity. Our methodology begins with a tai-
lored depth branch that generates a high-quality geometric
prior through our proposed Group-wise Multi-scale Fusion
(GMF) module. GMF integrates multi-scale image features
and depth features from a pretrained depth estimator via
Group Cross-Attention (GCA) for efficient multi-modal fu-
sion. The resulting geometric priors subsequently guide a
lifter to initialize a sparse yet highly targeted set of Gaussian
primitives, which are then refined through a standard multi-
stage encoder. To address the “floaters” that plague existing
aggregators when dealing with sparse outliers, we propose
the Decoupled Gaussian Aggregator (DGA), which renders
the final semantic grid by completely decomposing seman-
tic and geometry prediction robustly. Furthermore, to ensure
stable geometric learning, we design the specialized Proba-
bility Scale Loss to apply soft and progressive supervision to
the intermediate encoder layers.

In summary, our contributions are as follows:
• We propose an efficient object-centric paradigm for

monocular SSC, namely SplatSSC, which features a
depth-guided strategy for initializing a sparse and tar-
geted set of Gaussian primitives.

• We introduce the Group-wise Multi-scale Fusion (GMF)
module with a Group Cross-Attention (GCA) core to ef-
ficiently generate a high-quality geometric prior.

• We design the Decoupled Gaussian Aggregator (DGA)
that decouples geometry and semantics to eliminate ag-
gregation artifacts from sparse primitives robustly.

• We propose a Probability Scale Loss to provide auxiliary
geometric supervision for robust end-to-end training.

Related Work
3D Semantic Scene Completion. 3D Semantic Scene
Completion (SSC) infers dense geometry and semantics
from limited observations, and has recently gained popular-
ity in both indoor and outdoor perception.

Early approaches (Song et al. 2017; Zhang et al. 2019;
Wang et al. 2019) primarily focused on indoor scenes us-
ing depth-only input, where deep convolutional networks
(CNNs) and Truncated Signed Distance Function (TSDF)

representations were widely employed. To improve seman-
tic understanding, subsequent methods (Li et al. 2019, 2020;
Wang et al. 2023) fuse features from both RGB and depth
inputs. In parallel, LiDAR-based SSC approaches (Roldão,
de Charette, and Verroust-Blondet 2020; Yan et al. 2021;
Yang et al. 2021) have been developed for autonomous driv-
ing and also rely on CNN architectures.

A recent trend has shifted towards vision-only methods.
MonoScene (Cao and de Charette 2022) pioneered this di-
rection using a dense 2D-to-3D lifting with UNet architec-
ture (Ronneberger, Fischer, and Brox 2015), but this ap-
proach suffered from inherent depth ambiguity. To address
this, OccDepth (Miao et al. 2023) and ISO (Yu et al. 2024a)
introduced depth-aware strategies by leveraging stereo depth
and pretrained depth networks, respectively. Concurrently,
to tackle the inefficiency of dense voxel processing, Vox-
Former (Li et al. 2023a), a two-stage model, proposed a
sparse-to-dense Transformer method based on generating
proposals from a geometry prior. Subsequent works con-
tinue to advance this paradigm (Mei et al. 2024; Yu et al.
2024b; Jiang et al. 2024), focusing on unified pipelines,
context-aware modeling, and instance-level reasoning.

While these Transformer-based approaches significantly
advance the field, they still operate on grid-aligned voxel
queries. Our work diverges by embracing a more flexible
object-centric representation, drawing inspiration from re-
cent remarkable works (Wu et al. 2025; Huang et al. 2025).

Object-centric 3D Scene Representation. A recent
paradigm shift in occupancy prediction, pioneered by Gaus-
sianFormer (Huang et al. 2024), moves beyond grid-aligned
queries to object-centric representation using 3D Gaussian
primitives. This approach leverages the inherent sparsity of
3D scenes by representing them as a collection of continu-
ous ellipsoids, which are then rendered into a dense seman-
tic grid via an efficient Gaussian-to-voxel splatting mech-
anism. This marked a significant departure from discrete,
voxel-based frameworks (Li et al. 2023a; Tang et al. 2024).

Sequential works (Huang et al. 2025; Zhao et al. 2025)
further advanced this paradigm by introducing a princi-
pled probabilistic framework via GMMs and incorporating
LiDAR-guided initialization to replace random placement.
In parallel, EmbodiedOcc (Wu et al. 2025) first adapted this
object-centric paradigm to the unique challenges of indoor
perception. It focuses on online incremental scene under-
standing, where confidence refinement is applied to contin-
uously update the Gaussian representation as an agent ex-
plores the environment. Following this, RoboOcc and Em-
bodiedOcc++ (Zhang et al. 2025; Wang et al. 2025a) ex-
tended this paradigm through geometry-aware refinement,
leveraging opacity cues and planar constraints to enhance
stability and structural fidelity.

