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Abstract

Massive  Over-activation  Yielded  Up-
liftstMOYU) is the inherent properties of
large language models and dynamic activation
(DA) based on MOYU property is a clever but
under-explored method designed to accelerate
inference in large language models. Existing
approaches to utilize MOYU typically face
at least one major drawback, whether in
maintaining model performance, enhancing
inference speed, or broadening applicability
across different architectures. This paper
introduces two Sequential DA methods called
sTDA and sRIDA that leverage sequence
information while utilizing MOYU property,
effectively overcome the "impossible triangle"
that bothers current DA approaches. Our two
schemes have improved generation speeds by
20-25% without significantly compromising
the model’s task performance. Additionally,
given the blur of theoretical studies of MOYU,
this paper also explains its root cause, then out-
lines the mechanisms of two main limitations
(i.e. history-related activation uncertainty and
semantic-irrelevant activation inertia) faced by
existing DA methods.

1 Introduction

Large language models (LLMs), such as LLaMA,
GPT and OPT series, have demonstrated impres-
sive performance and in-context learning abilities
by leveraging a vast number of parameters. Never-
theless, their computational and memory require-
ments during inference, particularly in latency-
sensitive scenarios, are significant. To mitigate
these challenges, several techniques based on Mas-
sive Over-activation Yielded Uplifts(MOYU) have
been suggested to cut down the latency of these
models by reducing the massive over-activated
heads, neurons or weights during inference.
Existing MOYU-based techniques can be clas-
sified into static and dynamic activation methods.
Static activation (SA), such as pruning, trims the

over-activated surplus weights within LLMs based
on metrics such as magnitude, implemented either
once or iteratively. These structures remain fixed
across all subsequent inputs and are fully activated
during inference. However, a limitation of SA is
that once SA is complete, the inactive weights can-
not be restored without a recovery phase, poten-
tially leading to performance degradation and the
loss of in-context learning ability. Additionally, the
iterative SA process entails significant additional
training efforts, yet it may not result in a corre-
sponding enhancement in speedup.

On the other hand, MOYU-based dynamic acti-
vation (DA) offers adaptability by selectively acti-
vating certain heads or neurons during inference,
thereby enhancing computational efficiency. This
approach leverages the inherent property of mas-
sive over-activation present in LLMs to optimize
resource utilization. Existing researches on DA can
be categorized as follows:

1. Threshold Dynamic Activation (TDA):
TDA employs a predefined threshold to de-
cide which activation units to retain or dis-
card. Units with activation values falling be-
low this threshold are either set to zero or elim-
inated during the current forward propagation,
thereby reducing computational overhead.

2. Router-off-the-loop Dynamic Activation
(RODA): This approach utilizes a pre-trained
router block to dynamically determine which
activation units are essential during the
model’s forward propagation. The router is
trained using the model’s historical data. De-
jaVu(Liu et al., 2023b) utilizes a predictive
router that consists of a two-layer linear net-
work.

3. Router-in-the-loop Dynamic Activation
(RIDA): Unlike RODA, the router in this
method makes dynamic decisions based on



the current input and contextual information.
RIDA also allows the router to adjust its rout-
ing strategy in real-time, catering to the dif-
ficulties of the task at hand, and thereby en-
hancing the overall efficiency and accuracy.

Despite significant progress, current research on
MOYU and DA still lacks a comprehensive theoret-
ical framework that explains MOYU phenomena
across various architectures and activation func-
tions, as well as the underlying mechanisms of
MOYU within sequences.

Therefore, besides of our two sequential MOY U-
based strategies named sTDA and sRIDA, we have
also developed a mathematical rationale that ex-
plains the origins of MOYU phenomenon. From
this point of view, we have analyzed the cause of
two major limitations of existing DA methods: 1)
restriction to ReLLU activation functions; 2) fail-
ure to identify active neurons based on semantic
similarity.

* Firstly, we suggests that in foken-level, history-
information-related activation uncertainty (in
Section 3.2.1) makes non-ReLU model’s
weight importance hard to predict, which in
turn restricts token-level RODA methods to
ReLU models.

