Under review as a conference paper at ICLR 2026

DEEPWEIGHTFLOW: RE-BASINED FLOW MATCHING
FOR GENERATING NEURAL NETWORK WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Building efficient and effective generative models for neural network weights has
been a research focus of significant interest that faces challenges posed by the
high-dimensional weight spaces of modern neural networks and their symmetries.
Several prior generative models are limited to generating partial neural network
weights, particularly for larger models, such as ResNet and ViT. Those that do
generate complete weights struggle with generation speed or require finetuning of
the generated models. In this work, we present DeepWeightFlow, a Flow Match-
ing model that operates directly in weight space to generate diverse and high-
accuracy neural network weights for a variety of architectures, neural network
sizes, and data modalities. The neural networks generated by DeepWeightFlow
do not require fine-tuning to perform well and can scale to very large networks.
We apply Git Re-Basin and TransFusion for neural network canonicalization in the
context of generative weight models to account for the impact of neural network
permutation symmetries and to improve generation efficiency for larger model
sizes. The generated networks excel at transfer learning, and ensembles of hun-
dreds of neural networks can be generated in minutes, far exceeding the efficiency
of diffusion-based methods. DeepWeightFlow models pave the way for more ef-
ficient generation of diverse sets of large neural networks.

1 INTRODUCTION

Generating neural network weights is a sampling challenge that explores the underlying high-
dimensional distribution of weights, where neural networks trained on similar datasets and tasks
exhibit statistical regularities. The development of generative models capable of learning the dis-
tributional properties of trained weights faces challenges of symmetries and high-dimensionality
of the weight spaces. Treating large collections of neural network weights as a structured and
high-dimensional data modality promises advances in model editing (Mitchell et al., 2022; Meng
et al., 2022), accelerating transfer learning (Knyazev et al., 2021; Schiirholt et al., 2022), facilitat-
ing uncertainty quantification (Lakshminarayanan et al., 2017), and advancing neural architecture
search (Chen et al., 2019; Chen, 2023). Unlike traditional machine learning tasks that aim to opti-
mize weights for specific downstream tasks, this concept advocates sampling from the weight space
itself. In this work, we focus on the efficient generation of complete neural network weights that
can achieve high performance for a given task and excel at transfer learning thus addressing funda-
mental limitations in current deep learning workflows, such as computational bottlenecks in iterative
training, vulnerability to adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018) and pri-
vacy concerns arising from training data reconstructions (Nasr et al., 2019; Tramer et al., 2022).

Generating neural network weights faces three main challenges: Firstly, neural network weights
have a rich class of symmetries (Hecht-Nielsen, 1990; Entezari et al., 2022; Navon et al., 2023; Zhao
etal., 2025), i.e., transformations of the weights that leave the neural network functionally invariant.
Most prominently, joint permutations of hidden neurons in adjacent layers of multi-layer percep-
trons (MLP) do not change the encoded function. Other architectural choices, such as incorporating
attention heads or the choice of non-linear activation, can induce additional symmetries. Techniques
for dealing with weight space symmetries fall into three main categories: (1) data augmentation,
(2) equivariant architectures, and (3) canonicalization. Prior work, such as Wortsman et al. (2022);
Wang et al. (2024); Soro et al. (2025); Saragih et al. (2025a), does not actively account for symme-
tries in their generative models, while others, such as Saragih et al. (2025b), use equivariant architec-

Under review as a conference paper at ICLR 2026

DeepWeightFlow Pipeline

a) Training data b) Canonicalization c) Weight generation

Target networks (optional)

flz | Wh, ..., W) W; = BW;PT (Wi,...,Wp) ~p;

HE.E EE E)
Flow

- - - - - - Matching - - -

—=N N LF N AR

Wy Wy - wr, ﬁ/l Wo = Wy y/

Figure 1: Schematic depiction of DeepWeightFlow. a) We construct a training dataset of weights by fully
training neural networks with weights W1, ..., W, on a given target task. b) Optionally, we use canonical-
ization, i.e., choosing a canonical representative V~Vl from the same orbit as W, to break the permutation
symmetry in parameter space. c) We train a flow model p for efficient generation of high-performance weights
(Wh,...,WL) ~ p; for the target task.

tures. Data augmentation has also been explored in weight representation learning (Schiirholt et al.,
2024; Shamsian et al., 2023; 2024), and to a lesser extent in weight generation (Schiirholt et al.,
2024; Wang et al., 2025). Finally, canonicalization has recently found application in weight space
learning (Schiirholt et al., 2024; Wang et al., 2024; 2025), borrowing ideas from model merging and
alignment (Ainsworth et al., 2023; Rinaldi et al., 2025).

Secondly, neural network weights are high-dimensional, varying from tens of millions for a small
ResNet (He et al., 2016) to hundreds of billions for modern large language models (Touvron et al.,
2023; Guo et al., 2025). This challenge is often addressed by non-linear, dimensionality reduc-
tion techniques, including variational autoencoders (VAEs) (Soro et al., 2025) and graph autoen-
coders (Schiirholt et al., 2022; Saragih et al., 2025b; Soro et al., 2025). Despite increasing efficiency,
dimensionality reduction requires training an additional model for dimensionality reduction and can
be detrimental to the quality of the generated weights if the compression is lossy.

Lastly, generative models proposed recently either generate partial weights for large models, or re-
quire finetuning post-generation, or have long generation time per sample, making them impractical.

To address these challenges, we propose DeepWeightFlow, a method for efficient generation of
high-performance neural network weights via Flow Matching (FM) and apply it to MLP for vision
and tabular data, as well as ResNet, and ViT (Dosovitskiy et al., 2021). We rely on canonical-
ization techniques, such as Git Re-Basin (Ainsworth et al., 2023) and TransFusion (Rinaldi et al.,
2025), to resolve parameter permutation symmetries, and show that canonicalization aids weight
generation for large neural networks but offers limited benefits when the weight space dimension is
moderate. We show that neural networks generated by DeepWeightFlow excel at the target task and
are competitive with state-of-the-art weight generation methods such as RPG (Wang et al., 2025),
D2NWG (Soro et al., 2025), FLoOWN (Saragih et al., 2025b), and P-diff (Wang et al., 2024) while
overcoming several of the limitations of these models. A schematic of our methods is shown in Fig-
ure 1. While DeepWeightFlow samples directly from weight spaces, we show that the models can
easily scale to generating larger networks using PCA while keeping the training and the generation
time low. In summary, the contributions of this work are as follows:

* DeepWeightFlow is a new method for complete neural network weight generation based on
FM, unconditioned by dataset characteristics, task descriptions, or architectural specifications.
DeepWeightFlow does not require additional training of autoencoders for dimensionality re-
duction and can scale to high-dimensional weight spaces using PCA.

* We show that our method can generate weights for neural networks with up to O(10M) pa-
rameters, and diverse architectures, such as MLP, ResNet, and ViT, that, without fine-tuning,
exhibit high performance on tasks from the vision and tabular domains.

* We empirically elucidate the role of parameter symmetry for weight generation, showing that
canonicalization of the training data aids the generation of very high-dimensional weights but
offers no additional benefit for weights of modest dimension.

* DeepWeightFlow with a simple MLP implementation, without any equivariant architecture,
is far more efficient in generating diverse samples compared to diffusion-based models.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

HyperNetworks: Early explorations of neural network generation focus on HyperNetworks, which
learn neural network parameters as a relaxed temporal weight sharing process (Ha et al., 2017). Hy-
perNetworks have been applied to generating weights through density sampling, GAN, and diffusion
methods by learning latent representations of neural network weights (Ha et al., 2017; Frankle &
Carbin, 2019; Ratzlaff & Fuxin, 2019; Schiirholt et al., 2022; Kiani et al., 2024). They have also
been used to build meta-learners — augmentations or substitutes for Stochastic Gradient Descent op-
timization, which condition generation of new weight checkpoints on prior weights and task losses
(Peebles et al., 2022; Zhang et al., 2024a; Wang et al., 2025).

Generative Models for Neural Network Weights: Diffusion-based generative models for weights
have been successful at neural network weight generation, but often do not directly resolve weight
space symmetries. These approaches either provide no treatment (Wang et al., 2024), or rely on
Variational Auto Encoding (VAE) methods to concurrently resolve weight symmetries and reduce
the dimensionality of the generative task (Ha et al., 2017; Frankle & Carbin, 2019; Schiirholt et al.,
2022; Kiani et al., 2024; Soro et al., 2025). In contrast, weight canonicalization is done as a pre-
training step in SANE (Schiirholt et al., 2024), which uses kernel density sampling of hypernetwork
latents to autoregressively populate models layer-wise, allowing for complete weight generation, but
requires fine-tuning, unlike DeepWeightFlow. Diffusion has been applied directly to generating par-
tial (Wang et al., 2024) or complete weights (Soro et al., 2025; Wang et al., 2025). RPG (Wang et al.,
2025) generates complete weights by using a recurrent diffusion model. However, RPG shows long
generation times, often taking hours to generate a set of networks that DeepWeightFlow takes min-
utes to complete. Subsequent Conditional Flow Matching (CFM) methods (Saragih et al., 2025b;a)
explore dataset embeddings as conditioning for transfer learning and weight generation. These
CFMs also report using VAE methods to reduce the dimensionality of the generative task and to
resolve weight symmetries (Saragih et al., 2025b;a). We develop this further with DeepWeightFlow,
which operates directly in deep weight space to generate complete weight sets, and demonstrates the
viability of PCA as a strategy for surpassing O(10M) parameter sets.

