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ABSTRACT

Covering numbers are central to estimating sample complexity. Alas, standard
techniques for bounding covering numbers fail in estimating the covering num-
bers of many classes of neural networks. We introduce a generalization of covers,
called multicovers, which are covers w.r.t. many metrics simultaneously. Con-
trary to standard covering numbers, multicovering numbers behave better with the
layer-wise structure in neural networks. We utilize this property to recover a recent
result of Daniely & Granot (2019) who defined a new notion called Approximate
Description Length (ADL) to establish tight bounds on the sample complexity of
networks with weights of bounded Frobenius norm. We also show that ADL and
multicovering numbers are closely related.

1 INTRODUCTION

Covering numbers are one of the most basic techniques for bounding the sample complexity of
function classes, and can achieve state of the art bounds in various cases. Alas, it is not clear
how to estimate covering numbers for function classes of layered architectures, such as neural net-
works. Indeed, state-of-the-art results still exhibit a polynomial gap between upper and lower sample
complexity bounds. This is in contrast to non-layerd function classes, in which the gaps are often
logarithmic or even constant.

A major flaw of covering numbers is that it is not clear how to use them inductively on the network’s
layers. That is, a bound on the covering number for function classes of depth i architectures, is not
enough to derive a tight (up to log factors) bound for function classes of depth i+ 1 architectures.

In this paper, we present a generalization of covering called multicover, which overcomes the above
barrier, at least in some cases. This allows the derivation of tight bounds on various families of
neural networks. In a nutshell, given a set S of d × d PSD matrices, an ϵ-multicover of a set
X ⊂ Rd is a set X̌ that simultaneously forms an ϵ-cover w.r.t. to any metric of the form d(x,y) =√
(x− y)⊤R(x− y) for R ∈ S . The ϵ-multicovering number of X is the minimal size of an ϵ-

multicover of X . We note that if S consists of a single matrix R, multicover is just a standard cover
w.r.t. the norm corresponding to R. However, for other sets S we get a notion of covering that is
fundamentally different from standard covering w.r.t. a metric.

We present techniques which allow for layerwise induction. Using these techniques and for the case
of S being the class of PSD matrices with trace at most 1, we show the following. Given a bound
on the multicovering number of X , a class L of d× d matrices, and a non-linearity σ : R → R, we
derive bounds which are often tight on the multicovering number of

LX = {Ax : A ∈ L,x ∈ X} and σ(X ) = {(σ(x1), . . . , σ(xd)) : x ∈ X}
The tools we present allow us to derive nearly tight bounds on the sample complexity of constant
depth networks with weights of bounded norm. For instance, assume that the activation is the ReLU-
like softplus activation σ(x) = log(1 + ex) and consider the class N of networks of depth l, width
d, and weight matrices with spectral norm at most O(1) and Frobenius norm at most R. This and
similar classes have been studied intensively in recent years, because sample complexity bounds on
such classes can potentially be sublinear in the number of network parameters, thus shedding light
on a main mystery of modern neural networks. We show that if the input distribution is supported
in [−1, 1]d then the sample complexity of N is Õ(dR2) which is sublinear in number of parameters
and is tight up to poly-log factors.
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As far as we know, despite extensive efforts, such results are not known to be derived via “stan-
dard” covering number techniques, or even more generally, via other common techniques such as
Radamacher complexity. nevertheless, we note that similar bounds were recently proved (Daniely
& Granot, 2019) using a notion called Approximate Description Length (ADL). We show that ADL
is closely related to multicover, and in a sense, multicover can be seen as a “dual” approach to ADL.
We hope that having both the ADL technique and the multi-covering technique at our disposal will
lead to further progress in the future.

Throughout this paper, absent proofs for theorems, lemmas, and claims appear in full form in the
appendix.

1.1 COVERING NUMBERS AND LAYERWISE INDUCTION

We next give a simple example in which layerwise induction fails to establish tight bounds on cov-
ering numbers. We emphasize that the goal of this example is to demonstrate the problem with
layerwise induction on covering numbers, but it is not a proof that the approach is doomed to fail in
general.

We will consider the class H of linear classifiers of norm ≤ 1 over Bd√
d
. That is, H consists of all

functions h : Bd√
d
→ R of the form h(x) = v⊤x for v ∈ Bd

1 . It is well known that the sample

complexity of H is Õ
(

d
ϵ2

)
. In order to prove this via covering numbers one can show that for any

choice of x1, . . . ,xm ∈ Bd√
d

the covering number of

X = {(h(x1), . . . , h(xm)) : h ∈ H}

satisfies log(N2(X2, ϵ)) = Õ
(

d
ϵ2

)
. This can be proved using standard covering number techniques.

For the sake of illustration we will view H a composition of two function classes, corresponding to a
two layer neural network. Fix u ∈ Sd−1, let H1 be the class of all functions h : Bd√

d
→ Bd√

d
of the

form h(x) = Ax for A ∈ Md,d for A with ∥A∥F ≤ 1, and let H2 = {hu}. Note that H = H2 ◦H1.
Now fix x1, . . . ,xm ∈ Bd√

d
and u ∈ Sd−1. Consider the sets X1 = {(h(x1), . . . , h(xm) : h ∈ H1}

and X2 = {(h(y1), . . . , h(ym)) : (y1, . . . ,ym) ∈ X1, h ∈ H2}

As noted above, log(N2(X2, ϵ)) = Õ
(

d
ϵ2

)
. Suppose now that we want to prove this in an inductive

way. Can we guarantee that log(N2(X2, ϵ)) = Õ
(

d
ϵ2

)
via a bound on the ℓ2 covering numbers

of X1 without specific assumptions on the structure of X1? (remember that we want an inductive
argument that will work for neural networks, in which case it is not clear what further assumptions

we can make)? As Claim 1 below shows, without assumptions beyond the fact that X1 ⊂
(
Bd√

d

)m
,

the best bound we can derive is N2(X2, ϵ) ≤ N2(X1, ϵ). This is not enough as for ϵ = 1/4, Claim
2 below chows that log(N2(X1, ϵ)) may be as large as Ω(d2), thus the best bound we can get is
log(N2(X2, 1/4)) = O

(
d2
)
.

Claim 1. There is a set X ⊂
(
Bd√

d

)m
such that N2(X , ϵ) = N2(u

⊤X , ϵ)

Proof. (sketch) It is not hard to verify that for X =
{(

a1
√
du, . . . , am

√
du
)
: ai ∈ {±1}

}
. We

have N2(X , ϵ) = N2({±
√
d}m, ϵ) = N2(u

⊤X , ϵ)

Claim 2. For ϵ ≤ 1, m = d and xi =
√
dei we have N2(X2ϵ) = Ω(d2)

Proof. We have X1 =
{
(a1, . . . ,ad) :

∑d
i=1 ∥ai∥2 = d

}
. Thus, N2(X1, ϵ) = N2

(
Bd2

√
d
,
√
dϵ
)
=

N2

(
Bd2

1 , ϵ
)

Lemma 2.2
= Ω(d2)

2
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2 MULTICOVER

2.1 NOTATION

We denote by x1x2 the elementwise product of two vectors x1,x2 ∈ Rd. We denote by e1 . . . , ed
the standard basis of Rd and by {Eij}1≤i,j≤d the standard basis of the space of d× d matrices. We
will use ∥ · ∥ to denote the standard Euclidean norm for vector and the spectral norms for matrices.
∥ ·∥F will be used for the Frobenius norm of matrices. Bd

r will stand for the Euclidean ball of radius
r in Rd. We will use ≲ to denote inequality up to a constant.

2.2 BASIC DEFINITIONS

Denote by Rd the convex set of d× d PSD matrices. Let S ⊂ Rd, we say that S is nice if ∀R ∈ S
and W ∈ Rd×d with ∥W∥ ≤ 1 then W⊤RW ∈ S. We denote by Rd

t = {R ∈ Rd : Tr(R) ≤ t} the
corresponding nice set. We denote the inner product, the norm, and the metric induced by R ∈ Rd

on Rd by ⟨x,y⟩R = ⟨x, Ry⟩, ∥x∥R =
√
⟨x,x⟩R and dR(x,y) = ∥x − y∥R. Fix X ⊂ Rd and let

ε > 0. A set X̌ ⊂ Rd is an ε-cover of X w.r.t. a metric d on Rd if for every x ∈ X there is x̌ ∈ X̌
such that d(x, x̌) ≤ ε. A set X̌ ⊂ Rd is an ε-multicover of X w.r.t. a nice set S if for any R ∈ S and
every x ∈ X there is x̌ ∈ X̌ such that ∥x− x̌∥R ≤

√
Tr(R)ε. Equivalently, for any R ∈ S, X̌ is an

ε-cover of X w.r.t. dR. The ε-multicovering-number of X , w.r.t. S, and denoted by MS(X , ε) is the
minimal size of an ε-multicover of X w.r.t. S. Likewise, the ε-covering-number of X w.r.t. a metric
d, denoted by Nd(X , ε), is the minimal size of an ε-cover of X w.r.t. d. We will use Np(X , ε) when
the metric is d(x,y) = ∥x− y∥p and NR(X , ε) when the metric is dR for R ∈ Rd.

Note that if S is a nice set, A ∈ S and B ⪯ A, then w.l.o.g. we may assume B ∈ R. This is because
for every x ∈ Rd x⊤Bx ≤ x⊤Ax, thereby ∥x∥B ≤ ∥x∥A. i.e. adding all PSD matrices of lower
PSD order to S keeps the ε-multicover w.r.t. S valid. On the other hand, adding matrices only adds
constraints and therefore cannot decrease the multicovering number. Overall we get MS(X , ε) =
MS∪{B}(X , ε) for any X and ε

We will also use the notion of packing. We say that X̌ ⊂ X is an ϵ-packing of X w.r.t a metric d
on X if d(x,y) ≥ ϵ for any pair of points x,y ∈ X̌ . We denote by Pd(X , ϵ) the maximal size of
an ϵ-packing of X . As with covering, we will use Pp(X , ε) when the metric is d(x,y) = ∥x− y∥p
and PR(X , ε) when the metric is dR for R ∈ Rd. It is well known (e.g. Vershynin (2018)) that

Pd(X , 2ϵ) ≤ Nd(X , ϵ) ≤ Pd(X , ϵ) (1)

2.3 SOME PRELIMINARY LEMMAS

Lemma 2.1. Let X1, . . . , Xk be independent r.v. with that that are σ-estimators to µ. Then

Pr (|median(X1, . . . , Xk)− µ| > rσ) <

(
2

r

)k

Lemma 2.2 (e.g. Vershynin (2018)). For any ε ≤ M , (M/ε)d ≤ N2(B
d
M , ε) ≤ (3M/ε)d

Lemma 2.3. P2({±1}d, d) ≥ ed/8

2.4 MULTICOVER AND ESTIMATORS

We say that a random variable X ∈ Rd is an ε-estimator of x ∈ Rd if for any u ∈ Sd−1,
E⟨u, X − x⟩2 ≤ ε2. Equivalently, for any R ∈ Rd, E∥X − x∥2R ≤ Tr(R)ε2. We say that X
is unbiased if EX = x.

Lemma 2.4. Let X ⊂ Rd. A set X̌ ⊂ Rd is an ε-multicover of X w.r.t. Rd if and only if for any
x ∈ X there is a random vector X ∈ X̌ that is an ε-estimator of x.

