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ABSTRACT

Covering numbers are central to estimating sample complexity. Alas, standard
techniques for bounding covering numbers fail in estimating the covering num-
bers of many classes of neural networks. We introduce a generalization of covers,
called multicovers, which are covers w.r.t. many metrics simultaneously. Con-
trary to standard covering numbers, multicovering numbers behave better with the
layer-wise structure in neural networks. We utilize this property to recover a recent
result of Daniely & Granot| (2019) who defined a new notion called Approximate
Description Length (ADL) to establish tight bounds on the sample complexity of
networks with weights of bounded Frobenius norm. We also show that ADL and
multicovering numbers are closely related.

1 INTRODUCTION

Covering numbers are one of the most basic techniques for bounding the sample complexity of
function classes, and can achieve state of the art bounds in various cases. Alas, it is not clear
how to estimate covering numbers for function classes of layered architectures, such as neural net-
works. Indeed, state-of-the-art results still exhibit a polynomial gap between upper and lower sample
complexity bounds. This is in contrast to non-layerd function classes, in which the gaps are often
logarithmic or even constant.

A major flaw of covering numbers is that it is not clear how to use them inductively on the network’s
layers. That is, a bound on the covering number for function classes of depth ¢ architectures, is not
enough to derive a tight (up to log factors) bound for function classes of depth ¢ + 1 architectures.

In this paper, we present a generalization of covering called multicover, which overcomes the above
barrier, at least in some cases. This allows the derivation of tight bounds on various families of
neural networks. In a nutshell, given a set S of d x d PSD matrices, an e-multicover of a set
X C R%is a set X that simultaneously forms an e-cover w.r.t. to any metric of the form d(x,y) =
V(x—y)TR(x —y) for R € S. The e-multicovering number of X’ is the minimal size of an e-
multicover of X'. We note that if S consists of a single matrix R, multicover is just a standard cover
w.r.t. the norm corresponding to R. However, for other sets S we get a notion of covering that is
fundamentally different from standard covering w.r.t. a metric.

We present techniques which allow for layerwise induction. Using these techniques and for the case
of S being the class of PSD matrices with trace at most 1, we show the following. Given a bound
on the multicovering number of X, a class £ of d x d matrices, and a non-linearity o : R — R, we
derive bounds which are often tight on the multicovering number of

LX={Ax:AecL,xe X}and o(X) = {(o(x1),...,0(xq)) : x € X}

The tools we present allow us to derive nearly tight bounds on the sample complexity of constant
depth networks with weights of bounded norm. For instance, assume that the activation is the ReLU-
like softplus activation o(x) = log(1 + €*) and consider the class N of networks of depth /, width
d, and weight matrices with spectral norm at most O(1) and Frobenius norm at most R. This and
similar classes have been studied intensively in recent years, because sample complexity bounds on
such classes can potentially be sublinear in the number of network parameters, thus shedding light
on a main mystery of modern neural networks. We show that if the input distribution is supported
in [~1, 1) then the sample complexity of A is O(dRQ) which is sublinear in number of parameters
and is tight up to poly-log factors.
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As far as we know, despite extensive efforts, such results are not known to be derived via “stan-
dard” covering number techniques, or even more generally, via other common techniques such as
Radamacher complexity. nevertheless, we note that similar bounds were recently proved (Daniely
& Granot, |2019) using a notion called Approximate Description Length (ADL). We show that ADL
is closely related to multicover, and in a sense, multicover can be seen as a “dual” approach to ADL.
We hope that having both the ADL technique and the multi-covering technique at our disposal will
lead to further progress in the future.

Throughout this paper, absent proofs for theorems, lemmas, and claims appear in full form in the
appendix.

1.1 COVERING NUMBERS AND LAYERWISE INDUCTION

We next give a simple example in which layerwise induction fails to establish tight bounds on cov-
ering numbers. We emphasize that the goal of this example is to demonstrate the problem with
layerwise induction on covering numbers, but it is not a proof that the approach is doomed to fail in
general.

We will consider the class H of linear classifiers of norm < 1 over B

: . nd
functions h : B Nz

complexity of H is 0 (6%) In order to prove this via covering numbers one can show that for any
choice of x1,...,%x,, € B\d/a the covering number of

fl/E‘ That is, H consists of all
— R of the form h(x) = v'x for v € B{. It is well known that the sample

X = {(h(x1),...,h(xm)) : h € H}

satisfies log(Na(Xa, €)) = O (). This can be proved using standard covering number techniques.
For the sake of illustration we will view H a composition of two function classes, corresponding to a
two layer neural network. Fix u € S—1 1et H; be the class of all functions h : B?/E — Bii/g of the
form h(x) = Ax for A € My q for A with ||A||p < 1, and let Ho = {hy}. Note that H = Ha o H;.
Now fix x1,...,Xm € BY_and u € S, Consider the sets Xy = {(h(x1), ..., h(xm) : h € H1}
and Xy = {(h(y1),-- -, h(ym)) : (¥1,---,¥Ym) € X1, h € Ha}

As noted above, log(Na(Xa, €)) = O (). Suppose now that we want to prove this in an inductive

way. Can we guarantee that log(Na(Xs,€)) = O (E%) via a bound on the ¢2 covering numbers

of X} without specific assumptions on the structure of X;? (remember that we want an inductive
argument that will work for neural networks, in which case it is not clear what further assumptions

m
we can make)? As Claimbelow shows, without assumptions beyond the fact that X} C (B‘\i/g) s

the best bound we can derive is Na(Xo, €) < No(X7,€). This is not enough as for e = 1/4, Claim
below chows that log(N2 (X1, €)) may be as large as €2(d?), thus the best bound we can get is
log(Na(Xs,1/4)) = O (d?).

m
Claim 1. There is a set X C (B such that Na(X,€) = Na(u' X €)

)

Proof. (sketch) It is not hard to verify that for X = {(a1 Vidu, ... am \/gu) ja; € {:I:l}}. We
have Ny (X, €) = No({£Vd}™, €) = Na(u' X, ¢€) O

Claim 2. Fore < 1, m = d and x; = V/de; we have No(Xae) = Q(d?)

Proof. We have X; = {(al, ag) Y Jfa)? = d}. Thus, No(X1,¢) = No (ija, \/&e) -
. (5f.0) =20y .
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2 MULTICOVER

2.1 NOTATION

We denote by x1x5 the elementwise product of two vectors x1,Xs € R%. We denote bye;...,eq
the standard basis of R? and by { £ }1<; j<a the standard basis of the space of d x d matrices. We
will use || - || to denote the standard Euclidean norm for vector and the spectral norms for matrices.
|| - || = will be used for the Frobenius norm of matrices. BZ will stand for the Euclidean ball of radius
rin R%. We will use < to denote inequality up to a constant.

2.2 BASIC DEFINITIONS

Denote by R¢ the convex set of d x d PSD matrices. Let S C R?, we say that S is nice if YR € S
and W € R4 with |[W|| < 1then W RW € S. We denote by R = {R € R? : Tr(R) < t} the
corresponding nice set. We denote the inner product, the norm, and the metric induced by R € R
on R by (x,y)r = (x, Ry), ||x]|r = \/(x,X)p and dg(x,y) = ||x — y||r. Fix X C R? and let
e>0. Aset XY C R?%is an e-cover of X w.r.t. a metric d on R? if for every x € X thereisx € X
such that d(x,%) < e. A set ¥ C R%is an e-multicover of X w.r.t. a nice set S if for any R € S and

every x € X there is X € X such that ||x —%||p < \/Tr(R)e. Equivalently, for any R € S, X is an
e-cover of X w.r.t. dg. The e-multicovering-number of X, w.r.t. S, and denoted by Mg (X, ¢) is the
minimal size of an e-multicover of X w.r.t. S. Likewise, the e-covering-number of X w.r.t. a metric
d, denoted by Ny (X, €), is the minimal size of an e-cover of X’ w.r.t. d. We will use N, (X, ¢) when

the metric is d(x,y) = ||x — y||, and Ng(X, ¢) when the metric is dp for R € R<.

