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Abstract

The quintessential model-based reinforcement-learning agent iteratively refines
its estimates or prior beliefs about the true underlying model of the environment.
Recent empirical successes in model-based reinforcement learning with function
approximation, however, eschew the true model in favor of a surrogate that, while
ignoring various facets of the environment, still facilitates effective planning over
behaviors. Recently formalized as the value equivalence principle, this algorithmic
technique is perhaps unavoidable as real-world reinforcement learning demands
consideration of a simple, computationally-bounded agent interacting with an over-
whelmingly complex environment, whose underlying dynamics likely exceed the
agent’s capacity for representation. In this work, we consider the scenario where
agent limitations may entirely preclude identifying an exactly value-equivalent
model, immediately giving rise to a trade-off between identifying a model that
is simple enough to learn while only incurring bounded sub-optimality. To ad-
dress this problem, we introduce an algorithm that, using rate-distortion theory,
iteratively computes an approximately-value-equivalent, lossy compression of the
environment which an agent may feasibly target in lieu of the true model. We
prove an information-theoretic, Bayesian regret bound for our algorithm that holds
for any finite-horizon, episodic sequential decision-making problem. Crucially,
our regret bound can be expressed in one of two possible forms, providing a per-
formance guarantee for finding either the simplest model that achieves a desired
sub-optimality gap or, alternatively, the best model given a limit on agent capacity.

1 Introduction

A central challenge of the reinforcement-learning problem [154, 87] is exploration, where a sequential
decision-making agent must judiciously balance exploitation of knowledge accumulated thus far
against the need to further acquire information for optimal long-term performance. Historically,
provably-efficient reinforcement-learning algorithms [91, 35, 90, 20, 23, 151, 81, 121, 45, 120, 22,
46, 10, 85, 168, 56, 105] have often relied upon one of two possible mechanisms for addressing
the exploration challenge in a principled manner: optimism in the face of uncertainty or posterior
sampling. Briefly, methods in the former category begin with optimistically-biased value estimates
for all state-action pairs; an agent acting greedily with respect to these estimates will be incentivized
to visit all state-action pairs a sufficient number of times until this bias dissipates and the agent
is left with an accurate estimate of the value function for deriving optimal behavior. In contrast,
posterior-sampling methods primarily operate based on Thompson sampling [156, 141] whereby the
agent begins with a prior belief over the Markov Decision Process (MDP) with which it is interacting
and acts optimally with respect to a single sample drawn from these beliefs. The resulting experience
sampled from the true environment allows the agent to derive a corresponding posterior distribution
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and this Posterior Sampling for Reinforcement Learning (PSRL) [152] algorithm proceeds iteratively
in this manner, eventually arriving at a posterior sharply concentrated around the true environment
MDP. While both paradigms have laid down solid theoretical foundations for provably-efficient
reinforcement learning, a line of work has demonstrated how posterior-sampling methods can be
more favorable both in theory and in practice [121-123, 120, 114, 125, 63].

While existing analyses of reinforcement-learning algorithms have largely focused on providing
guarantees for learning optimal solutions, real-world reinforcement learning demands consideration
for a computationally-bounded agent interacting with an overwhelmingly complex environment [105].
A simplified view of this notion can be succinctly depicted in the multi-armed bandit setting [97, 38,
100]; as the number of arms increases, a Thompson sampling agent’s relentless pursuit of the optimal
arm will lead to large regret [138, 139]. On the other hand, one might simply settle for the first
e-optimal arm found, for some € > 0, which may be identified in far fewer time periods. The goal of
this work is to augment PSRL so as to accommodate these satisficing solutions in addition to optimal
ones, paralleling existing work for satisficing in multi-armed bandit problems [140, 139, 15, 16]. To
help elucidate the utility of satisficing solutions in the reinforcement-learning setting, we offer the
following illustrative example:

Example 1 (A Multi-Resolution MDP). For a large but finite N € N, consider a sequence of MDPs,
{ M }ne[ny, which all share a common action space A but vary in state space S, reward function,
and transition function. Moreover, for each n € [N), the rewards of the nth MDP are bounded in
the interval [0, %} An agent is confronted with the resulting product MDP, M, defined on the state
space Sy X ... X Sy with action space A and rewards summed across the N constituent reward
functions. The transition function is defined such that each action a € A is executed across all N
MDPs simultaneously and the resulting individual transitions are combined into a transition of M.