Proof. Write X̌ = {x1, . . . ,xT }. Suppose that X̌ is a ε-multicover and let x ∈ X . It is enough to
show that there is a r.v. X whose range is {x1, . . . ,xT } such that for any R ∈ Rd

1, E∥X−x∥2R ≤ ε2.

3
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Such a r.v. exists if and only if

min
λ∈∆T−1

max
R∈Rd

1

T∑
i=1

λi∥xi − x∥2R ≤ ε2

since the objective
∑T

i=1 λi∥xi − x∥2R =
∑T

i=1 λi(xi − x)⊤R(xi − x) is bi-linear in λ and R, and
since ∆T−1 and Rd

1 are both convex and compact, we can apply the minmax theorem to conclude
that a r.v. X as described above exists if and only if

max
R∈Rd

1

min
λ∈∆T−1

T∑
i=1

λi∥xi − x∥2R ≤ ε2

which is equivalent to
max
R∈Rd

1

min
i∈[T ]

∥xi − x∥R ≤ ε

Which is indeed the case as X̌ is an ε-multicover on X .

Suppose now that for any x ∈ X there is a r.v. X whose range is X̌ such that for any R ∈ Rd
1,

E∥X − x∥2R ≤ ε2. This implies that for any x ∈ X and any R ∈ Rd
1 there is x̌ ∈ X̌ such that

∥x̌− x∥R ≤ ε. This implies that X̌ is an ε-multicover of X .

2.5 THE MULTICOVERING-NUMBER OF AN EUCLIDEAN BALL

Lemma 2.5. For the ball Bd
M =

{
x ∈ Rd| ∥x∥2 ≤ M

}
and ε ≤ M we have

2min(d,⌊(M/2ε)2⌋) ≤ MRd
1
(Bd

M , ε) ≤ min

(
(4d2⌈M⌉+ 6d)⌈

2M2+ 1
4

ε2
⌉, (3M/ε)d

)
The idea behind the proof is constructing a sparse covering set by picking a convex hull that covers
the ball, then using averaging to make the sparse cover k-sparse, in the spirit of Maury’s lemma
(Pisier, 1980-1981).

2.6 MULTICOVER CALCULUS

Lemma 2.6. Let S ⊂ Rd be a nice set, then:

1. For X ⊂ Rd1 and a d2 × d1 matrix A we have MS(AX , ∥A∥ε) ≤ M (X , ε)

2. For X1, . . . ,Xn ⊂ Rd and ε1, . . . , εn > 0 we have MS(
∑n

i=1 Xi,
∑n

i=1 εi) ≤∏n
i=1 MS(Xi, εi)

3. For X ⊂ Rd, ε > 0, orthonormal matrix U and b ∈ Rd we have MS(UX + b, ε) =
MS(X , ε)

4. For X1, . . . ,Xn ⊂ Rd and ε > 0 we have MS(∪n
i=1Xi, ε) ≤

∑n
i=1 MS(Xi, ε)

5. For S = Rd
1 and Xi ⊂ [−Mi,Mi]

d and ε1, . . . , εn > 0 we have

MRd
1

(
n∏

i=1

Xi,

n∏
i=1

(Mi + εi)−
n∏

i=1

Mi

)
≤

n∏
i=1

MRd
1
(Xi, εi)

6. If for any maximal R ∈ S (w.r.t. PSD order), Tr(R) ≥ 1. Fix X ⊂ Bd1

M , and L ⊂ Rd2,d1

matrices with spectral norm ≤ r. Denote ∥A∥S := min{t > 0 : 1
tA ∈ S}, then

MS

(
LX , ε2

√
2r2 + 2ε21∥Id1∥S + ε1M

)
≤ MRd

1
(L, ε1) ·MS(X , ε2)

We next prove each item separately.

4
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Proof. (of item 1.) Let X̌ be an ε-multicover of X w.r.t. S . It is enough to show that AX̌ is an
(∥A∥ε)-multicover of AX . Fix X ∈ X and a PSD matrix R ∈ S. We need to show that there is
x̌ ∈ X̌ such that ∥Ax−Ax̌∥2R ≤ Tr(R)∥A∥2ε2. Now, for any x̌ we have

∥Ax−Ax̌∥2R = ∥A∥2(x− x̌)⊤
A⊤

∥A∥
R

A

∥A∥
(x− x̌) = ∥A∥2∥x− x̌∥2A⊤

∥A∥R
A

∥A∥

Finally, since X̌ is an ε-multicover w.r.t. S, there is x̌ ∈ X̌ such that ∥x − x̌∥2
A⊤
∥A∥R

A
∥A∥

≤

Tr( 1
∥A∥A

⊤R 1
∥A∥A)ε2 ≤ Tr(R)ε2. Therefore overall

∥Ax−Ax̌∥2R = ∥A∥2∥x− x̌∥2A⊤
∥A∥R

A
∥A∥

≤ Tr(R)∥A∥2ε2

Proof. (of item 5.) We first prove the item for n = 2. We will then show that the general case
follows by induction. In the proof of this item we will denote by A ◦ B the elementwise product
of two d × d matrices, and by diag(A) the diagonal matrix obtained by zeroing the non-diagonal
entries of A.

Let X̌i be an εi-multicover of Xi w.r.t. Rd
1. Fix xi ∈ Xi and a PSD matrix R ≥ 0 with Tr(R) ≤ 1.

It is enough to show that there is x̌i ∈ X̌i with ∥x1x2 − x̌1x̌2∥R ≤ M1ε2 +M2ε1 + ε1ε2. We have

∥x1x2 − x̌1x̌2∥R ≤ ∥x1x2 − x1x̌2∥R + ∥x1x̌2 − x̌1x̌2∥R
= ∥x2 − x̌2∥R◦x1x⊤

1
+ ∥x1 − x̌1∥R◦x̌2x̌⊤

2

Now, Tr(R ◦ x̌2x̌
⊤
2 ) = ∥x̌2∥2diag(R). Thus, we can choose x̌1 such that ∥x1 − x̌1∥R◦x̌2x̌⊤

2
≤

∥x̌2∥diag(R)ε1. We get for any 0 < p < 1

∥x1x2 − x̌1x̌2∥R
(∗)
≤ ∥x2 − x̌2∥ 1

pR◦x1x⊤
1 + 1

1−pdiag(ε
2
1R) +M2ε1

Where (∗) follows from straight-forward calculations that appear fully in the appendix version of
this proof. Now, we can choose x̌2 ∈ X̌2 with

∥x2 − x̌2∥ 1
pR◦x1x⊤

1 + 1
1−pdiag(ε

2
1R) ≤ ε2

√
Tr

(
1

p
R ◦ x1x⊤

1 +
1

1− p
diag(ε21R)

)
≤ ε2

√
M2

1 /p+ ε21/(1− p)

for p = M1/(M1 + ε1) we get that

∥x1x2 − x̌1x̌2∥R ≤ ε2(M1 + ε1) +M2ε1 = M1ε2 +M2ε1 + ε1ε2

We next consider n > 2 and conclude the proof by induction. Denote X ′
2 =

∏n
i=2 Xi, M ′

2 =∏n
i=2 Mi and ε′2 =

∏n
i=2(Mi + εi)−

∏n
i=2 Mi.

By the induction hypothesis we have M (X ′
2, ε

′
2) ≤

∏n
i=2 M(Xi, εi). By the case n = 2 we have

M (X1X ′
2,M1ε

′
2 +M ′

2ε1 + ε1ε
′
2) ≤ M (X1, ε1)M (X ′

2, ε
′
2)

≤ M (X1, ε1)

n∏
i=2

M(Xi, εi) =

n∏
i=2

M(Xi, εi)

this concludes the proof as X1X ′
2 =

∏n
i=1 Xi and

M1ε
′
2 +M ′

2ε1 + ε1ε
′
2 = (M1 + ε1)

(
n∏

i=2

(Mi + εi)−
n∏

i=2

Mi

)
+ ε1

n∏
i=2

Mi

=

n∏
i=1

(Mi + εi)−
n∏

i=1

Mi

5
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Proof. (of item 6) For a nice set S ⊂ Rd, and PSD matrix R ∈ Rd×d, define ∥R∥S = min{t >
0 : 1

tR ∈ S}. Note that this is almost a norm - the triangle inequality, positive definiteness, and
homogeneity for positive scalars apply - but do not apply for negative scalars. Let Ľ be an ε1-
multicover of L w.r.t. Rd

1 and let X̌ be an ε2-multicover of X w.r.t. S. We will show that ĽX̌ is an
ε2
√

2r2 + 2ε1∥Id1∥S + ε1M -multicover of LX w.r.t. S. Fix R ∈ S. W.l.o.g we may assume that
it is maximal w.r.t. PSD order. Let W ∈ L and x ∈ X . We need to show that there are W̌ ∈ Ľ and
x̌ ∈ X̌ with ∥Wx− W̌ x̌∥R ≤ ε2

√
2Tr(R)r2 + 2ε1Tr(R)∥Id1

∥S + ε1
√
Tr(R)M . We have

∥Wx− W̌ x̌∥R ≤ ∥Wx−W x̌∥R + ∥W x̌− W̌ x̌∥R = ∥x− x̌∥W⊤RW + ∥(W − W̌ )x̌∥R

= ∥x− x̌∥W⊤RW +

√
x̌⊤(W − W̌ )⊤R(W − W̌ )x̌

Now, (W1,W2) 7→ x̌⊤W⊤
1 RW2x̌ is a symmetric and positive bi-linear form on the space of d2×d1

matrices of trace
d2∑
i=1

d1∑
j=1

x̌⊤E⊤
ijREijx̌ =

d2∑
i=1

d1∑
j=1

(x̌jei)
⊤R(x̌jei) =

d2∑
i=1

d1∑
j=1

x̌2
jRii = Tr(R)∥x̌∥2

Thus, there is W̌ ∈ Ľ such that x̌⊤(W − W̌ )⊤R(W − W̌ )x̌ ≤ Tr(R)∥x̌∥2ε21. For this W̌ we have

∥Wx− W̌ x̌∥R
(∗)
≤

√
2∥x− x̌∥W⊤RW+ε21Tr(R)Id1

+ ε1
√

Tr(R)M

Where (∗) follows from simple calculations, that appear fully in the appendix version of this proof.
Thus, it is possible to choose x̌ ∈ X̌ s.t. ∥x− x̌∥W⊤RW+ε21Id1

≤ ε2
√

∥W⊤RW + ε21Tr(R)Id1∥S .
Finally, ∥W⊤RW + ε21Tr(R)Id1∥S ≤ r2 + ε21Tr(R)∥Id1∥S ≤ Tr(R)r2 + ε21Tr(R)∥Id1∥S

Lemma 2.7. Fix X ⊂ Rd, ε > 0 and r > 2. It holds that N∞(X , rε) ≤
(
MRd

1
(X , ε)

)⌈logr/2(d)⌉
.