Permutation Symmetries in Weight Space: SANE (Schiirholt et al., 2024) applies Git Re-Basin as
a canonicalization for hypernetwork training (Schiirholt et al., 2022; 2024; Ainsworth et al., 2023).
Unlike DeepWeightFlow, SANE tokenizes weights layer-wise and autoregressively samples them
to populate new neural models. RPG (Wang et al., 2025) uses a different strategy to address per-
mutation symmetry by one-hot encoding models to differentiate between potential permutations of
similar weights. D2NWG (Soro et al., 2025) and FLoWN (Saragih et al., 2025b) evaluate VAEs,
and permutation invariant graph autoencoding and pruning methods to appeal to the manifold and
lottery ticket hypotheses (Ha et al., 2017; Frankle & Carbin, 2019; Schiirholt et al., 2022; Kiani
et al., 2024). DeepWeightFlow extends the canonicalization methods from previous works to trans-
formers through TransFusion, and thoroughly evaluates the impact of canonicalization on generating
complete weight sets (Schiirholt et al., 2024; Wang et al., 2024; 2025; Soro et al., 2025).

3 BACKGROUND

DeepWeightFlow is an FM model using an MLP architecture trained on canonicalized neural net-
works. In this section, we give a brief overview of the various methods we use to build it.

3.1 FLOW MATCHING

Flow Matching (Lipman et al., 2023) is a generative technique for learning a vector field to trans-
port a noise vector to a target distribution. Given an unknown data distribution ¢(x), we define a
probability path p; for ¢ € [0,1] with pg ~ A (0,1) and p; ~ ¢(z). FM learns a vector field with
parameters 6, vg(x, t), that transports pg to p; by minimizing

Lem(0) = Erra(0,1),0mps (o) [1v0 (2, 1) — ulz,)]1?], (1)

where u(x, t) is the true vector field generating p; (), and U[0, 1] denotes the uniform distribution on
the unit interval [0, 1]. This loss is minimized if vy matches u, effectively following the probability
path from pg to p;. FM offers several advantages over diffusion for neural network weight gener-
ation as it enables simpler and faster sampling, relies on direct vector field regression for training,

Under review as a conference paper at ICLR 2026

and scales efficiently to high-dimensional spaces, making it particularly well-suited for generating
complete neural network weights.

3.2 PERMUTATION SYMMETRIES OF NEURAL NETWORKS AND RE-BASIN

Permutation symmetry is a common weight space symmetry in neural networks (Hecht-Nielsen,
1990). Consider the activations z, € R at the /" layer of a simple MLP, with weights W, €
Rée+1%de biases b, € R¥+1, and activation o, zgy1 = o(Wyz, + by), where zg = x is the input
data. Applying a permutation matrix P € R%+1 X441 of appropriate dimension, yields

ze41 = PTPzy = PTPo(Wize + by) = PTo(PWize + Ply), 2)

where PTP = I. This shows that a permutation of the output features of the ¢*" layer, when met
with the appropriate permutation of the input features of the next layer ¢ + 1, will leave the overall
MLP functionally invariant (Ainsworth et al., 2023).

Similar permutation symmetries (Lim et al., 2024) exist for the channels of convolutional neural
networks and the attention heads of the transformer architecture (Hecht-Nielsen, 1990; Ainsworth
et al., 2023; Rinaldi et al., 2025). These symmetries shape the loss landscape (Pittorino et al.,
2022), impacting optimization(Neyshabur et al., 2015a; Liu, 2023; Zhao et al., 2024) , generaliza-
tion(Neyshabur et al., 2015b; Dinh et al., 2017), and model complexity (Zhao et al., 2025). They
also impact the ability of generative models to learn distributions over neural network weights. Per-
mutation symmetry gives rise to a highly multi-modal loss surface leading to a large set of weights
that render the resulting models equivalent in task performance (Hecht-Nielsen, 1990; Lim et al.,
2024).

In model alignment, weights are aligned with respect to a reference model to produce unique ’canon-
ical’ representations for each equivalence class of the weight permutation symmetry. The Git Re-
Basin (Ainsworth et al., 2023) weight matching approach permutes the hidden units of an MLP
such that the inner product between reference and permuted weights is maximized. The resulting
optimization problem is a sum of bilinear assignment problems (SOBLAP). Git Re-Basin solves
this problem approximately, using coordinate descent, reducing each layer’s subproblem to a linear
assignment and iterating until convergence. TransFusion (Rinaldi et al., 2025) extends this idea of
weight alignment to transformers where permutation symmetries exist both in MLPs and within and
between attention heads, applying iterative alignment steps to reconcile permutations of heads and
hidden units. More details on this can be found in Appendix A and Appendix B.

4 METHODS

We implement a simple MLP-based FM model. The explicit encoding of the symmetries of the
neural networks is done using TransFusion for transformers and Git Re-Basin for all other archi-
tectures. We generate neural network weights independently trained from random initialization and
not drawn from a sequence of checkpoints from training a single neural network, thus increasing the
diversity of the training set, for training all DeepWeightFlow models.

Flow Matching Architecture and Training: DeepWeightFlow is a flow-based model Lipman et al.
(2023). We use a time-conditioned neural network that predicts a velocity vector along a trajectory
between source and target network weights. The source is a distribution of Gaussian noise given
by 2o ~ N(0,02I), and the target is a distribution of trained weights (z; ~ Drarget)- The source
distribution has the same dimensions as the target. Given a sampled time ¢ € [0, 1] (uniformly
distributed), an interpolated point along the straight-line trajectory is computed as u; = (1 —¢)xg +
tx1. To stabilize training, stochastic points are generated by adding Gaussian noise x; = pu; + €,
with € ~ N/(0,0%1). The instantaneous target velocity along this linear trajectory is u; = x1 — 2
(since % = x1 — xg), which is constant along the straight-line path. The network sees x; as
input, while u, is derived from the endpoints (xg, 1). The scalar time ¢ is embedded into a higher-
dimensional vector tempea = MLP(t) € Réime | where dgme varies depending on the complexity of the
model for which we are training DeepWeightFlow. We use a shallow MLP with layer normalization,
dropout regularization, and GELU activations. This tempeq 1S concatenated with x; and fed into
the main network, allowing the network to condition on time in a learnable, flexible manner. The
network maps (¢, tembed) — Vo (xt,t), where vy is the learned vector field. The main network

Under review as a conference paper at ICLR 2026

consists of fully connected layers with LayerNorm, GELU activations, and Dropout, ending with a
linear layer mapping back to the flattened weight dimension. Finally, new weight configurations are
generated by integrating the learned vector field from random Gaussian inputs in the same flattened
weight space as the source distribution. This integration is performed using a fourth-order Runge-
Kutta (RK4) method, which ensures high-accuracy trajectories in weight space. Concretely, at each
integration step, the vector field is evaluated at the current point and time, and RK4 increments are
computed to update the weights. This procedure allows sampling of realistic neural network weight
configurations that smoothly interpolate between source and target distributions.

Canonicalization: We apply canonicalization to align the training set to a single reference, as neu-
ral network loss landscapes are inherently degenerate due to permutation symmetries in the weight
space. This simplifies the learning process without the need for complex equivariant architectures.
To implement canonicalization for smaller MLPs and ResNets, we use the weight-matching proce-
dure of Git Re-Basin (Ainsworth et al., 2023) for 100 iterations. For ViTs, we use the TransFusion
procedure (Rinaldi et al., 2025) for 10 iterations as the latter uses spectral decomposition and is
slower than Git Re-Basin. The detailed description of these methods can be found in Appendix A
and Appendix B.

Batch Normalization Statistics Based Recalibration: We implement a post-generation recalibra-
tion procedure where batch normalization (BN) (loffe & Szegedy, 2015) statistics are recomputed
using the training dataset for each set of generated weights. Neural networks with BN pose chal-
lenges for weight generation, as even perfectly generated weights can underperform if BN statistics
are misaligned. DeepWeightFlow addresses this by recalibrating BN statistics after weight gen-
eration, ensuring models are accurate. While the FM framework successfully learns BN weight
parameters (v and), the running statistics (mean and variance) require more careful processing.
These statistics are intrinsically tied to the training data distribution and must be precisely calibrated
for each generated weight set. Our experiments, summarized in Table 6, reveal that directly trans-
ferring running statistics from a reference model yields suboptimal performance. We provide our
recalibration algorithm in Algorithm 1 (Wortsman et al., 2021; 2022). Layer normalization (Ba
et al., 2016) is permutation invariant and does not need recalibration (Ainsworth et al., 2023).