However, vision-based object-centric approaches widely
employ random Gaussian initialization, which introduces
significant redundancy, where the majority of primitives are
used to represent empty space. In contrast, our method di-
rectly tackles this limitation by leveraging a depth prior to
generate a compact but more targeted set of primitives.
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Figure 2: An overview of our proposed SplatSSC architecture. Given a single input image, our model employs two parallel
branches: a trainable image encoder to extract multi-scale image features, and a frozen, pretrained Depth-Anything model to
extract depth features. After a sampling step, both features are fed into the proposed Group-wise Multi-scale Fusion (GMF)
block and a two-convolution layer depth head, yielding a refined feature map and a low-resolution depth map. These outputs
are then lifted to initialize a set of 3D Gaussian primitives. Subsequently, the primitives are processed by a multi-stage encoder
and finally passed to our Decoupled Gaussian Aggregator (DGA) to render the final semantic voxels.

Methodology
Problem Setup
Formally, given a single input RGB image Irgb, the local
prediction task is to infer the dense semantic voxel grid Vloc

and the underlying set of sparse Gaussian primitives Gloc

that represent the scene within the current camera frustum.
This process is defined as:

(Vloc,Gloc) = Mloc(Irgb), (1)

where Mloc is our prediction model. The output grid Vloc ∈
{0, 1, ..., C − 1}Xloc×Yloc×Zloc assigns each voxel a label
from C semantic classes, with class 0 denoting empty space.
The scene itself is represented by the set of N refined Gaus-
sian primitives Gloc = {Gi}Ni=1. Each primitive Gi is param-
eterized by its geometric and semantic properties: a mean
µi ∈ R3, a scale vector si ∈ R3, a rotation quaternion
qi ∈ R4, an opacity ai ∈ [0, 1], and a semantic logit vector
ci ∈ RC−1. The scale and rotation are used to construct the
full anisotropic covariance matrix Σi:

Σi = RiSiS
T
i R

T
i , Si = diag(si), Ri = q2r(qi). (2)

where q2r(·) converts a quaternion into a rotation matrix and
diag(·) forms a diagonal scaling matrix.

Overview
The architecture of our approach is illustrated in Figure 2.
We first process the input image Irgb with an image en-
coder, composed of a lightweight image backbone Efficient-
Net (Tan and Le 2019) and FPN (Lin et al. 2017), to extract
multi-scale image features Frgb = {f l

rgb}Ll=1, where L is
the scale number. Simultaneously, a pretrained depth estima-
tion model Depth-Anything (Yang et al. 2024) is employed
to produce powerful depth features Fd. These two feature
streams are then fed into our specialized depth branch,
which employs the proposed GMF module to produce the
fused depth features F ′

d and the refined depth map Id. The

[dim', 1]

dim' 1

Sum

Hadamard Product

Dimension Sum

Dot Product

Main Stream

Attention Score
Li
ne
arLi

ne
ar

Li
ne
ar

gr
ou

p

scale dim'

se
q.

dim'1 dim'
dim

se
q.

dim'

Li
ne
ar

So
ftm

ax

Figure 3: Illustration of the proposed GCA layer. The weight
matrix Wa is shared across different groups and scales, thus
reducing memory consumption and computational cost to
obtain the attention score.

resulting F ′
d and Id are then fed to a lifting module to obtain

the initial Gaussian primitives Go with good geometry prior.
Subsequently, Go is refined by a series of encoder blocks
cyclically, following EmbodiedOcc. Given the refined primi-
tives, the 3D semantic voxels are obtained by our DGA V̂agg.
By first leveraging the depth branch to generate a highly
compact set of primitives with geometrically grounded ini-
tial locations, we tackle the inefficiency inherent in random
initialization strategies. Subsequently, our DGA transforms
primitives into semantic voxels, overcoming the fragility of
prior aggregation methods. This enables our framework to
achieve state-of-the-art (SOTA) performance while main-
taining high efficiency with significantly fewer primitives.



Depth Branch
While recent monocular 3D completion methods (Wu et al.
2025; Yu et al. 2024a) leverage pretrained depth estima-
tors, they tend to utilize depth information as a secondary
guiding signal: either refining geometric distributions or in-
forming feature learning. However, this approach neglects
the rich latent features generated by depth networks. In con-
trast, our framework proposes a dual-pronged strategy: we
use the depth map as a direct geometric prior, while simul-
taneously employing the latent depth features as the initial
embeddings for 3D primitives. This not only ensures primi-
tives are grounded in both geometry (where) and semantics
(what), but necessitates a more advanced fusion mechanism.
To fulfill this demand, we design a dedicated depth branch.
Inspired by prior works (Ma et al. 2020; Jia et al. 2025), this
branch fuses multi-scale image features and depth cues via
our GMF mechanism. Specifically, GMF is a Transformer-
like block comprising the proposed GCA layer followed by
a point-wise FFN (Vaswani et al. 2017). The resulting fused
features F ′

d are then processed by two convolutional layers
to produce the refined depth map Id.

