
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Value Bonuses using Ensemble Errors
for Exploration in Reinforcement Learning

Anonymous authors
Paper under double-blind review

Keywords: Reinforcement Learning, Exploration, Value bonuses, Ensembles, Uncertainty
estimates

Summary
Optimistic value estimation can be useful to direct exploration and improve sample effi-

ciency in Reinforcement Learning. Despite many such methods in literature, simpler, undi-
rected approaches like ϵ-greedy still continue to be widely used. One potential reason for this
is that many existing methods can be onerous to use as they may not be compatible with the
base learning algorithm, or can be hard-to-use as many design choices need to be made to
make them effective in practice. This paper proposes a simple approach to address these lim-
itations. Building on ideas that utilize an ensemble for optimistic value estimation, this work
proposes an algorithm called Value Bonuses using Ensemble Errors (VBE) that is easy to use
and compatible with any base Reinforcement Learning algorithm, with a small additional com-
putational foot-print. VBE’s similarity and difference to existing approaches is discussed, and
the algorithm is evaluated extensively.

Contribution(s)
1. Proposes a new approach for estimating Value Bonuses using Ensemble Errors that allows

for first-visit optimism and deep exploration.
Context: Many prior works utilize the idea of value bonuses to estimate optimistic val-
ues for exploration (Osband et al., 2019). Typically, many estimate an additional value
function that propagates reward bonuses in order to estimate the value bonus (Burda et al.,
2019). This work proposes a variant of value bonuses that does not rely on propagating ad-
ditional reward bonuses; this allows for desirable features like first-visit optimism. We show
our framework allows for Optimistic Initial Values with high probability. Additionally, the
value bonuses have a similar timescale of learning as the main value function, therefore,
potentially allowing for deep exploration.

2. Provides insight into how our proposed value bonuses are similar to and different from some
relevant widely-used approaches.
Context: In specific, we contrast how the proposed bonuses capture MDP-specific prop-
erties like transition dynamics, unlike those of RND (Burda et al., 2019). Additionally, we
highlight the similarity between quantities estimated by the proposed algorithm and BDQN
(Osband et al., 2019), despite the difference that BDQN utilizes a Thompson sampling ap-
proach to induce optimism.

3. Empirically evaluate the utility of the proposed value bonuses for inducing exploration in
classic-control problems, and demonstrate scalability through Atari.
Context: We demonstrate how existing methods lack first-visit optimism in a controlled
setting designed to test state coverage. We show that the proposed algorithm can extend
to more complex environments like Atari without design choices that alter the underlying
algorithm.
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Abstract

Optimistic value estimates provide one mechanism for directed exploration in reinforce-1
ment learning (RL). The agent acts greedily with respect to an estimate of the value plus2
what can be seen as a value bonus. The value bonus can be learned by estimating a value3
function on reward bonuses, propagating local uncertainties around rewards. However,4
this approach only increases the value bonus for an action retroactively, after seeing a5
higher reward bonus from that state and action. Such an approach does not encourage6
the agent to visit a state and action for the first time. In this work, we introduce an algo-7
rithm for exploration called Value Bonuses with Ensemble errors (VBE), that maintains8
an ensemble of random action-value functions (RQFs). VBE uses the errors in the esti-9
mation of these RQFs to design value bonuses that provide first-visit optimism and deep10
exploration. The key idea is to design the rewards for these RQFs in such a way that the11
value bonus can decrease to zero. We show that VBE outperforms Bootstrap DQN and12
two reward bonus approaches (RND and ACB) on several classic environments used to13
test exploration and provide demonstrative experiments that it can scale easily to more14
complex environments like Atari.15

1 Introduction16

A typical approach to incorporate exploration into a value-based reinforcement learning (RL) agent17
is to obtain optimistic value estimates. The agent takes greedy actions according to this optimistic18
value estimate, leading it to take actions that look good either because they have high uncertainty or19
because the action is actually high value. This approach has been well-developed for the contextual20
bandit setting, with a variety of algorithms and theoretical results on optimality (Li et al., 2010;21
Abbasi-Yadkori et al., 2011). Understanding is growing about how to soundly extend these ideas22
to reinforcement learning, though the theoretical results on estimating and using optimistic values23
are limited to the linear function approximation setting (Grande et al., 2014; Osband et al., 2016a;24
Abbasi-Yadkori et al., 2019; Wang et al., 2019).25

Though the theory is difficult to extend, there has been a concerted effort to develop and empiri-26
cally evaluate such optimistic value estimation approaches for the deep RL setting. Bootstrap DQN27
with priors, for example, maintains an ensemble of action-values, which reflect uncertainty in the28
value estimates (Osband et al., 2018; 2019). It takes a Thompson sampling approach—which can29
be seen as optimistic—by sampling one action-value in the ensemble and following it for an entire30
episode. Another common approach to obtain optimistic value estimates employs the usage of re-31
ward bonuses (Bellemare et al., 2016; Ostrovski et al., 2017; Burda et al., 2019; Ash et al., 2022). A32
reward bonus, reflecting uncertainty with respect to the transition, is added to the reward, increasing33
the estimated value proportionally for the corresponding states and action.34

Most works, however, eschew these directed exploration approaches in favor of simpler, undirected35
exploration approaches like ϵ-greedy. One potential reason for this is that reward bonus approaches36
do not encourage first-visit optimism. They encourage revisiting a state, if the reward bonus was high37
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in that state; namely, they retroactively reason about uncertainty of states they have seen. The reward38
bonus cannot encourage visiting a state for the first time. Bootstrap DQN with priors (BDQN), on39
the other hand, does not have this issue, using fixed additive priors to provide first-visit optimism.40
Unlike reward bonuses, though, BDQN is more onerous to use. It requires completely changing the41
algorithm to one that maintains and updates an ensemble, and making key choices like how often to42
follow one of the value functions in the ensemble before switching. Recent work suggests it is key43
to have a large ensemble for BDQN (Janz et al., 2019; Osband et al., 2023). Epinets (Osband et al.,44
2023) can match the performance of BDQN with much less compute, but are arguably even more45
onerous to implement than BDQN. Our goal is to develop an easy-to-use exploration approach for46
deep RL, that can easily be added to an existing algorithm, making it less onerous to displace the47
default ϵ-greedy approach.48

To do so, we explore how to directly estimate a value bonus. The agent acts greedily according to49
the value estimate plus this separate value bonus b, namely argmaxa q(s, a) + b(s, a). The value50
bonus should ideally represent the uncertainty for that state and action. Though this may be the first51
time this term is used,1 there are some works that estimate value bonuses. One simple approach is52
to separate out the reward bonuses and learn them with a second value function, as was proposed for53
RND (Burda et al., 2019) and later adopted by ACB (Ash et al., 2022). This approach, however, still54
suffers from the fact that reward bonuses are only retroactive, and the resulting b is unlikely to be55
high for unvisited states and actions. For the contextual bandit setting, the ACB algorithm actually56
directly estimates the value bonus using the maximum over an ensemble of functions, which is high57
for unvisited states and actions; but the extension to deep RL with reward bonuses loses this first-58
visit optimism. UCLS (Kumaraswamy et al., 2018) and UBE (O’Donoghue et al., 2018; Janz et al.,59
2019) both directly estimate value bonuses, but are limited to linear function approximation. Dora60
(Choshen et al., 2018) uses value bonuses that are inversely proportional to visitation counts, which61
is again difficult to extend to the general function approximation setting.62

