
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEPWEIGHTFLOW: RE-BASINED FLOW MATCHING
FOR GENERATING NEURAL NETWORK WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Building efficient and effective generative models for neural network weights has
been a research focus of significant interest that faces challenges posed by the
high-dimensional weight spaces of modern neural networks and their symmetries.
Several prior generative models are limited to generating partial neural network
weights, particularly for larger models, such as ResNet and ViT. Those that do
generate complete weights struggle with generation speed or require finetuning of
the generated models. In this work, we present DeepWeightFlow, a Flow Match-
ing model that operates directly in weight space to generate diverse and high-
accuracy neural network weights for a variety of architectures, neural network
sizes, and data modalities. The neural networks generated by DeepWeightFlow
do not require fine-tuning to perform well and can scale to large networks. We
apply Git Re-Basin and TransFusion for neural network canonicalization in the
context of generative weight models to account for the impact of neural network
permutation symmetries and to improve generation efficiency for larger model
sizes. The generated networks excel at transfer learning, and ensembles of hun-
dreds of neural networks can be generated in minutes, far exceeding the efficiency
of diffusion-based methods. DeepWeightFlow models pave the way for more ef-
ficient and scalable generation of diverse sets of neural networks.

1 INTRODUCTION

Generating neural network weights is a sampling challenge that explores the underlying high-
dimensional distribution of weights, where neural networks trained on similar datasets and tasks
exhibit statistical regularities. The development of generative models capable of learning the dis-
tributional properties of trained weights faces challenges of symmetries and high-dimensionality
of the weight spaces. Treating large collections of neural network weights as a structured and
high-dimensional data modality promises advances in model editing (Mitchell et al., 2022; Meng
et al., 2022), accelerating transfer learning (Knyazev et al., 2021; Schürholt et al., 2022), facilitat-
ing uncertainty quantification (Lakshminarayanan et al., 2017), and advancing neural architecture
search (Chen et al., 2019; Chen, 2023). Unlike traditional machine learning tasks that aim to opti-
mize weights for specific downstream tasks, this concept advocates sampling from the weight space
itself. In this work, we focus on the efficient generation of complete neural network weights that
can achieve high performance for a given task and excel at transfer learning thus addressing funda-
mental limitations in current deep learning workflows, such as computational bottlenecks in iterative
training, vulnerability to adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018) and pri-
vacy concerns arising from training data reconstructions (Nasr et al., 2019; Tramer et al., 2022).

Generating neural network weights faces three main challenges: Firstly, neural network weights
have a rich class of symmetries (Hecht-Nielsen, 1990; Entezari et al., 2022; Navon et al., 2023; Zhao
et al., 2025), i.e., transformations of the weights that leave the neural network functionally invariant.
Most prominently, joint permutations of hidden neurons in adjacent layers of multi-layer percep-
trons (MLP) do not change the encoded function. Other architectural choices, such as incorporating
attention heads or the choice of non-linear activation, can induce additional symmetries. Techniques
for dealing with weight space symmetries fall into three main categories: (1) data augmentation,
(2) equivariant architectures, and (3) canonicalization. Prior work, such as Wortsman et al. (2022);
Wang et al. (2024); Soro et al. (2025); Saragih et al. (2025a), does not actively account for symme-
tries in their generative models, while others, such as Saragih et al. (2025b), use equivariant architec-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a) b) c)

DeepWeightFlow Pipeline

Training data Canonicaliza�on
(op�onal)Target networks

Weight genera�on

...

...

...
..

.

..
.

..
.

...

..
.

..
.

..
.

...

...

...

...

...

Flow
Matching

Figure 1: Schematic depiction of DeepWeightFlow. a) We construct a training dataset of weights by fully
training neural networks with weights W1, . . . ,WL on a given target task. b) Optionally, we use canonical-
ization, i.e., choosing a canonical representative W̃i from the same orbit as Wi, to break the permutation
symmetry in parameter space. c) We train a flow model pθ̂ for efficient generation of high-performance weights
(W1, . . . ,WL) ∼ pθ̂ for the target task.
tures. Data augmentation has also been explored in weight representation learning (Schürholt et al.,
2024; Shamsian et al., 2023; 2024), and to a lesser extent in weight generation (Schürholt et al.,
2024; Wang et al., 2025). Finally, canonicalization has recently found application in weight space
learning (Schürholt et al., 2024; Wang et al., 2024; 2025), borrowing ideas from model merging
and alignment (Ainsworth et al., 2023; Rinaldi et al., 2025). Secondly, neural network weights are
high-dimensional, varying from tens of millions for a small ResNet (He et al., 2016) to hundreds of
billions for modern large language models (Touvron et al., 2023; Guo et al., 2025). This challenge
is often addressed by non-linear, dimensionality reduction techniques, including variational autoen-
coders (VAEs) (Soro et al., 2025) and graph autoencoders (Schürholt et al., 2022; Saragih et al.,
2025b; Soro et al., 2025). Despite increasing efficiency, dimensionality reduction requires training
an additional model for dimensionality reduction and can be detrimental to the quality of the gener-
ated weights if the compression is lossy. Lastly, generative models proposed recently either generate
partial weights for large models, or require finetuning post-generation, or have long generation time
per sample, making them impractical.

To address these challenges, we propose DeepWeightFlow, a method for efficient generation of high-
performance neural network weights via Flow Matching (FM) and apply it to MLP for vision and
tabular data, as well as ResNet (He et al., 2016), and ViT (Dosovitskiy et al., 2021) for computer
vision tasks, and BERT for natural language processing (NLP) (Devlin et al., 2019). We rely on
canonicalization techniques, such as Git Re-Basin (Ainsworth et al., 2023) and TransFusion (Ri-
naldi et al., 2025), to resolve parameter permutation symmetries, and show that canonicalization
aids weight generation for large neural networks but offers limited benefits when the weight space
dimension is moderate. We show that neural networks generated by DeepWeightFlow excel at the
target task and are competitive with state-of-the-art weight generation methods such as RPG (Wang
et al., 2025), D2NWG (Soro et al., 2025), FLoWN (Saragih et al., 2025b), and P-diff (Wang et al.,
2024) while overcoming several of the limitations of these models. A schematic of our methods
is shown in Figure 1. While DeepWeightFlow samples directly from weight spaces, we show that
the models can scale to generating larger networks using PCA while keeping the training and the
generation time low. In summary, the contributions of this work are as follows:

• DeepWeightFlow is a new method for complete neural network weight generation based on
FM, unconditioned by dataset characteristics, task descriptions, or architectural specifications.
DeepWeightFlow does not require additional training of autoencoders for dimensionality re-
duction and can scale to high-dimensional weight spaces using PCA.

• We show that our method can generate weights for neural networks with O(100M) parame-
ters, and diverse architectures, such as MLP, ResNet, ViT, and BERT that, without fine-tuning,
exhibit high performance on tasks in the vision, tabular, and natural language domains.

• We empirically elucidate the role of parameter symmetry for weight generation, showing that
canonicalization of the training data aids the generation of very high-dimensional weights but
offers no additional benefit for weights of modest dimension.

• DeepWeightFlow, with a simple MLP implementation, and without any equivariant architec-
ture, is far more efficient in generating diverse samples compared to diffusion-based models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

HyperNetworks: Early explorations of neural network generation focus on HyperNetworks, which
learn neural network parameters as a relaxed temporal weight sharing process (Ha et al., 2017). Hy-
perNetworks have been applied to generating weights through density sampling, GAN, and diffusion
methods by learning latent representations of neural network weights (Ha et al., 2017; Frankle &
Carbin, 2019; Ratzlaff & Fuxin, 2019; Schürholt et al., 2022; Kiani et al., 2024). They have also
been used to build meta-learners – augmentations or substitutes for Stochastic Gradient Descent op-
timization, which condition generation of new weight checkpoints on prior weights and task losses
(Peebles et al., 2022; Zhang et al., 2024a; Wang et al., 2025).

