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Figure 1: We present VITAL, a framework that combines tactile sensing, vision foundation models,
and residual reinforcement learning to enable learning policies that can operate with millimeter-level
precision while generalizing to large spatial variations and significant environmental perturbations.

Abstract:
Data-driven approaches struggle with precise manipulation: imitation learning re-
quires many hard-to-obtain demonstrations, while reinforcement learning yields
brittle, non-generalizable policies. We introduce VisuoTactile Local (VITAL) pol-
icy learning, a framework that solves fine-grained manipulation tasks by decom-
posing them into two phases: a reaching phase, where a vision-language model
(VLM) enables scene-level reasoning to localize the object of interest, and a lo-
cal interaction phase, where a reusable, scene-agnostic VITAL policy performs
contact-rich manipulation using egocentric vision and tactile sensing. This ap-
proach is motivated by the observation that while scene context varies, the low-
level interaction remains consistent across task instances. By training local poli-
cies once in a canonical setting, they can generalize via a localize-then-execute
strategy. VITAL achieves ∼90% success on contact-rich tasks in unseen environ-
ments and is robust to distractors. VITAL’s effectiveness stems from three key
insights: (1) foundation models for segmentation enable training robust visual en-
coders via behavior cloning; (2) these encoders improve the generalizability of
policies learned using residual RL; and (3) tactile sensing significantly boosts
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performance in contact-rich tasks. Ablation studies validate each of these in-
sights, and we demonstrate that VITAL integrates well with high-level VLMs,
enabling robust, reusable low-level skills. Results and videos are available at vi-
talprecise.github.io.

Keywords: visuotactile, residual learning, local policy

1 Introduction

Imitation learning for sensorimotor skills has made significant strides in recent years, propelled by
the increasing scale and diversity of robotic datasets. From controlled tabletop environments to
open-world household settings, large-scale data has been shown to improve the generalization of
robotic policies [1, 2] – mirroring advances in vision [3, 4, 5] and language [6, 7, 8]. However,
precise, contact-rich manipulation poses a significant challenge to this data-centric approach. Fine-
grained tasks such as inserting USBs and swiping credit cards have low error tolerance (millimeter
to sub-millimeter), and the high fidelity required makes demonstration collection time-consuming,
brittle, and difficult to scale. Deep reinforcement learning (RL) provides an alternative by learning
directly through online interaction, but often sacrifices generalization in favor of narrowly tuned
policies sensitive to training-specific cues like scene layout or background distractors.

In this work, we propose VisuoTactile Local (VITAL), a policy learning framework that bridges
this gap by enabling robust, precise manipulation while maintaining generalizability. VITAL de-
composes manipulation into two phases: a global reaching phase, where a vision-language model
(VLM) performs scene-level reasoning to identify and localize the object of interest, and a local
interaction phase, where a reusable, scene-agnostic policy performs fine-grained, contact-rich ma-
nipulation using egocentric vision and tactile sensing. This decomposition is motivated by the ob-
servation that while the environmental context for a task may vary drastically, the low-level physical
interactions required for manipulation remain consistent. Our work focuses on capturing this invari-
ant local policy: training it once in a canonical setting allows it to generalize across environments
via a simple localize-then-execute strategy. With just 32 demonstrations and 45 minutes of online
reinforcement learning per task, VITAL achieves the precision necessary for real-world deployment
while maintaining adaptability across scenes.

A core design motivation behind VITAL is the deliberate pairing of sensing modalities with com-
plementary strengths. Tactile sensing is indispensable during contact-rich phases of manipulation,
providing direct, localized feedback about forces and slip, that cannot be captured by vision. It is
inherently robust to lighting, background clutter, and occlusion, but lacks the spatial awareness nec-
essary for planning and coarse alignment in the pre-contact phase. Egocentric vision fills this gap by
offering a consistent, robot-centered perspective that captures the relative pose of the end-effector
and surrounding objects. Unlike third-person or fixed external cameras, egocentric views are natu-
rally aligned with the robot’s actions and are easy to replicate across different environments without
introducing viewpoint-specific biases that can severely hinder learned policy transfer.