Example 1 presents a simple scenario where, as N 1 0o, a complex environment retains a wealth of
information and yet, due to the scale of N and the boundedness of rewards for each constituent MDP
M., only a subset of that information is within the agent’s reach or even necessary for producing
reasonably competent behavior. Despite this fact, PSRL will persistently act to fully identify the
transition and reward structure of all {M,, },,c[n1, for any value of N. Without knowing which MDPs
are more important a priori and even as data accumulates during learning, PSRL is unable to forego
learning granular components of M, eventually accumulating optimal reward at the cost of more time.
Intuitively, however, one might anticipate that there exists a value M < N such that learning the
subsequence of MDPs { M, },,c[as] in fewer time periods is sufficient for achieving a desired degree
of sub-optimality, since the rewards of the remaining MDPs { M, },,~ s make suitably negligible
contributions to the overall rewards of M. Alternatively, for a computationally-bounded decision
maker, the agent’s resource limitations ought to translate into a value C' < N such that {M,, },,¢[¢]
is feasible and learning this subsequence is the best possible outcome under the agent capacity
constraints. In this work, we introduce an algorithm that, in a purely data-driven and automated
fashion, implicitly identifies such a value M or C' to facilitate tractable, near-optimal learning in what
may otherwise be an intractable problem. Following Arumugam and Van Roy [15], a key tool for
defining a notion of satisficing in reinforcement learning will be rate-distortion theory [146, 25].

The paper proceeds as follows: we introduce our problem formulation in Section 3, present our
generalization of PSRL in Section 4, and provide a complementary regret analysis in Section 5. Due
to space constraints, technical proofs, an overview of related work, and discussion of our results in a
broader context are relegated to the appendix.

2 Preliminaries

In this section, we provide brief background on information theory and details on our notation. All
random variables are defined on a probability space (€2, F,P). For any random variable X : Q — X
taking values on the measurable space (X,X), we use 0(X) = {X1(A) | A € X} C Fto
denote the o-algebra generated by X. For any natural number N € N, we denote the index set as
[N] £ {1,2,..., N}. For any arbitrary set X', A(X') denotes the set of all probability distributions
with support on X. For any two arbitrary sets X and ), we denote the class of all (measurable)
functions mapping from X to ) as {X — Y} 2 {f | f : X — Y}. While our exposition throughout
the paper will consistently refer to bits of information, it will be useful for the purposes of analysis
that all logarithms be in base e.



2.1 Information Theory

Here we introduce various concepts in probability theory and information theory used throughout
this paper. We encourage readers to consult [41, 71, 129, 59] for more background.

We define the mutual information between any two random variables X, Y through the Kullback-
Leibler (KL) divergence:

Jlog (45)aP P <Q
+oo P£Q’

where P and () are both probability measures on the same measurable space and % denotes the

Radon-Nikodym derivative of P with respect to (). An analogous definition of conditional mutual
information holds through the expected KL-divergence for any three random variables X, Y, Z:

I(X;Y | 2) = E[D(B((X.Y) €| 2) || P(X €| Z) x B(Y € - | 2))].

I(X;Y) = Dr(P((X,Y) € ) [[P(X € )xP(Y €+))  DkuL(P[lQ) = {

With these definitions in hand, we may define the entropy and conditional entropy for any two random
variables X, Y as

H(X)=1(X;X) HY |X)=H(Y)-IX;Y).

This yields the following identities for mutual information and conditional mutual information for
any three arbitrary random variables X, Y, and Z:

I(X;Y)=H(X)-H(X |Y)=HY)-HY|X), IX;Y|Z)=HX|2)-H(X |Y,Z)=HY|2)-H(Y|X, Z).

Through the chain rule of the KL-divergence and the fact that Dky,(P || P) = 0 for any probability
measure P, we obtain another equivalent definition of mutual information,

I(X;Y) =E[Dkn(PY € - | X) [[P(Y €))],

as well as the chain rule of mutual information: I(X; Y7,...,Y,) = > I(X;Y; | Y1,...,Yi—1).

=1
Finally, for any three random variables X, Y, and Z which form the Markov chain X — Y — Z,
we have the following data-processing inequality: I(X; Z) < I(X;Y).

3 Problem Formulation

We formulate a sequential decision-making problem as a finite-horizon, episodic Markov Decision
Process (MDP) [24, 130] defined by M = (S, A, R, T, 8, H). Here S denotes a set of states, .4 is a
set of actions, R : S x A — [0, 1] is a deterministic reward function providing evaluative feedback
signals (in the unit interval) to the agent, 7 : S x A — A(S) is a transition function prescribing
distributions over next states, 5 € A(S) is an initial state distribution, and H € N is the maximum
episode length or horizon.

As is standard in Bayesian reinforcement learning [70], neither the transition function nor the reward
function are known to the agent and, consequently, both are treated as random variables. Since
all other components of the MDP are thought of as known a priori, the randomness in the model
(R, T) fully accounts for the randomness in M, which is also a random variable. We denote by
M* the true MDP with model (R*, 7*) that the agent interacts with and attempts to solve over the
course of K episodes. Within each episode, the agent acts for exactly H steps beginning with an
initial state s; ~ (. For each h € [H], the agent observes the current state s, € S, selects action
ap ~ 7+ | sn) € A, enjoys a reward r;, = R(sp,ap) € [0,1], and transitions to the next state
Sh+1 ™~ T( ‘ sh,ah) eS.

