
Published as a conference paper at ICLR 2022

DUAL LOTTERY TICKET HYPOTHESIS

Yue Bai1, Huan Wang1, Zhiqiang Tao2, Kunpeng Li3, and Yun Fu1

1Northeastern University, Boston, MA, USA
2Santa Clara University, Santa Clara, CA, USA
3Meta Research, Burlingame, CA, USA
{bai.yue, wang.huan}@northeastern.edu
ztao@scu.edu, kunpengli@fb.com, yunfu@ece.neu.edu

ABSTRACT

Fully exploiting the learning capacity of neural networks requires overparameter-
ized dense networks. On the other side, directly training sparse neural networks
typically results in unsatisfactory performance. Lottery Ticket Hypothesis (LTH)
provides a novel view to investigate sparse network training and maintain its ca-
pacity. Concretely, it claims there exist winning tickets from a randomly initialized
network found by iterative magnitude pruning and preserving promising trainabil-
ity (or we say being in trainable condition). In this work, we regard the winning
ticket from LTH as the subnetwork which is in trainable condition and its perfor-
mance as our benchmark, then go from a complementary direction to articulate
the Dual Lottery Ticket Hypothesis (DLTH): Randomly selected subnetworks from
a randomly initialized dense network can be transformed into a trainable condi-
tion and achieve admirable performance compared with LTH — random tickets
in a given lottery pool can be transformed into winning tickets. Specifically, by
using uniform-randomly selected subnetworks to represent the general cases, we
propose a simple sparse network training strategy, Random Sparse Network Trans-
formation (RST), to substantiate our DLTH. Concretely, we introduce a regulariza-
tion term to borrow learning capacity and realize information extrusion from the
weights which will be masked. After finishing the transformation for the randomly
selected subnetworks, we conduct the regular finetuning to evaluate the model us-
ing fair comparisons with LTH and other strong baselines. Extensive experiments
on several public datasets and comparisons with competitive approaches validate
our DLTH as well as the effectiveness of the proposed model RST. Our work is
expected to pave a way for inspiring new research directions of sparse network
training in the future. Our code is available at https://github.com/yueb17/DLTH.

1 INTRODUCTION

While over-parameterized networks perform promisingly on challenging machine learning
tasks Zagoruyko & Komodakis (2016); Arora et al. (2019); Zhang et al. (2019), they require a high
cost of computational and storage resources Wang et al. (2020a); Cheng et al. (2017); Deng et al.
(2020). Recent pruning techniques aim to reduce the model size by discarding irrelevant weights
of well-trained models based on different criteria Gale et al. (2019); He et al. (2017); Han et al.
(2015a;b). Decisive weights are preserved and finetuned for obtaining final compressed model with
acceptable performance loss. Following this line, several series of research works have been done to
explore effective pruning criterion for better final performances. For example, regularization based
pruning approaches Liu et al. (2017); Han et al. (2015a;b) leverage a penalty term during training
for network pruning. Also, many researches take advantages of Hessian information to build more
proper criteria for pruning LeCun et al. (1990); Hassibi & Stork (1993); Wang et al. (2019a); Singh
& Alistarh (2020). However, regular pruning methods still requires a full pretraining with high com-
putational and storage costs. To avoid this, pruning at initialization (PI) attempts determining the
sparse network before training and maintains the final performances. For instance, Single-shot Net-
work Pruning (SNIP) Lee et al. (2018) uses a novel criterion called connection sensitivity to measure
the weights importance and decide which weights should be removed. Gradient Signal Preservation

1

https://github.com/yueb17/DLTH


Published as a conference paper at ICLR 2022

0.5 0.7 0.9 0.95 0.98
Sparsity Ratio

82

84

86

88

90

92

94

To
p1

 A
cc

ur
ac

y

DLTH v. Others: CIFAR10
DLTH_Iter
LTH_Iter
EB
Scratch
L1 (Pretrain-based)
Baseline (Full model)

0.5 0.7 0.9 0.95 0.98
Sparsity Ratio

50

55

60

65

70

To
p1

 A
cc

ur
ac

y

DLTH v. Others: CIFAR100
DLTH_Iter
LTH_Iter
EB
Scratch
L1 (Pretrain-based)
Baseline (Full model)

(a) DLTH v. Others on CIFAR10. (b) DLTH v. Others on CIFAR100.

Figure 1: Comparisons between DLTH with other training strategies. 3 times average scores with
standard deviation shown as shadow are plotted. Both (a)/(b) (CIFAR10/CIFAR100) demonstrate
ours superiority in all non-pretrain based approaches (solid lines). Two pretrain based methods (dash
lines) are plotted for reference. (This figure is best viewed in color.)

(GraSP) Wang et al. (2020a) regards the gradient flow as an importance factor and correspondingly
use it to design the PI criterion.

Regular pruning and PI techniques both achieve promising results on sparse network training with
considerable model compression. Nevertheless, they only focus on designating criteria to find a
specific sparse network but ignore exploring the internal relationships between the dense network
and its eligible subnetwork candidates, which impedes a full understanding of the sparse network
training. Lottery Ticket Hypothesis (LTH) Frankle & Carbin (2018) hits this problem with the first
shot. It claims a trainable subnetwork exists in the randomly initialized dense network and can be
found by pruning a pretrained network. In other words, as long as the dense network is initialized,
the good subnetwork has been implicitly decided but needs to be revealed by the pruning process.
The LTH has been validated by training the subnetwork from scratch with mask obtained from
corresponding iterative magnitude pruning Han et al. (2015b;a). The subnetwork is regarded as
the winning ticket among the lottery pool given by the dense network. Accordingly, we treat the
subnetworks which can reach the performance of winning ticket from LTH as the ones who are in
trainable condition or with promising trainability. This valuable discovery naturally describes the
relationship between a random initialized dense network and the trainable subnetwork hidden in it.

