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Abstract001

Massive Over-activation Yielded Up-002
lifts(MOYU) is the inherent properties of003
large language models and dynamic activation004
(DA) based on MOYU property is a clever but005
under-explored method designed to accelerate006
inference in large language models. Existing007
approaches to utilize MOYU typically face008
at least one major drawback, whether in009
maintaining model performance, enhancing010
inference speed, or broadening applicability011
across different architectures. This paper012
introduces two Sequential DA methods called013
sTDA and sRIDA that leverage sequence014
information while utilizing MOYU property,015
effectively overcome the "impossible triangle"016
that bothers current DA approaches. Our two017
schemes have improved generation speeds by018
20-25% without significantly compromising019
the model’s task performance. Additionally,020
given the blur of theoretical studies of MOYU,021
this paper also explains its root cause, then out-022
lines the mechanisms of two main limitations023
(i.e. history-related activation uncertainty and024
semantic-irrelevant activation inertia) faced by025
existing DA methods.026

1 Introduction027

Large language models (LLMs), such as LLaMA,028

GPT and OPT series, have demonstrated impres-029

sive performance and in-context learning abilities030

by leveraging a vast number of parameters. Never-031

theless, their computational and memory require-032

ments during inference, particularly in latency-033

sensitive scenarios, are significant. To mitigate034

these challenges, several techniques based on Mas-035

sive Over-activation Yielded Uplifts(MOYU) have036

been suggested to cut down the latency of these037

models by reducing the massive over-activated038

heads, neurons or weights during inference.039

Existing MOYU-based techniques can be clas-040

sified into static and dynamic activation methods.041

Static activation (SA), such as pruning, trims the042

over-activated surplus weights within LLMs based 043

on metrics such as magnitude, implemented either 044

once or iteratively. These structures remain fixed 045

across all subsequent inputs and are fully activated 046

during inference. However, a limitation of SA is 047

that once SA is complete, the inactive weights can- 048

not be restored without a recovery phase, poten- 049

tially leading to performance degradation and the 050

loss of in-context learning ability. Additionally, the 051

iterative SA process entails significant additional 052

training efforts, yet it may not result in a corre- 053

sponding enhancement in speedup. 054

On the other hand, MOYU-based dynamic acti- 055

vation (DA) offers adaptability by selectively acti- 056

vating certain heads or neurons during inference, 057

thereby enhancing computational efficiency. This 058

approach leverages the inherent property of mas- 059

sive over-activation present in LLMs to optimize 060

resource utilization. Existing researches on DA can 061

be categorized as follows: 062

1. Threshold Dynamic Activation (TDA): 063

TDA employs a predefined threshold to de- 064

cide which activation units to retain or dis- 065

card. Units with activation values falling be- 066

low this threshold are either set to zero or elim- 067

inated during the current forward propagation, 068

thereby reducing computational overhead. 069

2. Router-off-the-loop Dynamic Activation 070

(RODA): This approach utilizes a pre-trained 071

router block to dynamically determine which 072

activation units are essential during the 073

model’s forward propagation. The router is 074

trained using the model’s historical data. De- 075

jaVu(Liu et al., 2023b) utilizes a predictive 076

router that consists of a two-layer linear net- 077

work. 078

3. Router-in-the-loop Dynamic Activation 079

(RIDA): Unlike RODA, the router in this 080

method makes dynamic decisions based on 081
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the current input and contextual information.082