Note that if S is anice set, A € S and B < A, then w.l.o.g. we may assume B € R. This is because
for every x € R? 27 Bx < x' Az, thereby ||z||p < ||z]|a. i.e. adding all PSD matrices of lower
PSD order to S keeps the e-multicover w.r.t. S valid. On the other hand, adding matrices only adds
constraints and therefore cannot decrease the multicovering number. Overall we get Ms(X, &) =
Msugpy (X, ¢e) forany X and e

We will also use the notion of packing. We say that X C X is an e-packing of X w.rt a metric d
on X if d(x,y) > ¢ for any pair of points x,y € X. We denote by P;(X, ¢) the maximal size of
an e-packing of X. As with covering, we will use P,(X, €) when the metric is d(x,y) = ||x — ¥yl
and Pr(X, e) when the metric is dg for R € R4. 1t is well known (e.g. |Vershynin|(2018)) that

Pi(X,2¢) < Ng(X,€e) < Py(X,¢€) (D)
2.3 SOME PRELIMINARY LEMMAS

Lemma 2.1. Let X1,..., X}y be independent r.v. with that that are o-estimators to p. Then
2\ F
Pr (Jmedian(X1, ..., Xp) — u| > ro) < ()
r

Lemma 2.2 (e.g. Vershynin| (2018). For any e < M, (M/e)? < No(BY,,¢) < (3M/e)?
Lemma 2.3. Po({+1}% d) > /8

2.4 MULTICOVER AND ESTIMATORS

We say that a random variable X € R? is an e-estimator of x € R? if for any u € S%°1,
E(u, X —x)° < 2. Equivalently, for any R € R%, E[| X — x||% < Tr(R)e%. We say that X
is unbiased if EX = x.

Lemma 2.4. Let X C R% A set X - R® is an e-multicover of X w.rt. R if and only if for any
x € X there is a random vector X € X that is an e-estimator of X.

Proof. Write X = {x1,...,xr}. Suppose that X is a e-multicover and let x € X. It is enough to
show that there is ar.v. X whose range is {x1, ..., x7} such that forany R € RY, E[| X —x[|% < &2.
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Such ar.v. exists if and only if

T

min max Z)\» x; — x||% < &2
AEAT™! ReRY = illxi I =

since the objective Z?:l Aillxi — %% = Z¢T=1 Ai(x; —x) T R(x; — x) is bi-linear in A and R, and

since A7~! and R{ are both convex and compact, we can apply the minmax theorem to conclude
that ar.v. X as described above exists if and only if

T
max min Z)\' x; —x||% < &?
RERY AEAT-1 — zH % ||R_

which is equivalent to
max min ||x; —x||g <€
ReRE i€[T]

Which is indeed the case as X is an e-multicover on X.

Suppose now that for any x € X there is a r.v. X whose range is X’ such that for any R € RY,
E[|X — x||% < &2. This implies that for any x € X and any R € R¢ there is X € X such that
Ix — x|/ g < e. This implies that X is an e-multicover of X. O

2.5 THE MULTICOVERING-NUMBER OF AN EUCLIDEAN BALL

Lemma 2.5. For the ball BY; = {x € R?| ||x|| < M} and e < M we have

X 2am241
gmin(dLM/29%)) < Mo (B3, ) < min ((4d2 (M) +6d)—="1, (3M/5)d>

The idea behind the proof is constructing a sparse covering set by picking a convex hull that covers
the ball, then using averaging to make the sparse cover k-sparse, in the spirit of Maury’s lemma
(Pisier} [1980-1981).

2.6 MULTICOVER CALCULUS
Lemma 2.6. Let S C R? be a nice set, then:
1. For X C R% and a dy x dy matrix A we have Ms(AX, || Alle) < M (X, ¢)

2. For Xy,...,X, C RY and e1,...,6, > 0 we have Ms(Y ! X;,> 0 &)
[Ti=) Ms(&Xi,ei)

3. For X C R e > 0, orthonormal matrix U and b € R% we have Ms(UX + b, ¢)
MS(X7 5)

IN

4. For X1,...,X, CR%and e > 0 we have Ms(U?_, X;,e) < > i Ms(Xi,¢€)

5. For§ = R and X; C [-M;, M;]? and ¢, . .. &, > 0 we have

n

Mz (1:[ X, H(Mz +&i) — I:IIMZ> < HMR;!(X%EZ’)

i=1 i=1

6. If for any maximal R € S (w.r.t. PSD order), Tr(R) > 1. Fix X C Bjdv}, and L C R2h
matrices with spectral norm < r. Denote || A||g := min{t > 0: 1A € S}, then

Ms (EX,EQ\/W +2e2|| 14, ||s + 61M> < Mgy(Loe1) - Ms(X,e2)

We next prove each item separately.
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Proof. (of item ) Let X be an e-multicover of X w.r.t. S. It is enough to show that AX is an
(lAlle)-multicover of AX. Fix X € X and a PSD matrix R € S. We need to show that there is

% € X such that || Ax — Ax[|% < Tr(R)||A||?c2. Now, for any % we have

a0 — A% = AP e~ %) A R 50 = AP X1
1AL [1Al Ry
Finally, since X is an e-multicover w.r.t. S, there is X € X such that ||[x — x |2“|“—”Rﬁ <
Tx( \I}XH ATR \AHA) £2 < Tr(R)e?. Therefore overall
A% = AR = AP Ix =3Iy, < TR)AIRES
O

Proof. (of item [5]) We first prove the item for n = 2. We will then show that the general case
follows by induction. In the proof of this item we will denote by A o B the elementwise product
of two d x d matrices, and by diag(A) the diagonal matrix obtained by zeroing the non-diagonal
entries of A.

Let X; be an £;-multicover of X; w.r.t. R‘f. Fix x; € X; and a PSD matrix R > 0 with Tr(R) < 1.
It is enough to show that there is X; € X; with ||x1X2 — X1X2||r < Mie9 + Maoeq + €162. We have

Ixix2 — Xi%2|lr < [|x1X2 — x1X2|| g + ||X1%X2 — X1X2||R

= HXQ - kQHRoxlxI + ||X1 - Xl”ROXQX;

Now, Tr(R o X9%, ) = ||5(2H(2ﬁag(R). Thus, we can choose X; such that ||x1 — X1 rox,x
X2 | diag(r)€1- We getforany 0 < p < 1

(
[x1%2 = 31%a[[r < %2 = X2l pox,x] + L diag(e2r) T M2g1

Where (x) follows from straight-forward calculations that appear fully in the appendix version of
this proof. Now, we can choose X5 € X, with

y 1 ..
%2 = Xal1 RoxyxT + 11 ding(e2R) < 52\/Tr <pR °x1X] + 7 pdlag(ﬁR))

< e /M /p+2/(1 - p)
for p = My /(M1 + 1) we get that
|x1x2 — X1X2||r < e2(M1 + €1) + Maer = Myea + Maey + €162

We next consider n > 2 and conclude the proof by induction. Denote X3 = [[;,X;, M} =

[Tieo My and e = [[[o(M; + &) — [[7o M.

By the induction hypothesis we have M (X}, £5) <[], M(X;,&;). By the case n = 2 we have
M (X1X2/, Mlé‘/z + M2/€1 + 815/2) < M (X1,81) M (XQ/,&‘/Q)

n

< M (X1,e1) ﬁM(Xz’,&z) = HM(Xu&')

i=2 i=2
this concludes the proof as X3 X5 = [[;, X; and

(M7 + 1) (HM+& HMi>+51HMi
i—2 i=2

=2

/ ! /
Mg + Myer + €164

n n

H(Mz +e;) — H M;

i=1 i=1
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Proof. (of item [6) For a nice set S € R<, and PSD matrix R € R?*%, define || R||s = min{t >
: 1R € S}. Note that this is almost a norm - the triangle inequality, positive definiteness, and

homogenelty for positive scalars apply - but do not apply for negative scalars. Let L be an e;-
multicover of £ w.r.t. ’Rd and let X be an eo-multicover of X w.r.t. S. We will show that LX is an

g94/2r% + 2e1 |14, ||s + £1M-multicover of LX w.r.t. S. Fix R € S. W.lo.g we may assume that
it is maximal w.r.t. PSD order. Let W € £ and x € X. We need to show that there are W € £ and
% € X with [|[Wx — Wx||g < e2y/2Tr(R)r2 + 261 Tr(R) |14, ||s + €1/ Tr(R)M. We have

IWx = Wx||r < [[Wx = Wx||g + Wk = Wx||r = ||x = Xllwrgw + (W = W)x[|r

=[x — X[wrrw + /X (W = W)TR(W — W)x

Now, (W1, Ws) — % W RW5x is a symmetric and positive bi-linear form on the space of dy X dy
matrices of trace

d2 d1 d2 dl 2 1
YOS %TEJRE;x =) (ije) R(zje) = Y Y iRy = Tr(R)|[X|
=1 j=1 1=1 j=1 =1 j=1

Thus, there is W € £ such that x " (W — W) T R(W — W)x < Tr(R)||%||?3. For this W we have

. ()
Wx-Wx|z < V2[x- XHWTRW+afTr(R)Id1 +e1vTr(R)M

Where (x) follows from simple calculations, that appear fully in the appendix version of this proof.
Thus, it is possible to choose X € X s.t. ||x — X[ wrrwiezr,, < €2 \/||WTRW +e2Tr(R) 14, || s-
Finally, [WTRW + e¥Tr(R)Ia,[|ls < 7° + eI Te(R)|Lg, ||s < Tr(R)r® + eiTe(R)| o, s O

log,./»(d)
Lemma 2.7. Fix X C R% ¢ > 0and r > 2. It holds that N (X, re) < (MRd(X 5))( = —‘

Proof. Let X be an e-multicover of X of size M (X, ¢). By lemma [2.4|for any x € X there is a
distribution Dy on X such that if X ~ D, then X is an e-estimator of x. In particular, for any
coordinate 7 € [d] we have

Ex(X; —2:)? =Ex(X —x) " Ey(X — x) <&?