* Secondly, we suggests that in sequence-level,
neuron activation is semantic-irrelevant (in
Section 3.2.2). In other words, neurons are
more likely to be activated by the heavy hitter
within the same sequence rather than by the
semantic information in the input itself, which
in turn restricts sequence-level DA to RIDA
instead of RODA.

* In short, it is despairing that technically we
only have 3 DA strategies: token-level RODA
for ReLU models(Liu et al., 2023b), token-
level RIDA (MoE), and sequence-level TDA
and RIDA in this paper.

The rest of the paper is organized as follows.
Related works are reviewed in Section 2. We intro-
duce our universal theoretical framework in Section
3, and conduct extensive experiments in Section 4.
Finally, in Section 5, conclusions are drawn.

2 Related Works

2.1 Massive Over-activation

In the study of LLMs, "massive over-activation"
describes the excessive activation of numerous neu-

rons during task execution, potentially leading to
computational waste and decreased efficiency(et.al,
2022; Yuan et al., 2024). Research(Liu et al.,
2023a) indicates that dense deep neural networks
often exhibit massive over-activation, and by treat-
ing the discrete sparse process as a continuous prob-
lem, it becomes feasible to optimize the model
architecture and end-to-end. The Lottery Hypothe-
sis(Frankle and Carbin, 2019; Malach et al., 2020)
also underscores the importance of pruning tech-
niques in eliminating unnecessary connections and
mitigating over-activation in dense models. An-
other research(Shazeer et al., 2017) address this
issue by introducing "sparse activation" concept
through a "sparsely-gated mixture-of-experts(MoE)
layer", which enhances model capacity while re-
ducing computational costs. Furthermore, MC-
SMokE(Li et al., 2024) tackles the issue of massive
over-activation in MoEs by streamlining the model
architecture through the merging and low-rank de-
composition of redundant experts, guided by the
router’s information.

2.2 TDA and RODA

Research(Liu et al., 2023a; Mirzadeh et al., 2023)
elucidates the capacity of the ReLU to introduce
activation sparsity and proposes the concept of dy-
namic activation. DejaVu(Liu et al., 2023b) iden-
tifies that the sparsity introduced by ReLLU can be
predicted and thus proposes the first viable RODA
scheme. On the OPT series, DejaVu can facil-
itate a 2-6x acceleration in inference latency at
75% sparsity. Building upon the DejaVu approach,
ReLU?(Zhang et al., 2024) first uses TDA on non-
ReLLU models and achieved nearly 70% of spar-
sity with almost no loss to model performance.
ProSparse(Song et al., 2024) proposed a practical
DA inference framework and, based on ReLU?,
achieved only a 1-percent increase in perplexity at
approximately 80% of sparsity by replacing the ac-
tivation function and continuing to induce sparsity.

2.3 RIDA

Router-in-the-loop is the predominant method
within the Mixture of Experts (MoE) framework.
Unlike TDA and RODA methods, most RIDA ap-
proaches depend on training an expert router to
facilitate dynamic activation.

MoE(Team, 2023) transforms feed-forward net-
works (FFNs) into MoEs. This approach involves
constructing experts and training an additional gat-
ing network for expert routing. DS-MoE(Pan et al.,



2024) introduces a framework that employs dense
computation during training and switches to sparse
computation during inference. It showcases im-
proved parameter efficiency over traditional sparse
MOoE methods and significantly cuts down the to-
tal parameter count. Learn-To-be-Efficient(Zheng
et al., 2024) achieves a superior balance between
sparsity and performance by activating fewer neu-
rons and it is applicable to models with both ReLU
and non-ReL.U activation functions. Lory(Zhong
et al., 2024) retains the autoregressive properties
of language models by adopting a causally seg-
mented routing strategy and a similarity-based data
batching method, which enables efficient expert
merging operations and promotes specialization
among experts in processing similar documents
during training sessions.