RIDA also allows the router to adjust its rout-083

ing strategy in real-time, catering to the dif-084

ficulties of the task at hand, and thereby en-085

hancing the overall efficiency and accuracy.086

Despite significant progress, current research on087

MOYU and DA still lacks a comprehensive theoret-088

ical framework that explains MOYU phenomena089

across various architectures and activation func-090

tions, as well as the underlying mechanisms of091

MOYU within sequences.092

Therefore, besides of our two sequential MOYU-093

based strategies named sTDA and sRIDA, we have094

also developed a mathematical rationale that ex-095

plains the origins of MOYU phenomenon. From096

this point of view, we have analyzed the cause of097

two major limitations of existing DA methods: 1)098

restriction to ReLU activation functions; 2) fail-099

ure to identify active neurons based on semantic100

similarity.101

• Firstly, we suggests that in token-level, history-102

information-related activation uncertainty (in103

Section 3.2.1) makes non-ReLU model’s104

weight importance hard to predict, which in105

turn restricts token-level RODA methods to106

ReLU models.107

• Secondly, we suggests that in sequence-level,108

neuron activation is semantic-irrelevant (in109

Section 3.2.2). In other words, neurons are110

more likely to be activated by the heavy hitter111

within the same sequence rather than by the112

semantic information in the input itself, which113

in turn restricts sequence-level DA to RIDA114

instead of RODA.115

• In short, it is despairing that technically we116

only have 3 DA strategies: token-level RODA117

for ReLU models(Liu et al., 2023b), token-118

level RIDA (MoE), and sequence-level TDA119

and RIDA in this paper.120

The rest of the paper is organized as follows.121

Related works are reviewed in Section 2. We intro-122

duce our universal theoretical framework in Section123

3, and conduct extensive experiments in Section 4.124

Finally, in Section 5, conclusions are drawn.125

2 Related Works126

2.1 Massive Over-activation127

In the study of LLMs, "massive over-activation"128

describes the excessive activation of numerous neu-129

rons during task execution, potentially leading to 130

computational waste and decreased efficiency(et.al, 131

2022; Yuan et al., 2024). Research(Liu et al., 132

2023a) indicates that dense deep neural networks 133

often exhibit massive over-activation, and by treat- 134

ing the discrete sparse process as a continuous prob- 135

lem, it becomes feasible to optimize the model 136

architecture and end-to-end. The Lottery Hypothe- 137

sis(Frankle and Carbin, 2019; Malach et al., 2020) 138

also underscores the importance of pruning tech- 139

niques in eliminating unnecessary connections and 140

mitigating over-activation in dense models. An- 141

other research(Shazeer et al., 2017) address this 142

issue by introducing "sparse activation" concept 143

through a "sparsely-gated mixture-of-experts(MoE) 144

layer", which enhances model capacity while re- 145

ducing computational costs. Furthermore, MC- 146

SMoE(Li et al., 2024) tackles the issue of massive 147

over-activation in MoEs by streamlining the model 148

architecture through the merging and low-rank de- 149

composition of redundant experts, guided by the 150

router’s information. 151

2.2 TDA and RODA 152

Research(Liu et al., 2023a; Mirzadeh et al., 2023) 153

elucidates the capacity of the ReLU to introduce 154

activation sparsity and proposes the concept of dy- 155

namic activation. DejaVu(Liu et al., 2023b) iden- 156

tifies that the sparsity introduced by ReLU can be 157

predicted and thus proposes the first viable RODA 158

scheme. On the OPT series, DejaVu can facil- 159

itate a 2-6x acceleration in inference latency at 160

75% sparsity. Building upon the DejaVu approach, 161

ReLU2(Zhang et al., 2024) first uses TDA on non- 162

ReLU models and achieved nearly 70% of spar- 163

sity with almost no loss to model performance. 164

ProSparse(Song et al., 2024) proposed a practical 165

DA inference framework and, based on ReLU2, 166

achieved only a 1-percent increase in perplexity at 167

approximately 80% of sparsity by replacing the ac- 168

tivation function and continuing to induce sparsity. 169

2.3 RIDA 170

Router-in-the-loop is the predominant method 171

within the Mixture of Experts (MoE) framework. 172

Unlike TDA and RODA methods, most RIDA ap- 173

proaches depend on training an expert router to 174

facilitate dynamic activation. 175

MoE(Team, 2023) transforms feed-forward net- 176

works (FFNs) into MoEs. This approach involves 177

constructing experts and training an additional gat- 178

ing network for expert routing. DS-MoE(Pan et al., 179
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2024) introduces a framework that employs dense180