Denote k = [log7 /2 1 By the above equation and lemma we conclude that if X1,... X* ~
Dx then for every i € [d]

9 k
Pr(3i € [d] s.t. [median(X}, ..., X}F) — x| > re) < d (r> <1

in particular, there exists x', ..., x* € X such that forany i € [d], |median(z}, ..., 2¥) —2;| < re.
This implies that

median(X*) := { (median(z1, . .. ,x¥), ..., median(z), . .. ,xlj)) cxt o xP e X}
is an e-cover of X w.r.t. the £°° norm. This concludes the proof as [median(X*)| < |X|* O

3 MULTICOVER FOR NEURAL NETWORKS SAMPLE COMPLEXITY

3.1 MULTICOVER FOR SEQUENCE OF VECTORS

We denote by R%™ the vector space of sequences x = (x!,...,x™) of m vectors in R%. We next

extend the notion of multicover, as well as multicover calculus, to subsets R%™. This extension is
useful for sample complexity analysis via multicover.

Denote by S»™ the collection of all sequences (u, ..., ;) € RE™ with 7" |lu;||> = 1. We
also denote by R%™ the convex set of sequences R = (Rl, ..., Ry) of m d x d PSD matrices.
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We denote Tr(R) = >_", Tr(R;) and RI™ = {R € R%™ : Tr(R) < t}. We say that a set
S C R*™ is nice, if VR € S, i € [m] and W € R¥>4™ with |W;|| < 1 then WTRW =
(W' RyWy,..., W, R,,W,,) € S. We denote the inner product, norm and metric induced by
R e R™ onRY™ by (x,y)p = it (X', Riy'), x| r = /(x, %) g and dr(x,y) = [|x = yl|r.
Aset X C R4™ is an e-multicover of X w.r.t. a nice set S if for any R € S and every x € X
there is X € X such that ||x — Xz < \/Tr(R)e. Equivalently, for any R € R%™ X is an e-cover
of X w.rt. dr. The e-multicovering-number of X, denoted by M (X, ¢) is the minimal size of an
e-multicover of X',

We will use Ng(X,¢) for the covering number w.r.t. the metric dr, Noo(X,c) when the
metric is d(x,y) = maxjep [[x) — ¥/|lo and Na(X,e) when the metric is d(x,y) =

e |lxd =y 3.

We say that a random variable X € R%"™ is an e-estimator of x € R%™ if for any u € S“™, we
have > | E(u/, X7 — xj>2 < £2. Equivalently, for any R € R>™, E|| X — x[|%4 < Tr(R)e?

We next generalize Lemmas [2.4] [2.6] and [2.7] to the extended definition of multicover. The proofs
of the generalized lemmas are similar to the proofs of the original lemmas and are deffered to the
appendix, similarly to the other absent proofs.

Lemma 3.1. Let X C R%™. A set X C R‘f’m is an e-multicover of X w.r.t. R*™ if and only if for
any x € X there is a random vector X € X that is an e-estimator of X.

Lemma 3.2. 1. For X C R%"™ and A € R%2%% we have Ms(AX, || Alle) < Ms (X, ¢)

2. For Xi,..., X, C R¥ and e1,...,e, > 0 we have Ms(Y> 1 X, 0 &) <
[Ti=) Ms(&Xi,e:)

3. For X CR¥™ &> 0andb € R*™ we have Ms(UX +b,e) = Ms(X,¢)
4. For Xy,..., X, CRY™ ande > 0 we have Ms(U X;,¢) < S0 | Ms(X;,¢)

5. For S = Rf’m X; C [~M;, M;)*™ and €1, ..., e, > 0 we have
(HX“H M +€1 HM1> H Xzasz)
— i=1 i=1

6. FO?EIS = Rf’m, fix X C B}iv}’m, L C R4 matrices with spectral norm < r. Then,

S (EX,52\/27"2 +2e2d; + 51M> < MRfﬂn (L,e1) - Ms(X,e2)

Lemma 3.3. Fix X C RY™ &> Qandr > 2.

log,./5(dm)
Then Nuo (X, 7€) < (MRf,m(xﬁ))f patam)]

3.1.1 STRONGLY BOUNDED ACTIVATION

In this section we will develop tools to calculate M. R (p(X),¢) for a smooth enough p. For the
sake of cleanliness we will denote M (-, -) := MRd (-, -). The smoothness requirements are given
in the following definition.

Definition 3.4. A function p : R — R is B-strongly-bounded if for all n. > 1, ||p("" /oo < n!B™
Likewise, p is strongly-bounded if it is B-strongly-bounded for some B

As shown in |Daniely & Granot (2019) the ReLU-like function log(1 4 e*) is strongly bounded, as
well as the sigmoid function It is also shown in|Daniely & Granot|(2019) that

Trew

"This claim can be generalized to a more general S. We present the case S = Rcll’m for simplicity.
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Fact 3.5. If p is B-strongly-bounded then p is analytic and its Taylor coefficients around any point
are bounded by B™ for any n > 1.

We will utilize this fact in order to calculate the effect of a non-linearity on the multicovering number.

Lemma 3.6 (3-Swish Activation Ramachandran et al.| (2017)). For a constant 3 > 0, the function

Tre—7= is strongly-bounded

Lemma 3.7 (Hyperbolic Tangent). The function zz:—;% is strongly-bounded

In order to analyze M (p(X), ) for a strongly bounded p, we first analyze M (p(X), ) for a poly-
nomial p, and then utilize fact[3.5]

Lemma 3.8. Let p(z) = Z?:o a; X" be a polynomial with |a;| < B® and suppose that X C
k(kt1)

[—é, %]d’m. Then, forany Let 0 < e < 1, M (p(X),¢e) < (M (X, %)) 2

We are now ready to present our main tool for analysing M (p(X'), ) for strongly bounded p.
Lemma 3.9. Let X C R%™. Let p: R — R be B strongly bounded. Then for 1 > ¢ > 0,

M(p(X),e 4+ Vdg~ D)y < (M <X 1 >)“°g2(dmﬂ (M ()()i))k(k;l)

' 32B 8B

Proof. Assume first that X C R%™ is contained in an /> ball of radius . Since multicovering

8B"
numbers are invariant to translations (i.e. M(X,e) = M(X + b,¢) for any b € R™%), we can
assume w.lo.g. that ¥ C [—55, 55] 4™ Let p be the Taylor polynomial of p around 0 of degree k

—g=. g5, Ir(@)| < BFHH gkt < 8=+ Thus

{0} is an (\/38_(’“+1))—multicover of 7(X). Indeed, if R € R%™ and x € r(X) then

and let r = p — p. We have that for any = € [

i =D (x, Rix') <3 Tr(Ry)[Ix'||?

i=1

i=1
< ZTr(Ri)d8*2(k+1) = d8 2Ty (R) < dg—2(k+1)
=1

In particular M (r(X),/d8~*+1) = 1. Now, we have

P(X)Cp(X)+r(X)
M(p(X), e + Vg~ 1) < M (p(X) + r(X), e + Vs~ (-+)
L
TS M (), Vs M), )

Lemma3.8| e %
< ()
8B
Fi . . 1 [log,(dm)] .
inally, by lemma [3.3| X is a union of (M (X, 55)) sets X}, such that each X; is con-
tained in an £°° ball of radius s%‘ Applying the above argument to each X; implies the lemma. [

3.2 NEURAL NETWORK SAMPLE COMPLEXITY VIA MULTICOVER
3.2.1 MULTICOVER AND SAMPLE COMPLEXITY

Fix an instance space Z, a label space ) and a loss ¢ : RIx Y — [0,00). We say that ¢ has
some property p (e.g. boundness, Lipschitzness, etc.) if for any y € ), (-, y) has the property
p. Fix a class H from Z to R%. For a distribution D and a sample S € (Z x )™ we define the
representativeness of S as

repp (S, H) = sup £p(h) — Ls(h)

heH
Where (p(h) = E@)opl(h(z),y) and ls(h) = L 37 0(h(z;),y;). We note that if
repp(S,H) < e then any algorithm that is guaranteed to return a function h e H will enjoy a
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generalization bound ¢p(h) < g(h) + €. In particular, the ERM algorithm will return a function
whose loss is optimal, up to an additive factor of €.