3 MOYU

Section 2 provided a review of the literature per-
tinent to MOYU. This section begins with outlin-
ing the theoretical foundations of MOYU and then
presents evidence of the limitations inherent in the
RODA method when applied to non-ReLU acti-
vation architecctures, as well as the necessity of
incorporating sequence information in the RIDA
method. Building upon these insights, this sec-
tion then introduces our two methods: sTDA and
sRIDA.

3.1 Unveiling MOYU

Following literature(Li et al., 2023), we can demon-
strate through the following derivation how massive
over-activation arises and why SwiGLU cannot pro-
duce greater sparsity than ReLU.

Assuming a neural network as in Equation 1:

f(z) = Vo(p(x;0)) (1)

,where V' = [v1, ..., vq,,] is network parameter for
the last layer drawn from a random distribution,
o() is the SwiGLU activation function, and p(x; 6)
denotes all other layers with parameter 6. We write
p = p(x; 0) for simplicity.

Consider the cross-entropy (CE) loss with func-
tion Lo (f(x),y), where y is an arbitrary vector
that sums up to one and independent of V'. Assume
that the entries of V' are drawn from independent
distributions, the probability of any entry of V' be-
ing 0 is less than 1, and E[V] = 0. If there exist
an ¢* such that p;« > 0, then we have Equation 2:
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Substituting CE loss function into Equation 2
yields Equation 3:
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By substituting Equation 3 back into Equation 2,
we can obtain Equation 4:
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Expanding the numerator of Equation 4 yields
Equation 5. In Equation5, we assume that parame-
ter # and 7 have no negative features. If we have
P = Swishy(z0) ® (z7) and p}. = ReLU(z)
respectively, it is easy to get Swishi(z) < z0
when z > 0, and p. < 26 = pL and p{. < a7
holds true.

Similar to literature(Li et al., 2023), we also have
E[%ﬁp%] > 0 holds true since the expectation of
V is zero and the transformation of the activation
function does not change the non-negative property
of the loss expectations.

C1V - exp(pV)
Ca exp(pV) + Cs

Vv
Ca + Csexp(—pV)

| =E[ O]

The first term on the right-hand side(RHS) of
the loss function(in Equation 4)’s expectation can
be simplified to the form of Equation 6, while the
expectation of the second term on the RHS is zero.
With respect to p?* < pil*, we have Equation 6
demonstrates that when the activation function is
switched from ReLLU to SwiGLU, the expected
value of the loss function will decrease.

That is to say: if there exist an ¢* such that
pi= > 0, the gradient of CE loss with respect to
any positive activation p; > 0 is positive in ex-
pectation. Therefore, any training algorithm based
on negative gradient directions tends to reduce the
magnitude of such positive activation, since it will
lead to a smaller training loss, and thus causes spar-
sity. And ReLU activation function will cause a
bigger magnitude reduction that SwiGLU in this
process.

3.2 Sequencing MOYU

In Section 3.1, this paper has theoretically deduced
the root causes of the MOYU phenomenon and ex-
plored how non-ReLU activation functions might
mitigate it. The literature(Georgiadis, 2019; Kurtz
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et al., 2020; Zhu et al., 2023) has also highlighted
that the current level of activation map sparsity is
not sufficient to fully unlock the performance of
DA methods. In this section, we figure out two limi-
tations when choosing DA methods in Section 3.2.1
and 3.2.2, and then introduce two viable sequential
MOYU-based methods called sTDA and sRIDA
as simple and training-free methods for dynamic
activation.

3.2.1 History-related Activation Uncertainty

RODA schemes excels in models that utilize ReLU
as the activation function(Mirzadeh et al., 2023; Liu
et al., 2023b; Zhang et al., 2024; Song et al., 2024).
However, in models employing non-ReL.U activa-
tion functions, the offline-trained router struggles
to accurately select which heads and neurons will
be activated(Ma et al., 2024; Dong et al., 2024).

We suggest that the failure of the RODA in non-
ReLU scenarios is closely linked to the shifts in
weight importance under different history inputs:
a router trained on different historical activation
data may find it difficult to accurately identify the
weights that are most crucial for the current input.