However, LTH only focuses on finding one sparse structure at the expense of full pretraining, which
is not universal to both practical usage and investigating the relationship between dense and its
subnetworks for sparse network training. In our work, we go from a complementary perspective of
LTH and propose a new hypothesis called Dual Lottery Ticket Hypothesis (DLTH). It studies a more
challenging and general case of investigating the internal relationships between a dense network and
its sparse counterparts and achieves promising performances for sparse network training (see Fig. 1).
Specifically, DLTH is described as a randomly selected subnetwork from a randomly initialized
dense network can be transformed into a trainable condition and achieve admirable performance
using regular finetuning compared with LTH. In other word, a random ticket in a given lottery pool
can be turned into a winning ticket. (Please note, we consider the common cases based on uniformly
random selection for weights to obtain subnetworks, not including certain extreme situations such
as the disconnected subnetworks.) For convenience, in the following sections, we omit this note and
refer to “randomly selected subnetwork” as the common cases mentioned above. To validate our
DTLH, we design Random Sparse Network Transformation (RST) to transform a randomly selected
subnetwork into a trainable condition. RST simply introduces a gradually increased regularization
term to achieve information extrusion from extra weights (which are set to be masked) to the target
sparse structure. In this way, we construct a closed-loop research perspective from the dual side
of LTH as shown in Fig. 2. Compared with LTH, our DLTH considers a general case – studying
a randomly selected subnetwork instead of a specific one – with a simple training strategy RST
proposed to validate it. The comprehensive relationship between a dense network and its sparse
counterparts is inquired for studying sparse network training. Our contributions can be summarized
as follows:

2



Published as a conference paper at ICLR 2022

• We investigate a novel view of studying sparse network training by presenting Dual Lot-
tery Ticket Hypothesis (DLTH), a dual problem of Lottery Ticket Hypothesis (LTH), artic-
ulated as: A randomly selected subnetwork from a randomly initialized dense network can
be transformed into a trainable condition and achieve admirable finetuning performance
compared with LTH.

• We propose a simple sparse network training strategy, Random Sparse Network Transfor-
mation (RST), to achieve promising performance and validate our DLTH. Concretely, we
realize the information extrusion from the extra weights which are set to be masked to en-
hance the target sparse structure by leveraging a gradually increased regularization term. In
this way, the randomly selected subnetwork will be transformed into a trainable condition.

• Extensive and fair comparisons based on benchmark datasets with competitive approaches
using the same finetuning schedule shows our RST obtains promising and consistent per-
formances, solidly demonstrating its effectiveness and validating DLTH.

• Our DLTH, compared with LTH, is more general and challenging to study the relationship
between dense network and its sparse counterparts. We expect our work inspires a novel
perspective to study sparse neural network in a more flexible and adjustable way.

2 RELATED WORK

Network pruning is one of the relevant research topics. In this section, we group the existing pruning
methods into After-Training Pruning and Pre-Training Pruning as follows. In addition, several
dynamic sparse network training strategies are proposed to adaptively adjust and train the sparse
network referred as Dynamic Sparse Network Training below.

After-Training Pruning. Most pruning methods prunes a pre-trained network Louizos et al. (2017);
Liu et al. (2017); Ye et al. (2018); Han et al. (2015b;a). Algorithms utilize different ranking strategies
to pick redundant weights with low importance scores, and remove them to achieve pruning along
with acceptable performance drop. Pioneer magnitude-based method Han et al. (2015b;a) regards
weights with low values as unnecessary ones, which is straightforward but may remove important
low-value weights. Hessian-based approaches measure the weight importance by computing the
their removal effects on the final loss LeCun et al. (1990); Hassibi & Stork (1993). Recently pub-
lished technique also achieves Hessian-free pruning Wang et al. (2020b) by adding regularization
which is more computational friendly. In addition, pruning process can be also conducted during
the network training. To name a few, a special dropout strategy is utilized in Srinivas & Babu (2016)
to adjust the dropout during training and obtain a pruned network after training. A L0 norm regu-
larization based method is proposed for network pruning Louizos et al. (2017). Above algorithms
obtaining sparse network from a trained dense network are seen as After-Training Pruning.

Pre-Training Pruning. This research direction investigates how to prune a randomly initialized
network without any training. Pruning at initialization is one typical direction deriving sparse net-
work by remove part of randomly initialized weights Lee et al. (2018; 2019); Wang et al. (2020a).
For instance, Single-Shot Neural Network Pruning (SNIP) algorithm Lee et al. (2018) first proposes
a learnable sparse network strategy according to the computed connection sensitivity. An orthogo-
nal initialization method is proposed to investigate pruning problem in signal propagation view Lee
et al. (2019). Gradient Signal Preservation (GraSP) considers to preserve the gradient flow as an
efficient criterion to achieve pruning at initialization. On the other hand, Lottery Ticket Hypothe-
sis (LTH) claims that the winning ticket subnetwork exists in the randomly initialized network and
can be found by deploying conventional pruning algorithm. Then the selected sparse network can
be efficiently trained from scratch and achieve promising performance. Based on LTH, Early-Bird
(EB) ticket You et al. (2020) proposes an efficient way to find winning ticket. Above algorithms
obtaining sparse network from a random dense network are seen as Pre-Training Pruning.

Sparse Network Training. The sparse network can be dynamically decided and adaptively adjusted
through the training to improve the final performance. Sparse Evolutionary Training (SET) Mo-
canu et al. (2018) proposes an evolutionary strategy to randomly add weights on sparse network
and achieve better training. Dynamic Sparse Reparameterization (DSR) Mostafa & Wang (2019)
presents a novel direction to dynamically modify the parameter budget between different layers.
In this way, the sparse structure can be adaptively adjusted for more effective and efficient usage.
Sparse Networks from Scratch (SNFS) Dettmers & Zettlemoyer (2019) designates a momentum

3



Published as a conference paper at ICLR 2022

Table 1: Comparisons between DLTH and other settings. Base model, One/Multiple,
Controllability, Transformation, and Pretrain represent where to pick subnetwork,
if the setting finds one specific subnetwork or studies randomly selected subnetworks, if sparse
structure is controllable, if the selected subnetwork needs transformation before finetuning, and if
pretraining dense network is needed, respectively.

Settings Base model One/Multiple Controllability Transformation Pretrain

Conventional Pretrained One Uncontrollable No Yes
LTH Initialized One Uncontrollable No Yes
PI Initialized One Uncontrollable No No
DLTH (ours) Initialized Multiple Controllable Yes No

based approach as criterion to grow weights and empirically proves it benefits the practical learning
performance. Deep Rewiring (DeepR) Bellec et al. (2017) introduces the sparsity during the training
process and augments the regular SGD optimization by involving a random walk in the parameter
space. It can achieve effectively training on very sparse network relying on theoretical foundations.
Rigging the Lottery (RigL) Evci et al. (2020) enhances the sparse network training by editing the
network connectivity along with the optimizing the parameter by taking advantages of both weight
magnitude and gradient information.