Generative Models for Neural Network Weights: Diffusion-based generative models for weights
have been successful at neural network weight generation, but often do not directly resolve weight
space symmetries. These approaches either provide no treatment (Wang et al., 2024), or rely on
Variational Auto Encoding (VAE) methods to concurrently resolve weight symmetries and reduce
the dimensionality of the generative task (Ha et al., 2017; Frankle & Carbin, 2019; Schürholt et al.,
2022; Kiani et al., 2024; Soro et al., 2025). In contrast, weight canonicalization is done as a pre-
training step in SANE (Schürholt et al., 2024), which uses kernel density sampling of hypernetwork
latents to autoregressively populate models layer-wise, allowing for complete weight generation, but
requires fine-tuning, unlike DeepWeightFlow. Diffusion has been applied directly to generating par-
tial (Wang et al., 2024) or complete weights (Soro et al., 2025; Wang et al., 2025). RPG (Wang et al.,
2025) generates complete weights by using a recurrent diffusion model. However, RPG shows long
generation times, often taking hours to generate a set of networks that DeepWeightFlow takes min-
utes to complete. Subsequent Conditional Flow Matching (CFM) methods (Saragih et al., 2025b;a)
explore dataset embeddings as conditioning for transfer learning and weight generation. These
CFMs also report using VAE methods to reduce the dimensionality of the generative task and to
resolve weight symmetries (Saragih et al., 2025b;a). We develop this further with DeepWeightFlow,
which operates directly in deep weight space to generate complete weight sets, and demonstrates the
viability of PCA as a strategy for surpassing O(100M) parameter sets.

Permutation Symmetries in Weight Space: SANE (Schürholt et al., 2024) applies Git Re-Basin as
a canonicalization for hypernetwork training (Schürholt et al., 2022; 2024; Ainsworth et al., 2023).
Unlike DeepWeightFlow, SANE tokenizes weights layer-wise and autoregressively samples them
to populate new neural models. RPG (Wang et al., 2025) uses a different strategy to address per-
mutation symmetry by one-hot encoding models to differentiate between potential permutations
of similar weights. D2NWG (Soro et al., 2025) and FLoWN (Saragih et al., 2025b) both evalu-
ate VAEs, while FLoWN additionally considers permutation invariant graph autoencoding methods
to appeal to the manifold and lottery ticket hypotheses (Ha et al., 2017; Frankle & Carbin, 2019;
Schürholt et al., 2022; Kiani et al., 2024). DeepWeightFlow extends the canonicalization methods
from previous works to transformers through TransFusion, and thoroughly evaluates the impact of
canonicalization on generating complete weight sets (Schürholt et al., 2024; Wang et al., 2024; 2025;
Soro et al., 2025).

3 BACKGROUND

DeepWeightFlow is an FM model using an MLP architecture trained on canonicalized neural net-
works. In this section, we give a brief overview of the various methods we use to build it.

3.1 FLOW MATCHING

Flow Matching (Lipman et al., 2023) is a generative technique for learning a vector field to trans-
port a noise vector to a target distribution. Given an unknown data distribution q(x), we define a
probability path pt for t ∈ [0, 1] with p0 ∼ N (0, 1) and p1 ≈ q(x). FM learns a vector field with
parameters θ, vθ(x, t), that transports p0 to p1 by minimizing

LFM(θ) = Et∼U [0,1],x∼pt(x)

[
∥vθ(x, t)− u(x, t)∥2

]
, (1)

where u(x, t) is the true vector field generating pt(x), and U [0, 1] denotes the uniform distribution on
the unit interval [0, 1]. This loss is minimized if vθ matches u, effectively following the probability

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

path from p0 to p1. FM offers several advantages over diffusion for neural network weight gener-
ation as it enables simpler and faster sampling, relies on direct vector field regression for training,
and scales efficiently to high-dimensional spaces, making it particularly well-suited for generating
complete neural network weights.

3.2 PERMUTATION SYMMETRIES OF NEURAL NETWORKS AND RE-BASIN

Permutation symmetry is a common weight space symmetry in neural networks (Hecht-Nielsen,
1990). Consider the activations zℓ ∈ Rdℓ at the ℓth layer of a simple MLP, with weights Wℓ ∈
Rdℓ+1×dℓ , biases bℓ ∈ Rdℓ+1 , and activation σ, zℓ+1 = σ(Wℓzℓ + bℓ), where z0 = x is the input
data. Applying a permutation matrix P ∈ Rdℓ+1×dℓ+1 of appropriate dimension, yields

zℓ+1 = PTPzℓ+1 = PTPσ(Wℓzℓ + bℓ) = PTσ(PWℓzℓ + Pbℓ), (2)

where PTP = I . This shows that a permutation of the output features of the ℓth layer, when met
with the appropriate permutation of the input features of the next layer ℓ + 1, will leave the overall
MLP functionally invariant (Ainsworth et al., 2023).

Similar permutation symmetries (Lim et al., 2024) exist for the channels of convolutional neural
networks and the attention heads of the transformer architecture (Hecht-Nielsen, 1990; Ainsworth
et al., 2023; Rinaldi et al., 2025). These symmetries shape the loss landscape (Pittorino et al.,
2022), impacting optimization(Neyshabur et al., 2015a; Liu, 2023; Zhao et al., 2024) , generaliza-
tion(Neyshabur et al., 2015b; Dinh et al., 2017), and model complexity (Zhao et al., 2025). They
also impact the ability of generative models to learn distributions over neural network weights. Per-
mutation symmetry gives rise to a highly multi-modal loss surface that renders the resulting models
equivalent in task performance (Hecht-Nielsen, 1990; Lim et al., 2024).

In model alignment, weights are aligned with respect to a reference model to produce unique ’canon-
ical’ representations for each equivalence class of the weight permutation symmetry. The Git Re-
Basin (Ainsworth et al., 2023) weight matching approach permutes the hidden units of an MLP
such that the inner product between reference and permuted weights is maximized. The resulting
optimization problem is a sum of bilinear assignment problems (SOBLAP). Git Re-Basin solves
this problem approximately, using coordinate descent, reducing each layer’s subproblem to a linear
assignment and iterating until convergence. TransFusion (Rinaldi et al., 2025) extends this idea of
weight alignment to transformers where permutation symmetries exist both in MLPs and within and
between attention heads, applying iterative alignment steps to reconcile permutations of heads and
hidden units. More details on this can be found in Appendix A and Appendix B.

4 METHODS

We implement a simple MLP-based FM model. The explicit encoding of the symmetries of the neu-
ral networks is done using TransFusion for transformers and Git Re-Basin for all other architectures.

Flow Matching Architecture and Training: DeepWeightFlow uses a time-conditioned neural net-
work that predicts a velocity vector along a trajectory between source and target network weights.
The source is a distribution of Gaussian noise given by x0 ∼ N (0, σ2I), and the target is a distribu-
tion of trained weights (x1 ∼ ptarget). The source distribution has the same dimensions as the target.
Given a sampled time t ∈ [0, 1] (uniformly distributed), an interpolated point along the straight-line
trajectory is computed as µt = (1− t)x0+ tx1. To stabilize training, stochastic points are generated
by adding Gaussian noise xt = µt + ϵ, with ϵ ∼ N (0, σ2I). The instantaneous target velocity
along this linear trajectory is ut = x1 − x0 (since dµt

dt = x1 − x0), which is constant along the
straight-line path. The network sees xt as input, while ut is derived from the endpoints (x0, x1).
The scalar time t is embedded into a higher-dimensional vector tembed = MLP(t) ∈ Rdtime , where
dtime varies depending on the complexity of the model for which we are training DeepWeightFlow.
We use a shallow MLP with layer normalization, dropout regularization, and GELU activations.
This tembed is concatenated with xt and fed into the main network, allowing the network to condition
on time in a learnable, flexible manner. The network maps (xt, tembed) 7→ vθ(xt, t), where vθ is the
learned vector field. The main network consists of fully connected layers with LayerNorm, GELU
activations, and Dropout, ending with a linear layer mapping back to the flattened weight dimen-
sion. Finally, new weight configurations are generated by integrating the learned vector field from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

random Gaussian inputs in the same flattened weight space as the source distribution. This inte-
gration is performed using a fourth-order Runge-Kutta (RK4) method, which ensures high-accuracy
trajectories in weight space. Concretely, at each integration step, the vector field is evaluated at the
current point and time, and RK4 increments are computed to update the weights. This procedure
allows sampling of realistic neural network weight configurations that smoothly interpolate between
source and target distributions.