Training Data Generation: All training data used in this work was generated ab initio from a set
of randomly initialized neural networks trained separately, thus generating a diverse set of neural
networks. Details of the training dataset generation can be found in Appendix G. We test Deep-
WeightFlow on diverse tasks such as the Iris (Fisher, 1936), MNIST (Lecun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009) datasets. Recent work by Zeng
et al. (2025) has raised concerns about the lack of diversity of weights sampled from generative mod-
els trained on checkpoints from training a single neural network (Wang et al., 2024). As described
above, we do not use checkpoints from a single training run. We provide code to generate the train-
ing datasetin https://github.com/anonymousacademicc/DeepWeightFlow—-ICLR
and hyperparameters in Table 9 and Table 10 of Appendix G.

5 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of our approach across different
architectures, training conditions, and downstream tasks. We show that DeepWeightFlow generates
complete weights for MLPs, ResNets, and Vits with high accuracy, and canonicalization improves
performance at low flow matching model capacity. We see that incremental PCA enables scaling
DeepWeightFlow to tens of millions of parameters without accuracy degradation. Our approach is
robust across diverse initialization schemes, including Kaiming, Xavier, Gaussian, and Uniform. We
see that Gaussian source distributions outperform Kaiming, with variance choice being most critical
at low capacity. Generated CIFAR-10 models transfer effectively to STL-10 and SVHN, both in
zero-shot and fine-tuning settings. Lastly, the generated models are diverse while maintaining strong
accuracy, and training and sampling are significantly faster than diffusion models such as RPG.

5.1 COMPLETE WEIGHT GENERATION ACROSS ARCHITECTURES

DeepWeightFlow generates complete neural network weights and the generated networks perform
as well as the training set. In Table 1, Table 2, and Table 3, we highlight the results of generating
MLPs, ResNet-18/20s and ViTs from DeepWeightFlow models. We have conducted our experi-
ments on MNIST, Fashion-MNIST, CIFAR-10, STL-10 (Coates et al., 2011), and SVNH (Goodfel-

https://github.com/anonymousacademicc/DeepWeightFlow-ICLR

Under review as a conference paper at ICLR 2026

Table 1: Comparison of DeepWeightFlow with other SOTA neural network weight generating methods for
complete generation of weights for MNIST classifiers, without finetuning.

Model Neural Network Original Generated Reference
DeepWeightFlow (w/ Git Re-Basin) 96.17 + 0.31

DeepWeightFlow (w/o Git Re-Basin) > -ayer MLP 96.32£0.20 947193 027

WeightFlow (Geometric, aligned + OT) 3-Layer MLP 93.3 78.6 Erdogan (2025)
FLoWN (Unconditioned) medium-CNN 92.76 83.58 Saragih et al. (2025b)

Table 2: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for com-
plete ResNet-18 CIFAR-10 classifier weight generation, without fine tuning.

Model Original Generated Generated Reference
(Partial) (Complete) Reference

DeepWeightFlow (w/ Git Re-Basin) 04.45 + 0.14 93.55 £ 0.13

DeepWeightFlow (w/o Git Re-Basin) 93.47 £ 0.20

RPG 95.3 - 95.1 Wang et al. (2025)

SANE 92.14 +0.12 - 68.6 £1.2 Schiirholt et al. (2024)

D2NWG 94.56 - 94.57 + 0.0 Soro et al. (2025)

P-diff (best neural network) 94.54 94.36 - (Sharral O

FLoWN (best neural network) 94.54 94.36 - Saragih et al. (2025b)

Table 3: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for ViT
family CIFAR-10 classifiers, without finetuning. We have used ViT-small-192, indicating an embedding dimen-
sion of 192 Wang et al. (2025); Schiirholt et al. (2024); Soro et al. (2025); Dosovitskiy et al. (2021) .

Model neural network Original Generated Reference
DeepWeightFlow (w/ TransFusion) . 83.07 £ 0.42

DeepWeightFlow (w/o TransFusion) ~ vi-Small-192- 83.30 £0.29 ¢9'59 3 (o7

P-diff (Best) ViT-mini 73.0 73.6 Wang et al. (2024)
RPG ViT-Base 98.7 98.9 Wang et al. (2025)

low et al., 2013) datasets. As noted before, we generate the complete weights for all neural networks,
including those with batch normalization such as ResNet-18 and ResNet-20. The comprehensive
weight generation scope of DeepWeightFlow is unlike existing approaches such as FLoWN (Saragih
et al., 2025b) and P-diff (Wang et al., 2024), which primarily generate only partial weight sets (lim-
ited to batch normalization parameters due to lack of scalability with neural network parameter
size). Moreover, DeepWeightFlow generated networks perform as well as the training set without
the requirement of additional conditioning during training or inference. With sufficient flow model
capacity, performance converges regardless of canonicalization or noise scheduling strategy, sug-
gesting that model capacity can compensate for suboptimal design choices. The choice of source
distribution significantly impacts FM performance and generated model diversity (cf. Figure 2).

Effect of Source Distributions: Critical to the success of DeepWeightFlow, is the careful selec-
tion of the standard deviation parameter of the source distribution: optimal results are achieved
when the source distribution’s standard deviation matches or slightly undershoots that of the target
weight distribution. Our empirical analysis demonstrates that Gaussian noise consistently outper-
forms alternative initializations (e.g., Kaiming initialization) as the source distribution (Table 8 in
Appendix F). This sensitivity is particularly pronounced in smaller flow models, where insufficient
capacity amplifies the importance of proper initialization (Saragih et al., 2025b).

Scaling with PCA: DeepWeightFlow can scale to large neural networks using PCA. For mod-
els with tens of millions of parameters, we employ incremental PCA to reduce the dimensionality
of flattened weight vectors before FM, followed by inverse transformation post-generation. This
approach maintains accuracy levels, as can be seen from Table 7 in Appendix E, while enabling
tractable training of DeepWeightFlow for large-scale architectures. This demonstrates the feasibil-

Under review as a conference paper at ICLR 2026

ity of extending our methodology to generate complete weight sets for contemporary large neural
networks without the requirement of training additional models for dimensionality reduction, such
as autoencoders, as is often done for latent diffusion-based models (Wang et al., 2024).

Table 4: Canonicalization is beneficial when DeepWeightFlow has limited capacity, leading to superior perfor-
mance. As model capacity increases, both canonicalized and non-canonicalized models perform comparably,
with the best results highlighted in bold.

Original Generated
Dataset Architecture dp* with re-basin without re-basin
(accuracy) (accuracy) (accuracy)

mean =+ st. dev. mean = st. dev. mean =+ st. dev.
256 91.43 £ 2.07 91.03 +2.20
. 128 91.43 £ 2.46 90.87 £+ 3.25
Iris MLP 64 070£202 91873503 90.80 + 4.86
32 90.80 + 2.54 88.93 £ 6.09
512 96.17 + 0.31 96.19 + 0.27
256 96.21 £ 0.28 96.20 £ 0.23
MNIST MLP 128 9032+£020 917441037 8971+ 17.93
64 57.80 £+ 9.85 25.54 £ 12.90
512 89.10 £ 0.29 89.11 £ 0.28
. 256 89.06 + 0.29 89.02 £+ 0.30
Fashion-MNIST MLP 128 89.24 + 0.27 88.09 + 2.24 85.81 + 11.32
64 77.76 £ 3.72 53.35 £+ 30.49
512 75.07 £ 1.24 74.92 4+ 0.80
256 75.32 £+ 0.83 74.91 £0.97
CIFAR-10 ResNet-20 128 73.62 £ 2.24 73.08 £ 4.35 7235 1 .86
64 20.16 + 13.44 20.06 £ 15.76
384 82.99 + 0.11 82.58 + 0.07
. . 256 83.07 £ 0.42 82.51 £0.55
CIFAR-10 Vit-Small-192 128 83.30 £+ 0.29 69.09 + 25.20 41.15 + 25.26
64 43.13 £ 30.28 12.67 £ 7.11
1024 93.55 £+ 0.13 93.47 £0.20
512 93.49 + 0.19 93.43 £0.64
CIFAR-10 ResNet-187 128 94.45 4 0.14 57.98 + 34.02 4755 1 3746
64 29.92 + 19.79 21.93 £+ 19.86

TResNet-18 results use PCA-reduced weights.
*dp,: flow hidden dimension

Impact of Canonicalization: We observe a capacity-dependent behavior of DeepWeightFlow mod-
els with and without canonicalization: 1) at lower capacity of the FM models, models trained on
canonicalized neural network weights generate higher performing ensembles than the FM mod-
els trained on non-canonicalized data. However, as the capacity of the FM model increases, the
performances of the ensembles of generated neural networks become similar. In general, FM mod-
els trained on canonicalized neural network weights approach the performance of the training set
(Poriginal” neural networks) with lower capacity. Moreover, when flow model parameters are lim-
ited, models trained on canonicalized data generate neural networks with observably lower variance
in accuracy compared to non-canonicalized counterparts. In Table 4 we show the performance of
DeepWeightFlow with and without canonicalization.