Similarly, we assume the presence of a ReLLU-
activated model as described in Equation 1. And
the simplified current loss of input token x; can be
described as (Equation 7):

Of 4z, 4 91

Li = ( of dz; + of dgi)T(ax_ 90,

Weight change sensitivity (gradients) in model
training is as Equation 8:
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By summing gradients, we have Equation 9:
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And the importance of model weights can be
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described in Equation 10:
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, which means weight importance of a model are
not only related to current input along the direction
of 0, but also to the cumulative gradient informa-
tion from all previous data.

For models utilizing ReLU activation, Equation
10 can be simplified to the sum of the weights cor-
responding to positive inputs, which linearly cor-
relates with the magnitude of the current weights
themselves. However, for models employing non-
ReLU activations, the significance of the current
weights becomes considerably more complex.

3.2.2 Semantic-irrelevant Activation Inertia

By using simplified loss function, Section 3.2.1
demonstrated that models with non-ReL.U activa-
tions rely on historical information to accurately
decide which neurons will be activated. This sec-
tion reveals that historical information is signifi-
cantly influenced by the Heavy Hitter(H2) and the
occurrence of Ho is not related to semantics(Sun
et al., 2024).

Following literature(Zhang et al., 2023) we have
Hy : S* C [m],and k = |S*|, 7 € (0,1) denote
a threshold. o € (0, 1) denote a fraction of mass
(larger than 7) outside S*.

It is natural that attention with Hs is a («, 7, k)-
good mapping since for all z € R? S* C
supp, (Att(x)), and |supp,(Att(x)) \ S*| < a -
k. Then we have S* C M;cpysuppr(w;), and
|(Uiem)supp-(Att(z))) \ S*| < akn for z; draw
from («, 7, k)-good distribution uniformly at ran-
dom. That is to say, Hs in a sequence significantly
decides the activation pattern. Figure 1 to Figure 4
demonstrate the existence of activation inertia and
its irrelevance to semantics. Figures 1 and 2 illus-



Figure 1: Active neuron of sentence tokens in paralell

Figure 3: Active neuron of random tokens in paralell

trate the active neurons when tokens from a sen-
tence are input either separately or as a sequence.
Figures 3 and 4, on the other hand, display the ac-
tive neurons when tokens from a random word list
are fed in the same manner. It is observed that dur-
ing sequential input, neuronal activation becomes
more focused. Furthermore, random words tends
to intensify this trend of concentrated activation.

3.2.3 Sequential MOYU

Using our insight on sequence activation, we in-
troduce sequential TDA and RIDA methods called
Sequential MOYU as a simple and training-free
method for dynamic activation. Shortly, we ac-
tivate neurons in generation based on sequential
information.

MOYU-based Sequential TDA. As previously
mentioned in section 2, TDA leverages an offline-
decided thresholds to determine which LLMs heads
or weights under different inputs should be retained.
TDA offers the advantage of having minimal im-
pact on the model’s performance. However, a no-
table drawback is its dependency on the online
computation of some values of neurons or heads
and the threshold, typically requiring multiple net-
work projections. But sMOYU addresses this issue
by shifting the computation from a token-by-token
basis to a sequence-based approach.

Following the approach outlined in DejaVu(Liu
et al., 2023b) and ReLUQ(Zhang et al., 2024),
sMOYU can be represented as follows.

Figure 2: Active neuron of sentence tokens in sequence

Figure 4: Active neuron of sentence tokens in sequence

The formula for LLaMA’s MLP block can be
described in Equation 11 given an input x:

MLP(z) =W [o(W™z) ® (V"z)] (11)

, where the output of the i-th neuron can be defined
as Equation 12:

ni(z) = [o(Wite) © (Vi) Wot (12)
From Equation 11 and Equation 12, it can be
easily obtained that (Equation 13):

MLP(z) = X% ni(x) (13)
, where dj, is the dimension of the hidden layer
in MLP block. Therefore, the formula for
CETT(cumulative errors of tail truncation) is as

follows in Equation 14:

|12 iep ni(@)|]2
CETT(z) = HME)W’

D = {il [Ini()||2 < &}

(14)