While visuotactile design is not novel in itself, existing works typically fail to use it effectively. Im-
itation learning methods require large, diverse datasets [9, 10] to handle spatial and scene variation,
making them expensive and difficult to scale, especially for precise manipulation. Reinforcement
learning is capable of refining policies through interaction, but tends to overfit to training environ-
ments [11, 12]. A key reason for this is that learning from raw RGB inputs in constrained settings
lacks the visual diversity needed for generalization. Without sufficient variation in appearance,
background, and lighting, policies trained via RL become brittle and environment-specific.

VITAL addresses this limitation with a key insight: task success depends primarily on the visual
features of task-relevant objects, which remain relatively stable across environmental changes. To
exploit this invariance, we introduce a semantic, task-aware data augmentation pipeline powered
by vision foundation models. These augmentations introduce altering distractors, backgrounds, and
lighting, while preserving object and robot identity. This allows visual encoders to learn more
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general representations from the same amount of demonstration data, eliminating the need for costly
scene variations in data collection.

Finally, to further improve performance and address the inevitable imperfections in teleoperated
demonstrations, we fine-tune our policies using offset-based reinforcement learning. Rather than
learning policies from scratch, we apply DrQ-v2 [13] to refine behavior-cloned policies by predict-
ing small corrective actions, or offsets, relative to the predicted actions. Crucially, this refinement
is done without discarding the visual generalization learned during imitation, as we continue to
apply semantic augmentations during online training. This final phase boosts precision and robust-
ness while preserving the broad generalization enabled by our visuotactile design and augmentation
strategy.

Our key findings can be summarized as follows:

1. VITAL learns generalizable, contact-rich manipulation policies with a 90% success rate from
just 32 demonstrations and 45 minutes of interaction, outperforming the best baseline by 40% on
average across four challenging precise manipulation tasks in unseen environments.

2. Tactile sensing is essential for precision and reliability: removing tactile input reduces success
rates by an average of 40%, underscoring its critical role in contact-rich task phases where vision
alone is insufficient.

3. VITAL extends the benefits of semantic visual augmentation beyond imitation learning by com-
bining it with residual RL, enabling policy fine-tuning without sacrificing generalization.

All of our datasets, and training and evaluation code have been made publicly available. Videos of
our trained policies can be seen here: vitalprecise.github.io.

2 VITAL

The core insight behind VITAL is that vision offers task-level spatial awareness for scene gener-
alization, while tactile sensing is essential for millimeter-scale precision during physical contact.
By leveraging the strength of each modality, our method enables policies to be trained in localized
settings and deployed across diverse spatial variations and background configurations. VITAL op-
erates in three phases: (1) Visuotactile behavior cloning learns a generalizable base policy using
visual semantic augmentations; (2) Residual RL enhances downstream performance by optimizing
policy refinements while maintaining vision-driven robustness; (3) VLM-based reaching facilitates
zero-shot adaptation to novel spatial configurations by identifying actionable regions and decoupling
task dynamics from environment configuration. Our pipeline has been illustrated in Figure 2.

2.1 Generalizable behavior cloning through semantic augmentations

Our method starts by collecting visuotactile robot demonstrations using a virtual reality (VR) based
teleoperation framework [14]. All the tasks presented in this paper consist of a target object on the
table that the robot interacts with, and a grasped object that is held within the robot gripper. We
hypothesize that for most precise manipulation tasks, the core interaction dynamics remain con-
sistent across task instances, despite variations in the broader environment, ie., the dynamics of
plugging your charger in the kitchen are consistent with the dynamics of plugging your charger in
the bedroom. To focus data collection on these invariant interactions, we fix the target object po-
sition, and collect successful demonstrations with the robot randomly initialized in the vicinity of
the target object. We ensure that observations and actions are grounded in the robot’s end-effector
frame to enable transfer to novel spatial configurations during inference. This is achieved by using
the wrist camera image and tactile readings as input observations, and computing relative actions in
the robot’s end effector frame. By constraining spatial variability and focusing on local interaction
patterns, our method achieves robust policy learning with only 32 demonstrations per task.