Proof. Let X̌ be an ε-multicover of X of size M(X , ε). By lemma 2.4 for any x ∈ X there is a
distribution Dx on X̌ such that if X ∼ Dx then X is an ε-estimator of x. In particular, for any
coordinate i ∈ [d] we have

EX(Xi − xi)
2 = EX(X − x)⊤Eii(X − x) ≤ ε2

Denote k =
⌈
logr/2(d)

⌉
. By the above equation and lemma 2.1 we conclude that if X1, . . . , Xk ∼

Dx then for every i ∈ [d]

Pr
(
∃i ∈ [d] s.t. |median(X1

i , . . . , X
k
i )− xi| > rε

)
< d

(
2

r

)k

≤ 1

in particular, there exists x1, . . . ,xk ∈ X̌ such that for any i ∈ [d], |median(x1
i , . . . , x

k
i )−xi| ≤ rε.

This implies that

median(X̌ k) :=
{(

median(x1
1, . . . , x

k
1), . . . ,median(x1

d, . . . , x
k
d)
)
: x1, . . . ,xk ∈ X̌

}
is an ε-cover of X w.r.t. the ℓ∞ norm. This concludes the proof as |median(X̌ k)| ≤ |X̌ |k

3 MULTICOVER FOR NEURAL NETWORKS SAMPLE COMPLEXITY

3.1 MULTICOVER FOR SEQUENCE OF VECTORS

We denote by Rd,m the vector space of sequences x = (x1, . . . ,xm) of m vectors in Rd. We next
extend the notion of multicover, as well as multicover calculus, to subsets Rd,m. This extension is
useful for sample complexity analysis via multicover.

Denote by Sd,m the collection of all sequences (u1, . . . ,um) ∈ Rd,m with
∑m

i=1 ∥ui∥2 = 1. We
also denote by Rd,m the convex set of sequences R = (R1, . . . , Rm) of m d × d PSD matrices.

6
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We denote Tr(R) =
∑m

i=1 Tr(Ri) and Rd,m
t = {R ∈ Rd,m : Tr(R) ≤ t}. We say that a set

S ⊂ Rd,m is nice, if ∀R ∈ S, i ∈ [m] and W ∈ Rd×d,m with ∥Wi∥ ≤ 1 then W⊤RW =
(W⊤

1 R1W1, . . . ,W
⊤
mRmWm) ∈ S. We denote the inner product, norm and metric induced by

R ∈ Rd,m on Rd,m by ⟨x,y⟩R =
∑m

i=1

〈
xi, Riy

i
〉
,∥x∥R =

√
⟨x,x⟩R and dR(x,y) = ∥x−y∥R.

A set X̌ ⊂ Rd,m is an ε-multicover of X w.r.t. a nice set S if for any R ∈ S and every x ∈ X
there is x̌ ∈ X̌ such that ∥x − x̌∥R ≤

√
Tr(R)ε. Equivalently, for any R ∈ Rd,m

1 X̌ is an ε-cover
of X w.r.t. dR. The ε-multicovering-number of X , denoted by M(X , ε) is the minimal size of an
ε-multicover of X .

We will use NR(X , ε) for the covering number w.r.t. the metric dR, N∞(X , ε) when the
metric is d(x,y) = maxj∈[m] ∥xj − yj∥∞ and N2(X , ε) when the metric is d(x,y) =√

1
m

∑m
j=1 ∥xj − yj∥22.

We say that a random variable X ∈ Rd,m is an ε-estimator of x ∈ Rd,m if for any u ∈ Sd,m, we
have

∑m
j=1 E

〈
uj , Xj − xj

〉2 ≤ ε2. Equivalently, for any R ∈ Rd,m, E∥X − x∥2R ≤ Tr(R)ε2.

We next generalize Lemmas 2.4, 2.6 and 2.7 to the extended definition of multicover. The proofs
of the generalized lemmas are similar to the proofs of the original lemmas and are deffered to the
appendix, similarly to the other absent proofs.

Lemma 3.1. Let X ⊂ Rd,m. A set X̌ ⊂ Rd,m is an ε-multicover of X w.r.t. Rd,m if and only if for
any x ∈ X there is a random vector X ∈ X̌ that is an ε-estimator of x.

Lemma 3.2. 1. For X ⊂ Rd1,m and A ∈ Rd2×d1 we have MS(AX , ∥A∥ε) ≤ MS (X , ε)

2. For X1, . . . ,Xn ⊂ Rd,m and ε1, . . . , εn > 0 we have MS(
∑n

i=1 Xi,
∑n

i=1 εi) ≤∏n
i=1 MS(Xi, εi)

3. For X ⊂ Rd,m, ε > 0 and b ∈ Rd,m we have MS(UX + b, ε) = MS(X , ε)

4. For X1, . . . ,Xn ⊂ Rd,m and ε > 0 we have MS(∪n
i=1Xi, ε) ≤

∑n
i=1 MS(Xi, ε)

5. For S = Rd,m
1 Xi ⊂ [−Mi,Mi]

d,m and ε1, . . . , εn > 0 we have

MRd,m
1

(
n∏

i=1

Xi,

n∏
i=1

(Mi + εi)−
n∏

i=1

Mi

)
≤

n∏
i=1

MRd,m
1

(Xi, εi)

6. For1 S = Rd,m
1 , fix X ⊂ Bd1,m

M , L ⊂ Rd2,d1 matrices with spectral norm ≤ r. Then,

MS

(
LX , ε2

√
2r2 + 2ε21d1 + ε1M

)
≤ MRd,m

1
(L, ε1) ·MS(X , ε2)

Lemma 3.3. Fix X ⊂ Rd,m, ε > 0 and r > 2.

Then N∞(X , rε) ≤
(
MRd,m

1
(X , ε)

)⌈logr/2(dm)⌉
.

3.1.1 STRONGLY BOUNDED ACTIVATION

In this section we will develop tools to calculate MRd,m
1

(ρ(X ), ε) for a smooth enough ρ. For the
sake of cleanliness we will denote M(·, ·) := MRd,m

1
(·, ·). The smoothness requirements are given

in the following definition.

Definition 3.4. A function ρ : R → R is B-strongly-bounded if for all n ≥ 1, ∥ρ(n)∥∞ ≤ n!Bn.
Likewise, ρ is strongly-bounded if it is B-strongly-bounded for some B

As shown in Daniely & Granot (2019) the ReLU-like function log(1 + ex) is strongly bounded, as
well as the sigmoid function ex

1+ex . It is also shown in Daniely & Granot (2019) that

1This claim can be generalized to a more general S. We present the case S = Rd,m
1 for simplicity.
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Fact 3.5. If ρ is B-strongly-bounded then ρ is analytic and its Taylor coefficients around any point
are bounded by Bn for any n ≥ 1.

We will utilize this fact in order to calculate the effect of a non-linearity on the multicovering number.
Lemma 3.6 (β-Swish Activation Ramachandran et al. (2017)). For a constant β ≥ 0, the function

x
1+e−βx is strongly-bounded

Lemma 3.7 (Hyperbolic Tangent). The function e2x−1
e2x+1 is strongly-bounded

In order to analyze M(ρ(X ), ε) for a strongly bounded ρ, we first analyze M(p(X ), ε) for a poly-
nomial p, and then utilize fact 3.5.

Lemma 3.8. Let p(x) =
∑k

i=0 aiX
i be a polynomial with |ai| ≤ Bi and suppose that X ⊂[

− 1
8B , 1

8B

]d,m
. Then, for any Let 0 < ε ≤ 1, M (p(X ), ε) ≤

(
M
(
X , ε

8B

)) k(k+1)
2

We are now ready to present our main tool for analysing M(ρ(X ), ε) for strongly bounded ρ.
Lemma 3.9. Let X ⊂ Rd,m. Let ρ : R → R be B strongly bounded. Then for 1 ≥ ε > 0,

M(ρ(X ), ε+
√
d8−(k+1)) ≤

(
M

(
X ,

1

32B

))⌈log2(dm)⌉ (
M
(
X ,

ε

8B

)) k(k+1)
2

Proof. Assume first that X ⊂ Rd,m is contained in an ℓ∞ ball of radius 1
8B . Since multicovering

numbers are invariant to translations (i.e. M(X , ε) = M(X + b, ε) for any b ∈ Rm,d), we can
assume w.l.o.g. that X ⊂

[
− 1

8B , 1
8B

]d,m
. Let p be the Taylor polynomial of ρ around 0 of degree k

and let r = ρ − p. We have that for any x ∈
[
− 1

8B , 1
8B

]
, |r(x)| ≤ Bk+1|x|k+1 ≤ 8−(k+1). Thus

{0} is an
(√

d8−(k+1)
)

-multicover of r(X ). Indeed, if R ∈ Rd,m
1 and x ∈ r(X ) then

∥x∥2R =

m∑
i=1

〈
xi, Rix

i
〉
≤

m∑
i=1

Tr(Ri)∥xi∥2

≤
m∑
i=1

Tr(Ri)d8
−2(k+1) = d8−2(k+1)Tr(R) ≤ d8−2(k+1)

In particular M(r(X ),
√
d8−(k+1)) = 1. Now, we have

M(ρ(X ), ε+
√
d8−(k+1))

ρ(X )⊂p(X )+r(X )

≤ M(p(X ) + r(X ), ε+
√
d8−(k+1))

Lemma 3.2
≤ M

(
r(X ),

√
d8−(k+1)

)
M(p(X ), ε)

Lemma 3.8
≤

(
M
(
X ,

ε

8B

)) k(k+1)
2

Finally, by lemma 3.3, X is a union of
(
M
(
X , 1

32B

))⌈log2(dm)⌉
sets Xi, such that each Xi is con-

tained in an ℓ∞ ball of radius 1
8B . Applying the above argument to each Xi implies the lemma.

3.2 NEURAL NETWORK SAMPLE COMPLEXITY VIA MULTICOVER

3.2.1 MULTICOVER AND SAMPLE COMPLEXITY

Fix an instance space Z , a label space Y and a loss ℓ : Rd × Y → [0,∞). We say that ℓ has
some property p (e.g. boundness, Lipschitzness, etc.) if for any y ∈ Y , ℓ(·, y) has the property
p. Fix a class H from Z to Rd. For a distribution D and a sample S ∈ (Z × Y)

m we define the
representativeness of S as

repD(S,H) = sup
h∈H

ℓD(h)− ℓS(h)

Where ℓD(h) = E(x,y)∼Dℓ(h(x), y) and ℓS(h) = 1
m

∑m
i=1 ℓ(h(xi), yi). We note that if

repD(S,H) ≤ ε then any algorithm that is guaranteed to return a function ĥ ∈ H will enjoy a

8
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generalization bound ℓD(h) ≤ ℓS(h) + ε. In particular, the ERM algorithm will return a function
whose loss is optimal, up to an additive factor of ε.

We will focus on bounds on repD(S,H) when S ∼ Dm. To this end, we will rely on the connection
between representativeness and the covering numbers of H. For x1, . . . , xm ∈ Z we denote

H(x1, . . . , xm) = {(h(x1), . . . , h(xm)) : h ∈ H}

Given a metric d on Rd,m we denote Nd(H,m, ϵ) = supx1,...,xm∈Z Nd(H(x1, . . . , xm),m, ε).
Similarly, we denote M(H,m, ϵ) = supx1,...,xm∈Z M(H(x1, . . . , xm),m, ε).