, where ¢ represents the threshold, D is the set of
neurons with magnitudes less than the threshold e,
and n; denotes the output of the i-th neuron from
Equation 12. Generally, the CETT is empirically
set at 0.2, after which the maximum € achievable is
calculated to determine the threshold.
MOYU-based Sequential RIDA. Literature on
MoE(Shazeer et al., 2017; Team, 2023; Pan et al.,
2024; Zheng et al., 2024; Guo et al., 2024) serve



as practical examples of general RIDA as in Fig-
ure 5. For MOYU-based sRIDA in Figure 6,
computations are executed on the initial phase
of the sequence, referred to as "prompt" in liter-
ature(Dong et al., 2024), but note the tokens within
this sequence may not have semantic connections.
Based on these initial calculations and sampling
strategy of DA, the router determines which neu-
rons(or heads) to activate. The information from
the prompt is then relayed through these activated
neurons(or heads) to generate subsequent content.
The router, a crucial component in dynamic acti-
vation, adjusts the model’s activation path in real-
time based on the input data. This DA mechanism
enables the model to allocate computational re-
sources more flexibly and dynamically select the
most suitable neurons or experts for processing
varying input data. While the concepts of RODA
and RIDA are both implemented in the dynamic
activation of attention heads, such as MoA(Wang
et al., 2024), the routing of heads often involves
complex management of KV Cache and can signif-
icantly impair model performance(Ma et al., 2024),
which is not discussed in this paper at present.

4 [Experiments

4.1 Setups

Our approach, along with the baseline models, is
implemented using the PyTorch framework, and we
leverage the Hugging Face Transformers library for
model and dataset management. Our experiments
are powered by eight NVIDIA A100 GPUs, each
with 80 GB of memory. Adhering to the method-
ologies outlined in Section 3.2.3, we sequentially
applied our methods for each Transformer layers,
which reduces inference latency while preserving
model performance. All experiments are conducted
in a single phase, without any post-training or fine-
tuning stages.

Models, Datasets. In this paper, we conducted
a comprehensive series of experiments using the
LLaMA-2-7B and LLaMA-3-8B models. These
models represent a significant advancement in lan-
guage modeling capabilities, providing a spectrum
of scales to meet various computational needs and
performance benchmarks.

Our experimentation focused on subset of two
of the most commonly used language datasets:
Wikitext-2 and the XSum. Wikitext-2 is renowned
for its collection of high-quality, well-structured
textual data, predominantly comprising Wikipedia

articles. XSum is a comprehensive text summariza-
tion corpus that includes approximately 400,000 ex-
tensive articles and their corresponding summaries,
primarily sourced from CNN and Daily Mail. This
dataset challenges summarization models to com-
prehend the text thoroughly, capture essential in-
formation, and produce accurate and coherent sum-
maries. Our experiments were designed to assess
the data-based TDA or RIDA activation and related
performance of the models on these datasets under
STDA and sRIDA settings.

Our experiments focused on two of the most
widely used language datasets: Wikitext-2 and
XSum. Wikitext-2(Merity et al., 2016) is
known for its high-quality, well-structured textual
data, primarily consisting of Wikipedia articles.
XSum(Narayan et al., 2018), meanwhile, is a com-
prehensive text summarization corpus featuring ap-
proximately 400,000 extensive articles and their
corresponding summaries, mainly sourced from
CNN and the Daily Mail. This dataset poses a sig-
nificant challenge to summarization models, requir-
ing them to thoroughly understand the text, capture
essential information, and generate accurate and co-
herent summaries. Our experimental design aimed
to evaluate the performance of TDA, sTDA, RIDA
and sRIDA activation in processing these datasets
under the MOYU background.

Baselines. In our analysis, we evaluate the stan-
dard TDA(Zhang et al., 2024), sTDA, and sRIDA
approaches. Unless specified otherwise, each tech-
nique is applied in a layer-wise manner, enhancing
scalability even when dealing with exceptionally
large models.