In this work, we introduce a new approach to obtain value bonuses for reinforcement learning, with63
an algorithm we call Value Bonuses with Ensemble errors (VBE). Similarly to ACB, we use a max-64
imum over an ensemble, but directly use that maximum as the value bonus, rather than indirectly65
through reward bonuses. The idea is to sample a random action-value function (RQF)—such as66
a random neural network—and extract the implicit random reward function underlying this RQF67
target. The RQF predictor in the ensemble is updated using temporal difference learning on this68
random reward. Because the RQF target is sampled from the same function class as the RQF pre-69
dictor, the error can eventually reduce to zero, allowing the value bonus to shrink to zero. These70
value bonuses are learned separately from the main action-values, and so can be layered on top of71
many algorithms. In our experiments, for example, we simply use Double DQN (Van Hasselt et al.,72
2016), and modify the step where the agent selects an action from ϵ-greedy to instead taking the73
greedy action in the value estimate plus the value bonus. We show that this simple approach is an74
effective, and scalable method for exploration that improves sample efficiency of learning in a range75
of domains: from hard exploration gridworlds, to image-based Atari domains.76

2 Background77

We focus on the problem of an agent learning optimal behaviour in an environment, whose interac-78
tion process is modelled as a Markov Decision Process (MDP). A MDP consists of (S,A, P, r, γ)79
where S is the set of states; A is the set of actions; P : S ×A×S → [0,∞) provides the transition80
probabilities; r : S × A × S → R is the reward function; and γ : S × A × S → [0, 1] is the81
transition-based discount function which enables either continuing or episodic problems to be spec-82
ified (White, 2017). On each step, the agent selects action At in state St, and transitions to St+1,83
according to P , receiving reward Rt+1

def
= r(St, At, St+1) and discount γt+1

def
= γ(St, At, St+1).84

1Usually, b would be called a confidence interval, with q(s, a) + b(s, a) an upper confidence bound. However, we do
not use that term here, because for the heuristics we use, it is not clear we get a valid upper confidence bound. Instead, it is a
bonus added to the value when deciding which action looks promising.
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For a policy π : S × A → [0,∞], the value for taking action a in state s is the expected discounted85
sum of future rewards, with actions selected according to π in the future,86

qπ(s, a) = Eπ

[
Rt+1 + γt+1q

π(St+1, At+1)
∣∣∣St = s,At = a

]
where Eπ means that actions are selected according to π in the expectation. The policy π can be87
progressively improved by making it greedy in qπ(s, a), then updating the action-values for the new88
policy, then repeating until convergence.89

In practice, these steps are approximated. The action-values qπ are approximated using qw param-90
eterized by w ∈ W ⊂ Rd. One algorithm to estimate qw is Double DQN (DDQN). DDQN is an91
off-policy algorithm, meaning that it uses a different behavior policy πb to select actions from the92
policy it evaluates, which is greedy in qw. This algorithm uses a target network qw̃ for bootstrapping,93
giving the following update for one transition (s, a, r, s′, γ):94

w ← w + ηδ∇qw(s, a) for δ def
= r + γqw̃(s

′, argmax
a′

qw(s
′, a′))− qw(s, a) (1)

The behavior policy is typically defined to be ϵ-greedy in qw, but can be any policy that promotes95
exploration. In this work, we consider an alternative choice for the behavior policy: one that uses96
a value bonus b, πb(s) = argmaxa qw(s, a) + b(s, a). The value bonus should reflect uncertainty97
in the action-value estimate, encouraging the behavior policy to take an action in a state if it has98
high uncertainty. It might have high uncertainty if (s, a) is quite different from what it has seen99
before—meaning it has never been visited—or because the agent has not yet visited it sufficiently100
often to be certain about its value. The focus of this work is a new approach for obtaining b for the101
deep RL setting.102

3 Value Bonuses with Ensemble Errors103

In this section, we first motivate why we use an ensemble of value functions, rather than simply using104
supervised learning for the ensemble. We then discuss how to appropriately define the rewards for105
the ensemble value functions, and contrast the unique property of the bonuses produced by these106
ensemble of value functions.107

The most straightforward approach to get an error from an ensemble is to use a random target, as108
is done in RND. For an ensemble of size k, we can generate random neural networks f1, . . . , fk109
and update the learned functions f̂1, . . . , f̂k in the ensemble using a squared error: for each (s, a),110
update each f̂i using loss (fi(s, a)− f̂i(s, a))

2. The value bonus for any (s, a) can be set to111

b(s, a)
.
= max

i∈[k]
|f̂i(s, a)− fi(s, a)| (2)

Ciosek et al. (2020) show that fitting random prior functions serve as a computationally tractable112
approach towards estimating uncertainty in the supervised learning setting. Unfortunately, in the113
reinforcement learning setting, this is likely to concentrate too quickly, and will not do what has114
been called deep exploration (Osband et al., 2019). We want the agent to reason not just about115
uncertainty for this state and action, but also about the uncertainty of the state that it leads into.2116

Instead, we want an ensemble of value functions that are more likely to promote deep exploration.117
More specifically, we want to generate random rewards ri for each fwi

, where the fwi
are updated118

using standard temporal difference learning bootstrapping approaches. We want the learning dynam-119
ics for these value functions to resemble the primary value function, so that they learn at a similar120
timescale and are more likely converge to zero once the primary value function has also converged.121

2Note that RND do not use these errors directly for exploration. Instead, they used them as reward bonuses, which can
retroactively promote deep exploration, with the issue that they do not promote first-visit optimism.
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We need to define rewards and target functions that are consistent with each other and that allow122
us to easily measure the errors. Consider if we again do the simplest thing: generate a random123
neural network ri for each fwi

. Let us assume for now that we have a fixed policy, π. First, it is124
not clear how we would actually measure the error since we do not know the true value function125
fi, namely the expected return using ri under policy π. Further, this true value function may not be126
representable by fwi

.127

Instead, our proposed approach is to generate a random action-value function (RQF) fi, and then128
define rewards consistent with that fi. Define the stochastic ensemble reward from (St, At) to be129

Ri,t+1
def
= fi(St, At)− γt+1fi(St+1, At+1), (3)

where At+1 ∼ π(·|St+1) and γt+1
def
= γ(St, At, St+1) is defined by the environment. Further, by130

definition, the action-values of the random prediction function is:131

qπi (s, a)
def
= Eπ

[
Ri,t+1 + γt+1q

π
i (St+1, At+1)

∣∣St = s,At = a
]
. (4)

We show in the following proposition that qπi = fi.132

Proposition 1 For all i ∈ [k], we have qπi = fi.133

Proof:134

qπi (s, a) = Eπ

[
Ri,t+1 + γt+1q

π
i (St+1, At+1)

∣∣St = s,At = a
]

= Eπ

[
Ri,t+1 + γt+1Ri,t+2 + γt+1γt+2q

π
i (St+2, At+2)

∣∣St = s,At = a
]

= Eπ

[
[fi(s, a)− γt+1fi(St+1, At+1)] + γt+1[fi(St+1, At+1)− γt+2fi(St+2, At+2)]

+ γt+1γt+2q
π
i (St+2, At+2)

∣∣St = s,At = a
]

= Eπ

[
[fi(s, a)−γt+1fi(St+1, At+1)]︸ ︷︷ ︸

cancels

+γt+1fi(St+1, At+1)︸ ︷︷ ︸
cancels

− γt+1γt+2fi(St+2, At+2)] + γt+1γt+2q
π
i (St+2, At+2)

∣∣St = s,At = a
]
.