Lemma 3.10. (Shalev-Shwartz & Ben-David, 2014) Let ℓ : Rd × Y → R be B-bounded. Then for
any distribution D on Z

ES∼DmrepD(S,H) ≤ B2−M+1 +
12B√
m

M∑
k=1

2−k
√
ln (N2(ℓ ◦ H,m,B2−k))

We conclude with a special case of the above lemma, which will be useful in this paper.
Lemma 3.11. Let ℓ : Rd × Y → R be L-Lipschitz w.r.t. ∥ · ∥∞ and B-bounded. Assume that for
any

√
nB√
m8L

≤ ε ≤ 1, lnM(H,m, ε) ≤ n
ε2 . Then for any distribution D on Z

ES∼DmrepD(S,H) ≲
(L+B)

√
n√

m

√
log(dm) log(m)

3.2.2 SAMPLE COMPLEXITY OF NEURAL NETWORKS

Fix the instance space to be the ball of radius
√
d0 in Rd0 (in particular [−1, 1]d0 ⊂ X ). Fix also a

B-strongly-bounded activation function ρ. Consider the class

N ρ
r,R(d0, . . . , dt) =

{
Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : Wi ∈ Mdi−1di∥Wi∥ ≤ r, ∥Wi∥F ≤ R

}
and more generally, for matrices W 0

i ∈ Mdi,di−1
, i = 1, . . . , t consider

H = N ρ
r,R(W

0
1 , . . . ,W

0
t ) =

{
Wt ◦ ρ ◦Wt−1 ◦ ρ . . . ◦ ρ ◦W1 : ∥Wi −W 0

i ∥ ≤ r, ∥Wi −W 0
i ∥F ≤ R

}
denote d = max(d0, . . . , dt). We will assume that t, ∥W 0

i ∥, r are all bounded by some constant
C > 0, and will allow hidden constants to depend C. This is motivated by the fact that in practice,
∥W 0

i ∥, r are often bounded by small constants. For instance, if the initial weights are sampled form
the standard Xavier initialization then ∥W 0

i ∥ ≈
√
2 w.h.p. for resnets we have ∥W 0

i ∥ ≈ 1. We will
also allow hidden constant to depend on the activation ρ and the depth t.
Theorem 3.12. Let ℓ : Rd × Y → R be O(1)-Lipschitz w.r.t. ∥ · ∥∞ and O(1)-bounded. Then for
any distribution D on Z

ES∼DmrepD(S,H) ≲

√
dR2

m
logt+2(Rdm)

The theorem is implied by the following lemma together with lemma 3.11.

Lemma 3.13. For any 0 < ϵ ≤ 1, M(H,m, ϵ) ≲ (log(dm) + log2(d/ϵ))t log(dR)dR
2

ϵ2

The proof follows a peeling argument, applying lemmas 3.2, 3.9 and 2.5 inductively, for each layer.

4 RELATED WORK

In recent years, there has been active work in the area of the sample complexity of neural networks.
For the the remaining of this section, we refer the reader to Table 1 to explain the notation used in
different works.
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Table 1: A table comparing the sample complexity bounds of different recent works. In the “Õ(1) outputs” column, we
adopt the notation of our paper, where R, r being the Frobenius and the spectral norm, t being the depth of the network,
and d its width. m is the sample size and γ is the margin wherever it is used.

Paper Result Õ(1) outputs Notation

Golowich et al. (2018) Õ

∥x∥2
(∏t

j=1 ∥Wj∥F
)
· min


√

log
(

1
Γ

∏t
j=1

∥Wj∥F
)

√
m

,
√

t
m


 Õ

√
dRt · min


√

log
(

1
Γ

Rt
)

√
m

,
√

t
m


 Γ lower bound on product of spectral norms.

Bartlett et al. (2017) R̂γ(NNW ) + Õ


∥x∥2

(∏t
i=1 ρi∥Wi∥2

)∑t
i=1

∥W⊤
i −W0

i
⊤∥2/32,1

∥Wi∥
2/3
2


3/2

γ
√

m
ln(d) +

√
ln(1/δ)

m

 R̂γ(NNW ) + Õ


rt

√
d

∑t
i=1

∥W⊤
i −W0

i
⊤∥2/32,1

r2/3


3/2

γ
√

m
ln(d) +

√
ln(1/δ)

m

 R̂γ(f) ≤ m−1∑
i 1
[
f(xi)yi ≤ γ + maxj ̸=yi

f(xi)j

]
is the empirical margin loss

Hsu et al. (2021) Õ

(
∥X∥F
m3/4

[∏
j ∥W∥2

] [∑
i

( ∥Wi∥F
∥Wi∥2

)4/5]5/4 [∑
i ln ∥Wi∥F

]1/4) Õ

(
√

d

m1/4
rt
[∑

i

(
R
r

)4/5]5/4 [∑
i lnR

]1/4)

Neyshabur et al. (2015)

√√√√√√γ2

2d

[
1
p∗ − 1

q

]
+


2(t−1)

min{p∗,4 log(2D)}maxi ∥xi∥2p∗
m

√
R2t 2d

m
D is the input size. 1 ≤ q, 1 ≤ p < ∞ ,
γ =

∏
∥Wi∥p,q

Neyshabur et al. (2017) L̂γ(fw) + O


√√√√√ ∥x∥22t2d ln(td)

∏t
i=1

∥Wi∥22
∑t

i=1

∥Wi∥2F
∥Wi∥22

+ln tm
δ

γ2m

 L̂γ(fw) + O


√

t3rtd2 ln(td)R2

r2
+ln tm

δ

γ2m

 L̂γ(f) ≤ m−1∑
i 1
[
f(xi)yi ≤ γ + maxj ̸=yi

f(xi)j

]
is the empirical margin loss

Ours2 Õ

(√
dRBtrt√

m

)
Õ

(√
dRrt√
m

)
Where B is the strongly-boundedness constant

Neyshabur et al. (2015) give a bound of

√√√√√√γ2

2d

[
1
p∗ − 1

q

]
+


2(t−1)

min{p∗,4 log(2D)}maxi ∥xi∥2p∗
m

using a

peeling argument on the Rademacher complexity of neural networks. Bartlett et al. (2017) use
a peeling argument on the covering number of neural networks and yield a bound of R̂γ(NNW ) +

Õ


∥x∥2

(∏t
i=1 ρi∥Wi∥2

)∑t
i=1

∥W⊤
i −W0

i
⊤∥2/32,1

∥Wi∥
2/3
2


3/2

γ
√

m
ln(d) +

√
ln(1/δ)

m

. Neyshabur et al. (2017) use a Pac-

Bayes argument to produce a bound of L̂γ(fw) + O


√√√√√ ∥x∥22t2d ln(td)

∏t
i=1

∥Wi∥22
∑t

i=1

∥Wi∥2F
∥Wi∥22

+ln tm
δ

γ2m

.

Golowich et al. (2018) use a Jensen inequality trick to enhance the peeling argument of Neyshabur

et al. (2015) and yield Õ

∥x∥2
(∏t

j=1 ∥Wj∥F
)
· min


√

log
(

1
Γ

∏t
j=1

∥Wj∥F
)

√
m

,
√

t
m


. Hsu et al. (2021)

use the possible existence of a smaller distilled version of a network to obtain the bounds of
Õ

(
∥X∥F
m3/4

[∏
j ∥W∥2

] [∑
i

( ∥Wi∥F
∥Wi∥2

)4/5]5/4 [∑
i ln ∥Wi∥F

]1/4). Vardi et al. (2022) analyze the special case of

two-layer neural networks and give a bound of Õ
(

∥w∥·∥W∥2∥x∥2√
m

)
which is similar to ours when re-

stricting the depth of the network to 2. Finally, Daniely & Granot (2019) provide a bound equivalent
to ours, introducing a technique called Approximate Description Length.

We focus on the setting where neural networks have constant depth, and the output of each neuron
as well as each input coordinate is Õ(1). This is usually the case in practice. As shown in table
1, under these setting our work matches the state of the art, and except Daniely & Granot (2019),
improves on previous works polynomially. An important caveat to our work, is that it applies only
to neural networks with smooth activations. This is similar to Daniely & Granot (2019); Vardi et al.
(2022), but the rest of the cited works consider the non-smooth ReLU activations.

The resemblance of the results of Daniely & Granot (2019) to ours is not coincidental. A full discus-
sion of the connection between the notion of Approximate Description Length and multicovering
numbers appears in appendix B

5 FUTURE DIRECTIONS

Future direction arising from our work Covering-Packing relations for multicover, the (in)Existence
of proper multicover (that is, a multicover in which each point is in the class), and the behaviour of
multicover w.r.t. Lipschitz functions (specifically, ReLU).

2Equivalent to Daniely & Granot (2019), and Vardi et al. (2022) result for 2 layer networks
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A OMITTED PROOFS

A.1 PRELIMINARY LEMMAS

Lemma A.1 (2.1). Let X1, . . . , Xk be independent r.v. with that that are σ-estimators to µ. Then

Pr (|median(X1, . . . , Xk)− µ| > rσ) <

(
2

r

)k

Proof of 2.1. We have that Pr(|Xi − µ| > rσ) ≤ 1
r2 . It follows that the probability that ≥ k

2 of
X1, . . . , Xk fall outside of the segment (µ− rσ, µ+ rσ) is bounded by

(
k

⌈k/2⌉

)(
1

r2

)⌈k/2⌉

< 2k
(

1

r2

)⌈k/2⌉

≤
(
2

r

)k

Lemma A.2 (2.3). P2({±1}d, d) ≥ ed/8

Proof of 2.3. If y,x ∈ {±1}d are two independent uniform vectors then by Hoeffding’s bound we
have

Pr
(
∥x− y∥2 ≤ d

)
= Pr

(
d∑

i=1

1[xi ̸= yi] ≤ d/4

)
≤ e−d/8

Thus, there are at least ed/8 vectors in {±1}d such that the distance between each pair is more than
d.

A.2 MULTICOVER FOR VECTORS

Lemma A.3 (2.5). For the ball Bd
M =

{
x ∈ Rd| ∥x∥2 ≤ M

}
and ε ≤ M we have

2min(d,⌊(M/2ε)2⌋) ≤ MRd
1
(Bd

M , ε) ≤ min

(
(4d2⌈M⌉+ 6d)⌈

2M2+ 1
4

ε2
⌉, (3M/ε)d

)

Proof of lemma 2.5. We first show that MRd
1
(Bd

M , ε) ≤ (4d2⌈M⌉ + 6d)⌈
2M2+ 1

4
ε2

⌉. By lemma 2.4,

it is enough to show that there is a set X ⊂ Rd of size (4d2⌈M⌉+ 6d)⌈
2M2+ 1

4
ε2

⌉ such that for every
x ∈ Bd

M there is a random vector X ∈ X which is an ε-estimator of x. Define

X̃ = {kei|i ∈ [d], k ∈ [−2dM − 1, 2dM + 1] ∩ Z}

Let x ∈ Bd
M , we next define a

√
2M2 + 1

4 - estimator X ∈ X̃ for x: First sample a coordinate i w.p.

pi =
x2
i

2∥x∥2 + 1
2d , and let x̌ =

(⌊
xi

pi

⌋
+ b
)
ei where b ∼ Ber

(〈
xi

pi

〉)
and

〈
xi

pi

〉
:= xi

pi
−
⌊
xi

pi

⌋
.
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Note that EX = x. Fix u ∈ Sd−1. We need to show that E⟨u, X − x⟩2 ≤ 2M2 + 1
4 . Indeed,

E⟨u, X − x⟩2 ≤ E⟨u, X⟩2

=
∑
i

pi

(〈
xi

pi

〉(⌊
xi

pi

⌋
+ 1

)2

+

(
1−

〈
xi

pi

〉)⌊
xi

pi

⌋2)
u2
i

=
∑
i

pi

(
2

〈
xi

pi

〉⌊
xi

pi

⌋
+

〈
xi

pi

〉
+

⌊
xi

pi

⌋2)
u2
i

=
∑
i

pi

((〈
xi

pi

〉
+

⌊
xi

pi

⌋)2

+

〈
xi

pi

〉(
1−

〈
xi

pi

〉))
u2
i

=
∑
i

pi

((
xi

pi

)2

+

〈
xi

pi

〉(
1−

〈
xi

pi

〉))
u2
i

≤
∑
i

pi

((
xi

pi

)2

+
1

4

)
u2
i (2)

≤ 1

4
∥u∥∞ +

∑
i

x2
i

pi
u2
i

≤ 1

4
+
∑
i

2∥x∥2u2
i (3)

= 2∥x∥2 + 1

4

≤ 2M2 +
1

4

Where equation 2 is true since x(1−x) ≤ 1/4 for any 0 ≤ x ≤ 1 and equation 3 is true by plugging
in the definition of pi =

x2
i

2∥x∥2 + 1
2d , and by the fact that u is a unit vector.