Robustness Across Initialization Schemes: To evaluate generalization capability, we conducted
extensive robustness testing using MLP models trained on the Iris dataset with diverse initialization
strategies (Kaiming (He et al., 2015), Xavier (Glorot & Bengio, 2010), Kaiming weights and zero
for biases, normal, and uniform distributions). Training a single flow model on this heterogeneous
collection (100 models total: 20 seeds x 5 initialization types) successfully generated novel weights
achieving high test accuracy, demonstrating the framework’s ability to learn from and generate
weights across different initialization regimes. All other experiments maintained consistency by
using Kaiming initialization with varied random seeds.

5.2 TRANSFER LEARNING ON UNSEEN DATASETS

Our generated models can be effectively used for transfer learning (Nava et al., 2023; Zhang et al.,
2024b) across unseen datasets. In our experiments, we trained DeepWeightFlow on ResNet-18
models for the CIFAR-10 dataset using PCA, generated 5 models, and recalibrated their batch nor-

Under review as a conference paper at ICLR 2026

malization running mean and variance on a small subset of CIFAR-10. These models were then
evaluated under zero-shot and finetuning settings on STL-10 and SVHN datasets. The results are
presented in Table 5. DeepWeightFlow-generated models consistently outperformed state-of-the-art
FM models such as FloWN (Saragih et al., 2025b) in both zero-shot and finetuning evaluations. Fur-
thermore, they significantly outperformed randomly initialized models, proving the effectiveness of
the method.

Table 5: Zero-shot (Epoch 0) and fine-tuning performance comparison of complete ResNet-18 CIFAR-10 clas-
sifiers generated by DeepWeightFlow, FLoWN, and Randomlnit. Randomlnit refers to fresh Kaiming-He ini-

tialization. Best results for each fine-tuning checkpoint are in bold. Saragih et al. (2025b)

Epoch Model Method STL-10 SVHN

FLOWN RandomInit 10.00 & 0.00 10.00 & 0.00
o Generated 35.16 +1.24 17.99 & 0.82

. RandomInit 11.18 & 1.48 8.01 & 1.41
DeepWeightFlow Goporated 4832+ 034 11.57 + 0.49
RandomInit 18.94 +0.09 19.50 4 0.03

1 FLoWN Generated 36.15+ .14 68.64 + 7.07
DeepWeichtFl RandomInit 38.28 & 1.07 84.07 +1.76
CepWeIghHIOW Generated ~ 79.69 + 1.08 91.66 + 0.79
RandomInit 28.24 +0.01 39.59 & 10.0
S FLoWN Generated ~ 3743+ 1.19 77.36 + 1.07
DeenWeightFl RandomInit 51.35+0.51 93.82+0.16
cepWerghttlow Generated 84.63 £ 0.17 95.85 + 0.09

5.3 DIVERSITY OF GENERATED MODELS

To evaluate the DeepWeightFlow models’ generative capabilities, we compute the maximum IoU
(mlIoU) between the generated neural networks and the neural networks in the training set (referred
to as the “original” neural networks). The mloU is constructed from the intersection over union
of the wrong predictions made by the neural networks (Wang et al., 2024). It is defined as IoU =
|P7RORE N PO /| PO U P8 where Py comes from the set being compared (such as from
the generated set) and P, comes from a reference set (such as the set of original neural networks).
We disregard the IoU of a neural network with itself as it is trivially 1. The mIoU measure scales
from complete dissimilarity at O to complete similarity at 1.

With Git Re-Basin

o Generated

P60 065 0f0 07 080 085 000 095 1
Masimum IoU Similarity vs Original + A(0,0.01) Models

Without Git Re-Basin

o Generated

L0 n 05 06

09 Xl PUG0 065 0r0 07 080 085 0.95 07
Maximum ol Similarity

000 005 09 0
Maximum IoU Similarity vs Original + A/(0,0.01) Models

M [N [06
Maxximum ToU Similarity vs

07

s s
Original Models s Original Models

Figure 2: Maximum IoU vs test set accuracy for MNIST classifying MLPs. Lower maximum loU implies
greater diversity between the neural network weights. The left-most panels are generated and original neural
networks (from the DeepWeightFlow training set) with different scales of Gaussian noise added with respect
to the original neural networks. The middle panels show that the generated neural networks and the original
neural networks with noise added, which overlap in the left-most panels, are concretely different. The right-
most panels contain the original and generated neural networks with different source distributions. All panels
include 500 models generated by DeepWeightFlow.

Under review as a conference paper at ICLR 2026

In Figure 2, we compare the original neural networks with the generated ones, with noise added to
the weights of the original neural networks, and with neural networks generated with different FM
source distributions. The upper row compares the cases for the FM models trained with re-basin,
and the lower panels, without. In the left-most panels, we see that i) the original networks are quite
diverse from each other, as evident from the blue cloud. This is the case as, unlike several previous
works, we do not use checkpoints from the training of a single neural network as the training set
of the DeepWeightFlow model. Instead, we generate independent sets of neural networks from
random initializations. ii) The yellow and green clouds show that adding progressively increasing
Gaussian noise to the original networks makes them progressively diverse from the original networks
as expected (< 1). iii) The red cloud representing the generated networks shows diversity from the
original set but seems to overlap with the green set, which represents the set created by adding
noise sampled from A/(0,0.01) to the original neural network weights. From the middle panels in
Figure 2, we see that the red cloud representing the generated neural networks is sufficiently diverse
from the original ones with added noise sampled from A(0,0.01). This gives us confidence that the
generated neural networks are, indeed, not the same as the original networks with noise added to
the weights. Lastly, the right-most panels show how diverse the generated neural networks are when
generated with different source distributions. Hence, DeepWeightFlow is capable of generating
a diverse set of neural networks while maintaining the accuracy of the task. In Appendix J, we
provide the numerical estimates of mloU, the Jensen-Shannon, Wasserstein, and Nearest Neighbors
(NN) distances between generated and original neural networks.

5.4 TRAINING AND SAMPLING EFFICIENCY

DeepWeightFlow is significantly faster to train and generate neural network weights when compared
to diffusion models in complete neural network weights generation. DeepWeightFlow takes up to
O(10) minutes to train for most neural network architectures with up to O(10M) parameters as
compared to the several hours that it takes to train RPG (Wang et al., 2025). For generating neural
network weights, DeepWeightFlow takes a few minutes to generate hundreds of neural networks
compared to the hours it takes to generate a comparable ensemble using RPG. Yet, DeepWeightFlow
generates ensembles of neural networks that have comparable outcomes for ResNet-18s and ViTs.
This is primarily because RPG is a diffusion model, whereas DeepWeightFlow is based on FM using
a simple MLP implementation. A detailed comparison of training and generation efficiency can be
found in Table 12 in Appendix L.

6 CONCLUSION

In this work, we introduce DeepWeightFlow, a generative model for neural network weights that
performs FM directly in weight space, unconditioned by dataset characteristics, task descriptions,
or architectural specifications, and avoiding nonlinear dimensionality reduction. Through extensive
experiments, we show that DeepWeightFlow generates diverse neural network weights for a variety
of architectures (MLP, ResNet, ViT) that show excellent performance on vision and tabular clas-
sification tasks. We provide empirical evidence that canonicalizing the training data facilitates the
generation of larger networks but is of limited usefulness for moderate-dimensional weights.

Scalability can be a concern when working directly in weight space. Even though our experi-
ments show that DeepWeightFlow can be combined with simple linear dimensionality reduction
techniques, such as PCA, to mitigate restrictions on model size, exploring scalability to very large
models as well as the compatibility of DeepWeightFlow with model distillation, low-rank approx-
imations, or sparsity remains future work. While we empirically investigate the role of canonical-
ization for weight generation, some open questions about the relative merits of canonicalization,
equivariant architecture design, and data augmentation for learning in deep weight spaces remain.

REPRODUCIBILITY STATEMENT

The architectural details along with the hyperparameters used to generate the data have been pro-
vided in the main text and the appendix (Table 11, Table 10, and Table 9). The dataset will be
made available on request and/or uploaded to a data repository. The code necessary to reproduce the
results is in https://github.com/anonymousacademicc/DeepWeightFlow—ICLR.

https://github.com/anonymousacademicc/DeepWeightFlow-ICLR

Under review as a conference paper at ICLR 2026

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models mod-
ulo permutation symmetries. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=CQsmMYm1P5T.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, Tingyang Xu,
and Junzhou Huang. Progressive feature alignment for unsupervised domain adaptation. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 627-636, 2019.
URL https://ieeexplore.ieee.org/document /8953748.

Xiangning Chen. Advancing Automated Machine Learning: Neural Architectures and Optimiza-
tion Algorithms. PhD thesis, University of California, Los Angeles, United States — Califor-
nia, 2023. URL https://www.proquest.com/docview/2899619104/abstract/
8CADGEC2664A464CPQ/ 1.

Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single-Layer Networks in Unsuper-
vised Feature Learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 215-223. JMLR Workshop and Conference Proceedings, June
2011. URL https://proceedings.mlr.press/vl5/coateslla.html.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1019-1028. PMLR, 2017. URL https:
//proceedings.mlr.press/v70/dinhl7b.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation in-
variance in linear mode connectivity of neural networks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=dNigytemkL.

Ege Erdogan. Geometric flow models over neural network weights, 2025. URL https:
//arxiv.org/abs/2504.03710.

R. A. Fisher. The used of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):
179-188, 1936. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/7.
1469-1809.1936.tb02137.x.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJ1-b3RcF7.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 249-256, 2010. URL http://proceedings.mlr.press/v9/
glorotlOa.html.

Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit
number recognition from street view imagery using deep convolutional neural networks. In
Proceedings of the 2013 International Conference on Machine Learning (ICML), 2013. URL
https://arxiv.org/abs/1312.6082.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv, 2015. URL https://arxiv.org/abs/1412.6572.

10

https://openreview.net/forum?id=CQsmMYmlP5T
https://arxiv.org/abs/1607.06450
https://ieeexplore.ieee.org/document/8953748
https://www.proquest.com/docview/2899619104/abstract/8CAD6EC2664A464CPQ/1
https://www.proquest.com/docview/2899619104/abstract/8CAD6EC2664A464CPQ/1
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v70/dinh17b.html
https://proceedings.mlr.press/v70/dinh17b.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=dNigytemkL
https://arxiv.org/abs/2504.03710
https://arxiv.org/abs/2504.03710
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1312.6082
https://arxiv.org/abs/1412.6572

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Deli Chen, Dongjie
Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Hanwei Xu, Honghui Ding, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Ji-
ashi Li, Jingchang Chen, Jingyang Yuan, Jinhao Tu, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi
Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaichao You, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu,
Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingxu Zhou, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqgi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi
Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuip-
ing Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Tao Yun, Tian
Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wen Liu, Wenfeng Liang, Wenjun Gao, Wengqin
Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xi-
aotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaox-
iang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang,
Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping
Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z.Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei
Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang.
DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning. Nature, 645
(8081):633-638, September 2025. ISSN 1476-4687. doi: 10.1038/s41586-025-09422-z. URL
https://www.nature.com/articles/s41586-025-09422-z.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rkpACellx.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026-1034,
2015. URL https://www.cv-foundation.org/openaccess/content_iccv_
2015/html/He_Delving_Deep_into_ICCV_2015_paper.html.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770-778, 2016. URL https://openaccess.thecvf.com/content_cvpr_
2016/html/He_Deep_Residual_Learning CVPR_2016_paper.html.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In
Rolf Eckmiller (ed.), Advanced Neural Computers, pp. 129—135. North-Holland, Amsterdam,
1990. ISBN 978-0-444-88400-8. URL https://www.sciencedirect.com/science/
article/pii/B9780444884008500194.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pp. 448-456, Lille, France, 07-09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/ioffel5.html.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Proceedings of the 34th
Conference on Uncertainty in Artificial Intelligence (UAI), pp. 876—885. AUAI Press, 2018. URL
https://arxiv.org/abs/1803.05407.

11

https://www.nature.com/articles/s41586-025-09422-z
https://openreview.net/forum?id=rkpACe1lx
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://www.sciencedirect.com/science/article/pii/B9780444884008500194
https://www.sciencedirect.com/science/article/pii/B9780444884008500194
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1803.05407

Under review as a conference paper at ICLR 2026

R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and sparse linear
assignment problems. Computing, 38(4):325-340, November 1987. ISSN 0010-485X. URL
https://doi.org/10.1007/BF02278710.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renor-
malizing permuted activations for interpolation repair. arXiv preprint arXiv:2211.08403, 2022.
doi: 10.48550/arXiv.2211.08403. URL https://arxiv.org/abs/2211.08403.

Bobak Kiani, Jason Wang, and Melanie Weber. Hardness of learning neural networks under the
manifold hypothesis. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=dkkgKzMni7.

Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and Adriana Romero. Parameter predic-
tion for unseen deep architectures. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=vqHak8NLk25.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009. URL http://www.cs.toronto.
edu/kriz/cifar.html.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, NIPS’17, pp. 6405-6416, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964. URL https://dl.acm.org/doi/
10.5555/3295222.3295387.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998. URL https://ieeexplore.
ieee.org/document/726791.

Derek Lim, Theo Putterman, Robin Walters, Haggai Maron, and Stefanie Jegelka. The empirical im-
pact of neural parameter symmetries, or lack thereof. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
1d=pCVxYw6FKg.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJTOt.

Ziyin Liu. Symmetry leads to structured constraint of learning, 2023. URL https://arxiv.
org/abs/2309.16932.

Wesley J Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. arXiv preprint arXiv:1902.02476,
2019. URL https://arxiv.org/abs/1902.02476.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=-h6WAS6eEA4.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=0DcZxeWfOPt.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and feder-
ated learning. In 2019 IEEE symposium on security and privacy (SP), pp. 739-753.
IEEE, 2019. URL https://www.computer.org/csdl/proceedings—article/
sp/2019/666000a739/1d1lwht j4r70.

12

https://doi.org/10.1007/BF02278710
https://arxiv.org/abs/2211.08403
https://openreview.net/forum?id=dkkgKzMni7
https://openreview.net/forum?id=vqHak8NLk25
https://openreview.net/forum?id=vqHak8NLk25
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
https://dl.acm.org/doi/10.5555/3295222.3295387
https://dl.acm.org/doi/10.5555/3295222.3295387
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://openreview.net/forum?id=pCVxYw6FKg
https://openreview.net/forum?id=pCVxYw6FKg
https://openreview.net/forum?id=PqvMRDCJT9t
https://arxiv.org/abs/2309.16932
https://arxiv.org/abs/2309.16932
https://arxiv.org/abs/1902.02476
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=0DcZxeWfOPt
https://www.computer.org/csdl/proceedings-article/sp/2019/666000a739/1dlwhtj4r7O
https://www.computer.org/csdl/proceedings-article/sp/2019/666000a739/1dlwhtj4r7O

Under review as a conference paper at ICLR 2026

Elvis Nava, Seijin Kobayashi, Yifei Yin, Robert K. Katzschmann, and Benjamin F. Grewe. Meta-
learning via classifier(-free) diffusion guidance. Transactions on Machine Learning Research, 4:
1-20, 2023. URL https://openreview.net/forum?id=1irViE7A3w.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In Proceedings of the 40th International
Conference on Machine Learning, ICML 23. IMLR.org, 2023. URL https://dl.acm.org/
doi/10.5555/3618408.3619481.

Behnam Neyshabur, Ruslan Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized
optimization in deep neural networks. In Advances in Neural Information Process-
ing Systems, volume 28, 2015a. URL https://papers.nips.cc/paper/
5797-path-sgd-path-normalized-optimization-in-deep—-neural-networks.
pdf.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neu-
ral networks. In Proceedings of the 28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pp. 1376-1401. PMLR, 2015b. URL https:
//proceedings.mlr.press/v40/Neyshaburl5.html.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints, 2022. URL https://arxiv.
org/abs/2209.12892.

Fabrizio Pittorino, Antonio Ferraro, Gabriele Perugini, Christoph Feinauer, Carlo Baldassi, and
Riccardo Zecchina. Deep networks on toroids: Removing symmetries reveals the structure of
flat regions in the landscape geometry. In Proceedings of the 39th International Conference on
Machine Learning, pp. 17759-17781. PMLR, 2022. URL https://proceedings.mlr.
press/v162/pittorino22a.html.

Neale Ratzlaff and Li Fuxin. HyperGAN: A generative model for diverse, performant neural net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 5361-5369. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.
press/v97/ratzlaffl9a.html.

Filippo Rinaldi, Giacomo Capitani, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli, ELISA
FICARRA, Emanuele Rodola, Simone Calderara, and Angelo Porrello. Update your transformer
to the latest release: Re-basin of task vectors. In Forty-second International Conference on Ma-
chine Learning, 2025. URL https://openreview.net/forum?id=sHvImzN9pL.

Daniel Saragih, Deyu Cao, and Tejas Balaji. Flows and diffusions on the neural manifold, 2025a.
URL https://arxiv.org/abs/2507.10623.

Daniel Saragih, Deyu Cao, Tejas Balaji, and Ashwin Santhosh. Flow to learn: Flow matching on
neural network parameters. In Workshop on Neural Network Weights as a New Data Modality,
2025b. URL https://openreview.net/forum?id=rO0ynTstqg3c.

Konstantin Schiirholt, Boris Knyazev, Xavier Giré i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural In-
formation Processing Systems, 2022. URL https://openreview.net/forum?id=
uyEYNg2HHFQ.

Konstantin Schiirholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile
weight space learning. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=ug2uoAZ9c2.