We can keep unrolling this, and these terms will continue to telescope, leaving only the first term135
fi(s, a), completing the proof. ■136

Therefore, updating fwi
with rewards ri should converge to qπi —and so to fi—because fi is in the137

function class of fwi
. This convergence ensures the value bonuses go to zero, which is desired if138

we want the agent to stop exploring and converge to the greedy policy. Even with a fixed policy,139
however, this convergence will only occur under certain conditions. Primarily, the failure would140
be that fwi gets stuck in a local minima or even that it diverges, due to know issues with temporal141
difference (TD) learning algorithms combined with neural networks and with off-policy update.142

There is fortunately a large (and growing) literature understanding the convergence behavior of TD143
algorithms. Under linear function approximation, we know least-squares TD converges at a rate of144
1/
√
T to the global solution, even under off-policy sampling (Tagorti & Scherrer, 2015). With the145

advent of theory for overparameterized networks, TD with a particular neural network function class146
has been shown to converge to the global solution, under on-policy sampling (Cai et al., 2019). In147
general, we know that a class of modified TD algorithms, called gradient TD methods, converge148
even under off-policy sampling and nonlinear function approximation (Dai et al., 2017; Patterson149
et al., 2022). Convergence under off-policy sampling is key in our setting, because the behavior150
policy is optimistic but the target policy may be greedy. We expect that under certain conditions on151
the neural network it might be possible to say that these gradient TD methods converge to global152
solutions, though to the best of our knowledge, no such work yet exists. We provide a more complete153
discussion in Appendix A of how this existing theory on convergence of TD applies to our setting.154
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3.1 Bonuses that reflect MDP-specific properties155

While the form of the bonus proposed above in Equation 2 looks similar in principle to RND, the156
main difference as mentioned previously is that we consider the ensemble to be composed of random157
value functions, in contrast to methods like RND which consider the ensemble to be composed of158
random functions. This simple change provides an interesting property to the bonuses derived from159
this ensemble: they can reflect the stochasticity in the transition dynamics of the MDP.160

Proposition 2 Let f̂i(s, a)
def
= E[Ri,t+1 + γt+1f̂i(St+1, At+1)|St = s,At = a] + ϵi(s, a), where161

ϵi(s, a) denotes the Bellman error for (s, a) in f̂i. Then162

b(s, a) = max
i∈[k]

∣∣E[γt+1(f̂i(St+1, At+1)− fi(St+1, At+1))|St = s,At = a] + ϵi(s, a)
∣∣.

Proof: By the assumption that fi is a value-function, we know that163

fi(s, a)
def
= E[Ri,t+1 + γt+1fi(St+1, At+1)|St = s,At = a].

Plugging the definitions into Equation 2, we get164

b(s, a) = max
i∈[k]
|f̂i(s, a)− fi(s, a)|

= max
i∈[k]

∣∣E[Ri,t+1 + γt+1f̂i(St+1, At+1)|St = s,At = a] + ϵi(s, a)

− E[Ri,t+1 + γt+1fi(St+1, At+1)|St = s,At = a]
∣∣

= max
i∈[k]

∣∣E[γt+1(f̂i(St+1, At+1)− fi(St+1, At+1))|St = s,At = a] + ϵi(s, a)
∣∣.

■165

4 Using the Ensemble of Value Functions166

We provide pseudocode in Algorithm 1, for the case where the base algorithm is Double DQN, but167
it is possible to swap in many different off-policy value-based algorithms. Even actor-critic, which168
explicitly maintains a critic qw, could easily incorporate the value bonuses by using an optimistic169
critic. For the purposes of this paper, however, we restrict our focus to Double DQN.170

The ensemble value functions are updated on the same target policy as Double DQN, namely the171
greedy policy in qw. This choice comes from the fact that we want to understand uncertainty in the172
values for the target policy. The update is similar to Double DQN, except the actions are sampled173
according to qw rather than fwi

, and we use the ensemble reward ri defined above in Equation (3):174

wi ← wi + ηδi∇fwi
(s, a) for δ def

= ri + γfw̃i
(s′, argmax

a′
qw(s

′, a′))− fwi
(s, a) (5)

On each step, we only update one RQF predictor. Updating the entire ensemble is expensive, and175
arguably unnecessary. There are multiple ways to control the magnitude of the value bonus, and176
how quickly it decays. One way is the size of the ensemble, where the larger the ensemble, the more177
slowly this bonus should decay. Updating each RQF predictor less frequently, however, will also178
cause the bonus to decay more slowly. It both allows us to make the ensemble smaller, and ensure179
that regardless of the ensemble size, the computation per-step is simply double that of Double DQN:180
one update to the main value function and one update to an RQF predictor.181

4.1 Guaranteeing Optimistic Initial Values182

In this section we show the ensemble size and bonus scale c can be set to obtain optimistic initial183
values with high probability. The result motivates that value bonuses with ensemble errors provide184
sufficient first-visit optimism.185
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Algorithm 1 Value Bonuses with Ensemble Errors (VBE)

1: Parameters: ensemble size k, bonus scale c, target net update frequency τ , batch size m
2: Initialize empty buffer: B ← ∅, action-value function: qw, target RQFs: fi, . . . fk, predictor

RQFs: fw1 , . . . , fwk
, and target networks: qw̃, fw̃1 , . . . , fw̃k

3: Optimistic behavior policy:
πb(s)← argmaxa∈A qw(s, a) + c b(s, a)
where b(s, a)← maxi∈[k] |fwi

(s, a)− fi(s, a)|
4: Get the initial state s0
5: for environment interactions t = 0, 1, . . . do
6: Take action a← π(st) and observe rt+1, st+1, γt+1

7: Add (st, at, rt+1, st+1, γt+1) to the buffer B
8: // Update action-values using DDQN update
9: Sample mini-batch from B, update qw using Eq. (1)

10: // Update one randomly selected RQF
11: Sample i from [k] uniform randomly
12: Sample mini-batch from B, update fwi using Eq. (5) where

for each (s, a, r, s′, γ) replace r with
ri

def
= fi(s, a)− γfi(s

′, argmaxa′∈A qw(s
′, a′))

13: if t+ 1 mod τ == 0 then
14: q̃w ← qw and for all i, fw̃i ← fwi

15: end if
16: end for

We assume that we initialize our action-values q and target and predictor RQFs with a standard186
random neural network initialization. Given a fixed initialization, we can jointly reason about the187
deep setting and the linear setting. In the linear setting, for a given state, we have n-dimensional188
features ϕ(s), ϕ1, . . . , ϕk(s) ∈ Rn for the q and RQFs respectively. In the deep setting, the last layer189
of the fixed neural network specifies the features. We additionally assume that the features from this190
last layer are all normalized, ∥ϕi(s)∥2 = 1 for all s, to simplify the proof; but this is not strictly191
necessary and a similar result can be obtained without normalization.192

Assumption 1 The feature functions ϕ(s), ϕ1, . . . , ϕk(s) ∈ Rn are all unit length—have an ℓ2193
norm of 1 for every state. All weights are iid sampled fromN (0, 1/n), to get initializations q(s, a) =194
ϕ(s)⊤wa, fi(s, a) = ϕi(s)