Canonicalization: We apply canonicalization to align the training set to a single reference, as neu-
ral network loss landscapes are inherently degenerate due to permutation symmetries in the weight
space. This simplifies the learning process without the need for complex equivariant architectures.
To implement canonicalization for smaller MLPs and ResNets, we use the weight-matching proce-
dure of Git Re-Basin (Ainsworth et al., 2023) for 100 iterations. For ViTs, we use the TransFusion
procedure (Rinaldi et al., 2025) for 10 iterations as the latter uses spectral decomposition and is
slower than Git Re-Basin. The detailed description of these methods can be found in Appendix A
and Appendix B. Subsection D.1 provides an estimate of the time required for canonicalization.

Batch Normalization Statistics Based Recalibration: We implement a post-generation recalibra-
tion procedure where batch normalization (BN) (Ioffe & Szegedy, 2015) statistics are recomputed
using the training dataset for each set of generated weights. Neural networks with BN pose chal-
lenges for weight generation, as even perfectly generated weights can underperform if BN statistics
are misaligned. DeepWeightFlow addresses this by recalibrating BN statistics after weight gen-
eration, ensuring models are accurate. While the FM framework successfully learns BN weight
parameters (γ and β), the running statistics (mean and variance) require more careful processing.
These statistics are intrinsically tied to the training data distribution and must be precisely calibrated
for each generated weight set. Our experiments, summarized in Table 7, reveal that directly trans-
ferring running statistics from a reference model yields suboptimal performance. We provide our
recalibration algorithm in Algorithm 1 (Wortsman et al., 2021; 2022). Layer normalization (Ba
et al., 2016) is permutation invariant and does not need recalibration (Ainsworth et al., 2023).

Incremental and Dual PCA for scaling to large neural networks: We use incremental and Dual
PCA to scale to larger networks, as training on unprocessed training data for larger neural networks
is limited by available GPU memory. We use incremental PCA to preprocess the training data when
the weight space dimension is of O(10M) and Dual PCA when the dimension of the weight space
is O(100M), and inverse PCA during generation. The algorithmic and computational details of the
latter can be found in Subsection D.1. We also perform ablation studies to show the improvement in
training time by using PCA (Table 8 in Appendix D).

Training Data Generation: All training data used in this work was generated ab initio from a set
of randomly initialized neural networks trained separately, thus generating a diverse set of neu-
ral networks. Details of the training dataset generation can be found in Appendix E. We test
DeepWeightFlow on diverse tasks such as the Iris (Fisher, 1936), MNIST (Lecun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), and Yelp (Xiang Zhang,
2015) datasets for both classification and regression tasks. Recent work by Zeng et al. (2025) has
raised concerns about the lack of diversity of weights sampled from generative models trained on
checkpoints from training a single neural network (Wang et al., 2024). We generate neural network
weights independently trained from random initialization and not drawn from a sequence of check-
points from training a single neural network, thus increasing the diversity of the training set, for
training all DeepWeightFlow models. We provide the hyperparameters in Appendix E.

5 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of our approach across different
architectures, training conditions, and downstream tasks. We show that DeepWeightFlow generates
complete weights for MLPs, ResNets, ViTs, and BERTs with high accuracy, and canonicalization
improves performance at low FM model capacity. We see that incremental and Dual PCA enables
scaling DeepWeightFlow to O(100M) parameters. Our approach is robust across diverse initializa-
tion schemes, including Kaiming, Xavier, Gaussian, and Uniform. We see that Gaussian source
distributions outperform Kaiming, with variance choice being most critical at low capacity. Gen-
erated CIFAR-10 models transfer effectively to STL-10 and SVHN. Lastly, the generated neural
networks are diverse while maintaining strong accuracy, and training and sampling are significantly

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

faster than diffusion models such as RPG, D2NWG, and P-diff. Unless explicitly stated, all training
sets are 100 terminal neural networks (not checkpoints from a single training round) initialized with
unique seeds (Appendix E and Appendix F). All DeepWeightFlow models are architecture-specific
except when we probe class-conditioning (Subsection K.2).

5.1 COMPLETE WEIGHT GENERATION ACROSS ARCHITECTURES

Table 1: Comparison of DeepWeightFlow with other SOTA neural network weight generating methods for
complete generation of weights for MNIST classifiers, without finetuning.

Model Neural Network Original Generated Reference
DeepWeightFlow (w/ Git Re-Basin) 3-Layer MLP 96.32± 0.20 96.17± 0.31
DeepWeightFlow (w/o Git Re-Basin) 96.19± 0.27

WeightFlow (Geometric, aligned + OT) 3-Layer MLP 93.3 78.6 Erdogan (2025)

FLoWN (Unconditioned) medium-CNN 92.76 83.58 Saragih et al. (2025b)

Table 2: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for com-
plete ResNet-18 CIFAR-10 classifier weight generation, without fine tuning.

Model Original Generated Generated Reference
(Partial) (Complete) Reference

DeepWeightFlow (w/ Git Re-Basin) 94.45± 0.14 – 93.55± 0.13
DeepWeightFlow (w/o Git Re-Basin) – 93.47± 0.20

RPG† 95.3 – 95.1 Wang et al. (2025)

SANE† 92.14± 0.12 – 68.6± 1.2 Schürholt et al. (2024)

D2NWG 94.56 94.57± 0.0 - Soro et al. (2025)

NM (Unconditioned) 94.54 94.36 - Saragih et al. (2025a)

P-diff (best neural network) 94.54 94.36 – Wang et al. (2024)
(Saragih et al., 2025b)

FLoWN (best neural network) 94.54 94.36 – Saragih et al. (2025b)
†Models use autoregression to generate complete models over multiple passes.

Table 3: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for com-
plete ResNet-18 STL-10 classifier weight generation, without fine-tuning.

Model Original Generated Generated Reference
(Partial) (Complete)

DeepWeightFlow (w/ Re-Basin) 62.30 ± 0.77 – 62.46 ± 0.79
DeepWeightFlow (w/o Re-Basin) – 62.50 ± 0.66

P-diff 62.00 62.24 – Wang et al. (2024)

FLoWN 62.00 62.00 – Saragih et al. (2025b)

NM (Unconditioned) 62.00 62.00 – Saragih et al. (2025a)

Table 4: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for ViT
family CIFAR-10 classifiers, without finetuning. We have used ViT-small-192, indicating an embedding dimen-
sion of 192 Wang et al. (2025); Schürholt et al. (2024); Soro et al. (2025); Dosovitskiy et al. (2021).

Model neural network Original Generated Reference
DeepWeightFlow (w/ TransFusion) Vit-Small-192 83.30± 0.29 83.07± 0.42
DeepWeightFlow (w/o TransFusion) 82.58± 0.07

P-diff (Best) ViT-mini 73.0 73.6 Wang et al. (2024)

RPG ViT-Base 98.7 98.9 Wang et al. (2025)

DeepWeightFlow generates complete neural network weights and the generated networks perform
as well as the training set. In Table 1, Table 2, Table 3, and Table 4, we highlight the results of gener-
ating MLPs, ResNet-18/20s and ViTs from DeepWeightFlow models. We have conducted our exper-
iments on MNIST, Fashion-MNIST, CIFAR-10, STL-10 (Coates et al., 2011), and SVNH (Goodfel-
low et al., 2013) datasets. As noted before, we generate the complete weights for all neural networks,
including those with batch normalization such as ResNet-18 and ResNet-20. The comprehensive

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

weight generation scope of DeepWeightFlow is unlike existing approaches such as FLoWN (Saragih
et al., 2025b) and P-diff (Wang et al., 2024), which primarily generate only partial weight sets (lim-
ited to batch normalization parameters due to lack of scalability with neural network parameter
size). Moreover, DeepWeightFlow generated networks perform as well as the training set without
the requirement of additional conditioning during training or inference. With sufficient flow model
capacity, performance converges regardless of canonicalization or noise scheduling strategy, sug-
gesting that model capacity can compensate for suboptimal design choices. The choice of source
distribution significantly impacts FM performance and generated model diversity (cf. Figure 2).