Group Cross-Attention. The architecture of our GCA
module is illustrated in Figure 3. The process begins by sam-
pling features from the input depth features Fd and multi-
scale image features Frgb, using a set of predefined refer-
ence points normalized to the [0, 1] range. This step yields
the sampled features, denoted as Fs

d and Fs
rgb = {fs,l

rgb}
L
l=1

respectively. To balance performance and efficiency, we split
these features into G groups along the channel dimension,
where each group has a reduced feature dimensionality of
Dg = D/G. The Query Qg is projected from sampled depth
features, while the Key Kl

g and Value V l
g are projected from

sampled image features at each scale l:

Qg = (Fs
dWq)

g,Kl
g = (fs,l

rgbWk)
g, V l

g = (fs,l
rgbWv)

g, (3)

where Wq , Wk, and Wv are linear projection matrices for
Query, Key, and Value, respectively. l ∈ {1, ..., L} de-
notes the scale index. Inspired by the efficient design of De-
formable Attention (Zhu et al. 2021), we adopt a lightweight
linear projection mechanism in place of the standard dot-
product attention. To elaborate, the attention scores are com-
puted by feeding the element-wise sum of queries and keys
into a shared projection Wa ∈ RDg×1

Al
g = Sl

(
Wa(Qg +Kl

g)
)
, (4)

where Sl(·) denotes the Softmax operation across the scale
dimension, and g indexes feature groups. With the group-
wise formulation, both scale-wise attention and projection
are computed within each group, allowing Wa to be shared
across different groups and scales. This design significantly
reduces parameter overhead and computation.

The final fused representation is obtained by aggregating
value features V l

g using Hadamard product ◦ with the at-
tention scores, followed by group concatenation Cg(·) and a
linear projection Wo:

F ′
d = Cg

(
L∑

l=1

Al
g ◦ V l

g

)
Wo. (5)

Efficiency Analysis. The design of GCA is computa-
tionally lean. Standard cross-attention has a complexity of
O(LN2D), where N is the sequence length. In contrast,
by employing a group-wise mechanism and replacing the
quadratic-cost dot-product with a linear-cost MLP, GCA sig-
nificantly reduces the complexity. The dominant cost of our
module becomes O(ND2(L + 2)/G), which is substantially
more efficient, especially for long feature sequences.

Decoupled Gaussian Aggregator
Gaussian-to-voxel splatting is a critical step for object-
centric approaches, which dictates the final quality of the oc-
cupancy output. While GaussianFormer first enabled object-
centric aggregation, its additive nature leads to redun-
dancy. The subsequent Probabilistic Gaussian Superposi-
tion (PGS) model proposed in GaussianFormer-2, though
theoretically elegant, introduces a flawed decoupling of ge-
ometry and semantics and therefore falls short when tackling
outlier primitives. To address these limitations, we propose
the DGA, a novel strategy that reformulates the task into two
distinct prediction pathways: Geometry Occupancy Predic-
tion and Conditional Semantic Distribution.

Analysis of Probabilistic Gaussian Superposition. The
PSG models the semantic occupancy prediction at a point
x as a two-part process: a geometric occupancy probability
α(x) and a conditional semantic expectation e(x;G):

α(x) = 1−
∏

i∈N (x)

(1− α(x;Gi)) , (6)

e(x;G) =
N∑
i=1

p(Gi|x)c̃i =
∑N

i=1 p(x|Gi)aic̃i∑N
j=1 p(x|Gj)aj

, (7)

p(x|Gi) =
1

(2π)3/2|Σi|1/2
α(x;Gi), (8)

where p(x|Gi) is the Gaussian probability density func-
tion, α(x;Gi) = exp(− 1

2 (x − µi)
TΣ−1

i (x − µi)) is the
un-normalized Gaussian kernel. The key flaw in this for-
mulation lies in how the learned opacity ai is used. While
intended to represent a primitive’s existence confidence, it
is instead employed as the prior probability in the GMM.
The negative consequence of this choice becomes evident
when considering an isolated outlier primitive Gn. For any
point xf in its immediate vicinity, the likelihood p(xf |Gm)
for all other distant primitives Gm̸=n approaches zero. This
causes the normalization term in the posterior calculation to
be dominated by the outlier itself. Hence, the posterior prob-
ability p(Gn|xf ) collapses to unity, regardless of the effect
of the low-confidence prior an:

p(Gn|xf ) =
p(xf |Gn)an∑N
j=1 p(x

f |Gj)aj
(9)

≈ p(xf |Gn)an
p(xf |Gn)an + 0

= 1.

Accordingly, the semantic expectation at this point reduces
to e(xf ;G) ≈ c̃n, with the learned opacity an nullified by
the posterior normalization.
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Figure 4: Illustration of the proposed DGA. While
GF.agg (Huang et al. 2024) and GF2.agg (Huang et al. 2025)
wrongly produces the “floaters” from outliers, our DGA re-
mains robust, as the low occupancy probability directly sup-
presses its erroneous semantic contribution.

This issue is further exacerbated when considering the
geometry prediction, where the opacity ai is decomposed
and depends solely on the Gaussian kernel. As such, even a
low-confidence outlier can yield a high occupancy value for
nearby points. Consequently, the voxel xf is likely to be in-
correctly activated as occupied by the semantic label of the
outlier Gn, producing the characteristic “floaters”.

Geometric Occupancy Prediction. Due to the exponen-
tial decay of the Gaussian kernel, only primitives in the lo-
cal vicinity of x have a meaningful influence. Therefore, we
only consider contributions from a neighborhood of relevant
Gaussian primitives for efficiency, denoted as N (x). The
occupancy is then modeled as a probabilistic OR operation
over this local set. Crucially, each primitive’s influence is
modulated by its learned opacity ai, which we interpret as
its existence confidence. This explicit use of opacity is a key
difference from PSG:

α′(x) = 1−
∏

i∈N (x)

(1− α(x;Gi) · ai) . (10)

This natural gating mechanism suppresses the influence of
low-confidence outliers on the final occupancy probability.