A stationary, stochastic policy for timestep h € [H], 7, : S — A(A), encodes a pattern of behavior
mapping individual states to distributions over possible actions. Letting {S — A(.A)} denote the class
of all stationary, stochastic policies, a non-stationary policy 7 = (m1,...,7x) € {S — A(A)}H
is a collection of exactly H stationary, stochastic policies whose overall performance in any MDP
M at timestep h € [H| when starting at state s € S and taking action a € A is assessed by its

H
associated action-value function Q%, , (s,a) = E | >~ R(sp,an) | sp = s,ap = a|, where the
’ h'=h



expectation integrates over randomness in the action selections and transition dynamics. Taking

the corresponding value function as Vi ;,(s) = Eqrr,(.|s) [Q”M,h(s, a)}, we define the optimal

policy 7* = (7, 73, ..., m}) as achieving supremal value Vi ; (s) = sup Vi n(s) for
re{SmA(A}H

all s € S, h € [H]. For brevity, we will write any value function V' € {S — R} without its

argument to implicitly integrate over randomness in the initial state: V' = E, gy [V (s1)]. We

let 7, = (sgk), agk)7 rgk)7 e, s%% ag;), rgc), 8(521) be the random variable denoting the trajectory
experienced by the agent in the kth episode. Meanwhile, Hy, = {m1,72,...,7k—1} € Hy is the

random variable representing the entire history of the agent’s interaction within the environment at
the start of the kth episode; the sequence of history random variables {H} } ¢k induce and, by
definition, are adapted to the filtration {o(H})}re[x] of (2, F). We call attention to the fact that
we have yet to make any further restrictions on the state-action space S x A, such as finiteness;
notably, the main results of this paper are not limited to tabular MDPs. As mentioned by Lattimore
and Szepesvari [100] (also as Proposition 7.28 of Bertsekas and Shreve [28]), the Ionescu-Tulcea
Theorem [80] ensures the existence of a probability space upon which 7 and Hy, are well-defined
random variables for all episodes k € [K].

Abstractly, a reinforcement-learning algorithm is a sequence of non-stationary policies
(7™M, ..., 7)) where for each episode k € [K], 7®) : H; — {S — A(A)}¥ is a function
of the current history H},. We define the regret of a reinforcement-learning algorithm over K episodes
as

K
REGRET(K,7r(1)7 . ,W(K),M*) = Z Ag Ay 2 Vigen — Vj(r,l(ffl,
k=1

where Ay denotes the episodic regret or regret incurred during the kth episode with respect to the true
MDP M*. An agent’s initial uncertainty in the (unknown) true MDP M* is reflected by an arbitrary
prior distribution P(M* € - | Hy). Since the regret is a random variable due to our uncertainty in
M*, we integrate over this randomness to arrive at the Bayesian regret:

BAYESREGRET(K, 7", ... 7#(5)) = E |REGRET(K, 7V, ..., 7(F) M*)| .

Broadly speaking, our goal is to design a provably-efficient reinforcement-learning algorithm that
incurs bounded Bayesian regret.

Throughout the paper, we will denote the entropy and conditional entropy conditioned upon a specific
realization of an agent’s history Hy, for some episode k € [K], as Hy(X) £ H(X | H, = Hy,)
and Hy(X | Y) £ Hi(X | Y,H, = Hy), for two arbitrary random variables X and Y. This
notation will also apply analogously to the mutual information I,(X;Y) 2 I(X;Y | H, = Hy) =
He(X) —Hg(X | Y) = He(Y) — Hg(Y | X), as well as the conditional mutual information
I,(X;Y | Z) £(X;Y | H, = Hy, Z), given an arbitrary third random variable, Z. Note that their
dependence on the realization of random history H}, makes both I,(X;Y") and I,(X;Y | Z) random
variables themselves. The traditional notion of conditional mutual information given the random
variable H}, arises by integrating over this randomness:

EL(X;Y)] =1(X;Y | Hy)  E[(X;Y | 2)] =1(X;Y | H, Z).

Additionally, we will also adopt a similar notation to express a conditional expectation given the
random history Hy: By, [X] £ E[X|Hy] .