computation during training and switches to sparse181

computation during inference. It showcases im-182

proved parameter efficiency over traditional sparse183

MoE methods and significantly cuts down the to-184

tal parameter count. Learn-To-be-Efficient(Zheng185

et al., 2024) achieves a superior balance between186

sparsity and performance by activating fewer neu-187

rons and it is applicable to models with both ReLU188

and non-ReLU activation functions. Lory(Zhong189

et al., 2024) retains the autoregressive properties190

of language models by adopting a causally seg-191

mented routing strategy and a similarity-based data192

batching method, which enables efficient expert193

merging operations and promotes specialization194

among experts in processing similar documents195

during training sessions.196

3 MOYU197

Section 2 provided a review of the literature per-198

tinent to MOYU. This section begins with outlin-199

ing the theoretical foundations of MOYU and then200

presents evidence of the limitations inherent in the201

RODA method when applied to non-ReLU acti-202

vation architecctures, as well as the necessity of203

incorporating sequence information in the RIDA204

method. Building upon these insights, this sec-205

tion then introduces our two methods: sTDA and206

sRIDA.207

3.1 Unveiling MOYU208

Following literature(Li et al., 2023), we can demon-209

strate through the following derivation how massive210

over-activation arises and why SwiGLU cannot pro-211

duce greater sparsity than ReLU.212

Assuming a neural network as in Equation 1:213

f(x) = V σ(p(x;θ)) (1)214

,where V = [v1, ..., vdff ] is network parameter for215

the last layer drawn from a random distribution,216

σ() is the SwiGLU activation function, and p(x;θ)217

denotes all other layers with parameter θ. We write218

p = p(x;θ) for simplicity.219

Consider the cross-entropy (CE) loss with func-220

tion ℓCE(f(x),y), where y is an arbitrary vector221

that sums up to one and independent of V . Assume222

that the entries of V are drawn from independent223

distributions, the probability of any entry of V be-224

ing 0 is less than 1, and E[V ] = 0 . If there exist225

an i∗ such that pi∗ > 0, then we have Equation 2:226

∂ℓ

∂pi∗
=

〈
∂ℓ

∂f
,
∂f

∂pi∗

〉
=

〈
∂ℓ

∂f
, vi∗

〉
(2)227

Substituting CE loss function into Equation 2 228

yields Equation 3: 229

∂ℓCE

∂f
=

exp(f(x))

⟨exp(f(x)),1⟩
− y

=
exp(

∑
i σ(pi) · vi)

⟨exp(
∑

i σ(pi) · vi),1⟩
− y

(3) 230

By substituting Equation 3 back into Equation 2, 231

we can obtain Equation 4: 232

∂ℓCE

∂pi∗
=

〈
exp(

∑
i σ(pi) · vi),vi∗

〉〈
exp(

∑
i σ(pi) · vi),1

〉 − ⟨vi∗ , y⟩ (4) 233

Expanding the numerator of Equation 4 yields 234

Equation 5. In Equation5, we assume that parame- 235

ter θ and τ have no negative features. If we have 236

p0i∗ = Swish1(xθ) ⊙ (xτ) and p1i∗ = ReLU(x) 237

respectively, it is easy to get Swish1(xθ) < xθ 238

when x > 0, and p0i∗ < xθ = p1i∗ and p0i∗ < xτ 239

holds true. 240

Similar to literature(Li et al., 2023), we also have 241

E[∂ℓCE
∂pi∗

] > 0 holds true since the expectation of 242

V is zero and the transformation of the activation 243

function does not change the non-negative property 244

of the loss expectations. 245

E[
C1V · exp(pV )