We next construct an ε-estimator by averaging independent copies of X . Let X̃ = 1
k

∑k
i=1 Xi where

every Xi is sampled i.i.d. like X . We claim that X̃ is
√

2M2+ 1
4

k -estimator. Let u ∈ Sd−1. We have

that
〈
u, X̃ − x

〉
= 1

k

∑k
i=1 ⟨u, Xi − x⟩ is an average of k i.i.d. r.v. with mean 0 and variance

bounded by 2M2 + 1
4 . Thus, E

〈
u, X̃ − x

〉2
≤ 2M2+ 1

4

k . Plugging k = ⌈ 2M2+ 1
4

ε2 ⌉, we get that

E
〈
u, X̃ − x

〉2
≤ ε2. Note that X̃ gets values in X =

{
1
k

∑k
i=1 xi : xi ∈ X̃

}
. By lemma 2.4 we

have that X is a multicover. Finally, |X | ≤ (4d2⌈M⌉+6d)⌈
2M2+ 1

4
ε2

⌉, implying that MRd
1
(Bd

M , ε) ≤

(4d2⌈M⌉+ 6d)⌈
2M2+ 1

4
ε2

⌉.

We next show that MRd
1
(Bd

M , ε) ≤ (3M/ε)d. Given Lemma 2.2, it is enough to show that
MRd

1
(Bd

M , ε) ≤ N2(B
d
M , ε). Indeed, fix R ∈ Rd

1. We have for any x, x̌ ∈ Rd

∥x− x̌∥2R = (x− x̌)⊤R(x− x̌) ≤ ∥R∥ · ∥x− x̌∥22 ≤ Tr(R)∥x− x̌∥22 ≤ ∥x− x̌∥22
Thus, any ε-cover w.r.t. the Euclidean norm is an ε-cover w.r.t. dR. Since this is true for any R ∈ Rd

1,
we have that any ε-cover w.r.t. the Euclidean norm is an ε-multicover. Thus, MRd

1
(Bd

M , ε) ≤
N2(B

d
M , ε)

we can use standard upper bounds for covering numbers of sets using volume (Vershynin, 2018) to
upper bound the cover of Bd

M with O
(
(3M/ε)d

)
balls of radius ε in ℓ2. This is an upper bound for

the multicover of Bd
M as well, considering that ∥x − x̌∥2R = (x − x̌)⊤R(x − x̌) ≤ Tr(R)(x −

x̌)⊤(x− x̌) = Tr(R)∥x− x̌∥22 where the inequality is by cauchy-schwarz and the fact that ∥x∥2 ≤
∥x∥1. Therefore we have shown the second upper bound.
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For the lower bound, let d′ = min
(
⌊(M/2ε)2⌋, d

)
, and let R = 1

d′ Ĩd′ where Ĩk is a diagonal matrix
s.t. Ĩii = 0 for i > k and Ĩii = 1 for i ≤ k. We have

MRd
1
(Bd

M , ε) ≥ NR(B
d
M , ε) = N2(B

d′

M ,
√
d′ε) ≥ N2(B

d′

M ,M/2)
Lemma 2.2

≥ 2d
′

Lemma A.4 (2.6). Let S ⊂ Rd be a nice set, then:

1. For X ⊂ Rd1 and a d2 × d1 matrix A we have MS(AX , ∥A∥ε) ≤ M (X , ε)

2. For X1, . . . ,Xn ⊂ Rd and ε1, . . . , εn > 0 we have MS(
∑n

i=1 Xi,
∑n

i=1 εi) ≤∏n
i=1 MS(Xi, εi)

3. For X ⊂ Rd, ε > 0, orthonormal matrix U and b ∈ Rd we have MS(UX + b, ε) =
MS(X , ε)

4. For X1, . . . ,Xn ⊂ Rd and ε > 0 we have MS(∪n
i=1Xi, ε) ≤

∑n
i=1 MS(Xi, ε)

5. For S = Rd
1 and Xi ⊂ [−Mi,Mi]

d and ε1, . . . , εn > 0 we have

MRd
1

(
n∏

i=1

Xi,

n∏
i=1

(Mi + εi)−
n∏

i=1

Mi

)
≤

n∏
i=1

MRd
1
(Xi, εi)

6. If for any maximal R ∈ S (w.r.t. PSD order), Tr(R) ≥ 1. Fix X ⊂ Bd1

M , and L ⊂ Rd2,d1

matrices with spectral norm ≤ r. Denote ∥A∥S := min{t > 0 : 1
tA ∈ S}, then

MS

(
LX , ε2

√
2r2 + 2ε21∥Id1

∥S + ε1M

)
≤ MRd

1
(L, ε1) ·MS(X , ε2)

Proof. We next prove each item separately.

Proof. (of item 1.) Let X̌ be an ε-multicover of X w.r.t. S . It is enough to show that AX̌ is an
(∥A∥ε)-multicover of AX . Fix X ∈ X and a PSD matrix R ∈ S. We need to show that there is
x̌ ∈ X̌ such that

∥Ax−Ax̌∥2R ≤ Tr(R)∥A∥2ε2

Now, for any x̌ we have

∥Ax−Ax̌∥2R = ∥A∥2(x− x̌)⊤
A⊤

∥A∥
R

A

∥A∥
(x− x̌) = ∥A∥2∥x− x̌∥2A⊤

∥A∥R
A

∥A∥

Finally, since X̌ is an ε-multicover w.r.t. S, there is x̌ ∈ X̌ such that ∥x − x̌∥2
A⊤
∥A∥R

A
∥A∥

≤

Tr( 1
∥A∥A

⊤R 1
∥A∥A)ε2 ≤ Tr(R)ε2. Therefore overall

∥Ax−Ax̌∥2R = ∥A∥2∥x− x̌∥2A⊤
∥A∥R

A
∥A∥

≤ Tr(R)∥A∥2ε2

Proof. (of item 2.) Let X̌i be an εi-multicover of Xi w.r.t. S. It is not hard to verify that
∑n

i=1 X̌i is
an (

∑n
i=1 εi)-multicover of

∑n
i=1 Xi, which establishes the proof.

Proof. (of item 3.) We have

MS(UX + b, ε)
Item 2
≤ MS(UX , ε) ·MS({b}, 0)

MS({b},0)=1, ∥U∥=1
= MS(UX , ∥U∥ε)

Item 1
≤ MS(X , ε)

Similarly MS(X , ε) = MS(U
−1(UX + b) − U−1b, ε) ≤ MS(UX + b, ε) implying that

MS(X , ε) = MS(UX + b, ε)
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Proof. (of item 4.) Let X̌i be an ε-multicover of Xi w.r.t. S. It is not hard to verify that ∪n
i=1X̌i is

an ε-multicover of ∪n
i=1Xi w.r.t. S, which establishes the proof.

Proof. (of item 5.) We first prove the item for n = 2. We will then show that the general case
follows by induction. In the proof of this item we will denote by A ◦ B the elementwise product
of two d × d matrices, and by diag(A) the diagonal matrix obtained by zeroing the non-diagonal
entries of A.

Let X̌i be an εi-multicover of Xi w.r.t. Rd
1. Fix xi ∈ Xi and a PSD matrix R ≥ 0 with Tr(R) ≤ 1.

It is enough to show that there is x̌i ∈ X̌i with ∥x1x2 − x̌1x̌2∥R ≤ M1ε2 +M2ε1 + ε1ε2. We have

∥x1x2 − x̌1x̌2∥R ≤ ∥x1x2 − x1x̌2∥R + ∥x1x̌2 − x̌1x̌2∥R
= ∥x2 − x̌2∥R◦x1x⊤

1
+ ∥x1 − x̌1∥R◦x̌2x̌⊤

2

Now, Tr(R ◦ x̌2x̌
⊤
2 ) = ∥x̌2∥2diag(R). Thus, we can choose x̌1 such that ∥x1 − x̌1∥R◦x̌2x̌⊤

2
≤

∥x̌2∥diag(R)ε1. We get for any 0 < p < 1

∥x1x2 − x̌1x̌2∥R ≤ ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2∥diag(R)ε1

≤ ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2 − x2∥diag(R)ε1 + ∥x2∥diag(R)ε1

≤ ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2 − x2∥diag(R)ε1 +M2ε1

= ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2 − x2∥diag(ε21R) +M2ε1

(∗)
≤

√
∥x2 − x̌2∥2R◦x1x⊤

1

p
+

∥x̌2 − x2∥2diag(ε21R)

1− p
+M2ε1

= ∥x2 − x̌2∥ 1
pR◦x1x⊤

1 + 1
1−pdiag(ε

2
1R) +M2ε1

Where (*) follows from the fact that a + b ≤
√
a2/p+ b2/(1− p) Now, we can choose x̌2 ∈ X̌2

with

∥x2 − x̌2∥ 1
pR◦x1x⊤

1 + 1
1−pdiag(ε

2
1R) ≤ ε2

√
Tr

(
1

p
R ◦ x1x⊤

1 +
1

1− p
diag(ε21R)

)
≤ ε2

√
M2

1 /p+ ε21/(1− p)

for p = M1/(M1 + ε1) we get that

∥x1x2 − x̌1x̌2∥R ≤ ε2(M1 + ε1) +M2ε1 = M1ε2 +M2ε1 + ε1ε2

We next consider n > 2 and conclude the proof by induction. Denote X ′
2 =

∏n
i=2 Xi, M ′

2 =∏n
i=2 Mi and ε′2 =

∏n
i=2(Mi + εi)−

∏n
i=2 Mi. By the induction hypothesis we have

M (X ′
2, ε

′
2) ≤

n∏
i=2

M(Xi, εi)

By the case n = 2 we have

M (X1X ′
2,M1ε

′
2 +M ′

2ε1 + ε1ε
′
2) ≤ M (X1, ε1)M (X ′

2, ε
′
2)