4 Satisficing Through Posterior Sampling

4.1 Rate-Distortion Theory

We begin with a brief, high-level overview of rate-distortion theory [146, 25] and encourage readers
to consult [41] for more details and [26] for a survey of advances in rate-distortion theory towards
solving the lossy source coding problem in information theory. A lossy compression problem
consumes as input a fixed information source P(X € -) and a measurable distortion function
d: X x Z — R>( which quantifies the loss of fidelity by using Z in place of X. Then, for any



D € Ry, the rate-distortion function quantifies the fundamental limit of lossy compression as
R(D)= inf I(X;2) AD)2{Z:Q— Z|E[d(X,Z)] < D},

ZeA(D)

where the infimum is taken over all random variables Z that incur bounded expected distortion,
E[d(X, Z)] < D. Naturally, R(D) represents the minimum number of bits of information that must
be retained from X in order to achieve this bounded expected loss of fidelity'. Throughout the paper,
various facts of the rate-distortion function will be referenced as needed. For now, we simply note
that, in keeping with the problem formulation of the previous section which does not automatically
assume discrete random variables, the rate-distortion function is well-defined for abstract information
source and channel output random variables [43].

Just as in past work that studies satisficing in multi-armed bandit problems [138, 139, 15], we will
use rate-distortion theory to formalize and identify the best simplified MDP M, that the agent will
attempt to learn over the course of each episode k € [K]. The dependence on the particular episode
comes from the fact that this lossy compression mechanism or channel will treat the agent’s current
beliefs over the true MDP P(M* € - | Hy) as the information source to be compressed.

4.2 The Value Equivalence Principle

As outlined in the previous section, the second input for a well-specified lossy-compression problem is
a distortion function prescribing non-negative real values to realizations of the information source and

channel output random variables (M*, M) that quantify the loss of fidelity incurred by using M in
lieu of M™*. To define this function, we will leverage an approximate notion of value equivalence [72,
73]. For any arbitrary MDP M with model (R, 7') and any stationary, stochastic policy 7 : S —
A(A), define the Bellman operator B, : {S = R} — {S — R} as follows:

B.;\FAV(S) £ EGNTF("S) [R(Sva) + ES’NTHS,G) [V(S/)H ) Vs e S.

The Bellman operator is a foundational tool in dynamic-programming approaches to reinforcement
learning [29] and gives rise to the classic Bellman equation: for any MDP M = (S, A, R, T, 3, H)
and any non-stationary policy = = (1, ..., 7x), the value functions induced by 7 satisfy Vi (s) =

BV hai(s), forall h € [H] and with Vi) ;7 ,,(s) = 0, Vs € S. For any two MDPs M =

(S, A, R, T,B,H)and M = (S, A, R, T, 3, H), Grimm et al. [72] define a notion of equivalence
between them despite their differing models. For any policy class IT C {S — A(.A)} and value
function class V C {S — R}, M and M are value equivalent with respect to IT and V if and only if
BV = B;?V, Vr € II,V € V. In words, two different models are deemed value equivalent if they
induce identical Bellman updates under any pair of policy and value function from IT x V. Grimm et al.
[72] prove that when IT = {S — A(A)} and V = {S — R}, the set of all exactly value-equivalent
models is a singleton set containing only the true model of the environment. The key insight behind
value equivalence, however, is that practical model-based reinforcement-learning algorithms need not
be concerned with modeling every granular detail of the underlying environment and may, in fact,
stand to benefit by optimizing an alternative criterion besides the traditional maximum-likelihood
objective [147, 66, 116, 17, 65, 57, 1, 44, 21, 144, 110, 113, 161]. Indeed, by restricting focus to
decreasing subsets of policies IT C {S — A(A)} and value functions V C {S — R}, the space of
exactly value-equivalent models is monotonically increasing.

For brevity, let ® 2 {S x A — [0,1]} and T £ {S x A — A(S)} denote the classes of all
reward functions and transition functions, respectively. Recall that, with (S, A, 8, H) all known, the
uncertainty in a random MDP M is entirely driven by its model (R, 7") such that we may think of
the support of M* as supp(M*) = 9t £ R x T. We define a distortion function on pairs of MDPs
d:MxM— Rxg forany II C {S — A(A)},V C {S — R} as

2
oy (M. 0) = sup B3, = BV = sup (sup BLV(9) - BEV()])
mell well \seS
Ve VEY
In words, dyr,y is the supremal squared Bellman error between MDPs M and M across all states
s € § with respect to the policy class I and value function class V.

'With a slight abuse of notation, we overload R.