C2 exp(pV ) + C3
] = E[

C1V

C2 + C3exp(−pV )
] (6) 246

The first term on the right-hand side(RHS) of 247

the loss function(in Equation 4)’s expectation can 248

be simplified to the form of Equation 6, while the 249

expectation of the second term on the RHS is zero. 250

With respect to p0i∗ < p1i∗ , we have Equation 6 251

demonstrates that when the activation function is 252

switched from ReLU to SwiGLU, the expected 253

value of the loss function will decrease. 254

That is to say: if there exist an i∗ such that 255

pi∗ > 0, the gradient of CE loss with respect to 256

any positive activation pi∗ > 0 is positive in ex- 257

pectation. Therefore, any training algorithm based 258

on negative gradient directions tends to reduce the 259

magnitude of such positive activation, since it will 260

lead to a smaller training loss, and thus causes spar- 261

sity. And ReLU activation function will cause a 262

bigger magnitude reduction that SwiGLU in this 263

process. 264

3.2 Sequencing MOYU 265

In Section 3.1, this paper has theoretically deduced 266

the root causes of the MOYU phenomenon and ex- 267

plored how non-ReLU activation functions might 268

mitigate it. The literature(Georgiadis, 2019; Kurtz 269
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〈
exp(

∑
i

σ(pi) · vi),vi∗
〉

=
∑
m

(vi∗,m · exp(
∑
i

σ(pi) · vim)

=
∑
m

(vi∗,m · exp(pi∗ · vi∗m) · exp(
∑
i ̸=i∗

σ(pi) · vim)
(5)

et al., 2020; Zhu et al., 2023) has also highlighted270

that the current level of activation map sparsity is271

not sufficient to fully unlock the performance of272

DA methods. In this section, we figure out two limi-273

tations when choosing DA methods in Section 3.2.1274

and 3.2.2, and then introduce two viable sequential275

MOYU-based methods called sTDA and sRIDA276

as simple and training-free methods for dynamic277

activation.278

3.2.1 History-related Activation Uncertainty279

RODA schemes excels in models that utilize ReLU280

as the activation function(Mirzadeh et al., 2023; Liu281

et al., 2023b; Zhang et al., 2024; Song et al., 2024).282

However, in models employing non-ReLU activa-283

tion functions, the offline-trained router struggles284

to accurately select which heads and neurons will285

be activated(Ma et al., 2024; Dong et al., 2024).286

We suggest that the failure of the RODA in non-287

ReLU scenarios is closely linked to the shifts in288

weight importance under different history inputs:289

a router trained on different historical activation290

data may find it difficult to accurately identify the291

weights that are most crucial for the current input.292

Similarly, we assume the presence of a ReLU-293

activated model as described in Equation 1. And294

the simplified current loss of input token xi can be295

described as (Equation 7):296

Li = (
∂f

∂xi
dxi +

∂f

∂θi
dθi)

T (
∂f

∂xi
dxi +

∂f

∂θi
dθi) (7)297

Weight change sensitivity (gradients) in model298

training is as Equation 8:299

∂Li

∂dθi
= 2(

∂f

∂xi
dxi +

∂f

∂θi
dθi)

∂f

∂θi
(8)300

By summing gradients, we have Equation 9:301

∇dθiL =
∑
i

2(
∂f

∂xi
dxi +

∂f

∂θi
dθi)

∂f

∂θi

= ∇dθiLi +
∑

j=0:i−1

∇dθjLj

(9)302

And the importance of model weights can be303

described in Equation 10: 304

Θi =
∑
i

|V · ∇dθiLi|

= |V | ·
∑
i

|∇dθiLi|

= |V | · (∇dθiLi +
∑

j=0:i−1

∇dθjLj)