⊤w∗
a,i and fwi

(s, a) = ϕi(s)
⊤wa,i195

Proposition 3 Let z(δ) be the z-value for a Gaussian X ∼ N (0, 1) where Pr(X > z(δ)) = 1 − δ196
for δ ∈ (0, 1). Take any qmax ∈ R and any δ ∈ (0, 1). Then for any s, a, if197

c ≥
√

n
π

(
qmax − z(δ/2)/

√
n
)
/ (log(k/2)− log log(2/δ))

then198

q(s, a) + c max
i∈1,...,k

|fi(s, a)− fwi
(s, a)| > qmax

with probability 1− δ.199

Proof: Pick any s ∈ S, a ∈ A. Notice that because w∗
a,i,j ∼ N (0, 1/n) for all j ∈200

{1, . . . , n}, that the linear combination of these Gaussians fi(s, a) = ϕi(s)
⊤w∗

a,i is distributed201
as N (0, ∥ϕi(s)∥22/n) = N (0, 1/n) because ∥ϕ(s)∥22 = 1. Define δi

.
= fi(s, a) − fwi(s, a) =202

ϕi(s)
⊤w∗

a,i − ϕi(s)
⊤wa,i, which is the difference of two N (0, 1/n) random variables and itself is203

again Gaussian with double the variance,N (0, 2
n ). We can rewrite δi =

√
2
nYi where Yi ∼ N (0, 1).204

Then we can leverage the result from (Ash et al., 2022, Lemma 1) that gives a lower bound on the205
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maximum of the absolute value of k standard normal Gaussians to get that with probability 1− δ/2206

max
i∈{1,...,k}

|δi| =
√

2
n max

i∈{1,...,k}
|Yi|

≥
√

2
n

√
π
2

√
log(k/2)− log log(2/δ)

=
√

π
n

√
log(k/2)− log log(2/δ)

Similarly to the RQFs, because wa,j ∼ N (0, 1/n), we also have that q(s, a) = ϕ(s)⊤wa is Gaussian207
with distribution N (0, ∥ϕ(s)∥22/n) = N (0, 1/n). We can therefore say with probability 1 − δ/2208
that q(s, a) > z(δ/2)/

√
n. Taking the union over these two high probability events, we get that with209

probability 1− δ,210

q(s, a) + c max
i∈1,...,k

|fi(s, a)− fwi
(s, a)| >

z(δ/2)/
√
n+ c

√
π
n

√
log(k/2)− log log(2/δ)

where plugging in the above c makes this second term equal qmax, giving us the desired result. ■211

We can also ask what happens to our the bonuses in VBE after initialization. Ideally, they eventually212
converge to zero, with the action-values converging and the behavior and target policies both con-213
verging to a greedy policy. This scenario goes beyond the convergence conditions discussed above214
in Section 3 for fixed policies. In VBE, both our behavior policy and target policy are changing215
with time. Unfortunately, theory around TD does not address this scenario. There are some results216
for a fixed behavior policy for double Q-learning under linear function approximation (Zhao et al.,217
2021), or for a variant of DQN with a fixed dataset (Wang & Ueda, 2022). The issue with a changing218
behavior policy is that it changes the relative importance of states in the objective, and so the best219
value function may change as it changes how it trades off errors across states. In our realizable220
setting, this changing importance may be less important, because our RQF predictor can perfectly221
represent the target. In our own experiments, we found the value bonuses did always converge to222
zero. Nonetheless, we know of no theory that would allow us to guarantee this.223

Connection to BDQN: Though not obvious at first glance, there is a connection between RQFs224
and random prior functions in BDQN. In BDQN, the value function is qθ = fθ + cp for a random225
prior function p that is not updated, prior scale c, and a learned function fθ. Random priors were226
developed for stationary state distributions—though then applied to control—so let us consider the227
update for a fixed policy π. The update uses a′ ∼ π(·|s′), giving228

r − c (p(s, a)− γp(s′, a′))︸ ︷︷ ︸
RQF’s reward

+γfθ(s
′, a′)− fθ(s, a)

This is a standard update with reward bonus c(p(s, a) − γp(s′, a′)), and this bonus is a scaled229
negation of our reward in Equation (3). With a fixed policy, we can separate the value function230
learning into qπ that estimates the values for the rewards and bπ that estimates the values for the231
reward bonuses. Namely, fθ consists of qπ + bπ . As these functions converge, bπ(s, a) approaches232
−cp(s, a) using the exact same argument to the one in our Proposition 1, just negating the function p.233
Consequently, fθ(s, a)+cp(s, a) = qπ(s, a)+bπ(s, a)+cp(s, a) = qπ(s, a)+(bπ(s, a)+cp(s, a))234
goes to qπ since bπ(s, a) + cp(s, a) eventually cancels.235

This argument is not how randomized priors are presented, but provides another intuitive interpre-236
tation. Further, it highlights a key difference between BDQN and VBE: BDQN takes a Thompson237
sampling approach to induce optimism, whereas VBE acts greedily with respect to optimistic value238
estimates. Another key point is that BDQN’s prior-based bonus is scaled by the c parameter. The239
prior-based bonus can be seen as adding a fixed noise to the targets in the updates. Scaling the240
bonus term with c would increase the variance in the targets by a factor of c2. This can make the241
optimization problem harder and may cause BDQN to be sensitive towards higher learning rates.242
Unlike BDQN, VBE does not incorporate the c parameter when estimating the RQFs, and only uses243
the bonus scale in the behavior policy.244
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5 Experiments245

We evaluate our proposed algorithm on four classic exploration environments and six Atari environ-246
ments, particularly in comparison to BDQN and the reward bonus approaches ACB and RND. We247
first investigate the algorithms in a pure exploration setting, on Deepsea, where we evaluate state248
coverage. Then we compare performance on the classic environments, and conclude with experi-249
ments in Atari, highlighting that VBE scales successfully to this setting. We provide more analysis250
of VBE’s sensitivity to its two parameters – ensemble size, and bonus scale in Appendix F.251

5.1 Experimental Settings252

The four classic exploration environments are Sparse Mountain Car, Puddle World, River Swim and253
Deepsea. Full details are in Appendix B, but we list a few key details here. Mountain Car has254
two-dimensional continuous inputs with sparse rewards: the agent only receives a reward of 1 at255
the goal and 0 otherwise. Puddle World also has two-dimensional continuous inputs, noisy actions256
and highly negative rewards in puddles along the way to the goal. River Swim resembles a problem257
where a fish tries to swim upriver, with high reward (+1) upstream which is difficult to reach and,258
a lower but still positive reward (+0.005), which is easily reachable downstream. This environment259
has a single continuous state dimension in [0, 1], with stochastic displacement when taking actions260
left or right.3 Deepsea is similar to River Swim, but is a two-dimensional grid world. Reaching261
the high-reward state requires the agent to take the action to go right every time. There is a penalty262
of 0.01

N for taking the action right, except in the bottom right corner where there is a reward of 1263
for taking the action right. A policy that explores uniform randomly has the probability of 2−N of264
reaching the goal state in each episode.265

We use slightly different evaluation metrics for the various environments. River Swim is continuing,266
so we report accumulated reward over learning. For both Deepsea and Puddle World, we report the267
undiscounted episodic return. For Mountain Car, we report the discounted return, because for every268
successful episode, the undiscounted return is 1 and so not meaningful in this sparse variant. For269
all episodic environments, we report steps on the x-axis and the corresponding episodic return on270
y-axis. All results in the classic environments use 50000 steps and 30 runs, except Deepsea which271
uses 10000 episodes and 5 runs.272