4.3 Value-Equivalent Sampling for Reinforcement Learning

By virtue of the previous two sections, we are now in a position to define the lossy compression

problem that characterizes a MDP M that the agent will aspire to learn in each episode k € [K]
instead of the true MDP M*. Forany II C {S — A(A)}; V C{S - R}; k € [K];and D > 0, we
define the rate-distortion function

RIVV(D) = inf LM M), Ap(D) 2 {M:Q — M | Egldmy(M*, M) < D} (1)
MeA (D)

This rate-distortion function characterizes the fundamental limit of MDP compression under our
chosen distortion measure resulting in a channel that retains the minimum amount of information from
the true MDP M™* while yielding an approximately value-equivalent MDP in expectation. Observe
that this distortion constraint is a notion of approximate value equivalence which collapses to the
exact value equivalence of Grimm et al. [72] as D — 0. Meanwhile, as D — 0o, we accommodate a
more aggressive compression of the true MDP M* resulting in less faithful Bellman updates.

Algorithm 1 Posterior Sampling for Re- Algorithm 2 Value-equivalent Sampling for Reinforce-
inforcement Learning (PSRL) [152] ment Learning (VSRL)

Input: Prior P(M* € - | Hy) Input: Prior P(M* € - | Hy), Threshold D € R,
for k € [K] do Distortion function dry,p : 9 x MM — R
Sample Mj, ~ P(M* € - | Hy) for k € [K] do
Get optimal policy 7(¥) = 7 M, Compute M), achieving R,?’V(D) limit (Equation 1)
Execute 7(*) and get trajectory 7, Sample MDP M* ~ P(M* € A\/Hk)
Update history Hy+1 = Hp U Ty, Sample compression My, ~ P(My, € - | M* = M*)
Induce posterior P(M* € - | H11) Compute optimal policy 7(*) = 7%
end for My,

Execute 7(*) and observe trajectory 7y,

Update history Hy1 = Hy U Ty

Induce posterior P(M* € - | Hy41)
end for

A standard algorithm for our problem setting is widely known as Posterior Sampling for Reinforce-
ment Learning (PSRL) [152, 120], which we present as Algorithm 1, while our Value-equivalent
Sampling for Reinforcement Learning (VSRL) is given as Algorithm 2. The key distinction between
them is that, at each episode k € [K], the latter takes the posterior sample M* ~ P(M* € - | Hy)
and passes it through the channel that achieves the rate-distortion limit (Equation 1) at this episode to
get the M), whose optimal policy is executed in the environment.

The core impetus for this work is to recognize that, for complex environments, pursuit of the exact
MDP M* (as in PSRL) may be an entirely infeasible goal. Consider a MDP that represents control
of a real-world, physical system; learning a transition function of the associated environment, at some
level, demands that the agent internalize the laws of physics and motion with near-perfect accuracy.
More formally, identifying M* demands the agent obtain exactly H; (M*) bits of information
from the environment which, under an uninformative prior, may either be prohibitively large by
far exceeding the agent’s capacity constraints or be simply impractical under time and resource
constraints.

As aremedy for this problem, we embrace the idea of being “sufficiently satisfying” or satisficing [ 148,
140, 138, 139, 15, 16]; as succinctly stated by Herbert A. Simon during his 1978 Nobel Memorial
Lecture, “decision makers can satisfice either by finding optimum solutions for a simplified world,
or by finding satisfactory solutions for a more realistic world.” Rather than spend an inordinate
amount of time trying to recover an optimum solution to the true environment, we will instead
design an algorithm that pursues optimum solutions for a sequence of simplified environments.
In the next section, our analysis demonstrates that finding such optimum solutions for simplified
worlds ultimately acts as a mechanism for achieving a satisfactory solution for the realistic, complex
world. Naturally, the loss of fidelity between the simplified and true environments translates into a
fixed amount of regret that an agent designer consciously and willingly accepts for two reasons: (1)
they expect a reduction in the amount of time, data, and bits of information needed to identify the
simplified environment and (2) in tasks where the environment encodes irrelevant information and



exact knowledge is not needed to achieve optimal behavior [66, 72, 73, 161], this worst-case error
term may be negligible anyways while still maintaining greater efficiency than traditional PSRL.

Recalling Example 1 that revolves around a particular sequence of MDPs, {M,, },¢c[n], We note
that as the distortion threshold D increases, the significance of MDPs in the sequence indexed by

larger values of n € [N] rapidly diminishes. As D 1 oo, the lossy compression M}, needn’t convey
information about any of the MDPs in {M,, },,¢[n]. Conversely, at D = 0, a VSRL agent must
necessarily obtain enough information about the entire sequence so as to facilitate planning over II
and V. In between, however, the agent need only concern itself with a particular subsequence of
{M. } e[ While the remaining MDPs can be ignored due to their negligible contribution to overall
value and, therefore, expected distortion under djy y.

5 Regret Analysis

In this section, we offer an information-theoretic analysis of VSRL (Algorithm 2) before refining our
regret bounds to the tabular setting. We conclude by highlighting how our performance guarantees can
be expressed via a notion of agent capacity that is considerate of real-world reinforcement learning.