≤ M (X1, ε1)

n∏
i=2

M(Xi, εi) =

n∏
i=2

M(Xi, εi)

this concludes the proof as X1X ′
2 =

∏n
i=1 Xi and

M1ε
′
2 +M ′

2ε1 + ε1ε
′
2 = (M1 + ε1)

(
n∏

i=2

(Mi + εi)−
n∏

i=2

Mi

)
+ ε1

n∏
i=2

Mi

=

n∏
i=1

(Mi + εi)−
n∏

i=1

Mi
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Proof. (of item 6) For a nice set S ⊂ Rd, and PSD matrix R ∈ Rd×d, define ∥R∥S = min{t >
0 : 1

tR ∈ S}. Note that this is almost a norm - the triangle inequality, positive definiteness, and
homogeneity for positive scalars apply - but do not apply for negative scalars. Let Ľ be an ε1-
multicover of L w.r.t. Rd

1 and let X̌ be an ε2-multicover of X w.r.t. S. We will show that ĽX̌ is an
ε2
√

2r2 + 2ε1∥Id1∥S + ε1M -multicover of LX w.r.t. S. Fix R ∈ S. W.l.o.g we may assume that
it is maximal w.r.t. PSD order. Let W ∈ L and x ∈ X . We need to show that there are W̌ ∈ Ľ and
x̌ ∈ X̌ with ∥Wx− W̌ x̌∥R ≤ ε2

√
2Tr(R)r2 + 2ε1Tr(R)∥Id1

∥S + ε1
√
Tr(R)M . We have

∥Wx− W̌ x̌∥R ≤ ∥Wx−W x̌∥R + ∥W x̌− W̌ x̌∥R
= ∥x− x̌∥W⊤RW + ∥(W − W̌ )x̌∥R

= ∥x− x̌∥W⊤RW +

√
x̌⊤(W − W̌ )⊤R(W − W̌ )x̌

Now, (W1,W2) 7→ x̌⊤W⊤
1 RW2x̌ is a symmetric and positive bi-linear form on the space of d2×d1

matrices of trace
d2∑
i=1

d1∑
j=1

x̌⊤E⊤
ijREijx̌ =

d2∑
i=1

d1∑
j=1

(x̌jei)
⊤R(x̌jei) =

d2∑
i=1

d1∑
j=1

x̌2
jRii = Tr(R)∥x̌∥2

Thus, there is W̌ ∈ Ľ such that x̌⊤(W − W̌ )⊤R(W − W̌ )x̌ ≤ Tr(R)∥x̌∥2ε21. For this W̌ we have

∥Wx− W̌ x̌∥R ≤ ∥x− x̌∥W⊤RW + ε1
√

Tr(R)∥x̌∥
≤ ∥x− x̌∥W⊤RW + ε1

√
Tr(R)(∥x̌− x∥+ ∥x∥)

≤ ∥x− x̌∥W⊤RW + ∥x̌− x∥ε21Tr(R)Id1
+ ε1

√
Tr(R)M

≤
√
2
√
∥x− x̌∥2

W⊤RW
+ ∥x̌− x∥2

ε21Tr(R)Id1
+ ε1

√
Tr(R)M

=
√
2∥x− x̌∥W⊤RW+ε21Tr(R)Id1

+ ε1
√

Tr(R)M

Thus, it is possible to choose x̌ ∈ X̌ s.t. ∥x− x̌∥W⊤RW+ε21Id1
≤ ε2

√
∥W⊤RW + ε21Tr(R)Id1

∥S .
Finally, ∥W⊤RW + ε21Tr(R)Id1

∥S ≤ r2 + ε21Tr(R)∥Id1
∥S ≤ Tr(R)r2 + ε21Tr(R)∥Id1

∥S

A.3 MULTICOVER FOR SEQUENCES OF VECTORS

Proof. (of Lemma 3.1) Write X̌ = {x1, . . . ,xT }. Suppose that X̌ is a ε-multicover w.r.t. Rd,m and
let x ∈ X . It is enough to show that there is a r.v. X whose range is {x1, . . . ,xT } such that for any
R ∈ Rd,m

1 , E∥X − x∥2R ≤ ε2. Such a r.v. exists if and only if

min
λ∈∆T−1

max
R∈Rd,m

1

T∑
i=1

λi∥xi − x∥2R ≤ ε2

since the objective
∑T

i=1 λi∥xi − x∥2R =
∑T

i=1

∑m
m=1 λi(x

i
j − xj)

⊤R(xi
j − xj) is bi-linear in λ

and R, and since ∆T−1 and Rd,m
1 are both convex and compact, we can apply the minmax theorem

to conclude that a r.v. X as described above exists if and only if

max
R∈Rd,m

1

min
λ∈∆T−1

T∑
i=1

λi∥xi − x∥2R ≤ ε2

which is equivalent to maxR∈Rd
1
mini∈[T ] ∥xi − x∥R ≤ ε. Which is indeed the case as X̌ is an

ε-multicover on X w.r.t. Rd,m.

Suppose now that for any x ∈ X there is a r.v. X whose range is X̌ such that for any R ∈ Rd,m
1 ,

E∥X − x∥2R ≤ ε2. This implies that for any x ∈ X and any R ∈ Rd
1 there is x̌ ∈ X̌ such that

∥x̌− x∥R ≤ ε. This implies that X̌ is an ε-multicover of X w.r.t. Rd,m.
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Lemma A.5 (3.2). 1. For X ⊂ Rd1,m and a d2 × d1 matrix A we have MS(AX , ∥A∥ε) ≤
MS (X , ε)

2. For X1, . . . ,Xn ⊂ Rd,m and ε1, . . . , εn > 0 we have MS(
∑n

i=1 Xi,
∑n

i=1 εi) ≤∏n
i=1 MS(Xi, εi)

3. For X ⊂ Rd,m, ε > 0 and b ∈ Rd,m we have MS(UX + b, ε) = MS(X , ε)

4. For X1, . . . ,Xn ⊂ Rd,m and ε > 0 we have MS(∪n
i=1Xi, ε) ≤

∑n
i=1 MS(Xi, ε)

5. For S = Rd,m
1 Xi ⊂ [−Mi,Mi]

d,m and ε1, . . . , εn > 0 we have

MRd,m
1

(
n∏

i=1

Xi,

n∏
i=1

(Mi + εi)−
n∏

i=1

Mi

)
≤

n∏
i=1

MRd,m
1

(Xi, εi)

6. For3 S = Rd,m
1 , fix X ⊂ Bd1,m

M a set L ⊂ Rd2,d1 of matrices with spectral norm at most
r. We have

MS

(
LX , ε2

√
2r2 + 2ε21d1 + ε1M

)
≤ MRd,m

1
(L, ε1) ·MS(X , ε2)

Proof. (of Lemma 3.2) Fix R,S ∈ Rd,m, x ∈ Rd,m, A ∈ Rd1×d and B ∈ Rd×d2 . In this proof
we will denote R ◦ S = (R1 ◦ S1, . . . , Rm ◦ Sm) where Rj ◦ Sj the elementwise product of Rj

and Sj . We will also denote diag(R) = (diag(R1), . . . ,diag(Rm)), AR = (AR1, . . . , ARm),
RB = (R1B, . . . , RmB) and xx⊤ = (x1(x1)⊤, . . . ,xm(xm)⊤).

We next prove each item separately.

Proof. (of item 1.) Let X̌ be an ε-multicover of X w.r.t. S. It is enough to show that AX̌ is an
(∥A∥ε)-multicover of AX w.r.t. S. Fix x ∈ X and R ∈ Rd,m. We need to show that there is x̌ ∈ X̌
such that

∥Ax−Ax̌∥2R ≤ Tr(R)∥A∥2ε2

Now, for any x̌ we have

∥Ax−Ax̌∥2R =

n∑
i=1

(xi − x̌i)
⊤A⊤RiA(xi − x̌i) = ∥A∥2∥x− x̌∥2A⊤

∥A∥R
A

∥A∥

Finally, since X̌ is an ε-multicover, there is x̌ ∈ X̌ such that ∥x − x̌∥2
A⊤
∥A∥R

A
∥A∥

≤

Tr
(

A⊤

∥A∥R
A

∥A∥

)
ε2 ≤ Tr(R)ε2. Plugging in ∥Ax − Ax̌∥2R = ∥A∥2∥x − x̌∥2

A⊤
∥A∥R

A
∥A∥

we estab-

lish the proof.

Proof. (of item 2.) Let X̌i be an εi-multicover of Xi w.r.t. S. It is not hard to verify that
∑n

i=1 X̌i is
an (

∑n
i=1 εi)-multicover of

∑n
i=1 Xi w.r.t. S, which establishes the proof.

Proof. (of item 3.) We have

MS(X + b, ε)
Item 2
≤ MS(X , ε) ·MS({b}, 0)
= MS(X , ε)

Similarly MS(X , ε) = MS((X +b)−b, ε) ≤ MS(X +b, ε) implying that MS(X , ε) = MS(X +
b, ε)

Proof. (of item 4.) Let X̌i be an ε-multicover of Xi w.r.t. S. It is not hard to verify that ∪n
i=1X̌i is

an ε-multicover of ∪n
i=1Xi w.r.t. S, which establishes the proof.

3This claim can be generalized to a more general S. We present the case S = Rd,m
1 for simplicity.
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Proof. (of item 5.) We first prove the item for n = 2. We will then show that the general case
follows by induction. Let X̌i be an εi-multicover of Xi. Fix xi ∈ Xi and a R ∈ Rd,m

1 . It is enough
to show that there is x̌i ∈ X̌i with ∥x1x2 − x̌1x̌2∥R ≤ M1ε2 +M2ε1 + ε1ε2. We have

∥x1x2 − x̌1x̌2∥R ≤ ∥x1x2 − x1x̌2∥R + ∥x1x̌2 − x̌1x̌2∥R
= ∥x2 − x̌2∥R◦x1x⊤

1
+ ∥x1 − x̌1∥R◦x̌2x̌⊤

2

Now, Tr(R ◦ x̌2x̌
⊤
2 ) = ∥x̌2∥2diag(R). Thus, we can choose x̌1 such that ∥x1 − x̌1∥R◦x̌2x̌⊤

2
≤

∥x̌2∥diag(R)ε1. We get for any 0 < p < 1

∥x1x2 − x̌1x̌2∥R ≤ ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2∥diag(R)ε1

≤ ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2 − x2∥diag(R)ε1 + ∥x2∥diag(R)ε1

≤ ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2 − x2∥diag(R)ε1 +M2ε1

= ∥x2 − x̌2∥R◦x1x⊤
1
+ ∥x̌2 − x2∥diag(ε21R) +M2ε1

a+b≤
√

a2/p+b2/(1−p)

≤

√
∥x2 − x̌2∥2R◦x1x⊤

1

p
+

∥x̌2 − x2∥2diag(ε21R)

1− p
+M2ε1

= ∥x2 − x̌2∥ 1
pR◦x1x⊤

1 + 1
1−pdiag(ε

2
1R) +M2ε1

Now, we can choose x̌2 ∈ X̌2 with

∥x2−x̌2∥ 1
pR◦x1x⊤

1 + 1
1−pdiag(ε

2
1R) ≤ ε2

√
Tr

(
1

p
R ◦ x1x⊤

1 +
1

1− p
diag(ε21R)