Conditional Semantic Distribution. Concurrently, we
predict the conditional semantic distribution e(x) under the
assumption that the position x is occupied. This is achieved
by using GMM, where we leverage the normalized semantic
weights of each Gaussian component. This design decou-
ples the semantic prediction from the opacity parameter ai,
forcing the model to rely solely on the geometric proximity
and the learned softmax-normalized semantic properties c̃i
of each primitive. The posterior probability for each seman-
tic class l is then computed as:

el(x) =
∑

i∈N (x)

p(Gi|x) =
∑

i∈N (x) p(x|Gi) · c̃li∑
j∈N (x) p(x|Gj)

. (11)

Probabilistic Fusion. Finally, the two decoupled path-
ways are fused to compute the final probability distribution
ŷx for each 3D position x. The probabilities for each valid
semantic class l and the empty class are defined as:{

ŷl
x = α′(x) · el(x)

ŷempty
x = 1− α′(x)

. (12)

This formulation serves as a principled and fully differ-
entiable gating mechanism. A low occupancy probability
α′(x), often resulting from an outlier primitive, directly sup-
presses any erroneous semantic prediction el(x), thus ele-
gantly eliminating “floater” without complex heuristics. We
demonstrate this effect in Figure 4.

Training Objective
Our model is trained via a two-stage strategy, where the first
stage establishes a robust geometric prior before training the
full network end-to-end. Throughout both stages, the pre-
trained model Depth-Anything-V2 is kept frozen.

Stage 1: Depth Branch Pre-training. In this stage, we
exclusively train our depth branch to produce a high-quality
geometry prior. This module is supervised by a composite
depth loss Ld, similar with prior works (Laina et al. 2016;
Wang et al. 2025b):

Ld = λ1Ldepth
huber + λ2Lpts

huber + λ3Lgrad, (13)
where the terms are the depth Huber loss, point cloud Huber
loss, and gradient matching Huber losses.

Stage 2: End-to-End SplatSSC Training. In this stage,
we train the entire SplatSSC network. To prevent the model
from being overly constrained by the initial depth predic-
tions, while maintaining a robust geometric prior, we re-
move Ld and introduce our proposed Probability Scale Loss
Lprob

scal as a soft geometric supervision. The training objective
is therefore optimized with a final composite loss Lssc:

Lssc = Lsem + λ4Lprob
scal , (14)

where Lsem = λ5Lfocal + λ6Llovasz is the primary se-
mantic segmentation loss adopted by EmbodiedOcc. Our
loss Lprob

scal extends the geometry-aware scale loss Lgeo
scal from

MonoScene (Cao and de Charette 2022), adapting it to su-
pervise the predicted occupancy probability across all n
encoder layers. To account for the progressive refinement
across stages, we introduce a linear weighting schedule,
which imposes weaker constraints on early-stage predictions
and gradually enforces stronger consistency at deeper layers:

Lprob
scal =

1

2

n−1∑
i=1

i

n
· Lgeo,i

scal + Lgeo,n
scal , (15)

where i is the endocer layer index. In our experiments, the
loss weights are set as λ1 = 10, λ2 = 20, λ3 = λ4 = 0.5,
λ5 = 100, and λ6 = 2.

Experiments
To evaluate the effectiveness of our SplatSSC, we conduct
extensive experiments on the high-quality indoor datasets
Occ-ScanNet and Occ-ScanNet-mini (Yu et al. 2024a). De-
tails about datasets, implementation, and evaluation metrics
are included in our supplementary material.



Dataset Method Input IoU ce
ili

ng

flo
or

w
al

l

w
in

do
w

ch
ai

r

be
d

so
fa

ta
bl

e

tv
s

fu
rn

itu
re

ob
je

ct
s

mIoU

Occ-ScanNet

TPVFormer Irgb 33.39 6.96 32.97 14.41 9.10 24.01 41.49 45.44 28.61 10.66 35.37 25.31 24.94
GaussianFormer Irgb 40.91 20.70 42.00 23.40 17.40 27.00 44.30 44.80 32.70 15.30 36.70 25.00 29.93

MonoScene Irgb 41.60 15.17 44.71 22.41 12.55 26.11 27.03 35.91 28.32 6.57 32.16 19.84 24.62
ISO Irgb 42.16 19.88 41.88 22.37 16.98 29.09 42.43 42.00 29.60 10.62 36.36 24.61 28.71

SurroundOcc Irgb 42.52 18.90 49.30 24.80 18.00 26.80 42.00 44.10 32.90 18.60 36.80 26.90 30.83
EmbodiedOcc Irgb 53.95 40.90 50.80 41.90 33.00 41.20 55.20 61.90 43.80 35.40 53.50 42.90 45.48

EmbodiedOcc++ Irgb 54.90 36.40 53.10 41.80 34.40 42.90 57.30 64.10 45.20 34.80 54.20 44.10 46.20
RoboOcc Irgb 56.48 45.36 53.49 44.35 34.81 43.38 56.93 63.35 46.35 36.12 55.48 44.78 47.67