Effect of Source Distributions: Critical to the success of DeepWeightFlow, is the careful selec-
tion of the standard deviation parameter of the source distribution: optimal results are achieved
when the source distribution’s standard deviation matches or slightly undershoots that of the target
weight distribution. Our empirical analysis demonstrates that Gaussian noise consistently outper-
forms alternative initializations (e.g., Kaiming initialization) as the source distribution (Table 16 in
Appendix H). This sensitivity is particularly pronounced in smaller flow models, where insufficient
capacity amplifies the importance of proper initialization (Saragih et al., 2025b).

Table 5: Canonicalization is beneficial when DeepWeightFlow has limited capacity, leading to superior perfor-
mance. As model capacity increases, both canonicalized and non-canonicalized models perform comparably,
with the best results highlighted in bold.

Dataset Architecture dh
∗

Original Generated
with re-basin without re-basin

(metric) (metric) (metric)
mean ± st. dev. mean ± st. dev. mean ± st. dev.

Classification Tasks (Accuracy %)

Iris MLP
256

90.70 ± 2.02
91.43 ±±± 2.07 91.03 ± 2.20

128 91.43 ±±± 2.46 90.87 ± 3.25
64 91.87 ±±± 2.23 90.80 ± 4.86
32 90.80 ±±± 2.54 88.93 ± 6.09

MNIST MLP
512

96.32 ± 0.20
96.17 ± 0.31 96.19 ±±± 0.27

256 96.21 ±±± 0.28 96.20 ± 0.23
128 91.74 ±±± 10.37 89.71 ± 17.93
64 57.80 ±±± 9.85 25.54 ± 12.90

Fashion-MNIST MLP
512

89.24 ± 0.27
89.10 ± 0.29 89.11 ±±± 0.28

256 89.06 ±±± 0.29 89.02 ± 0.30
128 88.09 ±±± 2.24 85.81 ± 11.32
64 77.76 ±±± 3.72 53.35 ± 30.49

CIFAR-10 ResNet-20
512

73.62 ± 2.24
75.07 ±±± 1.24 74.92 ± 0.80

256 75.32 ±±± 0.83 74.91 ± 0.97
128 73.08 ±±± 4.35 72.35 ± 8.86
64 20.16 ±±± 13.44 20.06 ± 15.76

CIFAR-10 Vit-Small-192
384

83.30 ± 0.29
82.99 ±±± 0.11 82.58 ± 0.07

256 83.07 ±±± 0.42 82.51 ± 0.55
128 69.09 ±±± 25.20 41.15 ± 25.26
64 43.13 ±±± 30.28 12.67 ± 7.11

CIFAR-10 ResNet-18†
1024

94.45 ± 0.14
93.55 ±±± 0.13 93.47 ± 0.20

512 93.49 ±±± 0.19 93.43 ± 0.64
128 57.98 ±±± 34.02 47.55 ± 37.46
64 29.92 ±±± 19.79 21.93 ± 19.86

Regression Task (Spearman Correlation)

Yelp Review BERT-118M‡ 1024 0.7902 ± 0.061 0.7909 ±±± 0.005 0.7884 ± 0.012
768 0.7894 ±±± 0.006 0.7892 ± 0.015

†ResNet-18 results use standard incremental PCA-reduced weights.
‡BERT-118M results use dual/Gram PCA approach.
∗dh: flow hidden dimension

Scaling with PCA: DeepWeightFlow can scale to large neural networks using PCA (Wold et al.,
1987; Hotelling, 1933). For models with tens of millions of parameters, we employ incremental
PCA (Ross et al., 2008) to reduce the dimensionality of flattened weight vectors in the training set,
and inverse transformation post-generation. This approach maintains accuracy levels, as can be seen
from Table 8 in Appendix D, while enabling tractable training of DeepWeightFlow for large-scale
architectures. This demonstrates the feasibility of extending our methodology to generate complete
weight sets for contemporary large neural networks without the requirement of training additional
models for dimensionality reduction, such as autoencoders, as is often done for latent diffusion-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

based models (Wang et al., 2024). We demonstrate that DeepWeightFlow can be scaled to O(100M)
parameters with Dual PCA. Given the reduction of resources and time required with Dual PCA, we
estimate that models of O(1B) parameters might be possible to generate using DeepWeightFlow and
leave that as future work.

Impact of Canonicalization: We observe a capacity-dependent behavior of DeepWeightFlow mod-
els with and without canonicalization. At lower capacity of the FM models, models trained on
canonicalized neural network weights generate higher performing ensembles than the FM models
trained on non-canonicalized data. However, as the capacity of the FM model increases, the perfor-
mance of the ensembles of generated neural networks become similar. In general, FM models trained
on canonicalized neural network weights approach the performance of the training set (“original”
neural networks) with lower capacity. Moreover, when flow model parameters are limited, models
trained on canonicalized data generate neural networks with observably lower variance in accuracy
In Table 5, we show the performance of DeepWeightFlow with and without canonicalization.

Robustness Across Initialization Schemes: To evaluate generalization capability, we conducted
extensive robustness testing using MLP models trained on the Iris dataset with diverse initialization
strategies (Kaiming (He et al., 2015), Xavier (Glorot & Bengio, 2010), Kaiming weights and zero
for biases, normal, and uniform distributions). Training a single flow model on this heterogeneous
collection (100 models total: 20 seeds × 5 initialization types) successfully generated novel weights
achieving high test accuracy, demonstrating the framework’s ability to learn from and generate
weights across different initialization regimes. All other experiments maintained consistency by
using Kaiming initialization with varied random seeds.

5.2 TRANSFER LEARNING ON UNSEEN DATASETS

Our generated models can be effectively used for transfer learning (Nava et al., 2023; Zhang et al.,
2024b) across unseen datasets. In our experiments, we trained DeepWeightFlow on ResNet-18 mod-
els for the CIFAR-10 dataset using PCA, generated 5 models, and recalibrated their batch normaliza-
tion running mean and variance on a small subset of CIFAR-10 in the same way as applied in Table 5
and elaborated on in Table 14. These models were then evaluated under zero-shot and finetuning
settings on STL-10 and SVHN datasets. The results are presented in Table 6. DeepWeightFlow-
generated models consistently outperformed state-of-the-art FM models such as FloWN (Saragih
et al., 2025b) in both zero-shot and finetuning evaluations. Furthermore, they significantly outper-
formed randomly initialized models, proving the effectiveness of the method. The same comparison
is done with SANE (Schürholt et al., 2024) and reaches the same conclusion. Results on transfer
learning for CIFAR-100 models fine-tuned on CIFAR-10 ResNet-18 backbone can be found in Ap-
pendix J.

5.3 DIVERSITY OF GENERATED MODELS

To evaluate the DeepWeightFlow models’ generative capabilities, we compute the maximum IoU
(mIoU) between the generated neural networks and the neural networks in the training set (referred
to as the “original” neural networks). The mIoU is constructed from the intersection over union
of the wrong predictions made by the neural networks (Wang et al., 2024). It is defined as IoU =
|Pwrong

1 ∩Pwrong
2 |/|Pwrong

1 ∪Pwrong
2 |. where P1 comes from the set being compared (such as from

the generated set) and P2 comes from a reference set (such as the set of original neural networks).
We disregard the IoU of a neural network with itself as it is trivially 1. The mIoU measure scales
from complete dissimilarity at 0 to complete similarity at 1.