We will focus on bounds on repp (.S, H) when S ~ D™. To this end, we will rely on the connection

between representativeness and the covering numbers of H. For z1,...,z,, € Z we denote
H(z1,. o xm) = {(h(z1),...,h(zy)) : h € H}
Given a metric d on R*™ we denote Nq(H,m,€) = sup,, ., <z Na(H(z1,...,2m), m,¢).

Similarly, we denote M (H,m,€) =sup,, . cz M(H(x1,...,Zm),m,¢).

Lemma 3.10. (Shalev-Shwartz & Ben-David, 2014) Let ¢ : R% x ) — R be B-bounded. Then for
any distribution D on Z

M
12B
—M+1 —k —k
Es~pmrepp(S,H) < B2 + T ;;:1 2 \/1n (No(€ o H,m, B27F))

We conclude with a special case of the above lemma, which will be useful in this paper.
Lemma 3.11. Let ¢ : R? x Y — R be L-Lipschitz w.rit. || - ||oo and B-bounded. Assume that for
VB o<1 In M(H,m,e) < . Then for any distribution D on Z

any st
L+ B
Bovpmiepp(S.#) § 2V fgdm log(m)

3.2.2 SAMPLE COMPLEXITY OF NEURAL NETWORKS

Fix the instance space to be the ball of radius v/dy in R% (in particular [—1, 1]d0 C X). Fix also a
B-strongly-bounded activation function p. Consider the class

7ﬁ'iR(do,...,dt) = {Wtopth_l op...opoWy :W; € My, ,q,IIWill <7, ||Willp SR}

and more generally, for matrices Wio € My, ,q t=1,...,t consider

i—17
H=NR(WY,... . W) ={WiopoW, 10p...0poWy: |Wi—W/| <r|[W;—W)|r <R}

denote d = max(dp,...,d;). We will assume that ¢, |W?||, r are all bounded by some constant
C > 0, and will allow hidden constants to depend C'. This is motivated by the fact that in practice,
||W2||, r are often bounded by small constants. For instance, if the initial weights are sampled form

the standard Xavier initialization then ||WW?|| ~ v/2 w.h.p. for resnets we have ||[IW?|| ~ 1. We will
also allow hidden constant to depend on the activation p and the depth ¢.

Theorem 3.12. Let { : R? x Y — R be O(1)-Lipschitz w.rt. || - || and O(1)-bounded. Then for
any distribution D on Z

dR2 t+2
ESND"" repD(S, H) 5 W log (Rdm)

The theorem is implied by the following lemma together with lemma|3.11

Lemma 3.13. Forany 0 < e <1, M(H,m,¢) < (log(dm) + log?(d/e))" log(dR) &

The proof follows a peeling argument, applying lemmas and [2.5]inductively, for each layer.

4 RELATED WORK

In recent years, there has been active work in the area of the sample complexity of neural networks.
For the the remaining of this section, we refer the reader to Table|I|to explain the notation used in
different works.
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Table 1: A table comparing the sample complexity bounds of different recent works. In the é(l) outputs” column, we
adopt the notation of our paper, where R, r being the Frobenius and the spectral norm, ¢ being the depth of the network,
and d its width. m is the sample size and ~y is the margin wherever it is used.

Paper Result O(1) outputs Notation

Golowich et al. J2018) o (\xu (I 1W517) {\ T" lower bound on product of spectral norms.

ha(
Bartlett et al. [2017] R [ Ry (1) €m0 [£@i)y; < v+ maxjgy, f(@0);]

4/575/4
Hsu etal. 2021 O( J‘% ot [21 (’ﬂ>1/ ] / [Sin R]1/4>

m

Neyshabur et al. J2013] \/R2t24 Dis the input size. 1 < ¢,1 < p < oo,
v =IT1Willp,q
N 137td2 In(td) B2 41n tm
Neyshabur etal. [3017] Loy (fuw)+ 0 e L) €M S [F @iy € 7 may, S5
‘ is the n
~ Lt .
oufl] o ( ‘/6’% ) Where B is the strongly-boundedness constant

i

1 1} 2(t—1)
+

Neyshabur et al.| (2015) give a bound of |2 zd[F a

min{p*,4log(2D)} max; [x; 2, .
E— using a

m

peeling argument on the Rademacher complexity of neural networks. |Bartlett et al.| (2017) use
a peeling argument on the covering number of neural networks and yield a bound of =, (~NNy) +

3/2
Iw,T —wo T 2/3
Ixllz (T y pilWill2) | X6, — G g
- W5l n(1/9)
o — In(d) + /2229 - Neyshabur et al.| (2017) use a Pac-
w12
lIxlIZt2dn(ed) [TE_ 1W;113 ¢ ! 1”F+1nme

=1 w3

Bayes argument to produce a bound of i, (f,) + © J o

Golowich et al.[(2018) use a Jensen inequality trick to enhance the peeling argument of Neyshabur,

et al.| (2015) and yield 6 <HxH2 (T 15017 ) .min{dw,g}) Hsu et al| (2021)

use the possible existence of a smaller distilled version of a network to obtain the bounds of
o <% [T, 1Wll2] {z. (Ile )4/5}5/4 [ In ||wi|\p]1/4>. Vardi et al.| (2022) analyze the special case of

m3/ P TW5T2

two-layer neural networks and give a bound of 0 (%

) which is similar to ours when re-

stricting the depth of the network to 2. Finally, [Daniely & Granot (2019) provide a bound equivalent
to ours, introducing a technique called Approximate Description Length.

We focus on the setting where neural networks have constant depth, and the output of each neuron
as well as each input coordinate is O(1). This is usually the case in practice. As shown in table
under these setting our work matches the state of the art, and except |Daniely & Granot| (2019),
improves on previous works polynomially. An important caveat to our work, is that it applies only
to neural networks with smooth activations. This is similar toDaniely & Granot|(2019);|[Vardi et al.
(2022), but the rest of the cited works consider the non-smooth RelLU activations.

The resemblance of the results of Daniely & Granot|(2019) to ours is not coincidental. A full discus-
sion of the connection between the notion of Approximate Description Length and multicovering
numbers appears in appendix [B]

5 FUTURE DIRECTIONS

Future direction arising from our work Covering-Packing relations for multicover, the (in)Existence
of proper multicover (that is, a multicover in which each point is in the class), and the behaviour of
multicover w.r.t. Lipschitz functions (specifically, ReLU).

quuivalent to|Daniely & Granot| (2019), and |Vardi et al.| (2022) result for 2 layer networks

10
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A OMITTED PROOFS

A.1 PRELIMINARY LEMMAS

Lemma A.1 ). Let X1,..., X}, be independent r.v. with that that are o-estimators to ji. Then

k
2
Pr(Jmedian(X1, ..., X;) — u| >ro) < ()
r

Proof of 2.1} We have that Pr(|X; — p| > ro) < 5. It follows that the probability that > & of
X1, ..., X} fall outside of the segment (i — 7o, i + ro) is bounded by

(i) () == (2) <)

Lemma A.2 2.3). Py({£1}%,d) > e?/®

Proof of 2.3} 1f y,x € {£1}¢ are two independent uniform vectors then by Hoeffding’s bound we
have

d
Pr (|lx - y|? < d) = Pr (Zl{xi £yl < d/4) <o

=1

Thus, there are at least e%/% vectors in {1} such that the distance between each pair is more than
d. O

A.2 MULTICOVER FOR VECTORS
Lemma A.3 (2.5). For the ball Bf; = {x € RY| ||x||2 < M} and ¢ < M we have

pIVEREY

gmin(dLM/29%)) < Mo (BYy,€) < min ((4d2 (M) +6d)—="1, (3M/5)d>

om241
Proof of lemma[2.5] We first show that My (Bl,,e) < (4d*[M] + 6d)! —= *1. By lemma ,
2M24+1

it is enough to show that there is a set X C R? of size (4d2[ M + 6d)! —=2 *1 such that for every
x € B4, there is a random vector X € X which is an e-estimator of x. Define

X = {ke;li € [d], k € [-2dM —1,2dM + 1] N Z}

Let x € BY,, we next define a /2M? + - estimator X € X for x: First sample a coordinate i w.p.
2
Di = ng'“z + 2171 and let x = Q;—J +b) e; where b ~ Ber (<;—>) and <;—> = ;— - B,%J

12
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Note that EX = x. Fix u € S9~1. We need to show that E(u, X — x)? < 2M2 + 1. Indeed,

~
]

E(u, X —x)* < E(u,X

INA
g
S

X; 2 1 2
i (p) +1 ) 2

1 X o
< ZHUHOOJFZEW
1
< g2l 3
1
= 92Ix|I? + =
Il + 5
< om24 1
- 4

Where equationis true since (1 —xz) < 1/4 forany 0 < x < 1 and equationis true by plugging
2

in the definition of p; = QHXW + Tld, and by the fact that u is a unit vector.