SplatSSC (Ours) Irgb 62.83 49.10 59.00 48.30 38.80 47.40 62.40 67.00 49.50 42.60 60.70 45.40 51.83

Occ-ScanNet-mini

MonoScene Irgb 41.90 17.00 46.20 23.90 12.70 27.00 29.10 34.80 29.10 9.70 34.50 20.40 25.90
ISO Irgb 42.90 21.10 42.70 24.60 15.10 30.80 41.00 43.30 32.20 12.10 35.90 25.10 29.40

EmbodiedOcc Irgb 55.13 29.50 49.40 41.70 36.30 41.90 60.40 59.60 46.30 34.50 58.00 43.50 45.57
EmbodiedOcc++ Irgb 55.70 23.30 51.00 42.80 39.30 43.50 65.60 64.00 50.70 40.70 60.30 48.90 48.20
SplatSSC (Ours) Irgb 61.47 36.60 55.70 46.50 40.10 45.60 64.50 62.40 48.60 30.60 61.20 45.39 48.87

Table 1: Local Prediction Performance on the Occ-ScanNet dataset. The best results are highlighted in bold, while the second-
best are underlined.

Number Scale Range Mem.↓
(MiB)

Time↓
(ms) Train IoU mIoU

19200 [0.01, 0.08] 3.122 135.18 ✓ 62.77 47.69
19200 [0.01, 0.16] 4.978 134.25 ✓ 60.64 43.31
19200 [0.01, 0.32] 14.380 134.51 OOM / /
4800 [0.01, 0.08] 3.158 123.27 ✓ 62.23 47.20
4800 [0.01, 0.16] 3.108 122.63 ✓ 61.53 46.74
4800 [0.01, 0.32] 5.854 122.70 ✓ 60.78 46.96
1200 [0.01, 0.08] 3.104 116.20 ✓ 60.18 48.32
1200 [0.01, 0.16] 3.112 115.56 ✓ 61.47 48.87
1200 [0.01, 0.32] 3.126 114.75 ✓ 57.09 42.38

Table 2: Ablation on Gaussian Parameters. Memory (Mem.)
usage and time are measured on one 3090 GPU.

GMF GF.agg GF2.agg DGA IoU mIoU

- ✓ - - 11.64 12.62
- - ✓ - 27.54 17.27
- - - ✓ 48.85 36.91

✓ ✓ - - 16.63 10.45
✓ - ✓ - 57.70 45.13
✓ - - ✓ 60.61 48.01

Table 3: Ablation on the Components of SplatSSC.

Main Result
The main results on the Occ-ScanNet and Occ-ScanNet-
mini benchmarks are summarized in Table 1. Our SplatSSC
achieves SOTA performance, demonstrating strong robust-
ness and fine-grained scene understanding on both bench-
marks. For Occ-ScanNet, SplatSSC achieves 62.83% IoU
and 51.83% mIoU, surpassing the previous SOTA Ro-
boOcc (Zhang et al. 2025) by a substantial margin of 6.35%
and 4.16%, respectively. The per-class analysis further high-
lights the consistent improvements brought by SplatSCC

Lfocal Llovasz Lprob
scal Lgeo

scal Lsem
scal Ld IoU mIoU

✓ ✓ - ✓ ✓ - 57.55 46.13
✓ ✓ ✓ - - ✓ 60.34 46.67
✓ ✓ ✓ - ✓ - 59.19 48.28
✓ ✓ ✓ - - - 60.61 48.01

Table 4: Ablation on Training Objective.

GMF DAv2 FT-DAv2 δ1 ↑ RMSE ↓ C-l1 ↓
- ✓ - 0.075 50.314 1.996
✓ ✓ - 0.981 4.944 0.182

- - ✓ 0.984 3.891 0.164
✓ - ✓ 0.993 2.977 0.112

Table 5: Ablation on Depth Branch.

across diverse categories, from large structural elements
(e.g., walls and floor) to fine-grained objects (e.g., sofas
and chairs). These results underscore the strength of our
synergistic design. The depth-guided initialization facilitates
accurate geometric reconstruction, while our DGA ensures
sharp semantic boundaries. As illustrated in the qualitative
examples in Figure 5, SplatSSC yields superior 3D scene
perception capabilities that surpass the previous paradigm.

Ablation Studies
Ablation studies are conducted on the Occ-ScanNet-mini
dataset to assess the impact of design choice in our model.

Ablation on Gaussian Parameters. We analyze the im-
pact of primitive count and scale range in Table 2, revealing
a clear trade-off between performance and efficiency. Our
setting achieves the highest semantic accuracy of 48.87%
mIoU with a remarkably compact configuration of just 1200
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Figure 5: Qualitative results on the Occ-ScanNet-mini
dataset. Our method achieves superior performance in scene
completion and target object recall compared to the existing
approaches.
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Figure 6: Efficiency Analysis.

primitives. Increasing the count to 4800 and 19200 yields
marginal gains in geometric completeness but incurs higher
latency and lower mIoU. The choice of scale range is equally
critical. Excessively large ranges degrade accuracy and trig-
ger Out-of-Memory (OOM) failures under dense configu-
rations, likely due to overlaps among oversized primitives.
In contrast, a moderate range [0.01, 0.16] offers the best
trade-off, effectively capturing both global layouts and fine-
grained details with minimal redundancy.