Across problems we compare VBE with DDQN-based variants of ACB and RND, DQN with ad-273
ditive priors (DQN-P) and BDQN. ACB, RND and VBE only differ in their value bonuses; we use274
the reward bonuses underlying ACB and RND to learn their respective value bonuses. As originally275
proposed, we make the reward-bonus value function non-episodic for ACB and RND. We also com-276
pared VBE with the released variants of ACB and RND that use PPO in Appendix C; in general, we277
find this PPO version to be less sample efficient than the DDQN versions. DQN-P simply adds an278
additive prior to DQN, like BDQN; it can be seen as BDQN with one value function in the ensemble.279
We evaluate the algorithms using 1, 2, 8 and 20 value functions in the ensembles and bonus scales280
of 1, 3 and 10. To match their original implementation RND uses two deep neural networks with281
multiple (64) nodes in the final layer as the target and predictor network for the reward bonus. All282
methods use the same neural network architectures, detailed in Appendix B.2.283

We also include VBE-SL, that uses supervised learning instead of a TD update for the RQFs, to284
ablate this component of VBE. We discussed in Section 3 that the errors for VBE-SL likely reduce285
too quickly, resulting in insufficient exploration; we test that hypothesis here. Note that both VBE286
and VBE-SL only update their ensemble, with errors defining their value bonus, whereas ACB and287
RND both have to update their ensembles to get reward bonuses and learn a second value function288
to get the value bonus.289

3One seemingly innocuous but important point to highlight is that we flipped the observation such that the high reward is
at observation 0 and the lower reward is at observation 1. We did so because the standard random initialization and ReLU
activation often results in a higher value for a higher input, thus favouring the correct action in the standard variant and
making algorithms like BDQN look artificially good. Our modified variant removes this inadvertent bias without changing
the problem structure or difficulty in any way.
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Figure 1: Contrasting the state coverage abilities
of exploration algorithms in DeepSea. In (a) each
bar corresponds to the total number of unique
states visited by an agent after completing 10,000
episodes. The black stars indicate the total num-
ber of unique states for each grid size. Notably,
VBE covers the entire state space, even for the
larger grid sizes. (b) displays the progression of
unique states visited by agents over the course
of learning for Deepsea with grid size 50. The
dotted line represents the total number of unique
states (1275) in this environment. It provides ev-
idence that VBE consistently explores new states
at a significantly higher rate.

5.2 Pure Exploration290

We first test how effectively the agents cover the state space in Tabular Deepsea with increasing grid291
sizes. In this setting, the agents observe no reward from the environment; thus, there are no harder292
to reach states, as in the original DeepSea environment. This allows us to evaluate agent’s ability293
to do both directed deep exploration and employ first-visit optimism. For this tabular setting, the294
agents are otherwise the same as the other experiments, except the function approximation is linear295
in a one-hot encoding.296

Figure 1a shows that VBE covers the entire state space for all the grid sizes. BDQN is able to cover297
the state space for a grid size of 30 and 35, but fails on bigger grids. Both ACB and RND fail to cover298
the state space, with ACB covering even less than DQN-P. This outcome is not surprising, given that299
neither approach ensures first-visit optimism. VBE-SL visits more unique states compared to ACB,300
RND and DQN-P. This is because VBE-SL provides first-visit optimism, encouraging the agent to301
take an action in a state if it has not done so before. But, as expected, it does not explore as much as302
VBE, likely as its value bonuses decay too quickly.303

These suboptimal behaviors are emphasized in Figure 1b for a grid size of 50. All methods initially304
start exploring a similar number of states, easily reaching around 300 unique states. ACB, RND and305
DQN-P largely stop visiting new states very early in learning, though RND is slowly increasing the306
number of states it visits. BDQN and VBE-SL are similar across in their behavior, with VBE-SL307
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exploring more early, possibly due to better first-visit optimism. Over time, however, BDQN starts to308
catch up and then surpasses VBE-SL. VBE is the only algorithm that maintains a consistent increase309
until it has seen all states. It is interesting to note that VBE is able to cover the state-space with just 1310
RQF in the ensemble, whereas the rest of the algorithms require much bigger ensembles and still fail311
to cover the state-space (Table 1). This highlights the ability of VBE to provide first-visit optimism312
and do deep exploration.313

5.3 Comparison in Classic Environments314
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Figure 2: Online performance in River Swim, Puddle World, Mountain Car, and Deepsea. Higher
on the y-axis is better. The x-axis denotes the number of interaction steps with the environment. The
shaded region corresponds to standard errors.

In this section we compare VBE with DQN-P, BDQN, ACB, and RND on the four classic control315
environments. In Figure 2, we see that VBE learns faster and reaches the best final performance316
in all four environments. Surprisingly, DQN-P is competitive with BDQN in three out of the four317
environments. In Deepsea, where persistent optimism is essential to reach the state with high reward,318
DQN-P fails. ACB and RND both fail to learn in the sparse reward domain Mountain Car, whereas,319
in Puddle World which has a denser reward structure, they perform better. RND is competitive in320
River Swim and Puddle World, however, it fails to learn the optimal policy in the majority of runs321
in Deepsea. ACB is competitive in Puddle World but fails in Deepsea. We also compare VBE with322
PPO-based variants of ACB and RND in the classic control environments in Appendix C.2323

5.4 Atari324

In this section we test VBE on several hard exploration Atari games, namely Private-Eye, Pitfall,325
Gravitar (Burda et al., 2019), and also on Breakout, Pong and Qbert. We chose this set to ensure a326
good mix of both hard and easy exploration environments Taiga et al. (2021). As is standard, we327
combine four consecutive frames to make the observation (4×84×84), and update agents ever four328
steps. We clip the rewards between [−1, 1], and do 3 runs for all agents for 25 million steps.329

For BDQN, we follow the choices from (Osband et al., 2016b), and use an ensemble size of 10,330
without bootstrapping.4 As in the original BDQN implementation, each value function in the en-331
semble uses a shared representation network. We use a DDQN update for BDQN to be fair and332
consistent with the rest of the agents. For VBE, we also use an ensemble size of 10 and use a shared333
representation for the RQFs. To further improve the computational complexity we only update the334
RQF heads. ACB uses an ensemble size of k = 128 for computing the reward bonus, and RND uses335
a CNN-based target and predictor with 512 nodes in the final layer. We use c = 10 for all the agents336
in all the environments. Additional implementation details for Atari are mentioned in Appendix B.3337

In Figure 3 we see that VBE performs consistently better than BDQN in all Atari environments.338
In Breakout and Pong, it takes longer for BDQN to achieve the same level of performance as the339
other agents. This could be attributed to random sampling of the value function for the behavior340
policy, thus requiring more time for all value functions to adjust. In Qbert and Gravitar, BDQN341

4The original BDQN implementation for Atari does not use bootstrapping, that is, all members of the ensemble see the
same data.
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Figure 3: Online performance in six Atari games, with shaded regions corresponding to standard
errors. The x-axis is the number of environment interaction steps in millions, and the y-axis is the
online Undiscounted Episodic Return, where higher is better. The environments in the second row
are considered to be more challenging in terms of exploration.