‘We next construct an e-estimator by averaging independent copies of X. Let X = % Zle X; where

~ / 1
every X is sampled i.i.d. like X. We claim that X is 4/ 2M,2€+4 -estimator. Let u € S?~!. We have

that <u7 X — x> = Zle (u, X; — x) is an average of k ii.d. r.v. with mean 0 and variance

~ 2 2,1 2,1
bounded by 2M2 + 1. Thus, E<u,X - x> < M5 Plugging k = [225], we get that

~ 2 ~ ~
E<u, X - X> < £2. Note that X gets values in X = {% Zle X; X € X}. By lemma[2.4|we

2,1
2M +2

have that X' is a multicover. Finally, | X'| < (4d2[M]+ 6d) —== !, implying that Mpa (Bd,,e) <

am?+ L
(4d2[M] + 6d)! == 1.
We next show that Mpa (Bi;,e) < (3M/e)?. Given Lemma it is enough to show that
Mgq(B;,€) < No(Bfy, ¢). Indeed, fix R € R{. We have for any x,x € R?

I = %[I% = (x = %) "R(x = %) < | R - ]x — %[I3 < Tr(R)|lx — %3 < [lx - x]3

Thus, any e-cover w.r.t. the Euclidean norm is an e-cover w.r.t. dg. Since this is true for any R € Rﬁl,
we have that any e-cover w.r.t. the Euclidean norm is an e-multicover. Thus, MR?(B%/I, g) <

Ny (B%% 5)

we can use standard upper bounds for covering numbers of sets using volume (Vershynin, 2018)) to
upper bound the cover of B¢, with O ((SM / s)d) balls of radius € in /2. This is an upper bound for
the multicover of B¢, as well, considering that [|x — %[|% = (x — %) "R(x — %) < Tr(R)(x —

%) (x — %) = Tr(R)||x — %||3 where the inequality is by cauchy-schwarz and the fact that ||z||o <

||z||1. Therefore we have shown the second upper bound.

13
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For the lower bound, let d’ = min (| (M/2¢)?],d), and let R = 2 I» where Iy is a diagonal matrix
s.t. fn‘ =0 fori > k and INM- = 1fori < k. We have
Lemr;a

Mprg(Biy,e) > Nr(Biy.e) = Na(Biy, Vd'e) = Nao(Bify, M/2) 2¢
O
Lemma A .4 . Let S C R be a nice set, then:
1. For X C R% and a dy x dy matrix A we have Ms(AX, || Alle) < M (X, ¢)
2. For X1,...,%, C R% and e1,...,e, > 0 we have Ms(3r X, > &) <

[T, Ms(X;,e:)

3. For X C R% e > 0, orthonormal matrix U and b € R? we have Ms(UX + b,¢) =
Ms(X,¢)

4. For Xy,...,X, CR%and e > 0 we have Ms(U?_, X;,e) < > i Ms(Xi,e€)

5. ForS§ = R¢and X; C [-M;, M;)% and ¢4, ..., e, > 0 we have

n

MRL{! (1_[1 X;, H(M1 +e;)— 1_[1MZ> < HMR?(XMQ)

=1

6. If for any maximal R € S (w.r.t. PSD order), Tr(R) > 1. Fix X C Bj'f/}, and £ C R¥d
matrices with spectral norm < r. Denote || Al g := min{t > 0: 1 A € S}, then

Ms (ﬁX,Eg\/QTZ + 26%”],11”3 + ElM) < MRiz(,C,El) : Ms(X,€2)

Proof. We next prove each item separately.

Proof. (of item m) Let X be an e-multicover of X w.r.t. S. It is enough to show that AX is an
(||A||le)-multicover of AX. Fix X € X and a PSD matrix R € S. We need to show that there is
% € X such that

IAx — Ax|% < Te(R)||A|%
Now, for any X we have

lAx — Ax[7, = [|A]I*(x — X)T£ A% = A x -2
1AL All far Frar
Finally, since X’ is an e-multicover w.rt. S, there is X € X such that ||x — )VCHQ\T‘TT”Rﬁ <
Tr(HT}” AT R”T}” A)e? < Tr(R)e?. Therefore overall
A = A3l = AT = %y, < T(R)IAIRE
O

Proof. (of item) Let X; be an ;-multicover of X; w.r.t. S. It is not hard to verify that Z?zl X; is
an ()., €;)-multicover of >_"" | X;, which establishes the proof. O

Proof. (of item[3]) We have
Item
<

Ms(UX +b,e) < Ms(UX,e) - Ms({b},0)
Ms({b},0)=1, |U||=1
SURHOLL IIEE prswa, U )e)
Item /[
< MS(X7€)

Similarly Ms(X,¢) = Ms(U"'(UX + b) — U~'b,e) < Ms(UX + b,e) implying that
Ms(X,é):Ms(UX—Fb,S) O

14
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Proof. (of item ) Let X; be an e-multicover of X; w.r.t. S. It is not hard to verify that U?Zl)&- is
an e-multicover of UJ* | X; w.r.t. S, which establishes the proof. O

Proof. (of item [5]) We first prove the item for n = 2. We will then show that the general case

follows by induction. In the proof of this item we will denote by A o B the elementwise product

of two d x d matrices, and by diag(A) the diagonal matrix obtained by zeroing the non-diagonal

entries of A.

Let X; be an £;-multicover of X; w.r.t. 7'\’,‘11. Fix x; € X; and a PSD matrix R > 0 with Tr(R) < 1.

It is enough to show that there is X; € A; with ||x1X2 — X1X2||gr < Mieo + Maoeq + e162. We have
[x1x2 —X1%2(|r < [[x1x2 — x1X2||r + [[X1%X2 — X1%2||R

= [Ix2 = X2l gox,x] * X1 — X1 || Rostox]

Now, Tr(R o X9%g ) = ||k2|\§iag(R). Thus, we can choose X; such that [ X1 — X1l pox,x]
%2 | diag(r)€1- We get forany 0 < p < 1

%2 = Xa| gox, x7 + [[X2lldiag(r)E1

[[x1x2 —X1X2||p <
< [Ix2 = X2l goxyx7 T+ %2 — X2llaiag(r)E1 + [1%2ldiag(R)E1
<

1
HX2 - XQ”RoxlxI =+ ||5(2 - X2||diag(R)€1 + Maey
- ”XQ - X2||Rox1x1 + ||X2 - X2||d1ag(52R) + Maegy
) \/ Iz xQnRoxlx e - xﬂ\diag(af
1—

diag(¢2R) + M2€1

R) + M2€1

- ||X2 _x2||%ROX1XT+1

Where (¥) follows from the fact that a + b < /a2/p + b2/(1 — p) Now, we can choose Xy € X,
with

g 1 1 .
HX2 - XQH 1Rox1x1 +fd1ag( R) < 52\/T‘I‘ (pR © XIXI + 1— pdlag(E§R>>

< e/ M2/p +£3/(1 - p)
for p = My /(M;1 + 1) we get that
[x1x2 — X1%X2||r < €2(My + 1) + Maey = Mieg + Maey + €162

We next consider n > 2 and conclude the proof by induction. Denote X; = [[i, X;, M} =
[T, M; and €, = [];_,(M; + ;) — [}, M;. By the induction hypothesis we have
n
M (X5,¢h) < [ M(%;, )
i=2
By the case n = 2 we have
M (X1 Xy, Myl + Mjyey + e16y) < M (Xy1,e1) M (Xy,€h)

n

< M (Xy,e) ﬁ M(X;,ei) = [[ M(Xi, )