Ablation on Network Components. We evaluate the im-
pact of our key components, GMF and DGA, in Table 3. The
analysis first highlights the necessity of a tailored aggrega-
tion mechanism. The standard GF.agg (Huang et al. 2024)
nearly fails in our sparse setting, yielding a prohibitively low
10.45% mIoU. While the more advanced GF2.agg (Huang
et al. 2025) performs significantly better, our DGA still sur-
passes it by over 2.8% in both IoU and mIoU. This con-

firms that “floaters” are the key bottleneck in sparse splat-
ting, and DGA is crucial for efficient and robust aggrega-
tion. The proposed GMF is equally important, as replacing
it with a naive depth-aware baseline (Wu et al. 2025) built on
Depth-Anything-V2 causes a substantial drop by more than
11% in both geometries and semantics, even when paired
with our DGA. The degradation becomes more severe with
other aggregators, leading to a near-collapse in performance.
This demonstrates the necessity of structured geometric pri-
ors for generating informative primitives.

Ablation on Training Objective. Our validation on the
training objective design is shown in Table 4. The results
first confirm that the popular combination of geometry and
semantic scale losses (Lgeo

scal, Lsem
scal) is suboptimal for our

framework, yielding the lowest 46.13% mIoU. The explicit
depth loss Ld is also detrimental, as its inclusion consis-
tently degrades both geometric and semantic scores. Further-
more, while adding semantic scale loss provides a marginal
mIoU boost to a peak of 48.28%, it incurs over 1.42% IoU
drop. These findings lead to our final design: a simple yet ef-
fective objective incorporating our proposed Lprob

scal alongside
standard Focal and Lovász losses (Lfocal, Llovasz), which
achieves the best geometric performance of 60.61% IoU
while maintaining competitive semantic accuracy.

Ablation on Depth Branch. The contribution of our GMF
module is further validated in Table 5. The results highlight
a dramatic impact of GMF on refining the geometric prior.
When applied to a frozen Depth-Anything-V2 (DAv2) back-
bone, our GMF module boosts the δ1 score by a remarkable
0.906. Furthermore, GMF demonstrates its capability to en-
hance even a strong and fine-tuned Depth-Anything-V2 (FT-
DAv2) (Wu et al. 2025), further pushing the δ1 score to a new
best of 0.993. This confirms that our GMF is a powerful and
versatile feature refiner, essential for generating high-quality
geometric representations.

Efficiency Analysis
Beyond accuracy, we evaluate the computational efficiency
of SplatSSC against EmbodiedOcc, with results detailed in
Figure 6. Our method demonstrates superior efficiency de-
spite a negligible 0.19% increase in parameter count. Specif-
ically, SplatSSC achieves a 9.32% reduction in inference la-
tency and a 9.64% decrease in memory usage. This advan-
tage is primarily attributed to our sparse design, which oper-
ates on significantly fewer primitives than prior works.

Conclusion
In this paper, we introduced SplatSSC, a novel framework
for monocular 3D semantic scene completion. Our method
addresses the critical limitations of prior object-centric ap-
proaches through two core technical contributions: 1) a
depth-guided initialization strategy, powered by our group-
wise multi-scale fusion module, which generates a compact
and high-quality set of initial Gaussian primitives; and 2)
a decoupled Gaussian aggregator that robustly resolves ag-
gregation artifacts such as “floaters” from outlier primitives.



Extensive experiments demonstrate that SplatSSC estab-
lishes a new SOTA on the Occ-ScanNet benchmark, achiev-
ing superior accuracy while simultaneously reducing latency
and memory consumption.

Despite its outstanding performance, we acknowledge
several limitations that offer avenues for future work, which
will be discussed in the supplementary material.

Appendix Overview
This technical appendix consists of the following sections.

• We detail the experimental setup for SplatSSC.
• We provide a detailed derivation of the semantic proba-

bility formulation for our proposed Decoupled Gaussian
Aggregator (DGA).

• We provide further visualization of qualitative results on
the Occ-ScanNet-mini and Occ-ScanNet validation sets.

• We conclude with a discussion of the current limitations
and potential applications of SplatSSC.

• We include a statement regarding our code availability
and its license.

Experimental Setup
Dataset
Occ-ScanNet (Yu et al. 2024a) comprises 45,755 training
frames and 19,764 validation frames, annotated with 12 se-
mantic classes, with one representing free space and eleven
corresponding to specific categories, including ceiling, floor,
wall, window, chair, bed, sofa, table, television, furniture,
and generic objects. The ground truth is provided as a voxel
grid covering a 4.8m×4.8m×2.88m region in front of the
camera, discretized into a resolution of 60×60×36. This
dataset serves as the benchmark for training and evalu-
ating local occupancy prediction. A smaller variant, Occ-
ScanNet-mini, is also available, containing 5,504 training
and 2,376 validation frames.

Evaluation metrics
Following common practice (Cao and de Charette 2022; Hu
et al. 2024), we evaluate the final semantic scene completion
performance using Intersection-over-Union (IoU) and mean
IoU (mIoU). These metrics are computed exclusively within
the current camera’s view frustum. To assess the quality of
the geometric prediction in our depth branch, we employ
three additional metrics: Chamfer l1 distance (C-l1), Root
Mean Squared Error (RMSE), and accuracy under thresh-
old (δ1) (Hu et al. 2024). For this geometric evaluation, the
ground truth point cloud is generated by down-sampling the
ground truth depth map using the indices from our GMF
module, then projecting the valid depth points into the cam-
era’s coordinate space.