plateaus before the other agents, suggesting less exploration in these environments compared to the342
other agents. In Pitfall, BDQN does well in the beginning, but then fails to maintain a good policy343
in the later stages of training. ACB shows early learning in Pong, but then fails to converge to an344
optimal policy. Similarly in Qbert, ACB converges to a suboptimal policy, suggesting that ACB’s345
value bonus is not suitable in these environments. In Breakout and Pitfall, ACB performs similarly346
to VBE, with ACB being slightly better in Breakout towards the end. In Gravitar, ACB is slow in the347
early stages of the training but then surpasses VBE in the later stages. RND performs very similar348
to VBE in Breakout, Pong, and Qbert, and is slightly better in Pitfall. However, in Gravitar, RND349
seems to do much better than all the other agents initially, but then fails to maintain that performance350
and drops down matching VBE. In Private-Eye none of the environments do well; however, VBE351
seems to be collecting a higher reward more often than the other agents.352

The exact reason for an agent’s performance in complex environments like Atari is hard to discern,353
and is something that requires additional understanding. However, after showcasing the efficacy of354
VBE in more controlled settings, the purpose of this experiment is to demonstrate that VBE can355
easily be extended to more complex environments and can even surpass or be at par with other356
exploratory baselines. In Appendix D we demonstrate that variants of VBE can further improve on357
these results.358

6 Conclusion359

In this work we introduced a new approach to do directed exploration in deep RL, called Value360
Bonuses with Ensemble errors (VBE). The utility of value bonuses is that it is simple to layer on top361
of an existing algorithm: the value bonuses are separately estimated and only impact the behavior362
policy. Improving how we estimate value bonuses, therefore, provides a promising path to replacing363
simple, but undirected exploration strategies like ϵ-greedy. To date, the primary way to estimate364
value bonuses has been to estimate a separate value function on reward bonuses, as was done for365
ACB and RND. This approach, however, does not encourage first-visit optimism; it only encourages366
revisiting an action once a reward bonuses was observed. We show that, in general, ACB and RND367
do not provide effective exploration, in classic environments and several Atari environments, and368
that VBE consistently outperforms BDQN.369
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A A Discussion on Convergence Criteria for Value Bonuses370

First let us discuss how the theory for LSTD applies to our setting. The result from (Tagorti & Scher-371
rer, 2015, Corollary 1) bounds the error of the value function learned under LSTD to the true value372
function, assuming features are linearly independent (Assumption 1) and a mixing assumption for373
the environment and behavior policy (Assumption 2). This bound includes an error to the best linear374
solution, for infinite data, and the error between the best linear solution and the true value function.375
Because we are in the realizable case and the objective is convex for linear function approximation,376
the best linear solution is the true value function and in the limit of data the LSTD solution will reach377
this best linear solution. We can write this as a corollary of their result. Note their result is written378
by value functions, but automatically extends to action-value function by considering state-action379
features and stationary distribution µb(s, a) = µ(s)πb(a|s).380

Corollary 1 (Corollary following from [Theorem 1) (Tagorti & Scherrer, 2015)] Assume we are381
given behavior policy πb with stationary distribution µ and target policy π and the rewards are382
defined using a randomly sampled fi from the set of linear functions on features ϕ(s, a) and the383
formula in Equation (3). Under Assumption 1 and 2 from (Tagorti & Scherrer, 2015), for a large384
enough number of samples T given by (Tagorti & Scherrer, 2015, Eq 6) (called n in their result),385
then fwi

returned by LSTD satisfies386

Es∼µa∼πb(·|s)[(fwi
(s, a)− fi(s, a))

2] ≤ O(1/
√
T )

Now let us discuss how the work on neural TD applies to our setting (Cai et al., 2019). The result is387
proved for neural networks with a single hidden layer using a ReLU activation for the hidden layer,388
with the additional condition that the stationary distribution for the policy has a bounded density389
over states and the stepsizes decrease at a rate of 1/

√
t. This result immediately implies that our fwi

390
should converge to fi, because the global solution for this problem is fi because it is in the value391
function class. We state this as a corollary of their result here, to be clear about how it applies.392

Corollary 2 (Corollary following from [Theorem 4.6) (Cai et al., 2019)] Assume that 1) the393
policy π is fixed with stationary distribution µ, where µ(s)π(a|s) has bounded density across394
the space x = (s, a) 2) the function class F = { 1√

m

∑m
j=1 bj max(x⊤wj , 0)|W =395

(b1, . . . , bm, w1, . . . , wm), ||W − W (0)||2 ≤ B} for x = (s, a), W (0) a point at which the396
weights are initialized in the algorithm and B some constant, 3) ∥x∥2 = 1 for all x and the re-397
wards are defined using a randomly sampled fi from F and the formula in Equation (3), and398
4) the Neural TD algorithm (Algorithm 1 in (Cai et al., 2019)) is run for T steps with stepsize399
η = min((1− γ)/8, 1/

√
T ). Then the algorithm returns fwi that satisfies400

EW∼,µπ[(fwi(s, a)− fi(s, a))
2] ≤ O(B2)

(1− γ)2
√
T

+O(B2m−1/2 +B5/2m−1/4)

Proof: The result also requires that the reward magnitudes are all bounded, which they are by401
construction. Theorem 4.6 states that the outputted action-value function is bounded as above to the402
global optimum in the function class. Because fi(s, a) is in the function class, we know it is the403
global optimum. ■404
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Supplementary Materials471

The following content was not necessarily subject to peer review.472
473

B Experiment Details474

B.1 Environment Details475

Mountain Car is classic control problem of driving an underpowered car up a mountain. The476
original problem is set up as cost-to-goal, and here to frame it as a challenging exploration problem477
we offset the reward by 1, making it a sparse reward problem. The start state is sampled from the478
range [−0.6,−0.4], which is the valley between two mountains, and the car starts with velocity zero.479

Puddle World is a continuous state 2-dimensional world with (x, y) ∈ [0, 1]2 with 2 intersecting480
puddles: (1) [0.45, 0.4] to [0.45, 0.8], and (2) [0.1, 0.75] to [0.45, 0.75]. The puddles have a radius481
of 0.1 and the goal is the region (x, y) ∈ [0.95, 1.0], [0.95, 1.0]. The problem is cost-to-goal with482
additional penalty for when the agent is either puddle. The penalty for being in a puddle is inversely483
proportional to the distance of the agent from the center of the puddle, i.e., higher negative reward484
for being closer to the center. The agent chooses a direction of movement, resulting in displace-485
ment equal to 0.005 + ζ, ζ ∼ N(µ = 0, σ = 0.1) in the chosen direction. The starting positions486
for episodes is uniformly sampled from (x, y) ∈ [0.1, 0.3], [0.45, 0.65]. High variance transitions487
coupled with high magnitude penalties make this a challenging exploration problem.488

River Swim is a standard continuing exploration benchmark inspired by a fish trying to swim up-489
river, with high reward (+1) upstream which is difficult to reach and, a lower but still positive reward490
(+0.005), which is easily reachable downstream. The state space is continuous in [0, 1], and the491
stochastic displacement is equal to 0.1 + ζ, ζ ∼ N(µ = 0, σ = 0.01) in the direction of the chosen492
action up or down. As swimming upstream is difficult, action up is stochastically switched to down.493
We also flip the observation such that the high reward is at observation 0 and the lower reward is at494
observation 1. We do this because we noticed that using random initialization with ReLU activations495
would mostly result in a higher value for a higher input thus favouring the correct action in this case.496
The starting position is sampled uniformly in [0.9, 1.0].497