To maintain policy performance across variations in the visual environment, we implement seman-
tic augmentations targeting visual regions irrelevant to the task. Our collected demonstrations use
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Figure 2: Overview of VITAL. (A) VITAL utilizes vision foundation models to enhance task data
with procedurally generated backgrounds, improving visual diversity. (B) This data is then used to
train a generalizable visuo-tactile policy, which is later refined through online residual reinforcement
learning (RL) for precision. (C) Finally, VLM-guided reaching enables zero-shot deployment in
novel spatial configurations, despite policies being trained on fixed object positions.

a green screen background to facilitate background replacement through procedural scene genera-
tion [15] using RoboEngine [16] during policy learning. In our initial experiments, we observed that
naive color-key based background filtering performs poorly, which prompted our multi-stage seg-
mentation pipeline: First, a human annotator marks key points on task-relevant objects in a single
reference demonstration frame. This often requires only a few seconds. Next, DIFT-based cor-
respondence matching [17] propagates these annotations to the first frame of all demonstrations,
followed by Segment-Anything 2 [5] for instance segmentation. Finally, XMem [18] tracks the seg-
mented masks temporally along trajectories, separating the relevant task elements from augmentable
background regions (Fig. 2). This allows targeted background transformations while preserving
contact-relevant visual features critical for tactile coordination.

The demonstration data is then used to train a base visuotactile policy using behavior cloning. The
augmented visual data is encoded using a randomly-initialized ResNet-18 [19] encoder, and tactile
reading from AnySkin [20] is encoded using a multilayer perception (MLP). The encoded obser-
vations are fed into a visuo-tactile transformer policy πb for action prediction [21]. The policy is
trained with action chunking [22] using a mean squared error loss between predicted and ground
truth action chunks. By jointly enforcing spatial and visual invariance through semantic augmenta-
tions and sensory observations grounded in the end-effector frame, the policy develops robust task
understanding decoupled from environmental context.

2.2 Fine-tuning with Demonstration-guided Reinforcement Learning

While the pretrained base policy πb enables generalizable visuo-tactile policies, we observe that the
policy only achieves a modest success rate. To improve the performance of πb, we employ residual
reinforcement learning (RL) to train a residual policy πr on top of the base policy. In residual
RL [23], given a base policy πb : Z → A with encoded representations z ∈ Z and action a ∈ A,
we learn a residual policy πr : Z × A → A such that an action sampled from the final policy π
is the sum of the base action ab ∼ πb(z) and the residual offset ar ∼ πr(z, ab). Following prior
work [24, 25], we use n-step DDPG [26] as our RL optimizer, a deterministic actor-critic based
method that provides high performance in continuous control [13].
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During online learning, the encoders (ResNet-18 for vision, MLP for tactile) trained for behav-
ior cloning are fixed, and feed compressed representations zi (image) and zt (tactile) to both the
frozen base policy πb and the residual actor network, πr, which takes as input (zi, zt, ab) to predict
ar. Similarly, the residual critic Qr evaluates (zi, zt, ab, ar) pairs using layer normalization and
high update-to-data (UTD) ratios for sample-efficient Q-learning [27]. Crucially, we observe that
adding L2 weight regularization for the actor network improves policy training, resulting in better
performance. For RL training, our reward is simply a sum of a binary success reward provided by
a human at the end of the trajectory and a dense L1 distance from the goal for the task. The RL
training objective is as follows:

πr = argmax
πr

E(zi,zt,ab,ar)∼Dβ

[
Q(zi, zt, ab, ar)

]
(1)

where Dβ contains rollouts enriched with the same semantic visual augmentations from the behavior
cloning phase to maintain generalization. The executed action a is a sum of ab and ar. This approach
of combining fixed pretrained features with adaptive residuals improves policy performance while
preserving cross-environment robustness through augmentations. Details about hyperparameters
and network architectures used in our experiments have been included in Appendix A1.

2.3 Inference

Our framework achieves spatial and scene generalization through a hierarchical inference strategy:
global semantic navigation by a high-level agent followed by localized visuotactile control for pre-
cise low-level execution. By combining offline behavior cloning and online residual adaptation,
the policy operates within a constrained task space while maintaining robustness to environmental
perturbations. For global positioning, we employ Molmo [28], a vision-language model (VLM)
pretrained on web-scale data, to coarsely localize target objects specified via natural language.