3 LOTTERY TICKET PERSPECTIVE OF SPARSE NETWORK

Lottery Ticket Hypothesis (LTH) Frankle & Carbin (2018) articulates the hypothesis: dense ran-
domly initialized networks contain subnetworks, which can be trained in isolation and deliver per-
formances comparable to the original network. These subnetworks are seen as winning tickets with
good trainability and are discovered by iterative magnitude pruning, which requires training a dense
network. The mask of the pruned network illustrates the sparse structure of winning tickets.

Problem Formulation. We start from introducing general network pruning problem. The neural
network training can be seen as a sequence of parameter updating status using stochastic gradient
descent (SGD) Wang et al. (2021); Bottou (2010):

{w(0), w(1), w(2), · · ·, w(k), · · ·, w(K)}, (1)

where w is the model parameter with superscript k as training iteration number. For a general
case, the sparse network structure can be mathematically described by a binary mask m which has
the same tensor shape as w. The process of obtaining m can be formulated as a function m =
Fm(w;D), where D is the training data. Further, the weights of the sparse structure are different
based on different strategies Hassibi & Stork (1993); Wang et al. (2020b), which is given by w∗ =
Fw(w;D). The final pruned network can be integrated as

w̃ = Fm(w(km);D) · Fw(w(kw);D), (2)

where wkm and wkw represent different parameter conditions for Fm and Fw. The conventional
pruning requires that km = kw = K. The LTH needs km = K, kw = 0, and Fw = I , where I is
the identical mapping representing model directly inherits the randomly initialized weights.

Against with traditional view that directly training sparse network cannot fully exploit network ca-
pacity Wang et al. (2020b;a), LTH validates there exists a sparse network (winning ticket) with
better trainability than other subnetworks (other tickets). Specifically, the picked winning ticket will
be trained (finetuned) in isolation to evaluate the model performance and illustrate its admirable
trainability. However, to uncover this property still needs first pruning a pretrained model to obtain
mask and the mask must match with the original dense network - winning ticket matches with the
given lottery pool. LTH provides a novel angle to understand and reveal the connections between
a random dense network and its subnetworks with admirable trainability. However, LTH only vali-
dates there exists one specific subnetwork and still requires pruning on pre-trained model to find it,
which is a relatively restricted case.

4



Published as a conference paper at ICLR 2022

Pre-train

Prune

Randomly initialized

Pre-trained network

Pruned network

Randomly initialized

Transformed network

Random subnetwork

Randomly pick

Transform

Pruning pre-trained dense network Transform random subnetwork

Lottery Ticket Hypothesis Dual Lottery Ticket Hypothesis

Winning ticket exists Random ticket wins

Figure 2: Diagram of Lottery Ticket Hypothesis (LTH) and Dual Lottery Ticket Hypothesis (DLTH).

4 DUAL LOTTERY TICKET HYPOTHESIS

We follow the perspective of LTH and investigate sparse network training from a complementary di-
rection. We articulate Dual Lottery Ticket Hypothesis (DLTH). We elaborate our DLTH and discuss
its connections and differences with LTH and other related research topics.

Dual Lottery Ticket Hypothesis (DLTH). A randomly selected subnetwork from a randomly
initialized dense network can be transformed into a trainable condition, where the transformed
subnetwork can be trained in isolation and achieve better at least comparable performance to
LTH and other strong baselines.

Formally, we follow the general definition provided in Sec. 3 for problem formulation. Our DLTH
requires km = 0, kw = 0 and allows Fm being random mapping. Fw represents our proposed RST
which will be detailed introduced in Sec. 5

Comparisons with LTH. LTH proves there exists an appropriate subnetwork in a randomly ini-
tialized dense network whose weights can be easily trained and overcome the difficulty of training
sparse network. The weights of sparse structure are picked from the initial network but it requires
pruning pre-trained dense network to obtain the mask. On the contrary, DLTH claims a randomly
selected subnetwork can be transformed into a proper condition without pruning pre-trained model
where we can adjustably pre-define the mask and further conduct efficient sparse network training.

On the one hand, these two hypotheses mathematically form a dual statement, which lies in a com-
plementary direction. On the other hand, based on our definition in Sec. 3, a sparse network has
two characteristics: 1) network structure; 2) network weights. In this way, LTH can be seen as
finding structure according to weights, because it prunes the pretrained network to find mask using
weight magnitude ranking; DLTH can be seen as finding weights based on a given structure, be-
cause it transforms weights for a randomly selected sparse network. Therefore, we name our work
as DLTH. We clarify the advantages of DLTH compared with LTH from three angles: 1) Although
LTH and DLTH are twins in mathematics, our DLTH considers a more general scenario (exist a
specific subnetwork versus a random selected subnetwork) to study the relationship between dense
and its sparse networks; 2) DLTH is more valuable for practical usage, because it generally allows
to transfer a random subnetwork into a trainable condition instead of pruning a pretrained model
to identify one good subnetwork. Further, the transformation is also more efficient than pretraining
a dense network in LTH, detailedly discussed in Sec. 6; 3) DLTH allows a flexible sparse network
selection but LTH must use the pruned mask and the sparse structure is not controllable.

Comparisons with Pruning at Initialization (PI). PI is another relevant research topic, which se-
lects sparse network from scratch according to well-designed criterion. The subnetwork with better
trainability is picked for following finetuning. Unlike LTH finding sparse candidate through con-

5



Published as a conference paper at ICLR 2022

ventional pruning, PI chooses candidates without training a dense network. Following our definition
in Sec. 3, PI requires km = 0, kw = 0. Fm is determined by different algorithms and Fw = I .
Similarly, PI also aims to obtain a specific sparse network based on criteria and the selected sparse
structure is not controllable. Our work is not for choosing one specific subnetwork but transferring
a random subnetwork into a good condition. In this way, the sparse structure will be flexible and
under our control. We summarize these comparisons in Tab. 1.

As LTH and PI use finetuning to evaluate final performance, our DLTH also conducts the same
finetuning on the transformed subnetwork to make fair comparison with other methods.

5 RANDOM SPARSE NETWORK TRANSFORMATION

Being analogous to the real-world lottery game where the winning ticket exists in the lottery pool but
hard to find, randomly picking a subnetwork from a random dense network is not wise and needs to
be transformed leveraging on the existing information from other parts of network (other tickets). We
follow this analogy to propose Random Sparse Network Transformation (RST) to obtain trainable
sparse network. Specifically, we employ a widely-used regularization term Wang et al. (2020b;
2019b) to borrow information from other weights which are set to be masked. It benefits the sparse
network training by extruding information from other weights to the target sparse structure.