= |V | · ∇dθiLi +Θi−1

(10) 305

, which means weight importance of a model are 306

not only related to current input along the direction 307

of θ, but also to the cumulative gradient informa- 308

tion from all previous data. 309

For models utilizing ReLU activation, Equation 310

10 can be simplified to the sum of the weights cor- 311

responding to positive inputs, which linearly cor- 312

relates with the magnitude of the current weights 313

themselves. However, for models employing non- 314

ReLU activations, the significance of the current 315

weights becomes considerably more complex. 316

3.2.2 Semantic-irrelevant Activation Inertia 317

By using simplified loss function, Section 3.2.1 318

demonstrated that models with non-ReLU activa- 319

tions rely on historical information to accurately 320

decide which neurons will be activated. This sec- 321

tion reveals that historical information is signifi- 322

cantly influenced by the Heavy Hitter(H2) and the 323

occurrence of H2 is not related to semantics(Sun 324

et al., 2024). 325

Following literature(Zhang et al., 2023) we have 326

H2 : S∗ ⊂ [m], and k = |S∗|, τ ∈ (0, 1) denote 327

a threshold. α ∈ (0, 1) denote a fraction of mass 328

(larger than τ ) outside S∗. 329

It is natural that attention with H2 is a (α, τ, k)- 330

good mapping since for all x ∈ Rd, S∗ ⊂ 331

suppτ (Att(x)), and |suppτ (Att(x)) \ S∗| ≤ α · 332

k. Then we have S∗ ⊆ ∩i∈[n]suppτ (xi), and 333

|(∪i∈[n]suppτ (Att(x))) \ S∗| ≤ αkn for xi draw 334

from (α, τ, k)-good distribution uniformly at ran- 335

dom. That is to say, H2 in a sequence significantly 336

decides the activation pattern. Figure 1 to Figure 4 337

demonstrate the existence of activation inertia and 338

its irrelevance to semantics. Figures 1 and 2 illus- 339
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Figure 1: Active neuron of sentence tokens in paralell Figure 2: Active neuron of sentence tokens in sequence

Figure 3: Active neuron of random tokens in paralell Figure 4: Active neuron of sentence tokens in sequence

trate the active neurons when tokens from a sen-340

tence are input either separately or as a sequence.341

Figures 3 and 4, on the other hand, display the ac-342

tive neurons when tokens from a random word list343

are fed in the same manner. It is observed that dur-344

ing sequential input, neuronal activation becomes345

more focused. Furthermore, random words tends346

to intensify this trend of concentrated activation.347

3.2.3 Sequential MOYU348

Using our insight on sequence activation, we in-349

troduce sequential TDA and RIDA methods called350

Sequential MOYU as a simple and training-free351

method for dynamic activation. Shortly, we ac-352

tivate neurons in generation based on sequential353

information.354

MOYU-based Sequential TDA. As previously355

mentioned in section 2, TDA leverages an offline-356

decided thresholds to determine which LLMs heads357

or weights under different inputs should be retained.358

TDA offers the advantage of having minimal im-359

pact on the model’s performance. However, a no-360

table drawback is its dependency on the online361

computation of some values of neurons or heads362

and the threshold, typically requiring multiple net-363

work projections. But sMOYU addresses this issue364

by shifting the computation from a token-by-token365

basis to a sequence-based approach.366

Following the approach outlined in DejaVu(Liu367

et al., 2023b) and ReLU2(Zhang et al., 2024),368

sMOYU can be represented as follows.369

The formula for LLaMA’s MLP block can be 370

described in Equation 11 given an input x: 371

MLP (x) = W out
[
σ(W inx)⊙ (V inx)

]
(11) 372

, where the output of the i-th neuron can be defined 373

as Equation 12: 374

ni(x) =
[
σ(W in

i,: x)⊙ (V in
i,: x)

]
W out

:,i (12) 375

From Equation 11 and Equation 12, it can be 376

easily obtained that (Equation 13): 377

MLP (x) =
∑dh

i=1 ni(x) (13) 378

, where dh is the dimension of the hidden layer 379

in MLP block. Therefore, the formula for 380

CETT(cumulative errors of tail truncation) is as 381

follows in Equation 14: 382

CETT (x) =
||
∑

i∈D ni(x)||2
||MLP (x)||2

,

D = {i| ||ni(x)||2 < ϵ}
(14) 383

, where ϵ represents the threshold, D is the set of 384

neurons with magnitudes less than the threshold ϵ, 385

and ni denotes the output of the i-th neuron from 386

Equation 12. Generally, the CETT is empirically 387

set at 0.2, after which the maximum ϵ achievable is 388

calculated to determine the threshold. 389

MOYU-based Sequential RIDA. Literature on 390

MoE(Shazeer et al., 2017; Team, 2023; Pan et al., 391

2024; Zheng et al., 2024; Guo et al., 2024) serve 392
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as practical examples of general RIDA as in Fig-393