=2 =2
this concludes the proof as X3 X5 = [, X; and
M15/2 + Méfl + 515/2 = (M1 + 81) (H(MZ + Ei) - HM1> +é&1 1—[]\4z
=2 =2 =2
= [[i+e) -] M
i=1 i=1

15
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Proof. (of item [6) For a nice set S € R<, and PSD matrix R € R?*%, define || R||s = min{t >
: 1R € S}. Note that this is almost a norm - the triangle inequality, positive definiteness, and

homogenelty for positive scalars apply - but do not apply for negative scalars. Let L be an e;-
multicover of £ w.r.t. ’Rd and let X be an eo-multicover of X w.r.t. S. We will show that LX is an
g94/2r% + 2e1 |14, ||s + £1M-multicover of LX w.r.t. S. Fix R € S. W.lo.g we may assume that

it is maximal w.r.t. PSD order. Let W € £ and x € X. We need to show that there are W € £ and
% € X with [|[Wx — Wx||g < e2y/2Tr(R)r2 + 261 Tr(R) |14, ||s + €1/ Tr(R)M. We have

Wx - Wx|r < [Wx-Wx|g+[[Wx-Wx|r
=[x =xlwrrw + [[(W = W)x|r

=[x —=%|wrrw + \/XT(W ~W)TR(W — W)x

Now, (W1, Wy) = % T W," RW,% is a symmetric and positive bi-linear form on the space of ds x d;
matrices of trace

dy dy d2 di 1

d
S S KTETRE %= 5 S (e Rage) = 55" # Ry — Tr(R)|?

i=1 j=1 i=1j=1 i=1 j=1

Thus, there is W € £ such that x " (W — W) T R(W — W)x < Tr(R)||%||?3. For this W we have

IWx—=Wx|g < |lx—%|wrrw + 1V Tr(R)|X]|
< x=xllwrrw +e1v Tr(R)(Ix — x[| + [[x]])
< x=xlwrrw + 1% = xll2ne(ry,, +e1vVTr(R)M
<

V2 [l = 2 e+ 1% = X2y, eV TIERM
V2[|x — XHWTRWJrafTr(R)Idl +e1y/Tr(R)M

Thus, it is possible to choose X € X s.t. ||x — X|wrrwie2r,, < €2 VIWTRW +&2Tr(R) 14, |-
Finally, |[WTRW + e2Tr(R) 14, ||s <72+ &2Tr(R)|| 14, |ls < Tr(R)r? + 2Tr(R) |14, | s O

O
A.3 MULTICOVER FOR SEQUENCES OF VECTORS
Proof. (of Lemma. 3.1) Write X = {x',...,x”}. Suppose that X’ is a e-multicover w.r.t. R4 and
let x € X. It is enough to show that there is a r.v. X whose range is {x!,...,x’ } such that for any
R e R{I™ E||X — x||% < 2. Such ar.v. exists if and only if
min  max Ni||xt —x||% < €2
i, Z I’ — xI1%
since the objective S°1_, \iflx! — x[|% = 2, S, Ai(xh —x;) T R(x} — x;) is bi-linear in A

and R, and since AT~! and Rf’m are both convex and compact, we can apply the minmax theorem
to conclude that a r.v. X as described above exists if and only if

max  min Z)\iHXi —x||% < &2
Reeri,'m )\GAT—I P

which is equivalent to maxperae min;e (7] |x* — x||g < e. Which is indeed the case as X is an
e-multicover on X’ w.r.t. R%™,

Suppose now that for any x € X there is a r.v. X whose range is X’ such that for any R € R’f’m,
E[|X — x||% < &2. This implies that for any x € X and any R € R¢ there is X € X such that
| X — x||g < e. This implies that X is an e-multicover of X w.r.t. R%™. O
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Lemma A.5 (3.2). 1. For X C R%""™ and a dy x dy matrix A we have Ms(AX, ||Alle) <
MS (Xa 6)
2. For Xi,...,X%, C R¥™ and eq,...,e, > 0 we have Ms(>;_, X;,> 0 €i) <

[[i2) Ms(Xi,2:)
3. For X CRY™ ¢ > 0andb € RY™ we have Ms(UX + b,e) = Mg(X,¢)
4. For Xy,...,X, CR*™ and ¢ > 0 we have Ms(U?_ X;,¢) < S Ms(X;,¢)

5. For S = R'li’m X; C [- M, Mi]d’m andeq,...,e, > 0 we have

n n

MR(li,7n (1:'1: Xi, H(MZ + Ei) - HM,L> S l:IlMR;im(X“EZ)

i=1 i=1

6. FOIEIS = R‘f"m, fix X C Bj'\l/}’m a set L C R¥% of matrices with spectral norm at most
r. We have

Ms (,CX,EQ\/ 2r2 + 26%(11 + 51M> < MRd,m (,C,{:‘l) . Ms(X,&g)
1

Proof. (of Lemma Fix R, S € RY™ x € R¥™, A € R"*? and B € R¥*%_ In this proof
we will denote Ro S = (R' o S',..., R™ 0 S™) where R’ o S/ the elementwise product of R’
and S7. We will also denote diag(R) = (diag(R!),...,diag(R™)), AR = (AR',..., AR™),
RB = (R'B,...,R™B)and xx' = (x!(x})T,... ,x™(x™)").

We next prove each item separately.

Proof. (of item ) Let X be an e-multicover of X w.r.t. S. It is enough to show that AX is an
(]|Ale)-multicover of AX w.rt. S. Fixx € X and R € R%™. We need to show that there is X € X
such that

I Ax — Ax[|3, < Te(R)||Al|*?

Now, for any X we have

n

1A% — Ax||% = D (i — %) TAT Ry A — %0) = || — %%,

A A
R
i=1 AT

AN

Finally, since X is an e-multicover, there is x € X such that ||x — |

<
. <
far 2

[REN]

T . . - -~
Tr (”ATHRﬁ) 2 < Tr(R)e. Plugging in [|Ax — A%|% = [A]?]x — XHQ‘T‘T]R . we estab-

TAT
lish the proof.

O

Proof. (of item) Let X; be an ¢;-multicover of X; w.r.t. S. It is not hard to verify that Z?:l X; is
an (. | e;)-multicover of >_"" | X; w.r.t. S, which establishes the proof. O

Proof. (of item[3]) We have
Item[2]

Ms(X +be) < Ms(X.e) Ms({b},0)
= MS(X7E)
Similarly Ms(X,e) = Ms((X¥ +b) —b,e) < Ms(X +b,¢) implying that Ms(X,e) = Ms(X +
b,¢) O

Proof. (of item ) Let X; be an e-multicover of X; w.r.t. S. It is not hard to verify that U?zlzﬁ- is
an e-multicover of U}* | &; w.r.t. S, which establishes the proof. O

3This claim can be generalized to a more general S. We present the case S = Rcll’m for simplicity.

17
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Proof. (of item [5]) We first prove the item for n = 2. We will then show that the general case
follows by induction. Let X; be an ¢;-multicover of X;. Fix x; € X; anda R € R(f’m. It is enough
to show that there is X; € X; with ||x1x2 — X1X2||r < Miey + Maoeq + £162. We have

[[xix2 —Xi%ao|lr < [|[x1Xe — x1X2|| R + [[x1%X2 — X1X2||R

= [Ix2 = X2l gox,x] + X1 — X1 || Rostox]

Now, Tr(R o %X»%; ) = |[X2||3j,q(r)- Thus, we can choose %; such that [|x1 — %i1| pox,x]
%2 | diag(r)€1- We get forany 0 < p < 1

[x1x2 — X1%2| R < %2 = X2l Rox, x7 + X2 ldiag(r)E1
< %2 = X[ goxey x7 + 1X2 — X2 ldiag(r)E1 + X2l diag(r)E1
< ||X2 - kQ”RoxlxI + ||5(2 - XZHdiag(R)El + Maey
= l[x2 = X2l goxe,x7 + 1X2 — X2|laiag(2r) + Mae1
2 2/(1— _ Xo — 2
atb<+/a /§p+b /1) \/|x2 X212 T ||x2 >1<2||diag(8%R) \ e