Information Extrusion. We use a regularization term to realize information extrusion. Given a
randomly initialized dense network f(x; θ) with a randomly selected subnetwork represented by
mask m ∈ {0, 1}, the information extrusion can be achieved as optimizing following loss:

LR = L(f(x; θ),D) + 1

2
λ‖θ∗‖22, (3)

where loss LR contains a regular training loss L on given dataD and a L2 regularization term added
on θ∗. θ∗ is the part of parameter θ which being masked by m = 0. In this way, the unmasked
weights, referred as θ∗, are regularly trained by SGD, while the masked weights θ∗ are still involved
for network training but their magnitudes are gradually suppressed via the increasing regularization.
The trade-off parameter λ is set to gradually increase from a small value during optimizing LR:

λp+1 =

{
λp + η, λp < λb,

λp, λp = λb,
(4)

where λp is the regularization term at p-th updating. η is the given mini-step for gradually increasing
λ value. λb is the bound to limit the λ increasing. In this way, the magnitude of θ∗ is diminished
from a regular to a small scale along with training process. Hence, the importance of weights is
dynamically adjusted from a balanced (equal for all weights) to an imbalanced situation (θ∗ becom-
ing less important with diminishing magnitude). The information of θ∗ is gradually extruded into
θ∗. Analogically, the random ticket is transformed to winning ticket by leveraging information from
other tickets in the whole lottery pool. After sufficient extrusion, the θ∗ will have very limited effect
on the network and we remove them to obtain the final sparse network, which will be finetuned to
obtain the final test performance for model evaluation.

6 EXPERIMENTAL VALIDATION

Experiments are based on ResNet56/ResNet18 He et al. (2016) on CIFAR10/CIFAR100 Krizhevsky
et al. (2009), and a ImageNet subset Deng et al. (2009) to compare our method with Lottery Ticket
Hypothesis (LTH) Frankle & Carbin (2018) and other strong baselines. We set five sparsities: 50%,
70%, 90%, 95%, and 98%. Specifically, we leave the first convolutional layer and the last dense
layer as complete, and prune the weights in other middle layers with the consistent sparsity ratio.
We run each experiment three times and report their means with standard deviations.

Comparison Approaches. We use several comparison methods: L1 Li et al. (2016) is the regular L1
pruning based on pretrained network. LTH Frankle & Carbin (2018) is the lottery ticket performance
based on one-shot pruning strategy. LTH-Iter follows the iterative magnitude pruning strategy used
in LTH. EB You et al. (2020) is the Early-Bird ticket for LTH with one-shot pruning strategy. Scratch
represents training a random subnetwork from scratch without pretraining. RST and RST-Iter are our

6



Published as a conference paper at ICLR 2022

Table 2: Performance comparison of ResNet56 on CIFAR10 and CIFAR100 datasets using 50%,
70%, 90%, 95%, and 98% sparsity ratios. Except for the L1 row, the highest/second highest perfor-
mancs are emphasized with red/blud fonts.

ResNet56 + CIFAR10: Baseline accuracy: 93.50%

Pruning ratio 50% 70% 90% 95% 98%

L1 Li et al. (2016) (Pretrain-based) 93.33±0.08 92.83±0.39 91.67±0.11 90.13±0.21 84.78±0.27
LTH Frankle & Carbin (2018) 92.67±0.25 91.88±0.35 89.78±0.35 88.05±0.50 83.85±0.55
LTH Iter-5 Frankle & Carbin (2018) 92.68±0.39 92.50±0.15 90.24±0.27 88.10±0.36 83.91±0.15
EB You et al. (2020) 92.76±0.21 91.61±0.60 89.50±0.60 88.00±0.38 83.74±0.35
Scratch 92.49±0.35 92.14±0.27 89.89±0.12 87.41±0.31 82.71±0.40
RST (ours) 92.34±0.12 92.27±0.24 90.41±0.05 88.24±0.08 83.77±0.47
RST Iter-5 (ours) 93.41±0.16 92.67±0.02 90.43±0.21 88.40±0.14 83.97±0.09

ResNet56 + CIFAR100: Baseline accuracy: 72.54%

Pruning ratio 50% 70% 90% 95% 98%

L1 Li et al. (2016) (Pretrain-based) 71.96±0.10 71.59±0.21 68.29±0.20 64.74±0.22 50.04±1.52
LTH Frankle & Carbin (2018) 69.95±0.47 68.24±0.60 65.66±0.47 60.97±0.30 52.77±0.44
LTH Iter-5 Frankle & Carbin (2018) 70.57±0.15 69.54±0.46 64.84±0.11 60.45±0.61 53.83±0.09
EB You et al. (2020) 70.27±0.59 69.16±0.36 64.01±0.42 60.09±0.33 53.14±1.04
Scratch 70.96±0.25 68.59±0.35 64.62±0.52 59.93±0.24 50.80±0.55
RST (ours) 71.13±0.48 69.85±0.23 66.17±0.18 61.66±0.37 54.11±0.37
RST Iter-5 (ours) 71.39±0.34 70.48±0.19 65.65±0.15 61.71±0.36 54.46±0.32

method in one-shot and iterative way, respectively. We use uniform-randomly selected subnetworks
to represent the general cases for our RST and validate the DLTH.

Implementations. All experiments use the same finetuning schedule for fairness. Experiments on
CIFAR10/CIFAR100 are optimized by SGD with 0.9 momentum and 5e-4 weight decay using 128
batch size. Total number of epochs is 200 with 0.1/0.01/0.001 learning rates starting at 0/100/150
epochs, respectively. Those for ImageNet are optimized by SGD with 0.9 momentum and 1e-4
weight decay using 256 batch size. Total number of epochs is 90 with 0.1/0.01/0.001/0.0001 learning
rates starting at 0/30/60/75 epochs, respectively.

We use the same schedule as finetuning to pretrain the network for L1 and LTH. For LTH-Iter, we
set the total number of epochs as 50 with 0.1/0.01/0.001 learning rates starting at 0/25/37 epochs,
respectively, for each mini-pretraining. Other configurations are kept as the same. For EB, we use
its original early stop point, 25 epochs (1/8 of total epochs), and keep other settings as the same.

For RST, we set the start point λ0 and bound λb as 0 and 1, respectively. The mini-step η is set as
1e-4 and the λ is increased every 5 iterations termed as vη . Each iteration optimizes the parameter
with 64 batch size and 1e-3 learning rate. After λ reaches the bound, we continue the extrusion
with 40,000 iterations for model stability termed as vs. For RST-Iter, in order to keep fairness with
LTH-Iter, we accordingly diminish the transformation process by setting λ being increased every
1 iterations and 10,000 iterations for model stability. More detailed comparisons are provided in
Sec. 6.1. Since our transformation uses 1e-3 learning rate, we add a small warm-up slot in finetuning
for our methods: 10 epochs and 4 epochs with 1e-2 learning rate, for CIFAR10/CIFAR100 and
ImageNet, respectively, at the beginning then back to 0.1 as mentioned above.