Sparsity. In our evaluation, we specifically fo-
cus on the MLP blocks of LLaMA models, which
constitute approximately 67% of the parameters
of model’s two main blocks, making them a cru-
cial target for dynamic activation. We investigate
three distinct types of Dynamic Activation (DA):
TDA, sTDA and sRIDA. This approach facilitates
a more comprehensive comparison and deeper un-
derstanding of how different DA methods affect
the performance of LLMs.

Evaluation Metrics. In this study, we concen-
trate on the impact of Dynamic Activation (DA)
on model performance, assessing it through two
primary metrics: classification accuracy and gener-
ative performance using the Rouge metric family.
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4.2 Performance

Table 1 displays the performance of LLaMA-2-
7B and LLaMA-3-8B across four distinct datasets:
MMLU, TruthfulQA, Winogrande, and GSMS8K.
It compares the efficacy of four different Dynamic
Activation (DA) settings: the original dense model,
TDA, sTDA, and sRIDA. The effectiveness of each
method is evaluated based on classification accu-
racy, which is denoted as "acc(%)" and expressed
as a percentage.

Methods ‘ MMLU TruthfulQA Winogrande GSMSK

LLaMA-2-7B | 45.83 61.04 74.11 13.95
TDA | 45.62 60.66 73.88 13.65

sTDA | 43.59 59.26 73.21 12.31

SRIDA | 42.28 56.92 70.64 10.00
LLaMA-3-8B | 66.60 56.11 76.64 49.13
TDA | 63.89 55.64 75.37 44.66

sTDA | 61.37 50.81 75.18 43.39

sRIDA | 60.74 49.02 74.29 40.81

Notes: The sparsity of TDA and sTDA methods for LLaMA-
2-7B is 67.12%, for LLaMA-3-8B is 45.84%. The sparsity of
SRIDA methods for LLaMA-2-7B is 56.17%, for LLaMA-3-
8B is 40.25%.

Table 1: Classification acc(%) across different methods

From this table, it is evident that for the LLaMA-
2 and LLaMA-3 models, the layer-wise TDA
method best preserves model accuracy. However,
as highlighted in the previous chapter, the token-
level layer-wise TDA method involves calculat-
ing the values for all neurons initially and then
comparing these results to a predetermined thresh-
old. This computationally intensive process signifi-
cantly diminishes the benefits of DA provided by
the TDA method. In contrast, the sequence-level
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Figure 6: MOYU-based sRIDA

STDA and sRIDA methods only require calcula-
tions for selected tokens, thereby mitigating this
computational burden. Nevertheless, implement-
ing DA at the sequence level also slightly com-
promises model performance. Additionally, since
Table 1 presents classification results and the final
response involves only one token, the advantages of
the STDA and sRIDA methods are not fully demon-
strated in this scenario. In Table 2, mild drops in

Methods ‘ ROUGE-1 ROUGE-2 ROUGE-L 1-shot R-1

LLaMA-2-7B 25.81 8.24 21.83 27.15
TDA 24.46 7.99 21.01 13.65

sTDA 22.13 6.92 18.32 12.31

sRIDA 23.92 7.19 20.00 10.17

Notes: The sparsity of TDA and sTDA methods for LLaMA-
2-7B is 67.12%. The sparsity of SRIDA methods for LLaMA-
2-7B is 56.17%.

Table 2: Generation rouge on XSum

generation metrics on XSum can also be witnessed
for LLaMA-2-7B models. It is evident that under
the 1-shot scenario, there is a noticeable decline
in model performance. This decline occurs be-
cause the maximum length set for this experiment
is shorter than the prompt length for the XSum
1-shot, resulting in the overwhelming of effective
information, which leads to suboptimal model per-
formance. However, the performance in the 0-shot
scenario aligns with expectations.

4.3 Efficiency

In Table 3, a batch size of 1 is used for these
experiments. Utilizing Hugging Face implemen-
tations of LLaMA-2-7B at FP16 precision, we



measure latency across various scenarios on a sin-
gle NVIDIA A100 GPU. Table 3 reveals that al-

Model ‘ Setup Sparsity Latency(s)
1024+128  67.12% 4.11
LLaMA-2-7B 1024+1024  67.12% 132.88
TDA | 1024+1024  67.12% 126.23
sTDA | 1024+1024  67.12% 91.25
sRIDA | 1024+128  56.17% 3.18

Notes: TDA and sTDA methods here is conducted in a model-

wise manner.