Given an external RGB-D observation, Molmo predicts a 2D coordinate for the target object, which
is projected to 3D workspace coordinates using depth data and camera calibration parameters. The
robot then samples an initial end-effector pose within a pre-defined region of the target coordinate.
For example, for USB insertion, the target point for the robot is sampled at a height of 10cm above
the predicted coordinate. Empirically, we observe that this coarse initialization falls within the
pretrained policy’s operational envelope, ensuring target visibility in the wrist camera feed. Upon
reaching the target position, the learned visuotactile local policy is deployed to complete the task.
Our results in Section 3 demonstrate the potential of combining general-purpose VLMs for coarse
robotic navigation, with localized visuo-tactile policies handling the precise parts of a task.

3 Experiments

Our experiments seek to answer the following questions: (1) How does VITAL perform in an in-
domain setting? (2) How does VITAL perform under environmental perturbations? (3) What are the
important design choices for VITAL? (4) How well does the VLM navigation work with VITAL?

3.1 Experimental Setup

Our experiments are conducted using a UFACTORY xArm 7 robot equipped with a two-fingered
xArm Gripper. For tactile sensing, we integrate the AnySkin [20] magnetic tactile sensor into the
gripper. The observations for policy learning include 128× 128 RGB images captured by a fisheye
camera mounted on the robot’s wrist, and 15-dimensional tactile readings from the AnySkin sensor.
For coarse navigation via the VLM, we use a calibrated third-person Intel RealSense RGB-D camera.
For each task, demonstrations are collected using a VR-based teleoperation system [14] operating
at 30 Hz. The collected data is subsampled to 6Hz for policy training, and the learned policies are
deployed at 6Hz during real-world execution.
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Table 1: Policy performance of VITAL in an in-domain setting.

Method Plug in
Socket

Insert
USB

Card
Swiping

Key in
Lock

Pick
Bread

BAKU [29] 4/10 4/10 1/10 5/10 10/10
ViSK [21] 7/10 3/10 4/10 5/10 10/10
RLPD [30] 3/10 0/10 2/10 1/10 10/10
VITAL-BC 7/10 4/10 5/10 5/10 10/10
VITAL (Ours) 9/10 9/10 10/10 9/10 10/10

Table 2: Study of spatial and scene generalization in VITAL.

Method Spatial Generalization Scene Generalization
Plug in
Socket

Insert
USB

Card
Swiping

Key in
Lock

Plug in
Socket

Insert
USB

Card
Swiping

Key in
Lock

BAKU [29] 15/30 5/30 7/30 11/30 0/30 0/30 0/30 0/30
ViSK [21] 19/30 6/30 15/30 14/30 0/30 0/30 0/30 0/30
RLPD [30] 5/30 0/30 3/30 2/30 0/30 0/30 0/30 0/30
VITAL-BC 21/30 10/30 16/30 12/30 24/30 8/30 13/30 17/30
VITAL 28/30 24/30 28/30 22/30 27/30 23/30 25/30 24/30

3.2 Task Descriptions

We demonstrate the versatility of our framework by evaluating VITAL on four precise, contact-rich
manipulation tasks and a pick bread task. We collect 32 demonstrations for each task while fixing
the target object and randomly initializing the robot in a predefined area around it. Detailed task
descriptions can be found in Appendix A2.

3.3 Baselines

We demonstrate the versatility of our framework by evaluating VITAL on a pick bread task and
four precise, contact-rich manipulation tasks. We compare VITAL with four primary baselines:
BAKU [29]: Transformer policy for behavior cloning that maps RGB images to robot actions;
ViSk [21]: BAKU augmented with both RGB images and tactile readings as input; RLPD [30]: an
RL approach trained from scratch on a 1:1 mix of expert and RL replay buffers; and VITAL-BC:
our visuotactile base policy employing semantic augmentation within the ViSk architecture. Further
details on baseline implementations can be found in Appendix A3.