6.1 BASELINE COMPARISONS

Tab. 2 shows the comparisons on CIFAR10/CIFAR100. The full accuracy (first line) is trained by
regular SGD on random dense network. For consistency, L1, LTH, LTH Iter-5, and EB inherit
the same initial weights as the full accuracy model. Scratch, RST, and RST Iter-5 use the same
initial weights as above and they also share the same randomly selected subnetwork from the dense
one. Only L1 requires pretrained model and others use random dense network. Note that, once the
subnetwork is randomly decided, it is kept intact without any structural modification. Since L1 uses
pretrained network, it should have the highest performance. Thus, we exclude the L1 and emphasize
the rest rows using red/blue fonts as the highest/second highest performances.

Performance Analysis. In Tab. 2, we find: 1) Our method generally outperforms other approaches;
2) Compared with LTH which uses wisely picked subnetwork, our method achieves promising re-

7



Published as a conference paper at ICLR 2022

sults on randomly picked subnetwork, which solidly validates our DLTH. Our method also pushes
the performance close to the L1 with comparable results and even better in certain cases; 3) Com-
pared with scratch, our method consistently achieves better performance; 4) Iterative strategy bene-
fits both LTH and RST.

1 2 3 4 5
Number of Cycles

91.4

91.6

91.8

92.0

92.2

92.4

92.6

92.8

93.0

To
p1

 A
cc

ur
ac

y

LTH
DLTH

Figure 3: LTH v. DLTH on CIFAR10 with 0.7
sparsity to choose cycle number.

Iterative Cycle Number Choice. Using itera-
tive magnitude pruning is a key factor for LTH
which is the benchmark for our work. Hence,
we first conduct an ablation study on LTH to
choose the most competitive iteration number
(cycle number) for a persuasive comparison.
We use CIFAR10 with 0.7 sparsity as an exam-
plar to set the iterative numbers in Fig. 3. We
run 3 times and plot the mean with shadow area
as standard deviation. LTH performs better us-
ing more iterative cycles; our DLTH takes less
advantages of more cycles but still outperforms
LTH. To throughly demonstrate our superiority, we set the cycle number as 5 (the best choice for
LTH) for both LTH and our DLTH. The ablation study and further analysis of DLTH cycle number
is provided in Fig. 4.

Table 3: Test Accuracy of ResNet18 on ImageNet Subset.

ResNet18 + ImageNet Subset: Baseline: 78.96%

Sparsity 50% 70%

LTH Frankle & Carbin (2018) 77.87 76.48
RST (ours) 78.24 76.80

ImageNet Results. We compare RST
with LTH on a ImageNet subset in
Tab. 3. ImageNet subset contains 200
out of 1000 classes from the original
dataset. We use the one-shot strategy for
LTH/RST and our RST performs better.

Discussion of DLTH v. LTH. As a dual
format of LTH, DLTH allows randomly
selecting subnetwork instead of pruning pretrained network for mask. RST transfers the picked ran-
dom ticket for winning, instead of directly employing obtained mask to represent the winning ticket
in LTH. This pair of hypothesis use the same finetuning schedule and we compare their differences
as “pretrain + prune” versus “randomly select + transform”: 1) Pretraining requires the same com-
putational resource as finetuning in our experiments. L1 pruning can be done efficiently without any
parameter updating; 2) DLTH randomly selects a subnetwork with no extra cost (even no sorting
cost). The transformation can be seen as an optimization process. Based on the details in the imple-
mentations section above, the extra training cost can be calculated as ce = ((λb/η)·vη+vs)∗Nb/ND,
where Nb and ND are batch size and number of training samples. Specifically, for RST, this number
is (1/1e-4)*5+40000)*64/50000 ≈ 115 epochs (CIFAR as example). We conclude: 1) Since RST
still maintains the full network during transformation, the required memory space is the same as
pretraining in LTH; 2) Complete LTH and RST require 400 epochs and 315 epochs training cost
(both including 200 finetuning epochs). The extra computational cost of RST is lower than LTH.
3) In 5-cycle iterative setting, for RST Iter-5: there are ce = ((1/1e-4)*1+10000)*64/50000 = 25.6
epochs each cycle and 5 * 25.6 = 128 epochs for total before finetuning; for LTH Iter-5: this number
is 5*50 = 250 epochs. RST Iter-5 is still more efficient than LTH Iter-5.

Exactly as saying goes: There ain’t no such thing as a free lunch, finding trainable sparse structure
in a random dense network needs extra cost. As the calculations above, these cost of both LTH and
RST are in reasonable scope (ours is more efficient). However, our hypothesis considers a more
general and valuable side of this pair-wise hypotheses.

Iterative Number Ablation Study for RST. Fig. 3 shows the LTH benefits from the more iterations
(cycles) but our RST obtains relatively robust performance with a little improvement. We show the
ablations for RST here and leave the detailed discussions in the supplementary material. Fig. 4
visualizes the performance variations of different cycle numbers. We find using iteration strategy
(cycles: 2,3,4,5) can outperform the one-shot strategy (cycle: 1) for most cases. However, the overall
performances show robustness about iteration number with a little improvement and inapparent
correlation between cycle numbers and final performances.

8



Published as a conference paper at ICLR 2022

1 2 3 4 5
Number of Cycles

93.0

93.1

93.2

93.3

93.4

93.5

Pr
=0

.5

Pr=0.5
Pr=0.7
Pr=0.9
Pr=0.95
Pr=0.98 92.50

92.55

92.60

92.65

92.70

92.75

92.80

Pr
=0

.7

90.1

90.2

90.3

90.4

Pr
=0

.9

88.05

88.10

88.15

88.20

88.25

88.30

88.35

88.40

Pr
=0

.9
5

83.5

83.6

83.7

83.8

83.9

Pr
=0

.9
8

1 2 3 4 5
Number of Cycles

71.40

71.45

71.50

71.55

71.60

71.65

71.70

Pr
=0

.5

Pr=0.5
Pr=0.7
Pr=0.9
Pr=0.95
Pr=0.98

70.0

70.1

70.2

70.3

70.4

70.5

Pr
=0

.7

65.60

65.65

65.70

65.75

65.80

Pr
=0

.9

61.4

61.5

61.6

61.7

61.8

Pr
=0

.9
5

53.6

53.8

54.0

54.2

54.4

Pr
=0

.9
8

(a) Iterative cycle number ablation on CIFAR10. (b) Iterative cycle number ablation on CIFAR100.