Implementation Details
In our framework, the image encoder employs a pretrained
EfficientNet-B7 (Tan and Le 2019) as backbone, while the
depth branch utilizes a frozen fine-tuned Depth-Anything-
V2 (Wu et al. 2025) model. For both training stages, we use

the AdamW optimizer (Loshchilov and Hutter 2019) with
a weight decay of 0.01. We apply a learning rate multiplier
of 0.1 to the backbone. All input images are processed at a
resolution of 480× 640.

Stage 1: Depth Branch Pretraining. In the first stage, we
exclusively pretrain our depth branch to establish a robust
geometric prior. The down-sampled grid for our GMF has a
shape of 30×40. We employ a cosine learning rate schedule
with a 1000-iteration warmup, setting the peak learning rate
to 6× 10−4. The model is trained for 10 epochs on the Occ-
ScanNet dataset using 2 NVIDIA 3090 GPUs with a per-
GPU batch size of 2 (total batch size of 4).

Stage 2: End-to-End SplatSSC Training. In the second
stage, we train the full SplatSSC model, initializing the
depth branch with weights from stage one. The 30 × 40
down-sampled grid generates an initial set of 1200 Gaussian
primitives, with their scales initialized in the range [0.01m,
0.16m]. We train the model on 4 NVIDIA 4090 GPUs with a
per-GPU batch size of 2, resulting in a total batch size (bs) of
8. The learning rate follows a cosine schedule with a 1000-
iteration warmup, and the peak learning rate is determined
by a linear scaling rule: 2 × 10−4 · (bs/2). The model is
trained for 10 epochs on the full Occ-ScanNet dataset and
for 20 epochs on the Occ-ScanNet-mini subset.

Further experiments settings. The experimental settings
for the ablation studies and efficiency analysis are summa-
rized in Table 6.

Derivation of Decoupled Gaussian Aggregator
This section presents a complete derivation of the pro-
posed Decoupled Gaussian Aggregator (DGA), clarifying
the probabilistic reasoning behind the semantic term that
models the probability of a point x belonging to class k,
given that it is occupied.

For clarity, we restate the definition of Gaussian primi-
tives, G = {Gi}Ni=1, with each Gaussian parameterized by
a mean µi ∈ R3, a scale vector si ∈ R3, a rotation quater-
nion qi ∈ R4, a learned opacity ai ∈ [0, 1], and a softmax-
normalized semantic vector c̃i ∈ RC .

Our DGA is designed to explicitly separate the prediction
of geometry and semantics. While define the final predic-
tion as ŷk(x) = α′(x) · ek(x) for valid classes, we incorpo-
rate opacities ai into the occupancy probability α′(x) and
formulate a conditional semantic distribution ek(x).

We model the semantic distribution as a Gaussian mix-
ture model, where each primitive Gi in a local neighborhood
N (x) is a component. The likelihood of Gi contributing to
class k is determined by its semantic affinity c̃ki . Following
this, we can formulate the semantic probability for class k at
point x using Bayes’ theorem:

ek(x) =

∑
i∈N (x) p(x|Gi)c̃

k
i∑

j∈N (x)

∑C
l=1 p(x|Gj)c̃lj

. (16)

This initial expression can be further simplified. By factor-



Config Ablation Studies Efficiency AnalysisGaussian Parameters Components of SplatSSC Training Objective Depth Branch

Training Dataset Occ-ScanNet-mini Occ-ScanNet-mini Occ-ScanNet-mini Occ-ScanNet Occ-ScanNet
Inference Dataset Occ-ScanNet-mini Occ-ScanNet-mini Occ-ScanNet-mini Occ-ScanNet-mini Occ-ScanNet
Training Device 4 RTX 3090 3 RTX 3090 3 RTX 3090 3 RTX 3090 4 RTX 4090
Inference Device 1 RTX 3090 1 RTX 3090 1 RTX 3090 1 RTX 3090 1 RTX 3090
Maximum Learning Rate 8× 10−4 6× 10−4 6× 10−4 6× 10−4 8× 10−4

Weight Decay 0.01 0.01 0.01 0.01 0.01
Total Batch Size 8 6 6 6 8

Table 6: Experiment settings for different ablation studies and efficient analysis.

ing out the likelihood term in the denominator part, we have:∑
j∈N (x)

C∑
l=1

p(x|Gj)c̃
l
j =

∑
j∈N (x)

p(x|Gj)

(
C∑
l=1

c̃lj

)
. (17)

As the semantic vector c̃j is softmax-normalized, the sum
of its components over all classes is unity, i.e.,

∑C
l=1 c̃

l
j = 1.

This crucial property simplifies the normalization term to the
sum of only the geometric likelihoods.