Deepsea is a finite-horizon episodic grid world environment, which poses a hard exploration chal-498
lenge. In each state the agent can take two actions, left or right. Every action moves the agent down499
one row with column change being controlled by the chosen action. Collisions to the grid edges are500
handled by the agent staying in the same column but moving down one row. Given the transition501
structure, the agent can never access the states in the top-right triangle of the grid. Therefore, the502
total number of states are N×(N+1)

2 . The most rewarding state is the state on the bottom-right cor-503
ner of the grid. To reach this state successfully in an episode, the agent needs to take the action that504
moves it towards right at every step. However, there is a penalty of 0.01

N for taking this action in505
every state, except for in the high rewarding state where the agent gets a reward of 1 for taking the506
right action. This transition and reward structure make it a very challenging environment. A policy507
that explores uniform randomly has a probability of 2−N of reaching the highly rewarding state in508
any episode.509

B.2 Algorithm Details for Classics Control510

In the classic control experiments (Section 5.3), every agent uses the same neural architecture, con-511
taining 2 hidden non-linear layers with 50 nodes each and ReLU activation, followed by a linear512
output-layer. DQN-P, BDQN, VBE, ACB, and RND all use target networks which are updated513
periodically after every τ steps. For DQN-P and BDQN τ = 4 works best for all four classic envi-514
ronments, as used by the BDQN paper. VBE, ACB and RND use τ = 4 for Mountain Car, Puddle515
World and River Swim, and τ = 64 for Deepsea. We use a learning rate of α = 0.001 and a discount516
factor of γ = 0.99. DQN-P, BDQN and VBE variants use an experience replay buffer that stores the517
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most recent 50K transitions. The agent’s parameters are updated after every step using a randomly518
sampled mini-batch of 128. We sweep the agents on bonus scales c = [1.0, 3.0, 10.0], and ensemble519
sizes k = [1, 2, 8, 20]. The PPO version of ACB uses an ensemble size of k = 128, and RND uses520
a multi-layer neural network instead of an ensemble. Tables 1, and 2 show the best performing sets521
of ensemble size k and bonus scale c for results in Sections 5.2, and 5.3, correspondingly.

Deepsea
VBE k = 1, c = 1.0

VBE-SL k = 20, c = 1.0
DQN-P k = 1, c = 1.0
BDQN k = 20, c = 1.0
ACB k = 20, c = 1.0
RND c = 1.0

Table 1: Ensemble size k and bonus scale c for agents in Figure 1a.

River Swim Puddle World Mountain Car Deepsea
VBE k = 20, c = 1.0 k = 1, c = 10.0 k = 2, c = 1.0 k = 20, c = 1.0

DQN-P k = 1, c = 10.0 k = 1, c = 3.0 k = 1, c = 1.0 k = 1, c = 10.0
BDQN k = 8, c = 10.0 k = 2, c = 1.0 k = 20, c = 1.0 k = 20, c = 10.0
ACB k = 20, c = 10.0 k = 1, c = 1.0 k = 8, c = 1.0 k = 20, c = 1.0
RND c = 10.0 c = 1.0 c = 1.0 c = 1.0

Table 2: Ensemble size k and bonus scale c for agents in Figure 2.

522

B.3 Algorithm Details for Atari523

All the agents used in Atari experiments use the same architecture: A representation network with524
3 CNN layers followed by a value function head containing one hidden layer with Relu activation525
and a final linear layer. We use a DDQN update for all agents and update every 4 steps. We update526
the target networks every 10000 steps. We use a replay buffer that stores 1 million of the most527
recent transitions and discount factor of 0.99. Finally, we use Adam optimizer with a learning rate528
of 0.0000625.529

C Comparing VBE with PPO based variants of ACB and RND530

In this section we compare VBE with PPO-based variants of ACB and RND as they were originally531
implemented and evaluated – we call these algorithm ACB-PPO and RND-PPO, respectively. We532
use the opensource implementation of PPO-based ACB and RND as provided by Ash et al. (2022)5.533
To ensure that each algorithm uses the same amount of data, we use a single agent interacting with534
the environment for ACB-PPO and RND-PPO, instead of parallel agents interacting with parallel535
instances of the environment. Using a softmax policy and parallel agents interacting with the envi-536
ronments can also help with exploration, so to be fair we use only one instance of agent-environment537
interaction, as is done for VBE.538

C.1 Pure Exploration539

In this section we first compare VBE with PPO-based variants of ACB and RND in the pure explo-540
ration setting. Similar to in Section 5.2, we use one-hot encoding and linear function approximation541
for all the agents. The agents observe no environment reward and are behaving only with respect542

5See https://github.com/JordanAsh/acb/tree/main
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to the exploration strategy employed by each of these algorithms. In Figure 4 we see that the PPO-543
based variants of ACB and RND cover much more of the state-space compared to their Value-based544
(VB) counterparts in Figure 1a. This may be due to the fact that PPO-based variants of ACB and545
RND use a softmax behaviour policy, which can cause the agent to take the non-greedy actions at546
random. In Figure 4b we see that ACB-PPO almost flatlines and stops visiting new states after some-547
time. However, RND-PPO keeps on visiting new states. Although this is a significant improvement,548
however, both ACB-PPO and RND-PPO still fail to cover the state-space.549
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Figure 4: Contrasting the state coverage abilities
of exploration algorithms in DeepSea. In (a) each
bar corresponds to the total number of unique
states visited by an agent after completing 10,000
episodes. The black stars indicate the total num-
ber of unique states for each grid size. Notably,
VBE covers the entire state space, even for the
larger grid sizes. (b) displays the progression of
unique states visited by agents over the course
of learning for Deepsea with grid size 50. The
dotted line represents the total number of unique
states (1275) in this environment. It provides ev-
idence that VBE consistently explores new states
at a significantly higher rate.

C.2 Classic Control550

The chosen hyperparmaters of ACB-PPO and RND-PPO as compared to VBE for classic control551
domains are shown in Table 3. Figure 5 shows the result comparing these algorithms. In gen-552
eral, across the domains the PPO-variants’ perform similar to, or poorer than, their VB variants in553
Figure 2. VBE, and BDQN, outperform them across domains. Even DQN-P is competitive with554
them, or better in all domains except Deepsea. Compared to their VB variants, the performance of555
the PPO variants drops in River Swim, and Puddle World, and continues to be the same in Moun-556
tain Car. In Deepsea RND-PPO improves upon its VB variant RND, while ACB-PPO continues to557
perform similarly to ACB.558
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Figure 5: Online performance of PPO-based variants of ACB and RND in River Swim, Puddle
World, Mountain Car, and Deepsea. Higher on the y-axis is better. The x-axis denotes the number
of interaction steps with the environment. The shaded region corresponds to standard errors.

River Swim Puddle World Mountain Car Deepsea
VBE k = 20, c = 1.0 k = 1, c = 10.0 k = 2, c = 1.0 k = 20, c = 1.0

ACB (k = 128) c = 1.0 c = 3.0 c = 1.0 c = 10.0
RND c = 1.0 c = 10.0 c = 10.0 c = 1.0

Table 3: Ensemble size k and bonus scale c for agents in Figure 5.
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Figure 6: Comparing the online performance of VBE and two of its variants on six Atari environ-
ments. We do 3 runs for each agent for 15 Million steps.