)
≤ ε2

√
M2

1 /p+ ε21/(1− p)

for p = M1/(M1 + ε1) we get that

∥x1x2 − x̌1x̌2∥R ≤ ε2(M1 + ε1) +M2ε1 = M1ε2 +M2ε1 + ε1ε2

We next consider n > 2 and conclude the proof by induction. Denote X ′
2 =

∏n
i=2 Xi, M ′

2 =∏n
i=2 Mi and ε′2 =

∏n
i=2(Mi + εi)−

∏n
i=2 Mi. By the induction hypothesis we have

MRd,m
1

(X ′
2, ε

′
2) ≤

n∏
i=2

MRd,m
1

(Xi, εi)

By the case n = 2 we have

MRd,m
1

(X1X ′
2,M1ε

′
2 +M ′

2ε1 + ε1ε
′
2) ≤ MRd,m

1
(X1, ε1)MRd,m

1
(X ′

2, ε
′
2)

≤ MRd,m
1

(X1, ε1)

n∏
i=2

MRd,m
1

(Xi, εi) =

n∏
i=2

MRd,m
1

(Xi, εi)

this concludes the proof as X1X ′
2 =

∏n
i=1 Xi and

M1ε
′
2 +M ′

2ε1 + ε1ε
′
2 = (M1 + ε1)

(
n∏

i=2

(Mi + εi)−
n∏

i=2

Mi

)
+ ε1

n∏
i=2

Mi

=

n∏
i=1

(Mi + εi)−
n∏

i=1

Mi

Proof. (of item 6) Let S = Rd,m
1 , let Ľ be an ε1-multicover of L w.r.t. Rd,m

1 and let X̌ be an
ε2-multicover of X w.r.t. S. We will show that ĽX̌ is an (ε2

√
2r2 + 2ε21d1 + ε1M)-multicover of
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LX w.r.t. S. Fix R ∈ Rd,m
1 . Let W ∈ L and x ∈ X . We need to show that there are W̌ ∈ Ľ and

x̌ ∈ X̌ with ∥Wx− W̌ x̌∥R ≤ ε2
√

2r2 + 2ε21d1 + ε1M . We have

∥Wx− W̌ x̌∥R ≤ ∥Wx−W x̌∥R + ∥W x̌− W̌ x̌∥R
= ∥x− x̌∥W⊤RW + ∥(W − W̌ )x̌∥R

= ∥x− x̌∥W⊤RW +

√√√√ m∑
i=1

(x̌i)⊤(W − W̌ )⊤Ri(W − W̌ )x̌i

Now, (W1,W2) 7→
∑m

i=1(x̌
i)⊤W⊤

1 RiW2x̌
i is a symmetric and positive bi-linear form on the space

of d2 × d1 matrices of trace
m∑

k=1

d2∑
i=1

d1∑
j=1

(x̌k)⊤E⊤
ijR

kEijx̌
k =

m∑
k=1

d2∑
i=1

d1∑
j=1

(x̌k
j ei)

⊤Rk(x̌k
j ei) =

m∑
k=1

d2∑
i=1

d1∑
j=1

(x̌k
j )

2Rk
ii =

m∑
k=1

Tr(Rk)∥x̌k∥2 ≤ max
k

∥x̌k∥2

Denote max := argmaxk ∥x̌k∥2. By the last inequality there is W̌ ∈ Ľ such that
m∑
i=1

(x̌i)⊤(W − W̌ )⊤Ri(W − W̌ )x̌i ≤ ε21∥x̌max∥2

We have

∥Wx− W̌ x̌∥R ≤ ∥x− x̌∥W⊤RW + ε1∥x̌max∥
≤ ∥x− x̌∥W⊤RW + ε1(∥x̌max − xmax∥+ ∥xmax∥)
≤ ∥x− x̌∥W⊤RW + ∥x̌max − xmax∥ε21I + ε1M

≤
√
2
√

∥x− x̌∥2
W⊤RW

+ ∥x̌max − xmax∥2
ε21I

+ ε1M

≤
√
2
√

r2ε22 + d1ε21ε
2
2 + ε1M

Proof. (of Lemma 3.3) Let X̌ be an ε-multicover of X of size M(X , ε). By lemma 3.1 for any
x ∈ X there is a distribution Dx on X̌ such that if X ∼ Dx then X is an ε-estimator of x. In
particular, for any coordinate i ∈ [d] and j ∈ [m] we have

EX(Xj
i − xj

i )
2 = EX(Xj − xj)⊤Eii(X

j − xj) ≤ ε2

Denote k =
⌈
logr/2(d)

⌉
. By the above equation and lemma 2.1 we conclude that if

X(1), . . . , X(k) ∼ Dx then for every i ∈ [d] and j ∈ [m]

Pr
(
∃i ∈ [d] s.t. |median(X(1)ji , . . . , X(k)ji )− xj

i | > rε
)
< d

(
2

r

)k

≤ 1

in particular, there exists x(1), . . . ,x(k) ∈ X̌ such that for any i ∈ [d] and j ∈ [m],
|median(x(1)ji , . . . , x(k)

j
i ) − xj

i | ≤ rε. This implies that median(X̌ k) is an ε-cover of X w.r.t.
the ℓ∞ norm. This concludes the proof as |median(X̌ k)| ≤ |X̌ |k

A.4 STRONGLY BOUNDED ACTIVATION FUNCTIONS

Lemma A.6 (β-Swish Activation Ramachandran et al. (2017)). For a constant β ≥ 0, the function
x

1+e−βx is strongly-bounded

It is shown in Daniely & Granot (2019) that
Fact A.7. If ρ is B-strongly-bounded then ρ is analytic and its Taylor coefficients around any point
are bounded by Bn for any n ≥ 1.
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Proof. For the case of β = 0 the swish becomes a linear function, and the claim is trivial. For β > 1,
consider the complex function f(z) = z

1+e−βz . It is defined in the strip {z = x + iy : |y| < 1
βπ}.

By Cauchy integral formula, for any r < π
β , a ∈ R and n ≥ 0,

f (n)(a) =
n!

2πi

∫
|z−a|=r

f(z)

(z − a)n+1

It follows that ∣∣∣f (n)(a)
∣∣∣ ≤ n!

rn
max

|z−a|=r
|f(z)| ≤ n!

rn
max

x+iy:|y|<r
|f(x+ iy)|

Now, if |y| < r < π
2β , we have

|f(x+ iy)| = |x+ iy|
|1 + e−iβye−βx|

≤ r

|1 + cos(−βy)e−βx|
≤ r

|1 + cos(βr)e−βx|
≤ r

This implies that x
1+e−βx is strongly bounded.

Lemma A.8 (Hyperbolic Tangent). The function e2x−1
e2x+1 is strongly-bounded

Proof. Consider the complex function f(z) = e2z−1
e2z+1 . It is defined in the strip {z = x + iy : |y| <

1
2π}. By Cauchy integral formula, for any r < π

2π, a ∈ R and n ≥ 0,

f (n)(a) =
n!

2πi

∫
|z−a|=r

f(z)

(z − a)n+1

It follows that ∣∣∣f (n)(a)
∣∣∣ ≤ n!

rn
max

|z−a|=r
|f(z)| ≤ n!

rn
max

x+iy:|y|<r
|f(x+ iy)|

Now, if |y| < r < π
8 we have that

|f(x+iy)| = |e2xe2iy − 1|
|e2xe2iy + 1|

≤ 2max{e2x, 1}
|e2xe2iy + 1|

≤ 2max{e2x, 1}
|e2xcos(2y) + 1|

≤ 2max{e2x, 1}
|e2xcos(2r) + 1|

≤ 2

cos(2r)

This implies that e2x−1
e2x+1 is strongly bounded.

Lemma A.9 (3.8). Let p(x) =
∑k

i=0 aiX
i be a polynomial with |ai| ≤ Bi and suppose that

X ⊂
[
− 1

8B , 1
8B

]d,m
. Then, for any Let 0 < ε ≤ 1,

M (p(X ), ε) ≤
(
M
(
X ,

ε

8B

)) k(k+1)
2

Proof. As M(p(X ), ε) = M(p(X ) − a0, ε) we can assume w.l.o.g. that a0 = 0. Denote a = 1
8B

and εi = i2−2i−1ε. Note that since for −1 < x < 1, 1
(1−x)2 =

∑∞
i=1 ix

i−1 we have that

k∑
i=1

εi ≤
ε

4

∞∑
i=1

i(1/2)i−1 =
ε

4

1

(1/2)2
= ε (4)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Hence, we have that

M (p(X ), ε)
p(X )⊆

∑k
i=1 aiX i

≤ M

(
k∑

i=1

aiX i, ε

)
∑k

i=1 εi≤ε

≤ M

(
k∑

i=1

aiX i,

k∑
i=1

εi

)
Lem.3.2

≤
k∏

i=1

M
(
aiX i, εi

)
Lem.3.2

≤
k∏

i=1

M
(
X i, εi/|ai|

)
|ai|≤Bi

≤
k∏

i=1

M
(
X i, εi/B

i
)

Claim3
≤

k∏
i=1

M

(
X i,

(
a+

εi
i(2a)i−1Bi

)i

− ai

)
Lem.3.2

≤
k∏

i=1

(
M

(
X ,

εi
i(2a)i−1Bi

))i

=

k∏
i=1

(
M

(
X ,

i2−2i−1ε

i(2a)i−1Bi

))i

=

k∏
i=1

(
M

(
X ,

ε

(8aB)i−18B

))i

8aB=1
=

k∏
i=1

(
M
(
X ,

ε

8B

))i
=

(
M
(
X ,

ε

8B

)) k(k+1)
2

Claim 3.
(
a+ εi

i(2a)i−1Bi

)i
− ai ≤ εi

Bi

Proof. Denote f(x) = xi. Since f is convex on R+ we have

f

(
a+

εi
i(2a)i−1Bi

)
− f(a) ≤ f ′

(
a+

εi
i(2a)i−1Bi

)
εi

i(2a)i−1Bi

Now, εi
i(2a)i−1Bi ≤ a ⇔ εi ≤ i2i−1(aB)i ⇔ i2−2i−1ε ≤ i2i−1(aB)i ⇔ ε ≤ 8i(aB)i = 1. Hence

εi
i(2a)i−1Bi ≤ a. Since f ′ is monotone on R+ we have

f

(
a+

εi
i(2a)i−1Bi

)
− f(a) ≤ f ′ (2a)

εi
i(2a)i−1Bi

This translate to (
a+

εi
i(2a)i−1Bi

)i

− ai ≤ i (2a)
i−1 εi

i(2a)i−1Bi
=

εi
Bi
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A.5 BOUNDING THE MULTICOVERING NUMBER OF NEURAL NETWORKS

Proof of 3.13. As M(H,m, ϵ) is monotonically decreasing with ϵ, and the inequality is up to con-
stant, it is enough to prove the lemma for ϵ ≤ 1

32B . Denote

Li = {W : ∥W −W 0
i ∥ ≤ r, ∥W −W 0

i ∥F ≤ R}
Fix examples x1, . . . ,xm ∈ Bd√

d
. Denote X0 = {(x1, . . . ,xm)} ⊂ Rd,m. For 1 ≤ i ≤ t denote

Xi = ρ(LiXi−1). We need to show that

M(Xt, ϵ) ≲ (log(dm) + log2(d/ϵ))t log(dR)
dR2

ϵ2

where the hidden constant does not depend on the choice of x1, . . . ,xm.