Figure 4: Ablation study for iterative cycle number of DLTH. (a)/(b) show the 3 times average
performance on CIFAR10/CIFAR100 with sparsity ratio from 0.5 to 0.98 and cycle number from 1
to 5. Different colors represent different sparsity ratios. (This figure is best viewed in color.)

Comparison with GraSP. We compare RST with Gradient Signal Preservation (GraSP) Wang et al.
(2020a), a representative Pruning at Initialization (PI) approach, to further validate our DLTH. Ex-
periments are based on CIFAR10/CIFAR100 datasets (see Tab. 4) using ResNet56 and ImageNet
subset (see Tab. 5) using ResNet18 on different sparsities. GraSP selects a subnetwork from a ran-
dom dense network to finetune. To be fair, RST inherits the weights of the same random dense
network and follows the same layer-wise sparsity ratio derived by GraSP. RST achieves better per-
formances using the layer-wise sparsity from GraSP, which means RST has generalibility to handle
different sparse structures and further validates our proposed DLTH.

Table 4: Comparison with GraSP on CIFAR10 and CIFAR100 datasets.
ResNet56 + CIFAR10: Baseline accuracy: 93.50%

Sparsity 50% 70% 90% 95% 98%

GraSP Wang et al. (2020a) 91.72 90.75 89.93 88.62 84.46
RST (ours) 92.69±0.13 92.03±0.28 90.88±0.11 89.14±0.27 84.95±0.05

ResNet56 + CIFAR100: Baseline accuracy: 72.54%

Sparsity 50% 70% 90% 95% 98%

GraSP Wang et al. (2020a) 67.88 67.38 64.21 59.39 45.01
RST (ours) 70.18±0.29 69.54±0.07 64.86±0.33 60.20±0.14 45.98±0.36

Table 5: Top-1 and top-5 accuracy comparison with GraSP on ImageNet Subset.
ResNet18 + Imagenet Subset

Sparsity 70% 90% 95%

Metric Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

GraSP Wang et al. (2020a) 75.20 92.17 73.64 91.15 69.70 89.62
RST (ours) 76.95 92.87 74.49 91.52 70.33 90.01

7 CONCLUSION AND DISCUSSION

We propose a Dual Lottery Ticket Hypothesis (DLTH) as a dual problem of Lottery Ticket Hypoth-
esis (LTH). We find that a randomly selected subnetwork in a randomly initialized dense network
can be transformed into an appropriate condition with admirable trainability. Compared with LTH,
our DLTH considers a more challenging and general case about studying sparse network training,
being summarized as follows: 1) It is executable to transferring a randomly selected subnetwork
of a randomly initialized dense network into a format with admirable trainability; 2) The flexibil-
ity of selecting sparse structure ensures us having the controllability of the subnetwork structure
instead of determined by pruning method; 3) Our DLTH studies sparse network training in a com-
plementary direction of LTH. It investigates general relationships between dense network and its
sparse subnetworks which is expected to inspire following research for sparse network training. We
propose a simple strategy, Random Sparse Network Transformation (RST), to validate our DLTH.
Specifically, we naturally involve a regularization term and leverage other weights to enhance sparse
network learning capacity. Extensive experiments on several datasets with competitive comparison
methods substantially validate the DLTH and effectiveness of the proposed RST.

9



Published as a conference paper at ICLR 2022

REFERENCES

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In ICML, 2019.
1

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017. 4

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In COMPSTAT, pp.
177–186. Springer, 2010. 4

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017. 1

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009. 6, 12

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020. 1

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019. 3

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In ICML, 2020. 4

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018. 2, 4, 6, 7, 8, 12, 13, 14

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019. 1

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.
1, 2, 3

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015b. 1, 2, 3

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Morgan Kaufmann, 1993. 1, 3, 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016. 6

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In ICCV, 2017. 1

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009. 6, 12

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In NeurIPS, 1990. 1, 3

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018. 1, 3

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
perspective for pruning neural networks at initialization. arXiv preprint arXiv:1906.06307, 2019.
3

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016. 6, 7, 13, 14

10



Published as a conference paper at ICLR 2022

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In ICCV, 2017. 1, 3

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312, 2017. 3

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018. 3

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In ICML, 2019. 3

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximations for model
compression. arXiv preprint arXiv:2004.14340, 2020. 1

Suraj Srinivas and R Venkatesh Babu. Generalized dropout. arXiv preprint arXiv:1611.06791, 2016.
3

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. In ICML, 2019a. 1

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020a. 1, 2, 3, 4, 9, 12, 16

Huan Wang, Qiming Zhang, Yuehai Wang, Lu Yu, and Haoji Hu. Structured pruning for efficient
convnets via incremental regularization. In IJCNN, 2019b. 6

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020b. 3, 4, 6

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Emerging paradigms of neural network pruning.
arXiv preprint arXiv:2103.06460, 2021. 4

Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. arXiv preprint arXiv:1802.00124, 2018. 3

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Yingyan Lin,
Zhangyang Wang, and Richard G. Baraniuk. Drawing early-bird tickets: Toward more efficient
training of deep networks. In ICLR, 2020. 3, 6, 7

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016. 1

Guodong Zhang, James Martens, and Roger Grosse. Fast convergence of natural gradient descent
for overparameterized neural networks. arXiv preprint arXiv:1905.10961, 2019. 1

A ANALYSIS OF ITERATIVE NUMBER ABLATION STUDY FOR DLTH

We analyze the ablation pattern from implementation aspect of iterative strategy for both LTH and
RST. Then, we provide more experimental details. For both LTH and RST with iteration strategy,
the corresponding subnetwork is selected or pruned iteratively until it reaches the given sparsity.
However, the iterative operations for LTH and RST are different. For each iteration of LTH, it
obtains the pretrained model and uses L1 pruning to decide the subnetwork based on the weight
magnitude. In this way, the subnetwork is elaboratively selected within each iteration and LTH is
progressively enhanced to achieve higher performance. On the other side, within each iteration,
RST randomly selects weights to add regularization and removes them at the end of this iteration.
This iteration strategy does improve the performances for most cases (see comparison between RST
and RST Iter-5 in Tab. 2), because the extra weights are gradually removed through each iteration
and the whole transformation is more stable. However, compared with LTH enhanced by iteratively
using L1 pruning, this progressive enhancement for RST is relatively weak. We further analyze this
comparison based on the experiments of ablation study.