D An alternate variant of VBE for Atari559

The VBE in Section 5.4 uses a shared representation for RQFs and only updates the RQF head to560
reduce computational complexity. In this section, we test another variant of VBE that has a separate561
representation network for each RQF and updates the entire network. We also test this new variant562
with a smaller bonus-scale c = 1. The purpose of this experiment was to test whether reducing563
the representational ability of VBE by using a shared representation and not updating it can hinder564
its learning capabilities. However, we observe that the base variant of VBE can keep up with its565
more parameterized counterpart. In Breakout and Pong, the variant with learnable representation566
networks shows slight improvements compared to the base VBE. We also note that using a smaller567
c can affect the performance in hard exploration environments. In Pitfall, VBE with c = 1 performs568
well initially but then takes a dip after 10 million steps. Consistent with all other agents, VBE’s569
variants are unable to learn on Private Eye, however, base VBE and the variant with c = 1 collects570
higher rewards more often. In Gravitar, VBE with c = 1 does exceptionally well compared to the571
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other variants and matches the performance of RND in Figure 3f. This experiment reveals that our572
design choices for using a shared representation for RQFs and only updating the RQF heads is valid573
and allows the agent to explore. It further reveals that more investigation is needed to understand574
the role of bonus-scale in these environments. With more compute resources, and search over the575
hyperparameters can potentially identify a variant of VBE that can perform even better on these576
environments.577

E Linear Function Approximation578

In this section we test VBE and the baseline agents on the same four classic environments as in579
Section 5.3, with tile-coded features and linear function approximation. We use the following580
tile-coding parameters – River Swim :(tiles = 4, tiling = 32, features = 128), Puddle World:581
(tiles = 5, tiling = 5, features = 128), and Mountain Car: (tiles = 4, tiling = 16, features =582
512). The results in Figure 7 are similar to their neural network counterpart results in Figure 2, in583
that VBE does best or is competitive across all domains. RND and ACB perform similarly in all584
domains – being competitive with VBE in Puddle World and Mountain Car, but failing in River585
Swim and Deepsea. BDQN outperforms VBE in Deepsea marginally. DQN-P is competitive with586
BDQN in all domains except Deepsea – outperforming it in in Puddle World and Mountain Car.587
We also compare VBE, BDQN, and DQN-P to PPO-based variants of ACB and RND in Figure 8.588
ACB-PPO’s performance drops with respect to ACB in all domains. RND-PPO on the other hand589
improves in Deepsea to be competitive with BDQN and VBE, has a high rate of improvement later590
towards later learning in River Swim, while dropping in perfomance in both Puddle World and591
Mountain Car with respect to its value-based variant.592
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Figure 7: Online performance in River Swim, Puddle World, Mountain Car, and Deepsea, with tile-
coded features and linear function approximation. Higher on the y-axis is better. The x-axis denotes
the number of interaction steps with the environment. The shaded region corresponds to standard
errors.
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Figure 8: Online performance of PPO-based variants of ACB and RND in River Swim, Puddle
World, Mountain Car, and Deepsea, with tile-coded features and linear function approximation.
Higher on the y-axis is better. The x-axis denotes the number of interaction steps with the environ-
ment. The shaded region corresponds to standard errors.
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F Parameter Sensitivity of VBE: Ensemble Size ×onus Scale593

In this section we show the effect that bonus scales and ensemble sizes have on the performance of594
the VBE in each of the four classic control environments. In Figure 9 we show the sensitivity of VBE595
used in Section 5.3 to its two parameters – ensemble size and bonus scale — in each environment.596
For River Swim we see that the performance improves as the bonus scale and the ensemble size is597
increased. This makes sense as River Swim is a hard exploration environment and requires more598
aggressive exploration. In Puddle World and Mountain Car, we observe that increasing the bonus599
scale and the ensemble size harms the performance, since they do not require too much exploration.600
For Deepsea we only test a bonus scale of 1 with different ensemble sizes on different grid sizes. We601
can see that only an ensemble size of 20 works well on all grid sizes. Figure 10 shows the parameter602
sensitivity results for the linear function approximation case. We observe a very similar pattern to603
its neural network counterpart across all the environments.
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Figure 9: Shows the effect of different bonus scales and ensemble sizes across the classic control
environments. For Deepsea, we only use a bonus scale of 1 and test different ensemble sizes.
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Figure 10: Shows the effect of different bonus scales and ensemble sizes across the classic control
environments. These results correspond to the linear function approximation case.

604

G Target Policy Experiments605

In this framework where we have access to two forms of value functions – the action-values, and their606
corresponding bonuses – there are two fundamental learning updates that we can employ – on-policy,607
or off-policy. As we are in the control setting, we choose the off-policy q-learning update that tries608
to estimate q∗ directly in VBE. In this section we explore the impact of this choice by comparing the609
two updates: (1) on-policy updates where the target policy is the same as the behaviour policy, and610
(2) off-policy updates, which is the one employed by VBE, where the target policy is different from611
the behaviour policy. The former uses an optimistic target policy that maximizes over q(s, .)+b(s, .),612
whereas the latter uses a greedy target policy that maximizes over q(s, .) alone.613

In Figure 11 we show the performance of the agents resulting from the two different updates, run on614
different grid sizes of Deepsea, with different ensemble size represented by the different colors, and615
different bonus scales represented by different shapes. The agents use linear function approximation616
for learning the action-value function and RQFs. We can see that the greedy agent generally per-617
forms better than the optimistic agent, which makes sense as the optimistic target policy can cause618
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Grid sizes

Optimistic Greedy

Figure 11: Comparing Optimistic target policy (On-policy) with Greedy target policy (Off-policy)
on different grid sizes of Deepsea.
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Figure 12: This figure compare optimistic target policy to Greedy target policy: (a) the agents use
an on-policy (optimistic) updates, and (b) the agents use an off-policy (greedy) updates. ACB and
RND fail with the greedy policy, whereas with optimistic target policy they outperform VBE. VBE
however, does well with a greedy policy compared to the optimistic one. These agents use a single
linear-layer with bias term.

more exploration. The greedy agent performs well even with multiple RQFs, whereas optimistic619
agent fails to learn the optimal policy in this fixed budget of steps when the number of RQFs are620
increased.621

Additionally, we investigated into the role of the target policy in ACB and RND. During these622
experiments with ACB and RND we noticed an interesting phenomenon: using an optimistic target623
policy allows ACB and RND to learn the optimal policy quickly on various grid-sizes of the Deepsea624
environment (Figure 12), and using a greedy target policy for ACB and RND would cause the agents625
to fail to learn the optimal policy (Figure 7d, 2d). This is interesting as in either case we do not expect626
ACB and RND to be able to cover the entire state space based on random initialization because these627
reward bonus methods do not provide optimism for unseen state-action pairs – that is, they do not628
provide first-visit optimism. Upon investigating the phenomenon, we found out that this happens629
because of the bias term in the linear layer, the momentum term in the optimizer and because the630
intrinsic value function in these methods are designed to be non-episodic. When the optimistic631
target policy is used along with momentum during optimization, the bias term of the approximator632
consistently increases. Since the bias-term is a shared parameter, the increase in its value causes the633
intrinsic action values to start increasing, providing the optimism for unseen action-values as well634
– allowing for the agent to cover the state space and thus learn the optimal policy. In case of the635
greedy target policy this phenomenon does not arise; the intrinsic values do not increase, and thus636
the agent fails to cover the state space. In Section 5.2, we show that if we use tabular features with637
a linear-layer without any bias term then ACB and RND fail to cover the state space, reflecting that638
they do not provide first-visit optimism.639
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