Table 3: Generation latency across different methods

though the sSRIDA method exhibits lower sparsity,
it records the lowest latency, suggesting a potential
advantage in terms of generation speed.

4.4 Ablations and Analysis

Ablation of Different Input Length. We sup-
pose that both sSTDA and sRIDA methods become
less robust for generation tasks when the prompt is
shorter. Building on the O-shot scenario in XSum,
we further reduced the prompt length to examine
changes in evaluation metrics. Notably, the 1-shot
scenario in Table 2 was compromised by prompt
length limitations, leading to an underestimation of
the model’s generative capabilities. In Table 4, we

Model‘ Setup ROUGE-1 1-shot R-1

LLaMA-2-7B | 512+128 18.29 20.31
TDA | 5124512 17.27 20.07

sTDA | 5124512 14.72 15.83

sRIDA | 512+128 16.93% 15.72

Table 4: Generation rouge on XSum with shorter prompt

employed a truncation strategy to ensure that the
1-shot and content each occupy half of the prompt
space. From this table, we arrived at a conclusion
similar to that of Table 2: TDA remains the most
accurate method. Additionally, the sSTDA method
demonstrates the most significant performance im-
provement when transitioning from 0-shot to 1-
shot.

Ablations of Heavy Hitters. In Table 5, this pa-
per follows the methodology of (Zhang et al., 2023)
by eliminating heavy hitters and assessing their im-
pact on classification metrics. The data in Table 5
illustrates that after the removal of heavy hitters, the
classification accuracy of all model-wise DA meth-
ods declined significantly, with the TDA method
experiencing the most substantial decrease. This

decline is attributed to the TDA method’s direct
influence on the selection of the most critical neu-
rons once heavy hitters are eliminated. Conversely,

Methods ‘ MMLU TruthfulQA Winogrande GSMSK

LLaMA-2-7B | 38.83 52.04 66.11
TDA | 33.94 55.00 63.18 -
sTDA | 29.83 48.17 51.11 2.16
sRIDA | 39.22 50.72 63.84 8.00

Table 5: Classification acc(%) without heavy hitter

the sRIDA method exhibits a smaller reduction in
accuracy compared to the other methods, making
the underlying reasons for this discrepancy worthy
of further investigation.

5 Conclusion

Massive Over-activation Yielded Uplifts (MOYU)
are intrinsic characteristics of large language mod-
els, and leveraging these properties through Dy-
namic Activation (DA) is a promising yet underuti-
lized strategy to enhance inference speeds in these
models. Traditional methods that exploit MOYU
often encounter significant challenges, including
maintaining model performance, speeding up in-
ference, or extending their use to various architec-
tures. This paper introduces two novel Sequential
DA techniques, sSTDA and sRIDA, which utilize
sequence data to effectively address the challenges
faced by existing DA methods, often referred to as
the "impossible triangle." These methods have suc-
cessfully increased generation speeds by 20-25%
without substantially degrading task performance.

In addition to our sequential strategies based on
MOYU, named sTDA and sRIDA, we have devel-
oped a mathematical framework that elucidates the
origins of the MOYU phenomenon. Through this
framework, we have identified two primary limita-
tions of current DA methods: 1) their reliance on
ReLU activation functions; 2) their inability to de-
tect active neurons based on semantic similarities.

Limitations

Firstly, the mathematical rationale and implementa-
tion of the proposed DA methods could introduce
complexities that might impede their practical ap-
plication. Additionally, this paper highlights that
sequence-level activation is predominantly influ-
enced by heavy hitters within the same sequence;
however, due to length constraints, this ablation
experiment was not conducted. Lastly, the datasets



and the volume of data utilized in this study are rel-
atively limited. It is anticipated that future research
will undertake more extensive experiments.
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