5.1 An Information-Theoretic Bayesian Regret Bound

To establish a Bayesian regret bound for VSRL we first require a regret decomposition that ac-
knowledges the agent’s new objective of identifying an approximately value-equivalent MDP in

each episode, My, rather than the true MDP M*. Crucially, this regret decomposition leverages the
precise form of our distortion function dy y (M*, M k)-

Theorem 1. Take any 11 O {S — A}, any V 2 {V™ | # € I}, and fix any D > 0.
For each episode k € [K], let ka be any MDP that achieves the rate-distortion limit of
RyYV(D) with information source P(M* € - | Hy) and distortion function driy. Then,

K
(1) (K)\ < «  _ vy
BAYESREGRET(K,7(V), ... 7(F)) <E LZ_:1Ek [mG,l VMMJ +2KHVD.

Theorem 1 shows how the Bayesian regret incurred by VSRL can be separated into an error term
the agent must pay for learning a simplified MDP M, rather than M*, and the Bayesian regret

incurred while trying to learn M. This first term mirrors the satisficing regret of Russo and Van Roy
[138, 139] for multi-armed bandits where the performance of the agent in the kth episode is being

measured with respect to a compressed MDP M, rather than the true MDP M*. While further
discussion on the choices of II and V is provided later in this section, we simply note that the
conditions placed upon them in Theorem 1 are an artifact of VSRL only executing optimal policies in
each time period h € [H] which, under the assumptions of our problem formulation, are deterministic.

The remainder of this section is devoted to an analysis for establishing an information-theoretic bound
on the satisficing regret term of Theorem 1. A central tool of our analysis will be the information
ratio [136, 137] at the kth episode:

2

(k)
E [V*N _y=
PV M1~ "M

L (M 7i, M)
In words, the information ratio is the ratio between squared expected regret in the kth episode with
respect to M), and the information gained about My, in the kth episode by sampling MDP M,
and observing trajectory 7y, given the current history Hy. Numerous prior works have leveraged
similar or generalized types of information ratios for analyzing multi-armed bandit problems [135—
139, 54, 99, 169, 36, 15, 98] as well as reinforcement-learning problems [104]; in comparison to the
latter, we simply note that our analysis bears stronger resemblance to those in multi-armed bandits by
not constructing confidence sets over MDPs [121, 120, 104], avoiding a restricted focus to tabular
problems. That said, our results are contingent upon the existence of a uniform upper bound to the
information ratios across all episodes, a non-trivial result [78] that we leave to future work.

Ty, 2 Vk € [K].

Through our information-ratio analysis, we obtain the following information-theoretic bound on
satisficing Bayesian regret:



K
. < T *_ _ ik) < ™ 11,V )
Theorem 2. If Ty, < T, for all k € [K], then E Lg Ey, [VMM VMNH < /TKRIY (D)

An immediate consequence of the preceding theorems is the following corollary which establishes
our main result, an information-theoretic Bayesian regret bound for VSRL. We omit the proof as it
follows directly from applying Theorems 1 and 2 in sequence.

Corollary 1. Take any I1 2O {S — A}, any V 2 {V™ | 7 € I}, and fix any D > 0. For
any prior distribution P(M* € - | Hy), if Ty, < T for all k € [K], then VSRL (Algorithm 2) has

BAYESREGRET(K, (M), ..., n(F)) < \/TKR"Y (D) + 2K HV/D.

Once again we recall that, since the rate-distortion function is well-defined for arbitrary source and
channel output random variables defined on abstract alphabets [43], the Bayesian regret bound of
Corollary 1 holds for any finite-horizon, episodic MDP, extending beyond past analyses of PSRL
constrained only to tabular MDPs. We defer a discussion of practical considerations for implementing
VSRL to the appendix.

At this point, we call attention to the parameterization of our lossy compression problem by a
particular policy class II and value function class V), whose dependence we inherit from the value
equivalence principle [72]. The next result clarifies how the performance of VSRL is affected by
fluctuations in these classes via a dominance relationship [150] between the induced distortion
functions.

Lemma 1. For any two I, Il and any V, V' such that II' C 11 C {S — A(A)} and V' CV C
{8 = R}, we have R,"Y (D) > R} Y (D), Vk € [K], D > 0.

Property 3 of Grimm et al. [72] highlights how the set of value-equivalent MDPs grows as the policy
and value function classes shrink. Lemma 1 provides an intuitive, information-theoretic counterpart
to their result where, as the sets of policies and value functions over which models will be assessed
diminish, an agent may naturally compress more aggressively and throw away larger quantities of
bits from each source distribution over the true MDP M*.