11



Published as a conference paper at ICLR 2022

Table 6: Cycle number ablation study for RST ResNet56 on CIFAR10 and CIFAR100 datasets.

ResNet56 CIFAR10: Baseline accuracy: 93.50% CIFAR100: Baseline accuracy: 72.54%

Cycles 50% 70% 90% 95% 98% 50% 70% 90% 95% 98%

1 93.02 92.50 90.03 88.05 83.75 71.53 70.44 65.57 61.38 53.51
2 93.47 92.79 90.17 88.14 83.49 71.51 70.47 65.66 61.69 54.04
3 93.57 92.61 90.36 88.33 83.78 71.63 70.01 65.83 61.84 54.17
4 93.54 92.63 90.46 88.14 83.64 71.70 70.35 65.78 61.56 53.65
5 93.41 92.67 90.43 88.40 83.97 71.39 70.48 65.65 61.71 54.46
Mean 93.40 92.64 90.29 88.21 83.73 71.55 70.35 65.70 61.64 53.97
Std 0.20 0.09 0.16 0.13 0.16 0.11 0.18 0.09 0.16 0.35

Experimentally, Tab. 6 provides performance means and standard deviations of each cycle number
for RST ablation study on CIFAR10/CIFAR100 datasets. We find RST obtains relatively robust per-
formances among different cycle numbers. However, it generally achieves better performances with
small standard deviations compared with other methods in Tab. 2. We conclude RST is adaptable
and robust for iteration strategy and even obtains better performances using fewer cycles compared
with LTH, which can further save the computational costs.

In order to make fair comparisons with LTH, we implement RST with an iteration strategy following
the fashion in LTH and use the same iterative number. For how to wisely leverage the iteration
strategy for RST to obtain further improvement, we leave it into our future work.

B DETAILED EXPERIMENTAL COMPARISON

As an extension of experimental comparisons in the tables of Baseline Comparisons section, we
provide the performances of each run for L1, LTH, Scratch, and RST with their average and standard
deviation shown in Tab. 7 and Tab. 8, which demonstrate the consistent effectiveness of our proposed
RST. The column of Mean±Std is the same values in the tables of our main text.

C VISUALIZATIONS OF PERFORMANCE COMPARISON

We provide visualizations of performance comparisons. The comparison between Lottery
Ticket Hypothesis (LTH) Frankle & Carbin (2018) and our Dual Lottery Ticket Hypothesis
(DLTH) using the proposed Random Sparse Network Transformation (RST) on CIFAR10 and CI-
FAR100 Krizhevsky et al. (2009) are shown in Fig. 5 and Fig. 6. The comparisons between our RST
and training from scratch on CIFAR10 and CIFAR100 Krizhevsky et al. (2009) datasets are shown
in Fig. 7 and Fig. 8. We plot the 100 to 200 finetuning epochs for a clear visualization.

D IMPLEMENTATION DETAILS

We use 4 NVIDIA Titan XP GPUs to perform our experimental evaluations. Each experiment on
CIFAR10/CIFAR100 dataset requires around 6 hours on one GPU and each experiment on Ima-
geNet Deng et al. (2009) subset requires around 12 hours on two GPUs. Further, in the section of
comparison between our RST and GraSP Wang et al. (2020a) algorithm, we use the layer-wise spar-
sity ratio obtained from GraSP. We provide the detailed layer-wise ratio for CIFAR10 and CIFAR100
shown in Fig. 9 and Fig. 10, respectively.

E CURRENT LIMITATION AND FUTURE WORK

Our Dual Lottery Ticket Hypothesis (DLTH) paves a complementary direction to explore Lottery
Ticket Hypothesis (LTH) problem. Current experimental results and analysis substantially validate
our proposed DLTH. However, there are still some remaining problems. For example, we vali-
date the random sparse network can be manipulated into a good trainable condition in this work.
However, which type of sparse structure can be transformed in a high efficiency and which fits the
practical deployment appropriately to benefit computational acceleration? These questions are still
open and we will continually explore them in our future work.

12



Published as a conference paper at ICLR 2022

Table 7: Different runs details of test accuracy comparisons on CIFAR10 dataset using ResNet56.
Our method generally achieves better performance and validates the proposed DLTH.

ResNet56 + CIFAR10: Baseline accuracy: 93.50%

Pruning ratio 50 % Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 93.40 93.22 93.36 93.33±0.08
LTH Frankle & Carbin (2018) 92.99 92.65 92.37 92.67±0.25
Scratch 92.47 92.07 92.93 92.49±0.35
RST (ours) 92.43 92.17 92.42 92.34±0.12

Pruning ratio 70% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 93.26 92.31 92.93 92.83±0.39
LTH Frankle & Carbin (2018) 92.34 91.49 91.82 91.88±0.35
Scratch 92.50 92.07 91.84 92.14±0.27
RST (ours) 92.26 91.98 92.57 92.27±0.24

Pruning ratio 90% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 91.62 91.57 91.82 91.67±0.11
LTH Frankle & Carbin (2018) 89.30 89.89 90.14 89.78±0.35
Scratch 89.97 89.73 89.98 89.89±0.12
RST (ours) 90.39 90.35 90.48 90.41±0.05

Pruning ratio 95% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 90.19 90.35 89.85 90.13±0.21
LTH Frankle & Carbin (2018) 88.41 87.35 88.40 88.05±0.50
Scratch 87.66 86.97 87.59 87.41±0.31
RST (ours) 88.36 88.21 88.16 88.24±0.08

Pruning ratio 98% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 85.15 84.67 84.52 84.78±0.27
LTH Frankle & Carbin (2018) 84.11 84.35 83.08 83.85±0.55
Scratch 82.82 82.17 83.14 82.71±0.40
RST (ours) 83.94 83.13 84.24 83.77±0.47

13



Published as a conference paper at ICLR 2022

Table 8: Different runs details of test accuracy comparisons on CIFAR100 dataset using ResNet56.
Our method generally achieves better performance and validates the proposed DLTH.