Note that Xi ⊂ (Bd
M )m for M ≲

√
D. Let k =

⌈
log8(

√
d/ϵ)

⌉
and choose ϵ2 > 0 such that for

ϵ1 = ϵ2√
d+M

we have

ϵ = 8Bϵ2

√
2r2 + 2ϵ21d+ 8Bϵ1M +

√
d8−(k+1)

Note that

ϵ ≤ 8Bϵ2
√

2r2 + 2 + 8Bϵ2 + ϵ/8 ⇒ ϵ ≤ 8

7
8B(

√
2r2 + 2 + 2)ϵ2 =: Cϵ2

We have

M (Xt, ϵ) = M (ρ(LtXt−1), ϵ)

Lemma 3.9
≤

(
M

(
LtXt−1,

1

32B

))⌈log2(dm)⌉(
M

(
LtXt−1, ϵ2

√
2r2 + 2ϵ21d+ ϵ1M

)) k(k+1)
2

≤
(
M

(
LtXt−1, ϵ2

√
2r2 + 2ϵ21d+ ϵ1M

))⌈log2(dm)⌉+ k(k+1)
2

Lemma 3.2
≤ (M(Lt, ϵ1)M (Xt−1, ϵ2))

⌈log2(dm)⌉+ k(k+1)
2

ϵ/C≤ϵ2
≤ (M(Lt, ϵ1)M (Xt−1, ϵ/C))

⌈log2(dm)⌉+ k(k+1)
2

By lemma 2.5 and since ϵ1 = ϵ2√
d+M

we have

log(M(Lt, ϵ1)) ≤
⌈
2(d+M2)

2R2 + 1/4

ϵ22

⌉
log(4d4⌈R⌉+ 6d2)

Thus we get

log (M (Xt, ϵ)) = log (M (ρ(LtXt−1), ϵ))

≲ (log(dm) + log2(d/ϵ))

(
dR2

ϵ2
log(dR) +M (Xt−1, ϵ/C)

)
Inductively, we get that

log (M (Xt, ϵ)) ≲ (log(dm) + log2(d/ϵ))i log(dR)
dR2

ϵ2

A.6 BOUNDING REPRESENTATIVENESS WITH MULTICOVER

Lemma A.10 (3.11). Let ℓ : Rd×Y → R be L-Lipschitz w.r.t. ∥ · ∥∞ and B-bounded. Assume that
for any

√
nB√
m8L

≤ ε ≤ 1, lnM(H,m, ε) ≤ n
ε2 . Then for any distribution D on Z

ES∼DmrepD(S,H) ≲
(L+B)

√
n√

m

√
log(dm) log(m)
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Proof. First note that by Lemma 3.3,

N2(ℓ ◦ H,m, ε) ≤ N∞(H,m, ε/L) ≤ ·M(H,m, ε/(4L))⌈log2(dm)⌉

Denote

A = B2−M+1 +
12B√
m

M∑
k=1

2−k
√
ln (N2(ℓ ◦ H,m,B2−k))

We have

A ≤ B2−M+1 +
12B

√
⌈log2(dm)⌉√
m

M∑
k=1

2−k
√

ln (M(H,m,B2−k/(4L)))

≤ B2−M+1 +
12B

√
n ⌈log2(dm)⌉√

m

M∑
k=1

2−k

√(
22k16L2

B2
+ 1

)

≤ B2−M+1 +
12B

√
n ⌈log2(dm)⌉√

m

M∑
k=1

√(
16L2

B2
+ 2−2k

)

≤ B2−M+1 +
12B

√
n ⌈log2(dm)⌉√

m

M∑
k=1

(
4L

B
+ 2−k

)

≤ B2−M+1 +
12B

√
n ⌈log2(dm)⌉√

m

(
4LM

B
+ 1

)
Choosing M =

⌈
log2

(√
m
n

)⌉
we get,

A ≤ B

√
n

m
+

12B
√
n ⌈log2(dm)⌉√

m

(
4L log(m)

B
+ 1

)

B APPROXIMATE DESCRIPTION LENGTH AND MULTICOVER

In this section we show that multicover is closely related to the notion of approximate description
length (ADL) as defined by Daniely & Granot (2019). We start with a definition that is slightly
different from the definition used in Daniely & Granot (2019). We say that X has ε-ADL of n if
there is a protocol between two entities, Alice and Bob with the following properties. Upon seeing
x ∈ X , Alice, that is allowed to use randomness, sends a message s ∈ {0, 1}n to Bob. Upon seeing
s, Bob generates a vector x̂ that is an ε-estimator to x. Formally, there is a probability space (Ω, P )
(representing Alice’s randomness) and functions A : X × Ω → {0, 1}n and B : {0, 1}n → Rd,m

such that for any x ∈ X the random variable ω 7→ B(A(x, ω)) is an ε-estimator of x. We denote by
ADL(X , ε) the minimal k for which X has an ε-ADL of k.

The following lemma shows that ADL is closely related to multicover.
Lemma B.1. ADL(X , ε) = ⌊log2 (M(X , ε))⌋

Proof. Observe that X has ε-ADL of n if and only if there is a set X̌ such that for any x ∈ X there
is a random vector X ∈ X̌ that is a ε-estimator of x. By lemma 3.1 this is valid if and only if X̌
is an ε-multicover. It follows that ADL(X , ε) is the minimal k for which X has an ε-multicover of
size 2k. In other words, ADL(X , ε) = ⌊log2 (M(X , ε))⌋.

We next turn to the definition used in Daniely & Granot (2019). We define unbiased ε-ADL, by
making two modification to the definition of ε-ADL. First, we require that Eω∼PB(A(x, ω)) = x.
Second, we allow sending messages of unbounded length (i.e. a message in {0, 1}∗), and just require
that the expected number of sent bits will be at most n. We denote by uADL(X , ε) the minimal k
for which X has an unbiased ε-ADL of k. We note that Daniely & Granot (2019) defined the ADL
of X to be uADL(X , 1). The following lemma connects unbiased ADL and ADL by showing that
ignoring poly-logarithmic factors, uADL(X , 1) ≤ k if and only if ADL(X , ε) ≤ k

ε2 . By lemma
B.1 this happens if and only if log2(M(X , ε)) ≤ k

ε2 .
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Lemma B.2. Fix X ⊂ Rd,m. We have

• ∀0 < ϵ ≤ 1, ADL(X , ε) ≤ O
(

uADL(X ,1)
ε2

)
• If ADL(X , ε) ≤ k

ε2 for any 0 < ϵ ≤ 1 then uADL(X , 1) = O
(
log2(dm)k

)
Where the constant in the big-O notation are universal.

Proof. (sketch) Denote k = uADL(X , 1). Given x ∈ X and using O
(

k
ϵ2

)
expected bits Alice can

send to Bob
⌈

1
ϵ2

⌉
independent and unbiased 1-estimators of x. If Bob averages these estimators,

he gets an ϵ-estimator of x. This implies that uADL(X , ε) ≤ O
(

uADL(X ,1)
ε2

)
. It is therefore

enough to show that ADL(X , ε) ≤ O
(
uADL(X , ε/

√
2)
)
. By Lemma B.1 it is enough to show that

log(M(X , ε)) ≤ O
(
uADL(X , ε/

√
2)
)
.

Denote k = uADL(X , ε/
√
2) and fix a probability space (Ω, P ) and functions A : X×Ω → {0, 1}∗

and B : {0, 1}∗ → Rd,m such that for any x ∈ X the random variable ω 7→ B(A(x, ω)) is an
unbiased (ε/

√
2)-estimator of x, and Eωlen(A(x, ω)) ≤ k. Fix R ∈ Rd,m

1 . We have Eω∥x −
B(A(x, ω))∥2R ≤ ϵ2/2 By Markov inequality, there exists ω such that ∥x − B(A(x, ω))∥2R ≤ ϵ2

and len(A(x, ω)) ≤ 2k. This implies that X̌ := {B(s) : s ∈ {0, 1}∗, len(s) ≤ 2k} is a ϵ-cover
of X w.r.t. R. This is true for any R ∈ Rd,m

1 , and therefore X̌ is a ϵ-multicover of X . This implies
that log(M(X , ε)) ≤ 4k

For the second item, let Xn and X̄n be ϵ√
2n

-estimators of x, which can be encoded using k2n

ϵ2 bits
each. Let Zn be a r.v. that is 2n w.p. 2−n and 0 otherwise. Assume that all these random variables
are independent. Consider now the estimator

XN = X1 +

N∑
n=1

Zn(Xn+1 − X̄n)

We first claim that Bob can generate such an estimator using O
(
kN
ϵ2

)
expected bits set from Alice.

Indeed, Alice can first sample the Zn’s. Then, for any n, if Zn ̸= 0, send the index n using
O(log(n)) bits as well as Xn and X̄n using k2n

ϵ2 . The expected number of sent bits is O
(
2−n k2n

ϵ2

)
=

O
(

k
ϵ2

)
. The total expected number of sent bits is therefore O

(
kN
ϵ2

)
bits. We next show that XN is

an
(
ϵ
√
1 + 4N

)
-estimator of x. Indeed, for any unit vector u we have

Var
(〈
u, XN

〉)
= Var(⟨u, X1⟩) +

N∑
n=1

Var (Zn⟨u, Xn+1 −Xn⟩)

≤ ϵ2 +

N∑
n=1

E (Zn⟨u, Xn+1 −Xn⟩)2

= ϵ2 +

N∑
n=1

EZ2
nE (⟨u, Xn+1 −Xn⟩)2

= ϵ2 +

N∑
n=1

2nE⟨u, Xn+1 −Xn⟩2

≤ ϵ2 + 2

N∑
n=1

2n
(
E⟨u, Xn+1 − x⟩2 + E⟨u, Xn − x⟩2

)
≤ ϵ2 + ϵ22

N∑
n=1

2n
(
2−(n+1) + 2−n

)
≤ ϵ2(1 + 4N)

Let Y N be an unbiased (1/2)-estimator of y := x − EXN = x − EXN+1. Since XN+1 is(
ϵ

2(N+1)/2

)
-estimator of x, we have that the absolute value of each coordinate of y is at most
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ϵ
2(N+1)/2 . Thus, Alice can send 1

2 estimator of y as follows: for any i ∈ [m] and j ∈ [d], w.p. |yij |
send sign(yij) and the indices i and j. If the pair (i, j) were sent, Bob will define Y i

j = sign(yij).
Otherwise, he will define Y i

j = 0. It is not hard to verify (see Daniely & Granot (2019) for de-
tails) that Y is an unbiased ϵ

2(N+1)/2 -estimator of Y . Likewise, the expected number of sent bits per

coordinate is O
(

ϵ log(md)
2(N+1)/2

)
, resulting with a total cost of O

(
ϵmd log(md)
2(N+1)/2

)
= O

(
md log(md)
2(N+1)/2

)
bits.

Finally, X = XN + Y N is an unbiased
√
1/2 + ϵ2(1 + 4N)-estimator of x which costs

O
(

md log(md)
2(N+1)/2 + kN

ϵ2

)
bits to encode. Choosing ϵ =

√
1/(2 + 4N) and N = 2 log2(md) we

gen an unbiased 1-estimator of x which costs O
(
k log2(md)

)
bits to encode.
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