In Figure 2, we compare the original neural networks with the generated ones, with noise added to
the weights of the original neural networks, and with neural networks generated with different FM
source distributions. The upper row compares the cases for the FM models trained with re-basin,
and the lower panels, without. In the left-most panels, we see that i) the original networks are quite
diverse from each other, as evident from the blue cloud. This is the case as, unlike several previous
works, we do not use checkpoints from the training of a single neural network as the training set
of the DeepWeightFlow model. ii) The yellow and green clouds show that adding progressively in-
creasing Gaussian noise to the original networks makes them progressively diverse from the original
networks as expected (< 1). iii) The red cloud representing the generated networks shows diversity

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Transfer learning performance across different architectures. For ResNet-18, we compare CIFAR-
10 classifiers generated by DeepWeightFlow, FLoWN, and RandomInit. For SmallCNN, we compare with
SANE (Schürholt et al., 2024) trained on CIFAR-10 and transferred to STL-10 using the same architecture as
mentioned in Schürholt et al. (2024). RandomInit refers to randomly initialized neural networks with Kaiming-
He initialization. Pretrained refers to neural networks from our training dataset, and Generated refers to
weights sampled from the respective generative model.

Architecture Epoch Model Method STL-10 SVHN
ResNet-18 Results (Comparison with FLoWN (Saragih et al., 2025b))

ResNet-18 0

FLoWN RandomInit 10.00 ± 0.00 10.00 ± 0.00
Generated 35.16 ± 1.24 17.99 ± 0.82

DeepWeightFlow
RandomInit 11.18 ± 1.48 8.01 ± 1.41
Pretrained 48.31 ± 0.17 11.51 ± 0.31
Generated 48.32 ± 0.34 11.57 ± 0.49

ResNet-18 1

FLoWN RandomInit 18.94 ± 0.09 19.50 ± 0.03
Generated 36.15 ± 1.14 68.64 ± 7.07

DeepWeightFlow
RandomInit 38.28 ± 1.07 84.07 ± 1.76
Pretrained 79.81 ± 0.54 91.29 ± 0.76
Generated 79.69 ± 1.08 91.66 ± 0.79

ResNet-18 5

FLoWN RandomInit 28.24 ± 0.01 39.59 ± 10.0
Generated 37.43 ± 1.19 77.36 ± 1.07

DeepWeightFlow
RandomInit 51.35 ± 0.51 93.82 ± 0.16
Pretrained 84.61 ± 0.21 95.82 ± 0.16
Generated 84.63 ± 0.17 95.85 ± 0.09

SmallCNN Results (Comparison with SANE (Schürholt et al., 2024))

SmallCNN 0

SANE
Train fr. scratch ∼10 –
Pretrained 16.2 ± 2.3 –
SANESUB 17.4 ± 1.4 –

DeepWeightFlow
RandomInit 9.47 ± 0.52 –
Pretrained 35.18 ± 0.71 –
Generated 35.29 ± 0.48 –

SmallCNN 1

SANE
Train fr. scratch 21.3 ± 1.6 –
Pretrained 24.8 ± 0.8 –
SANESUB 25.6 ± 1.7 –

DeepWeightFlow
RandomInit 21.09 ± 2.52 –
Pretrained 41.66 ± 1.75 –
Generated 41.03 ± 1.22 –

SmallCNN 25

SANE
Train fr. scratch 44.0 ± 1.0 –
Pretrained 49.0 ± 0.9 –
SANESUB 49.8 ± 0.6 –

DeepWeightFlow
RandomInit 44.33 ± 1.54 –
Pretrained 62.14 ± 0.84 –
Generated 62.62 ± 0.46 –

from the original set but seems to overlap with the green set, which represents the set created by
adding noise sampled from N (0, 0.01) to the original neural network weights.

From the middle panels in Figure 2, we see that the red cloud representing the generated neural net-
works is sufficiently diverse from the original ones with added noise sampled from N (0, 0.01). This
gives us confidence that the generated neural networks are, indeed, not the same as the original net-
works with noise added to the weights. Lastly, the right-most panels show how diverse the generated
neural networks are when generated with different source distributions. Hence, DeepWeightFlow
is capable of generating a diverse set of neural networks while maintaining the accuracy of the
task. In Appendix I, we provide the numerical estimates of mIoU, the Jensen-Shannon, Wasserstein,
L2, cosine similarity, and Nearest Neighbors (NN) distances between generated and original neural
networks and supplemental mIoU analysis of ResNet-18 weights generated by DeepWeightFlow.

5.4 TRAINING AND SAMPLING EFFICIENCY

DeepWeightFlow is significantly faster to train and generate neural network weights when compared
to diffusion models in complete neural network weights generation. DeepWeightFlow takes up to
O(10) minutes to train for most neural network architectures with up to O(100M) parameters. as
compared to the several hours that it takes to train RPG (Wang et al., 2025). DeepWeightFlow takes
a few seconds to generate neural networks compared to the minutes or hours it takes to generate

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

With Git Re-Basin

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Maximum IoU Similarity vs Original Models

95.00

95.25

95.50

95.75

96.00

96.25

96.50

96.75

97.00

T
es

t
A

cc
u

ra
cy

(%
)

Original

Generated

Original + N (0, 0.001)

Original + N (0, 0.01)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Maximum IoU Similarity vs Original + N (0, 0.01) Models

95.00

95.25

95.50

95.75

96.00

96.25

96.50

96.75

97.00

T
es

t
A

cc
u

ra
cy

(%
)

Generated

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Maximum IoU Similarity vs Original Models

95.00

95.25

95.50

95.75

96.00

96.25

96.50

96.75

97.00

T
es

t
A

cc
u

ra
cy

(%
)

Original

Generated (σ = 0.001)

Generated (σ = 0.005)

Generated (σ = 0.01)

Without Git Re-Basin

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Maximum IoU Similarity vs Original Models

95.00

95.25

95.50

95.75

96.00

96.25

96.50

96.75

97.00

T
es

t
A

cc
u

ra
cy

(%
)

Original

Generated

Original + N (0, 0.001)

Original + N (0, 0.01)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Maximum IoU Similarity vs Original + N (0, 0.01) Models

95.00

95.25

95.50

95.75

96.00

96.25

96.50

96.75

97.00

T
es

t
A

cc
u

ra
cy

(%
)

Generated

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Maximum IoU Similarity vs Original Models

95.00

95.25

95.50

95.75

96.00

96.25

96.50

96.75

97.00

T
es

t
A

cc
u

ra
cy

(%
)

Original

Generated (σ = 0.001)

Generated (σ = 0.005)

Generated (σ = 0.01)

Figure 2: Maximum IoU vs test set accuracy for MNIST classifying MLPs. Lower maximum IoU implies greater
diversity in the neural network weights. The left panels are generated and original neural networks (from the
DeepWeightFlow training set) with different scales of Gaussian noise added to the original neural networks.
The middle panels show that the generated neural networks and the original neural networks with noise added,
which overlap in the left panels, are concretely different. The right panels contain the original and generated
neural networks with different source distributions. All panels include 500 generated neural networks.

using RPG, P-Diff, or D2NWG. Yet, DeepWeightFlow generates ensembles of neural networks that
have comparable outcomes for ResNet-18s and ViTs. This is primarily because the other models are
diffusion models, whereas DeepWeightFlow is based on FM using a simple MLP implementation.
A detailed comparison of training and generation efficiency can be found in Appendix G.