Aviv Shamsian, David Zhang, Aviv Navon, Yan Zhang, Miltiadis Kofinas, Idan Achituve, Ric-
cardo Valperga, Gertjan Burghouts, Efstratios Gavves, Cees Snoek, Ethan Fetaya, Gal Chechik,
and Haggai Maron. Data Augmentations in Deep Weight Spaces. In NeurIPS 2023 Work-
shop on Symmetry and Geometry in Neural Representations, November 2023. URL https:
//openreview.net/forum?id=jdT7PugdsSt.

13

https://openreview.net/forum?id=1irVjE7A3w
https://dl.acm.org/doi/10.5555/3618408.3619481
https://dl.acm.org/doi/10.5555/3618408.3619481
https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://proceedings.mlr.press/v40/Neyshabur15.html
https://proceedings.mlr.press/v40/Neyshabur15.html
https://arxiv.org/abs/2209.12892
https://arxiv.org/abs/2209.12892
https://proceedings.mlr.press/v162/pittorino22a.html
https://proceedings.mlr.press/v162/pittorino22a.html
https://proceedings.mlr.press/v97/ratzlaff19a.html
https://proceedings.mlr.press/v97/ratzlaff19a.html
https://openreview.net/forum?id=sHvImzN9pL
https://arxiv.org/abs/2507.10623
https://openreview.net/forum?id=r0ynTstq3c
https://openreview.net/forum?id=uyEYNg2HHFQ
https://openreview.net/forum?id=uyEYNg2HHFQ
https://openreview.net/forum?id=ug2uoAZ9c2
https://openreview.net/forum?id=jdT7PuqdSt
https://openreview.net/forum?id=jdT7PuqdSt

Under review as a conference paper at ICLR 2026

Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, and Haggai
Maron. Improved generalization of weight space networks via augmentations. In Proceedings
of the 41st International Conference on Machine Learning, volume 235 of ICML’24, pp. 44378—
44393, Vienna, Austria, July 2024. JMLR.org. URL https://dl.acm.org/doi/abs/
10.5555/3692070.3693876.

Gil Shomron and Uri Weiser. Post-training batchnorm recalibration, 2020. URL https:
//arxiv.org/abs/2010.05625.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and
Sung Ju Hwang. Diffusion-based neural network weights generation. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=7j8WHJjM9aMm.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, February 2023. URL http://arxiv.org/abs/2302.13971.

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas
Carlini. Debugging differential privacy: A case study for privacy auditing. arXiv, 2022. URL
https://arxiv.org/abs/2202.122109.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 4068-4078, 2021. URL https://arxiv.org/
abs/2103.06905.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural Network Diffusion, February 2024. URL http://arxiv.org/abs/2402.13144.

Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schiirholt, Zhangyang Wang, and Yang You.
Recurrent diffusion for large-scale parameter generation, 2025. URL https://arxiv.org/
abs/2501.11587.

Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad Raste-
gari. Learning neural network subspaces. In Marina Meila and Tong Zhang (eds.), Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 11217-11227. PMLR, 18-24 Jul 2021. URL https:
//proceedings.mlr.press/v139/wortsman2la.html.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Lud-
wig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accu-
racy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp- 23965-23998. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/
v162/wortsman22a.html.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Boya Zeng, Yida Yin, Zhiqiu Xu, and Zhuang Liu. Generative modeling of weights: Generalization
or memorization?, 2025. URL https://arxiv.org/abs/2506.07998.

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
Metadiff: Meta-learning with conditional diffusion for few-shot learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(15):16687-16695, Mar. 2024a. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/29608.

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
Metadiff: Meta-learning with conditional diffusion for few-shot learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 38, pp. 16687-16695, 2024b.

14

https://dl.acm.org/doi/abs/10.5555/3692070.3693876
https://dl.acm.org/doi/abs/10.5555/3692070.3693876
https://arxiv.org/abs/2010.05625
https://arxiv.org/abs/2010.05625
https://openreview.net/forum?id=j8WHjM9aMm
https://openreview.net/forum?id=j8WHjM9aMm
http://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2202.12219
https://arxiv.org/abs/2103.06905
https://arxiv.org/abs/2103.06905
http://arxiv.org/abs/2402.13144
https://arxiv.org/abs/2501.11587
https://arxiv.org/abs/2501.11587
https://proceedings.mlr.press/v139/wortsman21a.html
https://proceedings.mlr.press/v139/wortsman21a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2506.07998
https://ojs.aaai.org/index.php/AAAI/article/view/29608
https://ojs.aaai.org/index.php/AAAI/article/view/29608

Under review as a conference paper at ICLR 2026

Bo Zhao, Robert M. Gower, Robin Walters, and Rose Yu. Improving convergence and generalization
using parameter symmetries. In International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=L0r0GphlIL.

Bo Zhao, Robin Walters, and Rose Yu. Symmetry in Neural Network Parameter Spaces, June 2025.
URL http://arxiv.org/abs/2506.13018.

A GIT RE-BASIN

Git Re-Basin weight matching, formulated by Ainsworth et al. (2023), is a greedy permutation
coordinate descent algorithm for moving a model’s weights 64 into the same ’basin’ in the loss
landscape of the model class f; as a reference model’s weights 0.

This operation is applied here as a canonicalization step before weight flattening and the subsequent
training of the DeepWeightFlow models. The procedure reduces the space of the task from R’ to a
quotient space of R’ modulo permutation symmetry.

Applying this across the model layers constructs a transformed model ¢’ by

W, = PWy, b, = Pby, W, = Wy PT 3)

The "distance’ between two permutations is therefore a Frobenius inner product of P, WZA and WJ2,
written as (A, B) = 3, ; A; ; B; j for real-valued matrices A and B. Accounting for the transforms
outlined above, the process of matching the permutations across the stack of layers becomes,

L
argmax » (WP, BW/APL,) with P} =1 (4)
”:{PE}{J n=1

This formulation presents a Symmetric Orthogonal Bilinear Assignment Problem (SOBLAP), which
is NP-hard. However, when relaxed to focus on a single permutation P at a time - ceteris paribus,
the problem simplifies to a series of Linear Assignment Problems (LAPs) of the form below
(Ainsworth et al., 2023; Zhao et al., 2025; Rinaldi et al., 2025). These LAPs can be solved in
polynomial time by methods like the Hungarian Algorithm (Jonker & Volgenant, 1987).

arg}])rnax (WP, PWAPE)Y+ (W, P€+1WZ—‘+1P€T> ®)
(4

The product of this process is a permutation 7’ of model A’s weights into the same basin in fy’s
loss landscape as model B with exact functional equivalence (fg, = fr(s,))- However, sequences
of LAPs are understood to be coarse approximations of SOBLAPs and, as such, strong conclusions
cannot be drawn about the optimality of 7’ (Rinaldi et al., 2025; Ainsworth et al., 2023).

B TRANSFUSION

We canonicalize a collection of Vision Transformers (ViTs) using the method of Rinaldi et al.
(2025), which introduces a structured alignment procedure for multi-head attention transformer
weights (Rinaldi et al., 2025).

The core difficulty in transformers arises from multi-head attention and residual connections: Naive
global permutations either mix information across heads or break functional equivalence in residual
branches (Zhao et al., 2025). To address this, the method applies a two-level permutation scheme:

1. Inter-Head Alignment: For each multi-head attention layer, attention heads from different
checkpoints are first matched. This is done by comparing the singular value spectra of their
projection matrices, which are invariant under row and column permutations, and then
solving the resulting assignment problem with the Hungarian algorithm. This step ensures
that corresponding heads are correctly paired across models.

For a sub matrix representing a single attention head in model A, h* = [W]#4 € RF>*™,
where £ is the key value dimension and m is the attention embedding dimension, apply

15

https://openreview.net/forum?id=L0r0GphlIL
http://arxiv.org/abs/2506.13018

Under review as a conference paper at ICLR 2026

singular value decomposition (A = UXVT) to access the spectral projection matricies ¥,
which are invariant to row and column permutations. For every head in a layer of model A,
construct a distance, d;, j = ||X; —X,||. These distances can be constructed for ¢, k, and v
for each head and combined linearly D; ; = df ; +dJ ;+d} ; with D; ; € R"*H (H is the
number of heads). Therefore the optimal pairing of heads for model A and B is (Rinaldi
et al., 2025),
P, = arg min D; py; 6
inter head PgeSH Z i, P[i] ()
2. Intra-Head Alignment: Once heads are paired, the method refines the alignment by per-
muting rows and columns within each head independently, again solved via assignment on
pairwise similarity scores. Restricting permutations within heads preserves head isolation
and guarantees that residual connections remain valid after alignment.
After matching the heads of A to B the goal aligns closely with Git-ReBasin (Ainsworth
et al., 2023) - to reorder hf},[i] such that the Frobenius inner product is maximized between

H sub portions (Rinaldi et al., 2025),
P hea = argmax(h?, Php) (7

intra hea
By iterating these two stages across all transformer layers, the procedure yields a canonicalized
parameterization in which weights are aligned up to permutation symmetries. The goal is to permute
units in such a way that two weight sets #4 and 6 become functionally comparable, reducing the
effective size of the weight space that the FM encounters Rinaldi et al. (2025). This is similar to the
case of Git Re-Basin (Ainsworth et al., 2023) for canonicalization.