ure 5. For MOYU-based sRIDA in Figure 6,394

computations are executed on the initial phase395

of the sequence, referred to as "prompt" in liter-396

ature(Dong et al., 2024), but note the tokens within397

this sequence may not have semantic connections.398

Based on these initial calculations and sampling399

strategy of DA, the router determines which neu-400

rons(or heads) to activate. The information from401

the prompt is then relayed through these activated402

neurons(or heads) to generate subsequent content.403

The router, a crucial component in dynamic acti-404

vation, adjusts the model’s activation path in real-405

time based on the input data. This DA mechanism406

enables the model to allocate computational re-407

sources more flexibly and dynamically select the408

most suitable neurons or experts for processing409

varying input data. While the concepts of RODA410

and RIDA are both implemented in the dynamic411

activation of attention heads, such as MoA(Wang412

et al., 2024), the routing of heads often involves413

complex management of KV Cache and can signif-414

icantly impair model performance(Ma et al., 2024),415

which is not discussed in this paper at present.416

4 Experiments417

4.1 Setups418

Our approach, along with the baseline models, is419

implemented using the PyTorch framework, and we420

leverage the Hugging Face Transformers library for421

model and dataset management. Our experiments422

are powered by eight NVIDIA A100 GPUs, each423

with 80 GB of memory. Adhering to the method-424

ologies outlined in Section 3.2.3, we sequentially425

applied our methods for each Transformer layers,426

which reduces inference latency while preserving427

model performance. All experiments are conducted428

in a single phase, without any post-training or fine-429

tuning stages.430

Models, Datasets. In this paper, we conducted431

a comprehensive series of experiments using the432

LLaMA-2-7B and LLaMA-3-8B models. These433

models represent a significant advancement in lan-434

guage modeling capabilities, providing a spectrum435

of scales to meet various computational needs and436

performance benchmarks.437

Our experimentation focused on subset of two438

of the most commonly used language datasets:439

Wikitext-2 and the XSum. Wikitext-2 is renowned440

for its collection of high-quality, well-structured441

textual data, predominantly comprising Wikipedia442

articles. XSum is a comprehensive text summariza- 443

tion corpus that includes approximately 400,000 ex- 444

tensive articles and their corresponding summaries, 445

primarily sourced from CNN and Daily Mail. This 446

dataset challenges summarization models to com- 447

prehend the text thoroughly, capture essential in- 448

formation, and produce accurate and coherent sum- 449

maries. Our experiments were designed to assess 450

the data-based TDA or RIDA activation and related 451

performance of the models on these datasets under 452

sTDA and sRIDA settings. 453

Our experiments focused on two of the most 454

widely used language datasets: Wikitext-2 and 455

XSum. Wikitext-2(Merity et al., 2016) is 456

known for its high-quality, well-structured textual 457

data, primarily consisting of Wikipedia articles. 458

XSum(Narayan et al., 2018), meanwhile, is a com- 459

prehensive text summarization corpus featuring ap- 460

proximately 400,000 extensive articles and their 461

corresponding summaries, mainly sourced from 462

CNN and the Daily Mail. This dataset poses a sig- 463

nificant challenge to summarization models, requir- 464

ing them to thoroughly understand the text, capture 465

essential information, and generate accurate and co- 466

herent summaries. Our experimental design aimed 467

to evaluate the performance of TDA, sTDA, RIDA 468

and sRIDA activation in processing these datasets 469

under the MOYU background. 470

Baselines. In our analysis, we evaluate the stan- 471

dard TDA(Zhang et al., 2024), sTDA, and sRIDA 472

approaches. Unless specified otherwise, each tech- 473

nique is applied in a layer-wise manner, enhancing 474

scalability even when dealing with exceptionally 475

large models. 476

Sparsity. In our evaluation, we specifically fo- 477

cus on the MLP blocks of LLaMA models, which 478

constitute approximately 67% of the parameters 479

of model’s two main blocks, making them a cru- 480

cial target for dynamic activation. We investigate 481

three distinct types of Dynamic Activation (DA): 482

TDA, sTDA and sRIDA. This approach facilitates 483

a more comprehensive comparison and deeper un- 484

derstanding of how different DA methods affect 485

the performance of LLMs. 486

Evaluation Metrics. In this study, we concen- 487

trate on the impact of Dynamic Activation (DA) 488

on model performance, assessing it through two 489

primary metrics: classification accuracy and gener- 490

ative performance using the Rouge metric family. 491
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Figure 5: MoE RIDA Figure 6: MOYU-based sRIDA