3.4 How does VITAL perform in an in-domain setting?

Table 1 evaluates VITAL’s performance in a controlled in-domain setting, where both the back-
ground (green screen) and object positions are fixed. For each method, we conduct 10 trials per
task, with the robot randomly initialized within a predefined area around the target object (Sec-
tion 3.2). Both VITAL and RLPD receive identical visual and tactile observations and are trained
online for 45 minutes. While VITAL incorporates semantic augmentations in its RL replay buffer,
we find that such augmentations degrade performance for RLPD; therefore, RLPD results in Table 1
do not use semantic augmentations. Our results demonstrate that VITAL significantly outperforms
all baselines, achieving an absolute improvement of 40% over the strongest alternative. Notably,
ViSk outperforms BAKU, highlighting the importance of tactile sensing for precise manipulation.
Further, VITAL surpasses RLPD, emphasizing the value of offline policy pretraining for sample-
efficient online learning. Overall, these findings illustrate that visuotactile behavior cloning and
residual RL scaffolded by semantic augmentations enables robust, high-precision manipulation.
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Table 3: Study of VITAL’s robustness to combined spatial and scene perturbations.

Method Plug in
Socket

Insert
USB

Card
Swiping

Key in
Lock

BAKU [29] 0/30 0/30 0/30 0/30
ViSK [21] 0/30 0/30 0/30 0/30
RLPD [30] 0/30 0/30 0/30 0/30
VITAL-BC 24/30 9/30 19/30 13/10
VITAL (Ours) 29/30 25/30 27/30 27/30

3.5 How does VITAL perform under environmental perturbations?

Spatial Generalization Table 2 evaluates VITAL’s spatial generalization by testing three novel
target object positions outside the training distribution, with the green screen background retained to
isolate spatial variations from scene-level changes. Across 10 trials per position, each initializing the
robot within a predefined workspace around the target object, results show comparable performance
to in-domain settings, confirming that localized end-effector frame observations effectively enable
spatial generalization. Notably, BAKU and ViSk admit a performance decline when target objects
approach the edges of the green screen, resulting in background elements entering into the fisheye
wrist camera’s field of view, inducing visual distribution shifts relative to training data.

Scene Generalization Table 2 assesses VITAL’s scene generalization by testing on three novel,
cluttered scene configurations (see Appendix A4 for examples) while keeping the target object posi-
tion fixed and identical to training. For each configuration, we run 10 trials with the robot randomly
initialized within a predefined area around the target. The results demonstrate VITAL’s robustness
to unstructured scene variations, significantly outperforming all baselines. The strong performance
of both VITAL and VITAL-BC highlights the critical role of semantic augmentations in enabling
policies to disentangle task-relevant visual cues from environmental noise. Moreover, VITAL’s
improvement over VITAL-BC illustrates how residual RL combined with semantic augmentations
substantially enhances performance while preserving VITAL-BC’s generality. Table 3 extends this
evaluation to scenarios varying both target spatial positions and background appearances. To de-
couple policy performance from VLM navigation effects, we manually initialize the robot near the
target object and conduct 10 trials per position. The results revealing a consistent pattern: VITAL
and VITAL-BC outperform baselines, with VITAL maintaining a clear advantage. Overall, the use
of localized observation spaces alongside semantic augmentations during training endows VITAL
with strong spatial and scene generalization capabilities.

3.6 What are the important design choices for VITAL?

VITAL is an amalgam of several techniques that enable learning generalizable visuo-tactile policies.
Here, we systematically ablate several design choices in VITAL and justify their importance.

Tactile sensing Table 4 investigates tactile sensing’s role in enabling millimeter-scale precision,
with experiments conducted under controlled conditions (fixed object positions, green screen back-
ground) to isolate sensory effects. Comparing visual (BAKU) and visuo-tactile (ViSk) BC, both
with and without residual RL, reveals a consistent performance advantage with tactile inputs. While
visual BC with residual RL is competent on two tasks, utilizing tactile inputs further improves per-
formance. Qualitatively, this improvement stems from visual occlusion challenges: as the end effec-
tor approaches the target, the object held by the gripper obstructs the egocentric camera’s view of the
goal, rendering visual feedback unreliable and causing hesitation or blind actions. Tactile sensing
proves indispensable in tasks like Card Swiping, where the card occludes the machine and the policy
has to heavily rely on tactile sensing for task completion. The results confirm that tactile sensing
compensates for dynamic visual obstructions while enabling finer contact-driven adjustments.
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Table 4: Study of important design choices for VITAL.