C RECALIBRATION OF BATCH NORMALIZATION WEIGHTS

Given a generated neural network with randomly initialized or flow-matched weights, the batch
normalization layers contain statistics that may not match the actual data distribution. Naively inter-
polating weights of trained networks can lead to variance collapse (Jordan et al., 2022; Ainsworth
et al., 2023), where the per-channel activation variances shrink drastically, breaking normalization
and degrading performance. The recalibration process computes proper running statistics using the
target dataset(Izmailov et al., 2018; Maddox et al., 2019; Shomron & Weiser, 2020; Wang et al.,
2021).

We include these statistics parameters of batch normalization layers in the PermutationSpec of Git
Re-Basin, a config that defines the permutation ordering across layers for weight matching, so that
these statistics are also permuted and correctly maintained, ensuring that the permuted networks
retain the same weights and accuracy as the original network.

C.1 STANDARD BATCH NORMALIZATION

For a feature map x € RVXCXHXW ywhere N is batch size, C' is channels, and H, W are spatial
dimensions:

1 N H W
He = NHW Z Z Z Ln,c,h,w (®)

1 N H W
0-3 = NHW Z Z Z(xn,c,h,w - ﬂc)z (9)

‘%n,c,h,w = % (10)
\VO:+€
Yn,c,h,w = 'Yc'in,c,h,w + Bc (11)

where v, and f3. are learnable scale and shift parameters, and ¢ is a small constant for numerical
stability. During training, BatchNorm (loffe & Szegedy, 2015) maintains running statistics using
an exponential moving average:

16

Under review as a conference paper at ICLR 2026

Al = (=)™ +apl (12)
720 = (1 —)52t 4 ag?® (13)

where « is the momentum parameter, typically 0.1, and ¢ denotes the time step.

Algorithm 1 Batch Normalization Recalibration

Input: Calibration dataset D (e.g., test dataset), batch size B

H and W denote the height and width of feature maps

%;.c.h denotes the activation of sample ¢, channel ¢, at spatial position (h, w).
Initialize fi. = 0, 2 = 1, n. = 0 for all channels ¢

Disable exponential moving average (momentum) updates

Partition D into mini-batch sequence {B1, Ba, ..., Bk } where Uszl B, =D
Define batch statistics for each B, and channel ¢:

,ug:k) |Bk|HW Zzszchw

1€BL h=1w=1

Og(k) |Bk|HW Z Z Z xl,C,h,’UJ - gk))2

i€By h=1w=1

A A SR ol

8: Compute running statistics where ny, = |B;|HW and n(k) = ngkfl) + ng:

(kq)ljgkq) b ugk)

—(k) _ Ne
Mc -
nk)
— _ (k Do, _ AN 2
AV | gy o200 4 e (0D 0)
_o(k) _ nt
Te' " = (k)
Ne
9: Final recalibrated statistics: fi. = ,uEK), 52 = O’c() for all channels ¢

10: Restore exponential moving average updates (set momentum = 0.1)

C.2 RECALIBRATION PROCESS
For generated networks, recompute running BatchNorm statistics:

1. Reset: Initialize running mean and variance for all channels, and set total sample count to
Zero.

2. Disable momentum: Turn off exponential moving average updates.
3. Forward pass and incremental update: For each mini-batch in the calibration dataset:

e Compute the mean and variance of the batch for each channel.

* Update the running mean as a weighted average of the previous running mean and the
batch mean.

* Update the running variance by combining the previous variance, the batch variance,
and a correction for the shift in means.

* Update the total sample count.

4. Restore momentum: Re-enable exponential moving average updates with the original
momentum value.

The algorithm we use for recalibration of the batch normalization running statistics is provided in
Algorithm 1. In Table 6 we show the results of recalibration on the generated neural networks.
This clearly shows the importance of batch normalization, running statistics recalibration on the
generation of neural networks that have batch normalization in their architecture.

17

Under review as a conference paper at ICLR 2026

Table 6: Comparing the impact of batch norm recalibration on complete ResNet-18 and 20s generated by
DeepWeightFlow. Recalibrating batch normalization statistics on a small subset of target data significantly
improves the accuracy of generated models.

Model Git Re-Basin Strategy Mean £ Std (%) Min (%) Max (%)
ResNet-18 Yes No Calibration ~ 10.00 £ 0.00 10.00 10.00
Ref BN* 19.06 £+ 9.68 10.00 94.05
Recalibrated 93.05 £+ 4.42 49.12 93.93
ResNet-18 No No Calibration 10.00 £ 0.00 10.00 10.00
Ref BN 10.28 == 1.24 6.23 15.93
Recalibrated 93.49 + 0.21 92.77 93.96
ResNet-20 Yes No Calibration 14.36 4 3.10 5.84 19.03
Ref BN 17.88 4+ 4.66 9.96 26.54
Recalibrated 74.57 + 0.84 71.47 76.17
ResNet-20 No No Calibration 12.64 4 2.22 8.12 18.19
Ref BN 10.23 £0.79 8.04 14.92
Recalibrated 75.21 £ 0.79 72.06 76.52

* Ref BN: Uses batch normalization statistics from reference model (seed 0)

D FINETUNING MODELS FOR TRANSFER LEARNING ON UNSEEN DATASETS

We leverage ResNet-18 models trained and generated on the CIFAR-10 dataset to adapt to other
unseen datasets, specifically STL-10 and SVHN (Table 5). We first evaluate the performance of the
generated CIFAR-10 models on these datasets without any fine-tuning (Epoch 0). Subsequently, we
fine-tune the models using the standard training set of the target dataset and evaluate them on the
corresponding test set. Fine-tuning is performed for up to 5 epochs using the AdamW optimizer
with a learning rate of 1 x 10~%, weight decay of 1 x 10™%, and a cosine learning rate scheduler
with Ti,.x = epochs for smooth decay. We use a detach ratio of 0.4 (same as used by Saragih et al.
(2025b)) and the cross-entropy loss is used as the objective function.

E PCA AS AN EFFECTIVE COMPRESSION STRATEGY

Table 7: Comparison of complete and PCA compressed weights generated by DeepWeightFlow. PCA enables
stable generation at larger scales while improving accuracy for ResNet-20 and maintaining performance for
Vit-Small-192. Best results are highlighted in bold.

Original Generated Models
Model Method dn With Re-basin Without Re-basin
Mean Mean + Std Mean + Std
ResNet-20 Without PCA 512 73.62 £2.24 75.07 £ 1.24 74.92 + 0.80
ResNet-20 With PCA 512 73.62+224 75.96 + 0.89 75.97 = 0.86
Vit-Small-192 Without PCA 384 83.30+0.29 82.99+0.11 82.58 £0.07
Vit-Small-192 With PCA 1024 83.30+0.29 83.08 = 0.19 83.28 + 0.01

In Table 7, we show the effects of using PCA to reduce the dimension of the neural network weight
space. This is necessary as DeepWeightFlow cannot be trained on with the full rank of the larger
neural networks, such as ResNet-18, due to memory constraints on a single GPU. Hence, we reduce
dimensionality using PCA and decompress after generation. To test the validity of PCA, we trained
the DeepWeightFlow models on ResNet-20 and ViT with and without using PCA as shown in Ta-
ble 7. We observe that the accuracy and diversity of the neural networks (indicated by the standard
deviation in the accuracy) are sufficiently representative of the original sample with or without PCA.
This gives us confidence that much larger neural networks can be generated by DeepWeightFlow us-
ing PCA. We leave the complete implementation of this as future work.

Here we have performed incremental PCA that lets us perform PCA in chunks without loading
all data into memory, but the math and essential foundation for it is exactly the same as stan-
dard PCA. Incremental PCA reduces the dimensionality of the generated weight matrices, we
start with data of shape (nsamples, flat-dim), incremental PCA projects it into a latent space of size
(Nsamples, latent_dim), where we set latent_dim = 99. Since PCA orders components by explained
variance and the rank of the data matrix is bounded by ngamples — 1, at most 99 meaningful directions

18

Under review as a conference paper at ICLR 2026

can exist for 100 samples we used. Therefore, using 99 principal components retains essentially all
the variance of the dataset, while compressing the original high-dimensional representation into a

very compact latent space.

F NEED FOR CHOOSING THE RIGHT SOURCE DISTRIBUTION

The choice of source distribution for these generative models has a significant impact on the per-
formance of the generated models. Table Table 8 highlights the importance of selecting a source
distribution that aligns well with the target distributions to ensure reliable and high-quality weight

generation.