Substituting this back, we arrive at the final expression for
our conditional semantic distribution:

ek(x) =

∑
i∈N (x) p(x|Gi)c̃

k
i∑

j∈N (x) p(x|Gj)
. (18)

Additional Visualization Results
In Figure 8, we present additional qualitative results for 3D
occupancy prediction on the Occ-ScanNet validation set.
These examples further demonstrate SplatSSC’s ability to
reconstruct detailed object shapes within diverse and com-
plex scenes accurately.

Furthermore, Figure 7 provides more visualizations on the
Occ-ScanNet-mini validation set. Alongside the final occu-
pancy predictions, we also include per-frame visualizations
of the intermediate 3D semantic Gaussians. These visual-
izations offer insight into our model’s underlying sparse,
object-centric scene representation, illustrating how it effi-
ciently models the scene’s geometry and semantics before
rendering the final dense grid.

Discussion
Limitations
Despite the strong performance, our SplatSSC framework
has certain design constraints that highlight key areas for
further improvement.

Hyperparameter Sensitivity Analysis. This experiment
validates our finding that SplatSSC’s performance is sub-
ject to a distinct threshold regarding its training hyperpa-
rameters, with results shown in Table 7. This effect is visi-
ble when comparing performance at different batch sizes. At
a total batch size of 2, our model’s performance is substan-
tially limited to 36.09% mIoU. However, upon increasing
the batch size to 4, the mIoU jumps dramatically to 45.32%,
reaching a competitive level. This demonstrates that a batch
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Figure 7: Further visualization on Occ-ScanNet-mini.

size of at least 4 is necessary for effective optimization. Be-
yond this threshold, performance continues to scale robustly,
with the best results achieved at a batch size of 8. In contrast,
the baseline EmbodiedOcc (Wu et al. 2025) exhibits only
modest and linear gains. It is also worth noting that Embod-
iedOcc was designed for a per-GPU batch size of one, mak-
ing extensive scaling less applicable. This highlights that the
observed threshold effect is a unique characteristic of our
model’s interactive primitive optimization.

Local-View Architectural Constraint. The current
SplatSSC framework is designed to operate on a per-frame
basis, excelling at generating a high-quality scene repre-
sentation from a single view. However, this design presents
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Figure 8: Further visualization on the Occ-ScanNet dataset.

a scalability challenge when extending to global scene
perception. A naive extension of simply accumulating
primitives from consecutive frames would lead to an
unbounded growth in their total number, causing a rapid
escalation in both memory and computational costs. This
limitation reveals a critical need for a scalable online
primitive management strategy that leverages both pruning
and fusion techniques to prevent unbounded growth in
memory and computation. We leave this as a promising
direction for future work and will validate it on global scene
benchmarks (Wu et al. 2025; Wang et al. 2024b).

Future Outlook and Broader Applications
While SplatSSC establishes a new state-of-the-art, its under-
lying principles open up several exciting avenues for future
research. We discuss two key directions below.

Scaling to Unbounded and Large-Scale Environments.
A primary direction is adapting SplatSSC for large-scale
outdoor environments, particularly for applications like
autonomous driving. Unlike methods that rely on dense

Method bs lr IoU mIoU

EmbodiedOcc 2 2×10−4 52.59 42.61
4 2×10−4 55.13 (+2.54%) 45.57 (+2.96%)

SplatSSC

2 2×10−4 54.68 36.09
4 4×10−4 59.53 (+4.85%) 45.32 (+9.23%)
6 6×10−4 61.47 (+6.79%) 48.87 (+12.78%)
8 8×10−4 62.83 (+8.15%) 51.83 (+15.74%)

Table 7: Hyperparameter Sensitivity Analysis. We evaluate
the performance on different total batch sizes (bs) and max-
imum learning rates (lr).

grids (Wei et al. 2023; Zhang, Zhu, and Du 2023) or ran-
dom initialization across a predefined volume (Huang et al.
2025), our depth-guided approach naturally focuses compu-
tation on observed surfaces. This inherent efficiency makes
it exceptionally well-suited for sparse and large-scale set-
tings. To fully realize this potential, the fixed volumetric grid



could be replaced with more flexible spatial data structures,
such as hash-encoded grids (Deng et al. 2025b), to support
unbounded scenes. This extension would also need to ad-
dress the challenges unique to this domain, such as manag-
ing a dynamically growing set of primitives and handling the
presence of dynamic objects.

Application in Embodied AI and Robotics. Moving be-
yond passive perception, a critical frontier in 3D vision is to
build representations that support active interaction, a cen-
tral theme in embodied and spatial intelligence (Wang et al.
2024b; Halacheva et al. 2025). Applying SplatSSC in em-
bodied AI requires moving from single-frame perception to
building a persistent and interactive world model. This de-
mands a higher level of detail than is currently captured;
for instance, an agent needs not just a semantic label for
a “door”, but also precise geometric information about its
handle for manipulation. This may necessitate using a larger
number of Gaussians or a finer-grained semantic taxonomy.
Furthermore, it requires a robust online framework where
the agent can continuously fuse new observations (Deng
et al. 2025a), prune outdated information, and refine its
Gaussian-based world map in real-time.

Code Availability and Licensing
The source code and trained models associated with this pa-
per will be made publicly available upon acceptance. The
repository will be hosted on GitHub, and the specific URL
will be provided here.

All our source code is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational (CC BY-NC-SA 4.0) license. This permits any
non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited and
any derivative works are shared under the same license.
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