Since a compressed MDP M, that achieves the rate-distortion limit has expected distortion bounded
by D, one may wonder how the probability of not recovering an approximately-value-equivalent
MDP scales as D 1 oco. To that end, we conclude this section with a final result that brings clarity to
this via a generalization [60] of Fano’s inequality [64]. We leave investigation of other generalizations
of Fano’s inequality that might yield similarly interesting results to future work [160, 8].

Lemma 2. Take any I1 C {S — A(A)} and V C {S — R}. Forany D > 0 and any k € [K],
define § = sup P(dm,y(M*, M) < D | Hy). Then,
Mem

II1,v
— V(D) + log(2
sup  P(diy(M* M) > D | Hy) > 1— 5 )fog( ).
MeAy(D) log ()

For any episode k € [K], the left-hand side of the inequality in Lemma 2 denotes the worst-case
error probability of sampling a compressed MDP M that is not approximately-value-equivalent to
M*. The right-hand side conveys that, in order to avoid such an error with reasonable probability,
one requires a setting of D < oo such that R} (D) ~ log ().

5.2 Specializing to Tabular MDPs

While the preceding subsection constitutes the main contribution of this paper, the presence of
information-theoretic terms makes it difficult to compare our guarantees to those obtained in prior
work, which typically focuses on the tabular setting. To help remedy this, we offer the following
theorem which restricts focus to the case where the agent pursues an exactly value-equivalent model
of the tabular environment. Notably, the results of this section still retain a dependence on a uniform
upper bound to the information ratio whose exact form is a result left to future work.

Theorem 3. Take any 11 O {S — A}, any V D {V™ | 7 € 1"}, and let D = 0. For any prior
distribution P(M* € - | Hy) over tabular MDPs, if Ty, <T for all k € [K], then VSRL (Algorithm

2) has BAYESREGRET(K, 7V, ... 7(K)) <O (|S| F|A|K) .



An immediate observation is that the Bayesian regret bound of Theorem 3 matches the dependence
on the number of states, |S|, obtained in the first (weaker) guarantee established for PSRL by Osband
et al. [121]; we suspect that this guarantee for VSRL is unimprovable without further distributional
assumptions [120, 119]. As an alternative, we contemplate how a change in the distortion measure
used by VSRL might incur an improved regret bound when specialized to the tabular setting.

Specifically, notice that the only piece of the VSRL analysis tethered to the particular form of

the distortion function dy (M, M) is Theorem 1, while all other components remain agnostic
to the precise criterion for assessing the loss of fidelity between original and compressed MDPs.
Consequently, there is potential for a modified distortion function to offer an improved regret analysis
relative to Theorem 3. Rather than concerning ourselves with planning over multiple behaviors, we
consider a distortion function based solely on the optimal action-value functions:

do+ (M, M) = sup [|Qhn — Qg ,l1% = sup  sup Qi (s,0) — Qg (s,0) .
he[H] ' RE[H] (s,a)ESX A :
We use Rg* (D) to denote the rate-distortion function under this new measure of distortion,
dg+ (M, M). In order for this new distortion function to be compatible with VSRL, we require an
analogue to the regret decomposition of Theorem 1.
Theorem 4. Fixany D > 0 and, for each episode k € [K], let M , be any MDP that achieves the rate-
distortion limit okaQ (D) with information source P(M* € - | Hy,) and distortion function dg-.

()
— VI\ZI«JH +2K(H +1)V/D.

K
Then, BAYESREGRET(K,7(1) ... 7#(F)) <R [Z Ey {VL
k=1 M1

With this regret decomposition in hand, we may recover the analogue to Corollary 1, whose proof is
immediate and, therefore, omitted.

Corollary 2. Fix any D > 0. For any prior distribution P(M* € - | Hy), if ), <T forall k € [K],
then VSRL (Algorithm 2) with distortion function dg~ has BAYESREGRET (K, ) rE)) <

TKRY (D) + 2K (H +1)V/D.

As illustrated by the following lemma, the significance of this change in distortion measure from dry y
to dg- is that the optimal action-value functions may now act as an information bottleneck [158]

between the original MDP M* and compressed MDP M k-

Lemma 3. For each episode k € [K] and for D = 0, let ka be any MDP that achieves the
rate-distortion limit of Rg (D) with information source P(M* € - | Hy) and distortion function
dq+. Then, we have the Markov chain M* — Q. — My, where Q4. = {Q\+ ;, }ne(m) is the
collection of random variables denoting the optimal action-value functions of M*.

Lemma 3, through the data-processing inequality, immediately leads us to an analogue of Theorem 3
that matches the dependence on |S| in the best known Bayesian regret bound for PSRL [120].

Theorem 5. For D = 0 and any prior distribution P(M* € - | Hy) over tabular MDPs, if Ty, <T
for all k € [K], then VSRL with distortion function dg- has BAYESREGRET(K, 7V ... 7(K)) <

O (\/misliairr).