Table 8: Evaluating the impact of various source distribution choices in
FM mapping on the performance of complete weights generated by Deep-

WeightFlow.
Model & Source Distribution ~ With Rebasin (%) Without Rebasin (%)
Vit-Small-192 on CIFAR-10
Original Accuracy 83.29 £0.29
Gaussian(0, 0.01) 78.31 4 10.99 76.69 + 14.37
Gaussian(0, 0.001) 82.90 & 0.70 82.40 £ 5.29
MLP on MNIST
Original Accuracy 96.32 + 0.20
Kaiming Initialization 81.33 + 14.10 67.35 £26.10
Gaussian(0, 0.01) 96.18 + 0.23 96.22 £+ 0.22

ViT: Architecture: Vit-Small-192 (2.7M parameters), Dataset: CIFAR-10, Flow
Hidden Dim: 384, Time Embed Dim: 64

MLP: Architecture: MLP (26.5K parameters), Dataset: MNIST, Flow Hidden
Dim: 256, Time Embed Dim: 64 Dropout: 0.1

G DATASET GENERATION

Table 9 and Table 10 provide the details

of the architecture and training hyperparameters used to

create the trained neural network datasets that were used to train DeepWeightFlow. The training

datasets can be made available on request

Table 9: Hyperparameters for training the neural networks that were used as the training datasets for Deep-

WeightFlow.

Model Dataset Params LR Schedule Optimizer LR Weight Decay Batch Size Epochs
MLP Iris 131 None Adam le3 0 16 100
MLP MNIST 26.5K None Adam le-3 0 64 5

MLP Fashion 118K None AdamW le-3 0 128 25
ResNet-18 CIFAR-10 11.2M Cosine SGD 0.1 Se-4 128 100
ResNet-20 CIFAR-10 0.27M None Adam le-3 0 128 5
Vit-Small-192 CIFAR-10 2.8M Cosine AdamW 3e-4 0.05 128 300

Table 10: Model architectures for the neural networks used to train DeepWeightFlow. For the MLPs, the first
number in the Architecture definition is the input dimension. For the ResNets, “blocks” refer to residual blocks.

Model Architecture Parameters Dataset Input Dim
MLP [4, 16, 3] 131 Iris 4% 150
MLP [784, 32, 32, 10] 26,506 MNIST 28 x 28
MLP [784, 128, 128, 10] 117,770 Fashion-MNIST 28 x 28
ResNet-20 3 x[3, 3, 3] blocks 272,474 CIFAR-10 32x32x3
ResNet-18 4 x[2,2,2,2] blocks 11.17M CIFAR-10 32x32x%x3
Vit-Small-192 194 embedding dimension, 6 blocks, 3 heads 2.87TM CIFAR-10 32x32x3

H HYPERPARAMETERS OF DEEPWEIGHTFLOW MODELS

In Table 11 we provide the hyperparameters of the DeepWeightFlow models. The FM model
architecture varies by the dimensionality of the neural networks weights in the training set and their

architecture.

19

Under review as a conference paper at ICLR 2026

Table 11: DeepWeightFlow Flow Matching training hyperparameters

Parameter Value Parameter Value

Architecture Training

Flow Model Hidden Dims [d},, dp/2, dp]* | Optimizer AdamW

Time Embedding Dim 4-128° Learning Rate 5x107*

Activation Function GELU Weight Decay 1x107°

Layer Normalization Yes AdamW 3 (0.9, 0.95)

Dropout Rate 0.1-0.4° Batch Size 4-8¢

Flow Matching Training

Time Distribution Uniform Training Iterations 30,000

Noise Scale (o) 0.001 Training Data Size 100 models

Source Distribution N(0,021)° LR Scheduler CosineAnnealing
Tmin 1x10°°

Generation Preprocessing

ODE Solver Runge-Kutta 4 | Weight Matching Git Re-Basin/TransFusion"

Integration Steps 100 BN Recalibration ResNets only®

Generated Samples

100

*dp € {32,64,128, 256,384,512} depending on architecture complexity
° Time embedding: 4 for Iris MLP, 64 for ResNet-20/MNIST/Fashion-MNIST/Vit-Small-192, 128

for ResNet-18

¢ Dropout: 0.4 for Iris MLP, 0.1 for all other architectures
4 Batch size: 4 for Vit-Small-192 and 8 for all others

¢ os = 0.001 for Vit-Small-192, o5 = 0.01 for all other architectures

! Git Re-Basin for ResNets/MLPs, TransFusion for Vision Transformers

€ BatchNorm statistics recalibrated using test data only for ResNet architectures post-generation
" Generated samples: 25 for Vit-Small-192, 100 for all other architectures

I COMPUTATIONAL EFFICIENCY: TRAINING AND GENERATION TIME

Table 12: Performance comparison between DeepWeightFlow and RPG (Wang et al., 2025). RPG generates a
single neural network per run, while DeepWeightFlow generates 100 neural networks sequentially in a single
workflow. For 100 neural networks, we estimate the generation time for RPG based on the time required to

generate a single neural network, as presented in Wang et al. (2025).

Model Method Hidden Training Generation Time GPU
Dim Time (100 models)
RPG (sequential)f - - 31 hours H100
RPG (partially parallel)T - - 3 hours HI100
ResNet-18 RPG (fully parallel)T - - 2.8 hours H100
(11.7M params) DeepWeightFlow ° 1024 3 min 2.3 min A100
DeepWeightFlow + rebasin’ 1024 2 min + 3 min 2.3 min A100
RPG (ﬂatten)i - 6.2 hours 16.3 hours H100
RPG (by channel)I - 14.2 hours 16.3 hours H100
\;lg/[-Tmy RPG (within layer)* - 6.2 hours 16.3 hours H100
(SM params) RPG (partially parallel)’ - - 1.8 hours H100
RPG (fully parallel)T - - 1.8 hours H100
DeepWeightFlow ’ 256 21 min 3.6 min A100
Vit-Small-192 DeepWeightFlow § 384 19 min 2.83 min H100
(2.8M params) DeepWeightFlow + transfusion”® 384 13 min + 19 min 2.83 min H100

"RPG inference times from Wang et al. (2025) are available only for generating a single model from which we have
computed the time necessary to generate 100 models.

' RPG training + sequential inference time from Wang et al. (2025), for generating 100 neural networks estimated from the
numbers available for single neural network generation.

: DeepWeightFlow performs sequential generation of 100 models.
DeepWeightFlow demonstrates significant computational advantages over existing parameter gener-

ation methods. We compare our approach with RPG (Wang et al., 2025), the current state-of-the-art
in recurrent parameter generation, across multiple architectures and configurations.

20

Under review as a conference paper at ICLR 2026

When incorporating Git-Rebasin (Ainsworth et al., 2023) for weight alignment, the additional com-
putational overhead is minimal:

* ResNet-18: 2 minutes for aligning 100 models

* Vit-Small-192 (Transfusion): 13 minutes for aligning 100 models

The results show that DeepWeightFlow consistently generates high-quality models while having
lower training and inference time on similar GPUs.

J DIVERSITY OF THE GENERATED NEURAL NETWORKS

In Table 13 we provide the numerical estimates of mloU, the Jensen-Shannon, Wasserstein, and
Nearest Neighbors (NN) distances between generated and original neural networks highlighting the
diversity of the generated neural networks

Table 13: Comparison of 100 complete MNIST classifying MLP weights generated by DeepWeightFlow with
and without Git Re-Basin through maximum Intersection over Union (loU), Jensen-Shannon, Wasserstein, and
Nearest Neighbors (NN) distances. Lower scores show closer relationships. (Org. - original, Gen. - generated)

Org. to Org. Org. to Gen. Gen. to Org. Gen. to Gen.
DeepWeightFlow w/ Re-Basin
IoU - 0.8187 £+ 0.0385 -
Wasserstein 13.4125 21.2867 11.6721
Jensen-Shannon - 0.7146 0.8326 0.7146
NN 23.0393 £ 0.2214 9.7232 4+ 10.4398 1.7526 £ 0.1671 11.7407 £ 10.5471

DeepWeightFlow w/o Re-Basin
ToU

Wasserstein
Jensen-Shannon -
27.4895 + 0.2007

15.1185
0.8181
12.3710 4+ 12.441

0.8256 £ 0.0748
25.6979
0.8326

1.7916 £ 0.3753

17.6939
0.7293
9.7956 £ 11.2484

21

	Introduction
	Related Work
	Background
	Flow matching
	Permutation symmetries of neural networks and re-basin

	Methods
	Experiments
	Complete Weight Generation Across Architectures
	Transfer Learning on Unseen Datasets
	Diversity of Generated Models
	Training and Sampling Efficiency

	Conclusion
	Git Re-Basin
	TransFusion
	Recalibration of batch normalization weights
	Standard Batch Normalization
	Recalibration Process

	Finetuning Models For Transfer Learning on Unseen Datasets
	PCA as an effective compression strategy
	Need for choosing the right source distribution
	Dataset generation
	Hyperparameters of DeepWeightFlow models
	Computational Efficiency: Training and Generation Time
	Diversity of the generated neural networks