- ||X2 - X2|| 1 RoxlxirJr dlag(EQR) + Mser

Now, we can choose X, € X5 with

g 1 1 .
HXQ—XQH%Roxlxl +1= 5 diag(e] R) < 82\/Tr (pR o Xlxir + 1 pdlag(E%R)) < E2\/]\412/1) + E%/(1 _p)

for p = My /(M; + 1) we get that
Ix1x2 — X1%2||r < e2(M7 + £1) + Maer = Mieg + Maer + €162

We next consider n > 2 and conclude the proof by induction. Denote X; = [[i_, X;, M} =
[T, M; and €, = [];_,(M; + ;) — [}, M;. By the induction hypothesis we have

Myam (X3,€5) < HM am (Xiy&5)
=2

By the case n = 2 we have

MR?,m (X1X2/7M1812 + Méé‘l + 616/2) < M. R (Xl,El) MRd,rn (XQ/,E/Q)

< Mpam (X1,21) HM am (Xiy € HM am (Xiy&5)
=2

this concludes the proof as X3 X5 = []!"_, X; and

/ ! A
Mgy + Myer + €164

I

E
_|_

o

l S~—
—
=

_|_

o
—

— - Mz> +€lﬁMi
= =2

I

—
Xz
s

':1
£

O

Proof. (of item EI) Let S = RY™, let £ be an ;-multicover of £ w.r.t. R%™ and let X' be an
£o-multicover of X' w.r.t. S. We will show that £X is an (g9+/2r2 + 2e%d; + 1 M )-multicover of

18
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LX wrt. S. Fix R € R‘li’m. Let W € £ and x € X. We need to show that there are W € £ and
% € X with |[Wx — Wx||g < e2+/2r2 + 2¢3d; + €, M. We have
Wx—Wx|r < |[Wx—Wx|g+|Wx-Wx|r
= lx=xllwrrw + [|(W = W)x||r

I = X[l gw + | D &)W = W)TRI(W — W)x!

=1

Now, (W1, Wa) = >0 (%)) "W, RiW,%? is a symmetric and positive bi-linear form on the space
of dy X d; matrices of trace

m dg d1 m dg dl m dg dl m

SN S TR B =3T3 Y (hen) T RE e = 3000 S (@2 RE = 30 TH(RF) x| < max 542

k=1i=1 j=1 k=1i=1 j=1 k=1i=1 j=1 k=1

Denote max := arg maxy, [|%*||2. By the last inequality there is T/ € £ such that

m
D E)TW =W TRI(W = W)x' < ef||xm |
=1
We have
[Wx = Wx|p < |x—%|wrrw +e1]x™
< llx = X[lwr rw 4 ex (X7 — x|+ [IxT])
< llx=x[lwrrw + X = x| 2 a1 M
-2 5 2
< VRl = K gy + 5 — x| e M
< V2y/r2ed + die2et 4 e M
O
O

Proof. (of Lemma [3.3) Let X be an s-multicover of X' of size M(X,¢). By lemma for any
X € X there is a distribution Dy on X such that if X ~ Dy then X is an e-estimator of x. In
particular, for any coordinate i € [d] and j € [m] we have

Ex (X! —2))? = Ex (X’ — x)) T Eu(X7 —x7) < &2
Denote k£ = {logr /2(d)—‘- By the above equation and lemma we conclude that if
X(1),...,X (k) ~ Dx then for every i € [d] and j € [m]

79

Pr (3@ € [d] s.t. |median(X (1), ..., X (k)}) — 27| > ra) <d (i)k <1

in particular, there exists x(1),...,x(k) € X such that for any i € [d] and j € [m],
lmedian(z(1)7,...,z(k)]) — 2J| < re. This implies that median(X*) is an e-cover of X’ w.r.t.

the /> norm. This concludes the proof as |median(X*)| < |X|* O

A.4 STRONGLY BOUNDED ACTIVATION FUNCTIONS

Lemma A.6 (-Swish Activation Ramachandran et al.[|(2017))). For a constant 3 > 0, the function

H_e'%ﬁz is strongly-bounded

It is shown in Daniely & Granot|(2019) that

Fact A.7. If p is B-strongly-bounded then p is analytic and its Taylor coefficients around any point
are bounded by B™ for any n > 1.
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Proof. For the case of 8 = 0 the swish becomes a linear function, and the claim is trivial. For 8 > 1,
consider the complex function f(z) = 727z Itis defined in the strip {z = = + iy : |y| < %71’}
By Cauchy integral formula, for any r < %, ac€Randn >0,

() (q) — nl f(z)
f ( ) ) /za|_7‘ (Z - a)n+1

211,
It follows that
’f(”)(a)‘ < 7 max |f(z)] < 71 max |f(x + iy)|
" |z—a|=r T atiy:|y|<r
Now, if [y| < r < 25, we have
e+ i)l = |1_+ij5§ﬁ ] S T oA S T eon(m)e™] <"
This implies that .—" is strongly bounded. O

Lemma A.8 (Hyperbolic Tangent). The function % is strongly-bounded

Proof. Consider the complex function f(z) = It is defined in the strip {z = = + iy : |y| <

e2z+1
%71’}. By Cauchy integral formula, for any r < $7, a € Rand n > 0,

(g = _f)
f ( ) -/za|—7" (Z _ a)n+1

27
It follows that

n! nl ‘
£ @) < 5 max [f(:)] <2 max [f(x+ i)l
" |z—al|=r T oxtiy:|y|<r

Now, if [y| < r < § we have that

\Fo-tiy)| = le?Te — 1] 2max{e?®,1} 2 max{e?* 1} 2 max{e?* 1} 2
x+i .

Y |e2re2iy + 1| = |e27e2W + 1| ~ |e2Tcos(2y) + 1] ~ |e2Tcos(2r) + 1| ~ cos(2r)
This implies that 621 771 is strongly bounded. O
Lemma A 9 ‘ Let p(z) = Zf 0 @ X" be a polynomial with |a;| < B" and suppose that

SB’ SB " Then, foranyLetO <e<l1,
c lc(k;—l)
M (p(X),e) < (M(X—))
(p().) < =

Proof. As M(p(X),e) = M(p(X) — ag,€) we can assume w.l.o.g. that ag = 0. Denote a = g5

and ¢; = i2*~'e. Note that since for —1 <z < 1, ;=555 = 3272, ia’~" we have that

2)

k oo
€ e 1
Zgi§1221/2 =10~ 4)
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Hence, we have that

P(X)CEE, X k .
M (p(X),e) < M a; X' e
i=1

ko< k . k
171§E ) M ain, Zz’;‘l>
i=1 i=1
Lem[3.2 k .
S H M (ai/'\,”, Ei)
=1
Lem[32] k .
< HM(XZ,EZ‘/MZ‘D
=1
la;|<B k . ,
< [12 (x%,e:/B")
=1
Cl(Z’rr@ k M Xz €q ’ 17
& (e )
Lem[B2 k i z
< H M\ &, Z(Qa)ilBi)>

-
~ I
_

2721 \\'
*i(2a) 1B

* )

Q
Il
_

Il
=
/—\/é\/‘\
/\/Q/\

I

s
Il
-

s
Il
o

3
|
I
L
—
—
S
—
~
gl
~
~—

i .
Claim 3. (a+ ;g ) —a' < 5

Proof. Denote f(z) = z*. Since f is convex on R, we have
.

7 / & Eq
f (a+ i(2a)i—1Bi> AR <a+ i(Qa)i—lBi> i(2a) 1B

Now, ;oo < a & < i20"Y(aB)! < 27271 < 271 (aB)! < ¢ < 8 (aB)" = 1. Hence
1(2(1)57_13 < a. Since f’ is monotone on R we have

& &

1 (o ) 0 =7 )
This translate to

+ & ‘ i< .(2 )i—l = €i
i(2a)l—1Bl - i(2a)1—1BZ B
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A.5 BOUNDING THE MULTICOVERING NUMBER OF NEURAL NETWORKS

Proof of@ As M(H,m,e) is monotonlcally decreasing with ¢, and the inequality is up to con-

stant, it is enough to prove the lemma for € < = B Denote
Li={W:|W-W| <r, |W-W|r<R}
Fix examples x1,...,x™ € Bil/g- Denote Xy = {(x!,...,x™)} € R%™. For 1 < i < t denote
X; = p(L;X;_1). We need to show that
2 dR2
M(X;, €) 5 (log(dm) +log™(d/e))" log(dR) —5-

where the hidden constant does not depend on the choice of x*, ..., x™.