6 CONCLUSION

In this work, we introduce DeepWeightFlow, a generative model for neural network weights that
performs FM directly in weight space, unconditioned by dataset characteristics, task descriptions, or
architectural specifications, and avoiding nonlinear dimensionality reduction. We show that Deep-
WeightFlow generates diverse neural network weights for a variety of architectures (MLP, ResNet,
ViT, BERT) that show excellent performance on vision, tabular classification, and natural language
tasks (regression). We provide empirical evidence that canonicalizing the training data facilitates
the generation of larger networks but is of limited use for moderate-dimensional weights or with
increasing FM model capacity. DeepWeightFlow can be combined with simple linear dimension-
ality reduction techniques like incremental PCA and Dual PCA to alleviate restrictions on neural
network size and demonstrate scalability to large neural networks of O(100M) parameters with
possibilities of scaling even further. The compatibility of DeepWeightFlow with model distilla-
tion, low-rank approximations, or sparsity remains as future work. As such, some open questions
about the relative merits of canonicalization, equivariant architecture design, and data augmentation
for learning in deep weight spaces remain. Lastly, we demonstrate DeepWeightFlow’s ability to
generalize to multi-class generation through class conditioning (Appendix K). We extend Deep-
WeightFlow to combining multi-class and multi-architecture generation of complete weights. The
results do not seem promising and we leave further exploration to future work with possibilities of
combining DeepWeightFlow and dataset conditioning similar to FLoWN or D2NWG. Nevertheless,
DeepWeightFlow shows promise for extension to real-world applications such as rapid generation
of neural networks for vision and NLP tasks in distributed devices for sensing of changing environ-
ments and in privacy-protecting model distribution to avoid leakage of training data.

REPRODUCIBILITY STATEMENT

The architectural details along with the hyperparameters used to generate the data have been pro-
vided in the main text and Appendix E and Appendix F. The dataset will be made available on
request and/or uploaded to a data repository. The code necessary to reproduce the results is in
https://github.com/anonymousacademicc/DeepWeightFlow-ICLR.

10

https://github.com/anonymousacademicc/DeepWeightFlow-ICLR

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models mod-
ulo permutation symmetries. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Hervé Cardot, Peggy Cénac, and Pierre-Arnaud Zitt. Online principal component analysis in high
dimension: Which algorithm to choose. International Statistical Review, 86(1):29–50, 2018.

Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, Tingyang Xu,
and Junzhou Huang. Progressive feature alignment for unsupervised domain adaptation. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 627–636, 2019.
URL https://ieeexplore.ieee.org/document/8953748.

Xiangning Chen. Advancing Automated Machine Learning: Neural Architectures and Optimiza-
tion Algorithms. PhD thesis, University of California, Los Angeles, United States – Califor-
nia, 2023. URL https://www.proquest.com/docview/2899619104/abstract/
8CAD6EC2664A464CPQ/1.

Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single-Layer Networks in Unsuper-
vised Feature Learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, June
2011. URL https://proceedings.mlr.press/v15/coates11a.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423/.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 1019–1028. PMLR, 2017. URL https:
//proceedings.mlr.press/v70/dinh17b.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation in-
variance in linear mode connectivity of neural networks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=dNigytemkL.

Ege Erdogan. Geometric flow models over neural network weights, 2025. URL https:
//arxiv.org/abs/2504.03710.

R. A. Fisher. The used of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):
179–188, 1936. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1469-1809.1936.tb02137.x.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

11

https://openreview.net/forum?id=CQsmMYmlP5T
https://arxiv.org/abs/1607.06450
https://ieeexplore.ieee.org/document/8953748
https://www.proquest.com/docview/2899619104/abstract/8CAD6EC2664A464CPQ/1
https://www.proquest.com/docview/2899619104/abstract/8CAD6EC2664A464CPQ/1
https://proceedings.mlr.press/v15/coates11a.html
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://proceedings.mlr.press/v70/dinh17b.html
https://proceedings.mlr.press/v70/dinh17b.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=dNigytemkL
https://arxiv.org/abs/2504.03710
https://arxiv.org/abs/2504.03710
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 249–256, 2010. URL http://proceedings.mlr.press/v9/
glorot10a.html.

Steven Golovkine, Edward Gunning, Andrew J. Simpkin, and Norma Bargary. On the use of
the gram matrix for multivariate functional principal components analysis. arXiv preprint
arXiv:2406.12345, 2024.

Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit
number recognition from street view imagery using deep convolutional neural networks. In
Proceedings of the 2013 International Conference on Machine Learning (ICML), 2013. URL
https://arxiv.org/abs/1312.6082.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv, 2015. URL https://arxiv.org/abs/1412.6572.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Deli Chen, Dongjie
Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Hanwei Xu, Honghui Ding, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Ji-
ashi Li, Jingchang Chen, Jingyang Yuan, Jinhao Tu, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi
Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaichao You, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu,
Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingxu Zhou, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi
Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuip-
ing Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Tao Yun, Tian
Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin
Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xi-
aotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng
Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaox-
iang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang,
Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping
Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei
Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang.
DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning. Nature, 645
(8081):633–638, September 2025. ISSN 1476-4687. doi: 10.1038/s41586-025-09422-z. URL
https://www.nature.com/articles/s41586-025-09422-z.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53
(2):217–288, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034,
2015. URL https://www.cv-foundation.org/openaccess/content_iccv_
2015/html/He_Delving_Deep_into_ICCV_2015_paper.html.

12

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1312.6082
https://arxiv.org/abs/1412.6572
https://www.nature.com/articles/s41586-025-09422-z
https://openreview.net/forum?id=rkpACe1lx
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770–778, 2016. URL https://openaccess.thecvf.com/content_cvpr_
2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In
Rolf Eckmiller (ed.), Advanced Neural Computers, pp. 129–135. North-Holland, Amsterdam,
1990. ISBN 978-0-444-88400-8. URL https://www.sciencedirect.com/science/
article/pii/B9780444884008500194.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of Educational Psychology, 24(6):417–441, 1933. doi: 10.1037/h0071325.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/ioffe15.html.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Proceedings of the 34th
Conference on Uncertainty in Artificial Intelligence (UAI), pp. 876–885. AUAI Press, 2018. URL
https://arxiv.org/abs/1803.05407.

R. Jonker and A. Volgenant. A shortest augmenting path algorithm for dense and sparse linear
assignment problems. Computing, 38(4):325–340, November 1987. ISSN 0010-485X. URL
https://doi.org/10.1007/BF02278710.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renor-
malizing permuted activations for interpolation repair. arXiv preprint arXiv:2211.08403, 2022.
doi: 10.48550/arXiv.2211.08403. URL https://arxiv.org/abs/2211.08403.

Bobak Kiani, Jason Wang, and Melanie Weber. Hardness of learning neural networks under the
manifold hypothesis. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=dkkgKzMni7.

Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and Adriana Romero. Parameter predic-
tion for unseen deep architectures. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=vqHak8NLk25.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009. URL http://www.cs.toronto.
edu/kriz/cifar.html.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, NIPS’17, pp. 6405–6416, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964. URL https://dl.acm.org/doi/
10.5555/3295222.3295387.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. URL https://ieeexplore.
ieee.org/document/726791.

Derek Lim, Theo Putterman, Robin Walters, Haggai Maron, and Stefanie Jegelka. The empirical im-
pact of neural parameter symmetries, or lack thereof. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=pCVxYw6FKg.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

13

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://www.sciencedirect.com/science/article/pii/B9780444884008500194
https://www.sciencedirect.com/science/article/pii/B9780444884008500194
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1803.05407
https://doi.org/10.1007/BF02278710
https://arxiv.org/abs/2211.08403
https://openreview.net/forum?id=dkkgKzMni7
https://openreview.net/forum?id=vqHak8NLk25
https://openreview.net/forum?id=vqHak8NLk25
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
https://dl.acm.org/doi/10.5555/3295222.3295387
https://dl.acm.org/doi/10.5555/3295222.3295387
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://openreview.net/forum?id=pCVxYw6FKg
https://openreview.net/forum?id=pCVxYw6FKg
https://openreview.net/forum?id=PqvMRDCJT9t

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ziyin Liu. Symmetry leads to structured constraint of learning, 2023. URL https://arxiv.
org/abs/2309.16932.