Method Plug in
Socket

USB
Insertion

Card
Swiping

Tactile Ablations
Visual BC 4/10 4/10 1/10
Visuo-Tactile BC 7/10 3/10 4/10
Visual BC + Res. RL 9/10 7/10 0/10

Semantic Augmentation Ablations
Visual BC (BAKU) 0/10 0/10 0/10
Visual BC + Aug. 4.7/10 2.3/10 0.7/10
Visuo-Tactile BC (ViSk) 0/10 0/10 0/10
Visuo-Tactile BC + Aug. 8.3/10 3/10 6.3/10

VITAL 9/10 9/10 10/10

Semantic Augmentation Table 4 studies the importance of semantic augmentations for novel
scene generalization. We average the performance of visual (BAKU) and visuo-tactile (ViSK) BC
– with and without semantic augmentations – across three unseen object positions with background
distractors. Our results demonstrate that semantic augmentations enable both approaches to adapt
to new spatial and visual conditions, with visuotactile BC achieving superior performance than its
visual counterpart.

3.7 How well does the VLM navigation work with VITAL?

Table 5: VLM Navigation for spatial generalization.

Method Plug in
Socket

USB
Insertion

Card
Swiping

ViSk [21] 0/25 0/25 0/25
VITAL-BC 16/25 9/25 13/25
VITAL (Ours) 21/25 16/25 19/25

Table 5 evaluates VLM-based coarse naviga-
tion across five novel object positions, con-
ducting five trials per position while includ-
ing background distractors to test robustness
to environmental perturbations. Compared
to the strongest baseline, VITAL-BC, we
observe that both methods generalize to un-
seen object positions and maintain consis-

tent performance in cluttered scenes, despite being trained on fixed configurations. This highlights
the utility of VLM navigation for imparting spatial robustness to visuotactile policies.

4 Conclusion and Limitations

This work introduces VITAL, a framework that integrates local observation spaces and seman-
tic augmentations for visuotactile policy learning with VLM-guided coarse navigation to achieve
millimeter-precision manipulation across diverse scenes and object configurations. We recognize a
few limitations of this work: (1) Our spatial variation experiments focus on horizontal surfaces – ex-
tending the method to arbitrary 3D configurations (e.g., vertical or angled placements) would be an
interesting future direction. (2) Our VLM navigation assumes obstacle-free paths. Enhancing spa-
tial reasoning to handle cluttered environments through advanced VLMs with obstacle-aware path
planning could broaden the applicability of the method. (3) Our current evaluations use controlled
lab conditions. Testing in real-world home environments with dynamic lighting, occlusions, and
unstructured layouts would better validate robustness.
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Appendix

A1 Hyperparameters and Network Architecture

A1.1 Hyperparameters

The complete list of hyperparameters is provided in Table 6. We collect 32 demonstrations for
each task using a VR-based teleoperation framework [14] operating at 30Hz. The collected data is
subsampled to 6Hz for policy training, and the learned policies are deployed at 6Hz during real-
world execution. All training is done on a local desktop with an NVIDIA RTX 3080 GPU with 8GB
VRAM. For BAKU [29], ViSk [21], and VITAL-BC, training for 20k iterations with a training time
of around 30 minutes provided the best results. For online RL (RLPD [30], VITAL), each method
is trained online for 45 minutes at a 6Hz frequency(around 16k environment steps). For both offline
and online training, the image observations are augmented with random cropping and color jitter.
For tactile observations from the AnySkin [20] sensor, we subtract a baseline measurement from
each tactile reading to account for sensor drift [21].

A1.2 Network Architecture

We use a randomly initialized ResNet-18 [19] as our image encoder and a 2-layer MLP for encoding
the 15-dimensional tactile reading from AnySkin. For offline training, we use a transformer-based
policy [29, 21], using the minGPT [31] architecture for the transformer. For offline training, all
baselines and VITAL use an MLP action head, predicting a chunk of 10 future actions. Instead of
using only the current action prediction, we use a temporal ensemble to combine all the past chunked
action predictions. This temporal ensemble performs a weighted average over these predictions
with an exponential weighing scheme wi = exp(−m ∗ i), where w0 is the weight for the oldest
action. The speed for incorporating a new observation is governed by m, where a smaller m means
faster incorporation. It must be noted that this ensembling incurs no additional training cost, only
extra inference-time computation. In our experiments, similar to prior work [29, 21], we find both
action chunking and temporal ensembling to be important for producing precise and smooth motion.
During online residual RL, an offset is learned on top of the temporally smoothed offline action. We
set m to 0.01 for all our experiments.