Note that X; C (B$,)™ for M < V/D. Letk = [logg(\/&/e)—‘ and choose €, > 0 such that for

€ = 8Beay/2r2 + 2e3d + 8Bey M + Vdg~(k+D)

we have

— €2
= T

Note that

e < 8362\/m+ 8Bey +¢/8 = ¢ < %83(\/m+ 2)eg =: Ceg
We have
M (X, ¢€) = M (p(LeXy-1),€)

k(k+1)
2

Lemma[3.0] 1 [logy (dm)]
S (M (ﬁt/‘t‘t17323>> <M <£tXt1,62\/2T2+26%d+61M>>
— [og, (dm) ]+ =5
S <M (,CtXthEQ 27’2 +26%d+61M)>

Lemma[3:2] k(k+1)
< 1+==

(M(Eta 61)]\4 (Xt—17 62)) DOgZ(dm)

e/C<e o
2 (M(Ly,e1)M (Xi—1,¢/C)) Mog, (dm)]+ £t

By lemma and since €; = —=2 we have
2R* +1/4

log(M (L, €1)) < [2(d—|—M2) 2

w log(4d*[R] + 6d?)
Thus we get
log (M (X;, €)) = log (M (p(£L1X; 1), €))
< log(dm) +10g2(d/0) (- log(d) + M (i-1,/C)
Inductively, we get that

) dR2
log (M (X, €)) < (log(dm) + log®(d/e))’ log(dR)—5-

A.6 BOUNDING REPRESENTATIVENESS WITH MULTICOVER

Lemma A.10 (3.11} - Let{:RIxY - R be L-Lipschitzw.rt. || - ||oo and B-bounded. Assume that

Sor any \\/Frﬁsz <e<1,InM(H,m,e) < . Then for any distribution D on Z
L+ B
Egpmrepp(S,H) < (t/a)\/ﬁ\/log(dm) log(m

22
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Proof. First note that by Lemma[3.3]
No(LoH,m,e) < Noo(H,m,e/L) < -M(H,m,e/(4L))oe2(dm)]

Denote

M
12B
—M+1 —k —k
A= B2 +\/m,§:12 \/ln(Nz(Eo’H,m,B2 )

‘We have

A

IN

M
B M+1 12B %Q(dmﬂ ZQ*k\/In(M(”H,m,BQik/(‘lL)))
k=1

IN

\/7 M 2k1RT 2
py-M+ 128 ”\Bﬂg?(dmﬂ Z ok <216L + 1)
m

BZ

IN

Bo-M+1 12By/n log2 (dm)] Z (16L 22k>

IA

12By/n [1
B2~ M+1 4 ng (dm)] Z (+2 )

IN

12B+/n [log,(d ALM
B2~ M+ 4 n\/n%gQ m) ( +1>

B
Choosing M = [log, (/)] we get,

> B\/Z* 128 n\f/lﬂ%gQ(dm)] <4Llo§(m) . 1)

B APPROXIMATE DESCRIPTION LENGTH AND MULTICOVER

In this section we show that multicover is closely related to the notion of approximate description
length (ADL) as defined by |Daniely & Granot (2019). We start with a definition that is slightly
different from the definition used in [Daniely & Granot| (2019). We say that X’ has e-ADL of n if
there is a protocol between two entities, Alice and Bob with the following properties. Upon seeing
x € X, Alice, that is allowed to use randomness, sends a message s € {0, 1}" to Bob. Upon seeing
s, Bob generates a vector X that is an e-estimator to x. Formally, there is a probability space (2, P)
(representing Alice’s randomness) and functions A : X x Q — {0,1}" and B : {0,1}" — R%™
such that for any x € X the random variable w — B(A(x,w)) is an e-estimator of x. We denote by
ADL(X, ¢) the minimal k for which X has an e-ADL of k.

The following lemma shows that ADL is closely related to multicover.
Lemma B.1. ADL(X,¢) = |log, (M(X,¢))]

Proof. Observe that X" has e-ADL of n if and only if there is a set X such that for any x € X there
is a random vector X € X that is a e-estimator of x. By lemma [3.1|this is valid if and only if X
is an e-multicover. It follows that ADL(X, ) is the minimal k for Wthh X has an e-multicover of
size 2¥. In other words, ADL(X, ) = |log, (M (X, ¢))]. O

We next turn to the definition used in Daniely & Granot| (2019). We define unbiased e-ADL, by
making two modification to the definition of e-ADL. First, we require that E,,p B(A(x,w)) = Xx.
Second, we allow sending messages of unbounded length (i.e. a message in {0, 1}*), and just require
that the expected number of sent bits will be at most n. We denote by uADL(X, €) the minimal &
for which X has an unbiased e-ADL of k. We note thatDaniely & Granot| (2019) defined the ADL
of X to be uADL(X, 1). The following lemma connects unbiased ADL and ADL by showing that
ignoring poly-logarithmic factors, uADL(X,1) < k if and only if ADL(X,¢) < E% By lemma
this happens if and only if log, (M (X, ¢)) < %.
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Lemma B.2. Fix X C R®™. We have
*V0<e<1, ADL(X,e) <O (M)

« IfADL(X,e) < % forany 0 < e < 1 then uADL(X,1) = O (log2(dm)kz)

Where the constant in the big-O notation are universal.

Proof. (sketch) Denote k = uADL(X, 1). Given x € X and using O ( ) expected bits Alice can
send to Bob L%W independent and unbiased 1-estimators of x. If Bob averages these estimators,

he gets an e-estimator of x. This implies that uADL(X,¢) < O (M>

enough to show that ADL(X,e) < O (uADL(X,e/v/2)). By Lemmamlt is enough to show that
log(M(X,¢)) < O (uADL(X,2/V?2)).

. It is therefore

Denote k = uADL(X,/+/2) and fix a probability space (£2, P) and functions A : X xQ — {0, 1}*
and B : {0,1}* — R%™ such that for any x € X the random variable w — B(A(x,w)) is an
unbiased (e/f) estimator of x, and E,len(A(x,w)) < k. Fix R € R{™. We have E,||x —

B(A(x,w))[|% < €%/2 By Markov inequality, there exists w such that [x — B(A(x,w))[% < €
and len( (x,w)) < 2k. This implies that X := {B(s) : s € {0,1}*, len(s) < 2k} is a e-cover

of X w.r.t. R. This is true for any R € R‘f’m, and therefore X is a e-multicover of X. This implies
that log(M (X, ¢)) < 4k

For the second item, let X,, and X,, be —&— -estimators of x, which can be encoded using k% bits
Van €

each. Let Z,, be ar.v. that is 2" w.p. 27" and 0 otherwise. Assume that all these random variables
are independent. Consider now the estimator

X1+ZZ X1 — Xy)

We first claim that Bob can generate such an estimator using O ( ) expected bits set from Alice.
Indeed, Alice can first sample thi: Zy’s. Then for any n, if Z # 0, send the index n using

O(log(n)) (2 kgl) =
O (£). The total expected number of sent b1ts is therefore O (%4 bits. We next show that X% i
( v1+4N ) -estimator of x. Indeed, for any unit vector u we have
N
Var ((u, XV)) = Var((u,X1)) + Z Var (Z,(u, Xp+1 — Xn))

n=1

IN

e+Z]E (0, X1 — X0))?

n=1

N
= &+ EZZE((u,Xpp — X))

N
= &+ 2"E(u, Xpyp1 — X))

n=1

IN

N
&2y o (E<u, Xoi1 — %)%+ E(u, X, — x>2)

N
S 62 + 6222 27L (2—(7L+1) + 2—%)
< €(1+4N)

Let YV be an unbiased (1/2)-estimator of y := x — EXY = x — EXy,;. Since Xy is
(5775 ) -estimator of x, we have that the absolute value of each coordinate of y is at most
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sevin7z- Thus, Alice can send 1 estimator of y as follows: for any ¢ € [m] and j € [d], w.p. |yt
send sign(y}) and the indices ¢ and j. If the pair (, j) were sent, Bob will define Y, = sign(y}).
Otherwise, he will define Y = 0. It is not hard to verify (see Daniely & Granot (2019) for de-
tails) that Y is an unbiased 5557z -estimator of Y. Likewise, the expected number of sent bits per

elog(md)

coordinate is O (2(N+1)/2 ), resulting with a total cost of O (%) =0 (%g}f)) bits.

Finally, X = X% + YV is an unbiased \/1/2 + €2(1 + 4N)-estimator of x which costs
@) (%W + 11712\7) bits to encode. Choosing € = /1/(2+4N) and N = 2log,(md) we
gen an unbiased 1-estimator of x which costs O (k log? (md)) bits to encode.

O
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