Wesley J Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. arXiv preprint arXiv:1902.02476,
2019. URL https://arxiv.org/abs/1902.02476.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=-h6WAS6eE4.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=0DcZxeWfOPt.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and feder-
ated learning. In 2019 IEEE symposium on security and privacy (SP), pp. 739–753.
IEEE, 2019. URL https://www.computer.org/csdl/proceedings-article/
sp/2019/666000a739/1dlwhtj4r7O.

Elvis Nava, Seijin Kobayashi, Yifei Yin, Robert K. Katzschmann, and Benjamin F. Grewe. Meta-
learning via classifier(-free) diffusion guidance. Transactions on Machine Learning Research, 4:
1–20, 2023. URL https://openreview.net/forum?id=1irVjE7A3w.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023. URL https://dl.acm.org/
doi/10.5555/3618408.3619481.

Behnam Neyshabur, Ruslan Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized
optimization in deep neural networks. In Advances in Neural Information Process-
ing Systems, volume 28, 2015a. URL https://papers.nips.cc/paper/
5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.
pdf.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neu-
ral networks. In Proceedings of the 28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pp. 1376–1401. PMLR, 2015b. URL https:
//proceedings.mlr.press/v40/Neyshabur15.html.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints, 2022. URL https://arxiv.
org/abs/2209.12892.

Fabrizio Pittorino, Antonio Ferraro, Gabriele Perugini, Christoph Feinauer, Carlo Baldassi, and
Riccardo Zecchina. Deep networks on toroids: Removing symmetries reveals the structure of
flat regions in the landscape geometry. In Proceedings of the 39th International Conference on
Machine Learning, pp. 17759–17781. PMLR, 2022. URL https://proceedings.mlr.
press/v162/pittorino22a.html.

Neale Ratzlaff and Li Fuxin. HyperGAN: A generative model for diverse, performant neural net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 5361–5369. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/ratzlaff19a.html.

14

https://arxiv.org/abs/2309.16932
https://arxiv.org/abs/2309.16932
https://arxiv.org/abs/1902.02476
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=0DcZxeWfOPt
https://www.computer.org/csdl/proceedings-article/sp/2019/666000a739/1dlwhtj4r7O
https://www.computer.org/csdl/proceedings-article/sp/2019/666000a739/1dlwhtj4r7O
https://openreview.net/forum?id=1irVjE7A3w
https://dl.acm.org/doi/10.5555/3618408.3619481
https://dl.acm.org/doi/10.5555/3618408.3619481
https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://papers.nips.cc/paper/5797-path-sgd-path-normalized-optimization-in-deep-neural-networks.pdf
https://proceedings.mlr.press/v40/Neyshabur15.html
https://proceedings.mlr.press/v40/Neyshabur15.html
https://arxiv.org/abs/2209.12892
https://arxiv.org/abs/2209.12892
https://proceedings.mlr.press/v162/pittorino22a.html
https://proceedings.mlr.press/v162/pittorino22a.html
https://proceedings.mlr.press/v97/ratzlaff19a.html
https://proceedings.mlr.press/v97/ratzlaff19a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Filippo Rinaldi, Giacomo Capitani, Lorenzo Bonicelli, Donato Crisostomi, Federico Bolelli, ELISA
FICARRA, Emanuele Rodolà, Simone Calderara, and Angelo Porrello. Update your transformer
to the latest release: Re-basin of task vectors. In Forty-second International Conference on Ma-
chine Learning, 2025. URL https://openreview.net/forum?id=sHvImzN9pL.

David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learning for
robust visual tracking. International Journal of Computer Vision, 77(1):125–141, 2008.

Daniel Saragih, Deyu Cao, and Tejas Balaji. Flows and diffusions on the neural manifold, 2025a.
URL https://arxiv.org/abs/2507.10623.

Daniel Saragih, Deyu Cao, Tejas Balaji, and Ashwin Santhosh. Flow to learn: Flow matching on
neural network parameters. In Workshop on Neural Network Weights as a New Data Modality,
2025b. URL https://openreview.net/forum?id=r0ynTstq3c.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis
as a kernel eigenvalue problem. In Neural Computation, volume 10, pp. 1299–1319. MIT Press,
1998.

Konstantin Schürholt, Boris Knyazev, Xavier Giró i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural In-
formation Processing Systems, 2022. URL https://openreview.net/forum?id=
uyEYNg2HHFQ.

Konstantin Schürholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile
weight space learning. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=ug2uoAZ9c2.

Aviv Shamsian, David Zhang, Aviv Navon, Yan Zhang, Miltiadis Kofinas, Idan Achituve, Ric-
cardo Valperga, Gertjan Burghouts, Efstratios Gavves, Cees Snoek, Ethan Fetaya, Gal Chechik,
and Haggai Maron. Data Augmentations in Deep Weight Spaces. In NeurIPS 2023 Work-
shop on Symmetry and Geometry in Neural Representations, November 2023. URL https:
//openreview.net/forum?id=jdT7PuqdSt.

Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, and Haggai
Maron. Improved generalization of weight space networks via augmentations. In Proceedings
of the 41st International Conference on Machine Learning, volume 235 of ICML’24, pp. 44378–
44393, Vienna, Austria, July 2024. JMLR.org. URL https://dl.acm.org/doi/abs/
10.5555/3692070.3693876.

John Shawe-Taylor, Christopher KI Williams, Nello Cristianini, and Jaz Kandola. On the eigen-
spectrum of the gram matrix and the generalization error of kernel-pca. IEEE Transactions on
Information Theory, 51(7):2510–2522, 2005.

Gil Shomron and Uri Weiser. Post-training batchnorm recalibration, 2020. URL https:
//arxiv.org/abs/2010.05625.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and
Sung Ju Hwang. Diffusion-based neural network weights generation. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=j8WHjM9aMm.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, February 2023. URL http://arxiv.org/abs/2302.13971.

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas
Carlini. Debugging differential privacy: A case study for privacy auditing. arXiv, 2022. URL
https://arxiv.org/abs/2202.12219.

15

https://openreview.net/forum?id=sHvImzN9pL
https://arxiv.org/abs/2507.10623
https://openreview.net/forum?id=r0ynTstq3c
https://openreview.net/forum?id=uyEYNg2HHFQ
https://openreview.net/forum?id=uyEYNg2HHFQ
https://openreview.net/forum?id=ug2uoAZ9c2
https://openreview.net/forum?id=jdT7PuqdSt
https://openreview.net/forum?id=jdT7PuqdSt
https://dl.acm.org/doi/abs/10.5555/3692070.3693876
https://dl.acm.org/doi/abs/10.5555/3692070.3693876
https://arxiv.org/abs/2010.05625
https://arxiv.org/abs/2010.05625
https://openreview.net/forum?id=j8WHjM9aMm
https://openreview.net/forum?id=j8WHjM9aMm
http://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2202.12219

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 4068–4078, 2021. URL https://arxiv.org/
abs/2103.06905.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural Network Diffusion, February 2024. URL http://arxiv.org/abs/2402.13144.

Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schürholt, Zhangyang Wang, and Yang You.
Recurrent diffusion for large-scale parameter generation, 2025. URL https://arxiv.org/
abs/2501.11587.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and In-
telligent Laboratory Systems, 2(1-3):37–52, August 1987. doi: 10.1016/0169-7439(87)80084-9.

Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad Raste-
gari. Learning neural network subspaces. In Marina Meila and Tong Zhang (eds.), Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 11217–11227. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/wortsman21a.html.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Lud-
wig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accu-
racy without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 23965–23998. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/wortsman22a.html.

Yann LeCun Xiang Zhang, Junbo Zhao. Character-level convolutional networks for text classifica-
tion, 2015. URL https://huggingface.co/datasets/Yelp/yelp_review_full.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Boya Zeng, Yida Yin, Zhiqiu Xu, and Zhuang Liu. Generative modeling of weights: Generalization
or memorization?, 2025. URL https://arxiv.org/abs/2506.07998.