ResNet56 + CIFAR100: Baseline accuracy: 72.54%

Pruning ratio 50 % Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 71.95 71.85 72.09 71.96±0.10
LTH Frankle & Carbin (2018) 70.08 69.32 70.46 69.95±0.47
Scratch 71.18 71.09 70.61 70.96±0.25
RST (ours) 70.56 71.74 71.08 71.13±0.48

Pruning ratio 70% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 71.35 71.54 71.87 71.59±0.21
LTH Frankle & Carbin (2018) 69.08 67.95 67.70 68.24±0.60
Scratch 68.61 69.01 68.16 68.59±0.35
RST (ours) 69.81 69.59 70.16 69.85±0.23

Pruning ratio 90% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 68.55 68.25 68.07 68.29±0.20
LTH Frankle & Carbin (2018) 65.08 66.23 65.67 65.66±0.47
Scratch 64.33 64.18 65.34 64.62±0.52
RST (ours) 66.42 65.98 66.11 66.17±0.18

Pruning ratio 95% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 64.57 64.61 65.05 64.74±0.22
LTH Frankle & Carbin (2018) 60.55 61.22 61.15 60.97±0.30
Scratch 59.89 59.66 60.24 59.93±0.24
RST (ours) 61.77 62.05 61.17 61.66±0.37

Pruning ratio 98% Run # 1 Run # 2 Run # 3 Mean±Std

L1 Li et al. (2016) 52.19 48.88 49.04 50.04±1.52
LTH Frankle & Carbin (2018) 53.38 52.53 52.39 52.77±0.44
Scratch 51.36 51.00 50.05 50.80±0.55
RST (ours) 53.84 53.85 54.63 54.11±0.37

14



Published as a conference paper at ICLR 2022

100 150 200
Epoch

65

70

75

80

85

90

95
Ac

c

Pruning ratio:0.5

LTH
DLTH

100 150 200
Epoch

65

70

75

80

85

90

95

Ac
c

Pruning ratio:0.7

LTH
DLTH

100 150 200
Epoch

65

70

75

80

85

90

95

Ac
c

Pruning ratio:0.9

LTH
DLTH

100 150 200
Epoch

60

65

70

75

80

85

90

Ac
c

Pruning ratio:0.95

LTH
DLTH

100 150 200
Epoch

55

60

65

70

75

80

85

Ac
c

Pruning ratio:0.98

LTH
DLTH

Figure 5: Visualization of test accuracy comparison of LTH and DLTH on CIFAR10 using
ResNet56. Our DLTH general outperforms LTH and achieves comparable performance for 98%
pruning ratio.

100 150 200

Epoch

45

50

55

60

65

70

75

A
cc

Pruning ratio:0.5

LTH
DLTH

100 150 200

Epoch

45

50

55

60

65

70

75

A
cc

Pruning ratio:0.7

LTH
DLTH

100 150 200

Epoch

40

45

50

55

60

65

70
A

cc
Pruning ratio:0.9

LTH
DLTH

100 150 200

Epoch

35

40

45

50

55

60

65

A
cc

Pruning ratio:0.95

LTH
DLTH

100 150 200

Epoch

25

30

35

40

45

50

55

A
cc

Pruning ratio:0.98

LTH
DLTH

Figure 6: Visualization of test accuracy comparison of LTH and DLTH on CIFAR100 using
ResNet56. Our DLTH general outperforms LTH for all sparsities.

100 150 200
Epoch

65

70

75

80

85

90

95

Ac
c

Pruning ratio:0.5

Scratch
DLTH

100 150 200
Epoch

65

70

75

80

85

90

95

Ac
c

Pruning ratio:0.7

Scratch
DLTH

100 150 200
Epoch

65

70

75

80

85

90

95

Ac
c

Pruning ratio:0.9

Scratch
DLTH

100 150 200
Epoch

60

65

70

75

80

85

90

Ac
c

Pruning ratio:0.95

Scratch
DLTH

100 150 200
Epoch

55

60

65

70

75

80

85
Ac

c
Pruning ratio:0.98

Scratch
DLTH

Figure 7: Visualization of test accuracy comparison of training from scratch and DLTH on CIFAR10
using ResNet56. Our training strategy consistently surpasses training from scratch on different
pruning ratios. The performance gain increases when the pruning ratio becomes larger.

100 150 200
Epoch

45

50

55

60

65

70

75

Ac
c

Pruning ratio:0.5

Scratch
DLTH

100 150 200
Epoch

45

50

55

60

65

70

75

Ac
c

Pruning ratio:0.7

Scratch
DLTH

100 150 200
Epoch

40

45

50

55

60

65

70

Ac
c

Pruning ratio:0.9

Scratch
DLTH

100 150 200
Epoch

35

40

45

50

55

60

65

Ac
c

Pruning ratio:0.95

Scratch
DLTH

100 150 200
Epoch

25

30

35

40

45

50

55

Ac
c

Pruning ratio:0.98

Scratch
DLTH

Figure 8: Visualization of test accuracy comparison of training from scratch and DLTH on CI-
FAR100 using ResNet56. Our training strategy consistently surpasses training from scratch on
different pruning ratios. The performance gain increases when the pruning ratio becomes larger.

15



Published as a conference paper at ICLR 2022

0 20 40 60
Layer Index

48

49

50

51

52

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.5

0 20 40 60
Layer Index

50

55

60

65

70

75

80

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.7

0 20 40 60
Layer Index

50

60

70

80

90

100

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.9

0 20 40 60
Layer Index

50

60

70

80

90

100

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.95

0 20 40 60
Layer Index

50

60

70

80

90

100

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.98

Figure 9: ResNet56 layer-wise sparsity ratio of different overall sparsity on CIFAR10 dataset. These
layer-wise ratios are obtained by GraSP Wang et al. (2020a) algorithm. The last layer is the final
fully-connected layer whose value is relatively special compared with others. The layer-wise spar-
sity generally starts from around 50% and increases when layer index increases for different overall
sparsity (except for 50% whose layer-wise sparsity are distributed around 50% for all layers).

0 20 40 60
Layer Index

48

49

50

51

52

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.5

0 20 40 60
Layer Index

50

55

60

65

70

75

80

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.7

0 20 40 60
Layer Index

50

60

70

80

90

100

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.9

0 20 40 60
Layer Index

50

60

70

80

90

100

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.95

0 20 40 60
Layer Index

50

60

70

80

90

100

La
ye

r-w
is

e 
Sp

ar
si

ty

Overall Sparsity:0.98

Figure 10: ResNet56 layer-wise sparsity ratio of different overall sparsity on CIFAR100 dataset.
These layer-wise ratios are obtained by GraSP Wang et al. (2020a) algorithm. The last layer is the
final fully-connected layer whose value is relatively special compared with others. The layer-wise
sparsity generally starts from around 50% and increases when layer index increases for different
overall sparsity (except for 50% whose layer-wise sparsity are distributed around 50% for all layers).

16