4.2 Performance492

Table 1 displays the performance of LLaMA-2-493

7B and LLaMA-3-8B across four distinct datasets:494

MMLU, TruthfulQA, Winogrande, and GSM8K.495

It compares the efficacy of four different Dynamic496

Activation (DA) settings: the original dense model,497

TDA, sTDA, and sRIDA. The effectiveness of each498

method is evaluated based on classification accu-499

racy, which is denoted as "acc(%)" and expressed500

as a percentage.

Methods MMLU TruthfulQA Winogrande GSM8K

LLaMA-2-7B 45.83 61.04 74.11 13.95
TDA 45.62 60.66 73.88 13.65

sTDA 43.59 59.26 73.21 12.31
sRIDA 42.28 56.92 70.64 10.00

LLaMA-3-8B 66.60 56.11 76.64 49.13
TDA 63.89 55.64 75.37 44.66

sTDA 61.37 50.81 75.18 43.39
sRIDA 60.74 49.02 74.29 40.81

Notes: The sparsity of TDA and sTDA methods for LLaMA-

2-7B is 67.12%, for LLaMA-3-8B is 45.84%. The sparsity of

sRIDA methods for LLaMA-2-7B is 56.17%, for LLaMA-3-

8B is 40.25%.

Table 1: Classification acc(%) across different methods

501
From this table, it is evident that for the LLaMA-502

2 and LLaMA-3 models, the layer-wise TDA503

method best preserves model accuracy. However,504

as highlighted in the previous chapter, the token-505

level layer-wise TDA method involves calculat-506

ing the values for all neurons initially and then507

comparing these results to a predetermined thresh-508

old. This computationally intensive process signifi-509

cantly diminishes the benefits of DA provided by510

the TDA method. In contrast, the sequence-level511

sTDA and sRIDA methods only require calcula- 512

tions for selected tokens, thereby mitigating this 513

computational burden. Nevertheless, implement- 514

ing DA at the sequence level also slightly com- 515

promises model performance. Additionally, since 516

Table 1 presents classification results and the final 517

response involves only one token, the advantages of 518

the sTDA and sRIDA methods are not fully demon- 519

strated in this scenario. In Table 2, mild drops in

Methods ROUGE-1 ROUGE-2 ROUGE-L 1-shot R-1

LLaMA-2-7B 25.81 8.24 21.83 27.15
TDA 24.46 7.99 21.01 13.65

sTDA 22.13 6.92 18.32 12.31
sRIDA 23.92 7.19 20.00 10.17

Notes: The sparsity of TDA and sTDA methods for LLaMA-

2-7B is 67.12%. The sparsity of sRIDA methods for LLaMA-

2-7B is 56.17%.

Table 2: Generation rouge on XSum

520
generation metrics on XSum can also be witnessed 521

for LLaMA-2-7B models. It is evident that under 522

the 1-shot scenario, there is a noticeable decline 523

in model performance. This decline occurs be- 524

cause the maximum length set for this experiment 525

is shorter than the prompt length for the XSum 526

1-shot, resulting in the overwhelming of effective 527

information, which leads to suboptimal model per- 528

formance. However, the performance in the 0-shot 529

scenario aligns with expectations. 530

4.3 Efficiency 531

In Table 3, a batch size of 1 is used for these 532

experiments. Utilizing Hugging Face implemen- 533

tations of LLaMA-2-7B at FP16 precision, we 534
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measure latency across various scenarios on a sin-535

gle NVIDIA A100 GPU. Table 3 reveals that al-

Model Setup Sparsity Latency(s)

LLaMA-2-7B 1024+128 67.12% 4.11
1024+1024 67.12% 132.88

TDA 1024+1024 67.12% 126.23
sTDA 1024+1024 67.12% 91.25

sRIDA 1024+128 56.17% 3.18

Notes: TDA and sTDA methods here is conducted in a model-

wise manner.