Ultimately, Theorem 5 confirms that while there is great flexibility in the original definition of value
equivalence to support planning across multiple policies and value functions, focusing on optimal
value functions gives rise to more efficient learning. Moreover, comparing the result with the PSRL
regret bound of Osband and Van Roy [120] for tabular MDPs, this suggests an achievable uniform
upper bound to the information ratio as ' < H?, where the < accounts for numerical constants and
logarithmic factors.

5.3 Capacity-Sensitive Performance Guarantees

We recognize that the information-theoretic regret bounds of the previous two sections, like many other
guarantees for provably-efficient reinforcement learning before them, implicitly and unrealistically



assume that an agent is of unbounded capacity and may pursue any approximately-value-equivalent
model under a given distortion threshold D. In the context of real-world reinforcement learning [62,
105], however, fundamental limits on computational resources and time leave an agent designer
with a bounded agent to be deployed within an overwhelmingly complex environment. As such,
this designer may seldom be in a position to dictate an ideal or desired sub-optimality threshold D,
but rather must make do with a known constraint on agent capacity; guarantees on sample-efficient
reinforcement learning cognizant of such a fundamental constraint are nascent.

While there are numerous possibilities for how one might choose to formally characterize agent
capacity, we here adopt a fundamental perspective that learning is the process of acquiring information
and so take this capacity to imply the existence of a non-negative real value R € R such that
the agent may only acquire and retain exactly R bits of information. To help contextualize this
notion of agent capacity, we introduce the distortion-rate function [146, 25, 41] which quantifies the
fundamental limit of expected distortion under an information constraint:

DY (R) = inf K [dQ* M M) DY(R)= inf E, [dQ* (MM, @

MEeT(R) MET(R)

where the infimum is taken over all channels with bounded rate, T,(R) £ {M : Q — M |

I (M*; M) < R}. In words, given the agent’s current beliefs over the true MDP P(M* € - | Hy),
the infimum of the distortion-rate function is taken over all potential lossy compressions of the
environment that fall within the agent’s capacity constraint of R bits and identifies the one that
preserves the most useful information, as measured by the distortion function. Conveniently, the
rate-distortion function and distortion-rate function are inverses of one another [41] (R(D(R)) = R)
such that we recover the following two capacity-sensitive regret bounds directly from Corollaries 1
and 2 by simply taking the input distortion threshold of VSRL equal to the associated distortion-rate

function in the first episode (D = D}"Y(R) and D = D?* (R), respectively).

Corollary 3. Take any 11 O {S — A}, any V 2 {V™ | m € 1"}, and let R > 0 be the agent
capacity. For any prior distribution P(M* € - | Hy), if Ty, < T for all k € [K], then VSRL
(Algorithm 2) with distortion function dry has BAYESREGRET(K, M, 7E)) < VTKR +

2K H\/Di"Y(R).

Corollary 4. Let R > 0 be the agent capacity. For any prior distribution P(M* € - | Hy),
if I'y < T forall k € [K], then VSRL (Algorithm 2) with distortion function dg- has

BAYESREGRET(K, (M), ..., n(5)) < VTKR + 2K (H + 1)/D¢" (R).

Turning back to Example 1, note how an agent with significantly limited capacity cannot possibly hope
to capture all the granularity contained in the entire MDP sequence { M, },,c[n), for large values of V.
For a capacity of exactly R bits, Corollaries 3 and 4 immediately translate this fundamental limit into
a corresponding performance guarantee, allowing the agent to identify a subsequence { M, }¢[c
for some C' < N which only requires gathering R bits of information from the environment.

6 Conclusion

In this paper, we began with a finite-horizon, episodic MDP and considered the ramifications of
a real-world reinforcement-learning scenario wherein the relative complexity of the environment
is so immense that an agent may find itself incapable of perfectly recovering optimal behavior.
An immediate consequence of this reality is the need to strike an appropriate balance between
what is performant and what is achievable. We introduced the VSRL algorithm for incrementally
synthesizing simple and useful approximations of the environment from which an agent might
still recover near-optimal behaviors. Recognizing the information-theoretic nature of this lossy
MDP compression, we provided an analysis of VSRL whose performance guarantees, by virtue of
rate-distortion theory, are twofold. The first set of guarantees ensure VSRL recovers the simplest
compression of the environment which still incurs bounded sub-optimality, as specified by the agent
designer. Alternatively, the second set of guarantees maintain that VSRL finds the best compression
of the environment subject to constraints on agent capacity. Through our general problem formulation
and information-theoretic analysis, both regret bounds hold for any finite-horizon, episodic MDP,
regardless of whether or not the state-action space is finite. That said, the question of how to
practically instantiate VSRL for high-dimensional settings is an open problem left to future work.
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