During online residual RL, the offset scale is chosen to balance exploration capacity about the base
action and the convergence speed of online training. Since we focus on precise tasks demanding
sub-millimeter level accuracy, we set to maximum offset magnitude to be 20% of the maximum
action observed in the training data. Further, we observed that exploration plays an important role
in preventing early collapse during online training. Thus, we employ a linearly decaying standard-
deviation schedule – starting with high noise during the initial RL phase to ensure flexibility, then
gradually reducing it to guarantee stable convergence. For residual RL, the actor is a 1-layer MLP
while the critic comprises 2-MLP layers. For RLPD, which trains the RL policy from scratch, we
use a 4-layer MLP for the actor network.

VITAL-BC has a total of 7.6M parameters, while VITAL has an additional 2.46M from the residual
RL phase, resulting in a total of 9.06M parameters.

A2 Task Descriptions

Plug in Socket The robot arm holds a plug within the gripper and is tasked with inserting the plug
into a socket. The robot’s initial position is randomly sampled in a 6cm×6cm area around the socket,
10cm above the socket.

USB Insertion The robot arm holds a USB stick within the gripper and is tasked with going down
and inserting the USB stick into a USB socket. The robot’s initial position is randomly sampled in
a 6cm×6cm area around the socket, 10cm above the socket.
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Table 6: List of hyperparameters.

Parameter Value

Learning rate 1e−4

Image size 128× 128

Batch size 256

Optimizer Adam

Hidden dim 256

Observation history length 1

Action head MLP

Action chunk length 10

Residual RL Offset scale 20% of max absolute action

Exploration schedule for RL linear(0.25,0.1,5000)

Update-to-data ratio (UTD) 16

Card Swiping The robot arm holds a credit card within the gripper and is tasked with swiping the
card through a card machine. The robot’s initial position is sampled in a 4cm×4cm×2cm area in
front of the card machine.

Key in Lock The robot arm holds a key within the gripper and is tasked with inserting the key into
a lock. The robot’s initial position is sampled in a 6cm×6cm area around the key hole, 10 cm above
the socket.

Pick block The robot arm is tasked with picking up a block placed at a fixed position on the table.
The robot’s initial position is sampled in a 6cm×6cm area around the block, 10 cm above the block.

A3 Baseline Implementations

BAKU [29] This is a visual behavior cloning baseline using a transformer architecture and a de-
terministic MLP action head. We follow the hyperparameters and network architectures described
in Appendix A1 for BAKU.

ViSk [21] This is a visuo-tactile behavior cloning baseline using a transformer architecture and a
deterministic MLP action head. We follow the hyperparameters and network architectures described
in Appendix A1 for ViSk.

RLPD [30] This involves collecting a few expert demonstrations and training an RL policy from
scratch, where the data during RL training is sampled 1:1 between the expert and RL replay buffer.
RLPD employs a high update-to-data ratio (UTD) and layer normalization in the critic to enable
sample-efficient online learning. We observe that during the initial phase of training, since the actor
is randomly initialized, the RLPD policy outputs unsafe actions, making the rollout jerky. This
highlights the importance of pretraining for stable online learning.

A4 Spatial and Scene Generalization

Figure 3 demonstrates VITAL performing four precise manipulation tasks in the same position as
during training, but with a novel background. Figure 4 further highlights VITAL’s spatial and scene
generalization capabilities: spatial generalization is achieved through VLM-guided reaching in con-
junction with a localized observation and action space, while semantic augmentations support scene
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Figure 3: Real-world rollouts showing VITAL’s ability on four precise manipulation tasks.

generalization during training, which promote invariance to changes in background, textures, light-
ing, and clutter. Together, this allows VITAL to decouple spatial reasoning from scene understand-
ing, enabling reliable, precise manipulation across a wide range of previously unseen environments
without retraining.
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Figure 4: Real-world rollouts showing that VITAL generalizes to spatial variations and background
distractor objects.
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