Table 3: Generation latency across different methods

536
though the sRIDA method exhibits lower sparsity,537

it records the lowest latency, suggesting a potential538

advantage in terms of generation speed.539

4.4 Ablations and Analysis540

Ablation of Different Input Length. We sup-541

pose that both sTDA and sRIDA methods become542

less robust for generation tasks when the prompt is543

shorter. Building on the 0-shot scenario in XSum,544

we further reduced the prompt length to examine545

changes in evaluation metrics. Notably, the 1-shot546

scenario in Table 2 was compromised by prompt547

length limitations, leading to an underestimation of548

the model’s generative capabilities. In Table 4, we

Model Setup ROUGE-1 1-shot R-1

LLaMA-2-7B 512+128 18.29 20.31
TDA 512+512 17.27 20.07

sTDA 512+512 14.72 15.83
sRIDA 512+128 16.93% 15.72

Table 4: Generation rouge on XSum with shorter prompt

549
employed a truncation strategy to ensure that the550

1-shot and content each occupy half of the prompt551

space. From this table, we arrived at a conclusion552

similar to that of Table 2: TDA remains the most553

accurate method. Additionally, the sTDA method554

demonstrates the most significant performance im-555

provement when transitioning from 0-shot to 1-556

shot.557

Ablations of Heavy Hitters. In Table 5, this pa-558

per follows the methodology of (Zhang et al., 2023)559

by eliminating heavy hitters and assessing their im-560

pact on classification metrics. The data in Table 5561

illustrates that after the removal of heavy hitters, the562

classification accuracy of all model-wise DA meth-563

ods declined significantly, with the TDA method564

experiencing the most substantial decrease. This565

decline is attributed to the TDA method’s direct 566

influence on the selection of the most critical neu- 567

rons once heavy hitters are eliminated. Conversely,

Methods MMLU TruthfulQA Winogrande GSM8K

LLaMA-2-7B 38.83 52.04 66.11 -
TDA 33.94 55.00 63.18 -

sTDA 29.83 48.17 51.11 2.16
sRIDA 39.22 50.72 63.84 8.00

Table 5: Classification acc(%) without heavy hitter

568
the sRIDA method exhibits a smaller reduction in 569

accuracy compared to the other methods, making 570

the underlying reasons for this discrepancy worthy 571

of further investigation. 572

5 Conclusion 573

Massive Over-activation Yielded Uplifts (MOYU) 574

are intrinsic characteristics of large language mod- 575

els, and leveraging these properties through Dy- 576

namic Activation (DA) is a promising yet underuti- 577

lized strategy to enhance inference speeds in these 578

models. Traditional methods that exploit MOYU 579

often encounter significant challenges, including 580

maintaining model performance, speeding up in- 581

ference, or extending their use to various architec- 582

tures. This paper introduces two novel Sequential 583

DA techniques, sTDA and sRIDA, which utilize 584

sequence data to effectively address the challenges 585

faced by existing DA methods, often referred to as 586

the "impossible triangle." These methods have suc- 587

cessfully increased generation speeds by 20-25% 588

without substantially degrading task performance. 589

In addition to our sequential strategies based on 590

MOYU, named sTDA and sRIDA, we have devel- 591

oped a mathematical framework that elucidates the 592

origins of the MOYU phenomenon. Through this 593

framework, we have identified two primary limita- 594

tions of current DA methods: 1) their reliance on 595

ReLU activation functions; 2) their inability to de- 596

tect active neurons based on semantic similarities. 597

Limitations 598

Firstly, the mathematical rationale and implementa- 599

tion of the proposed DA methods could introduce 600

complexities that might impede their practical ap- 601

plication. Additionally, this paper highlights that 602

sequence-level activation is predominantly influ- 603

enced by heavy hitters within the same sequence; 604

however, due to length constraints, this ablation 605

experiment was not conducted. Lastly, the datasets 606

8



and the volume of data utilized in this study are rel-607

atively limited. It is anticipated that future research608

will undertake more extensive experiments.609
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