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
Metadiff: Meta-learning with conditional diffusion for few-shot learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(15):16687–16695, Mar. 2024a. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/29608.

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
Metadiff: Meta-learning with conditional diffusion for few-shot learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 38, pp. 16687–16695, 2024b.

Bo Zhao, Robert M. Gower, Robin Walters, and Rose Yu. Improving convergence and generalization
using parameter symmetries. In International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=L0r0GphlIL.

Bo Zhao, Robin Walters, and Rose Yu. Symmetry in Neural Network Parameter Spaces, June 2025.
URL http://arxiv.org/abs/2506.13018.

A GIT RE-BASIN

Git Re-Basin weight matching, formulated by Ainsworth et al. (2023), is a greedy permutation
coordinate descent algorithm for moving a model’s weights θA into the same ’basin’ in the loss
landscape of the model class fθ̂ as a reference model’s weights θB .

16

https://arxiv.org/abs/2103.06905
https://arxiv.org/abs/2103.06905
http://arxiv.org/abs/2402.13144
https://arxiv.org/abs/2501.11587
https://arxiv.org/abs/2501.11587
https://proceedings.mlr.press/v139/wortsman21a.html
https://proceedings.mlr.press/v139/wortsman21a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://huggingface.co/datasets/Yelp/yelp_review_full
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2506.07998
https://ojs.aaai.org/index.php/AAAI/article/view/29608
https://ojs.aaai.org/index.php/AAAI/article/view/29608
https://openreview.net/forum?id=L0r0GphlIL
http://arxiv.org/abs/2506.13018

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This operation is applied here as a canonicalization step before weight flattening and the subsequent
training of the DeepWeightFlow models. The procedure reduces the space of the task from Rθ to a
quotient space of Rθ modulo permutation symmetry.

Applying this across the model layers constructs a transformed model θ′ by

W ′
ℓ = PWℓ, b

′
ℓ = Pbℓ, W

′
ℓ+1 = Wℓ+1P

T (3)

The ’distance’ between two permutations is therefore a Frobenius inner product of PℓW
A
ℓ and WB

ℓ ,
written as ⟨A,B⟩ = ∑

i,j Ai,jBi,j for real-valued matrices A and B. Accounting for the transforms
outlined above, the process of matching the permutations across the stack of layers becomes,

argmax
π={Pℓ}L

1

L∑
n=1

〈
WB

i , PiW
A
i PT

i−1

〉
with PT

0 = I (4)

This formulation presents a Symmetric Orthogonal Bilinear Assignment Problem (SOBLAP), which
is NP-hard. However, when relaxed to focus on a single permutation Pℓ at a time - ceteris paribus,
the problem simplifies to a series of Linear Assignment Problems (LAPs) of the form below
(Ainsworth et al., 2023; Zhao et al., 2025; Rinaldi et al., 2025). These LAPs can be solved in
polynomial time by methods like the Hungarian Algorithm (Jonker & Volgenant, 1987).

argmax
Pℓ

〈
WB

ℓ , PℓW
A
ℓ PT

ℓ−1

〉
+

〈
WB

ℓ+1, Pℓ+1W
A
ℓ+1P

T
ℓ

〉
(5)

The product of this process is a permutation π′ of model A’s weights into the same basin in fθ’s
loss landscape as model B with exact functional equivalence (fθA = fπ′(θA)). However, sequences
of LAPs are understood to be coarse approximations of SOBLAPs and, as such, strong conclusions
cannot be drawn about the optimality of π′ (Rinaldi et al., 2025; Ainsworth et al., 2023).

B TRANSFUSION

We canonicalize a collection of Vision Transformers (ViTs) using the method of Rinaldi et al.
(2025), which introduces a structured alignment procedure for multi-head attention transformer
weights (Rinaldi et al., 2025).

The core difficulty in transformers arises from multi-head attention and residual connections: Naive
global permutations either mix information across heads or break functional equivalence in residual
branches (Zhao et al., 2025). To address this, the method applies a two-level permutation scheme:

1. Inter-Head Alignment: For each multi-head attention layer, attention heads from different
checkpoints are first matched. This is done by comparing the singular value spectra of their
projection matrices, which are invariant under row and column permutations, and then
solving the resulting assignment problem with the Hungarian algorithm. This step ensures
that corresponding heads are correctly paired across models.
For a sub matrix representing a single attention head in model A, hA

i = [W̃]Ai ∈ Rk×m,
where k is the key value dimension and m is the attention embedding dimension, apply
singular value decomposition (A = UΣV T) to access the spectral projection matricies Σ,
which are invariant to row and column permutations. For every head in a layer of model A,
construct a distance, di, j = ||Σi−Σj ||. These distances can be constructed for q, k, and v
for each head and combined linearly Di,j = dqi,j +dki,j +dvi,j with Di,j ∈ RH×H (H is the
number of heads). Therefore the optimal pairing of heads for model A and B is (Rinaldi
et al., 2025),

Pinter head = argmin
P∈SH

∑
Di,P [i] (6)

2. Intra-Head Alignment: Once heads are paired, the method refines the alignment by per-
muting rows and columns within each head independently, again solved via assignment on
pairwise similarity scores. Restricting permutations within heads preserves head isolation
and guarantees that residual connections remain valid after alignment.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

After matching the heads of A to B the goal aligns closely with Git Re-Basin (Ainsworth
et al., 2023) - to reorder hA

P [i] such that the Frobenius inner product is maximized between
H sub portions (Rinaldi et al., 2025),

P
(i)
intra head = argmax⟨hB

i , PhA
P [i]⟩ (7)

By iterating these two stages across all transformer layers, the procedure yields a canonicalized
parameterization in which weights are aligned up to permutation symmetries. The goal is to permute
units in such a way that two weight sets θA and θB become functionally comparable, reducing the
effective size of the weight space that the FM encounters Rinaldi et al. (2025). This is similar to the
case of Git Re-Basin (Ainsworth et al., 2023) for canonicalization.

C RECALIBRATION OF BATCH NORMALIZATION WEIGHTS

Given a generated neural network with randomly initialized or flow-matched weights, the batch
normalization layers contain statistics that may not match the actual data distribution. Naively inter-
polating weights of trained networks can lead to variance collapse (Jordan et al., 2022; Ainsworth
et al., 2023), where the per-channel activation variances shrink drastically, breaking normalization
and degrading performance. The recalibration process computes proper running statistics using the
target dataset(Izmailov et al., 2018; Maddox et al., 2019; Shomron & Weiser, 2020; Wang et al.,
2021).

We include these statistics parameters of batch normalization layers in the PermutationSpec of Git
Re-Basin, a config that defines the permutation ordering across layers for weight matching, so that
these statistics are also permuted and correctly maintained, ensuring that the permuted networks
retain the same weights and accuracy as the original network.

C.1 STANDARD BATCH NORMALIZATION

For a feature map x ∈ RN×C×H×W where N is batch size, C is channels, and H,W are spatial
dimensions:

µc =
1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

xn,c,h,w (8)

σ2
c =

1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

(xn,c,h,w − µc)
2 (9)

x̂n,c,h,w =
xn,c,h,w − µc√

σ2
c + ϵ

(10)

yn,c,h,w = γcx̂n,c,h,w + βc (11)

where γc and βc are learnable scale and shift parameters, and ϵ is a small constant for numerical
stability. During training, BatchNorm (Ioffe & Szegedy, 2015) maintains running statistics using
an exponential moving average:

µ̄(t)
c = (1− α)µ̄(t−1)

c + αµ(t)
c (12)

σ̄2(t)
c = (1− α)σ̄2(t−1)

c + ασ2(t)
c (13)

where α is the momentum parameter, typically 0.1, and t denotes the time step.

C.2 RECALIBRATION PROCESS

For generated networks, recompute running BatchNorm statistics:

1. Reset: Initialize running mean and variance for all channels, and set total sample count to
zero.

2. Disable momentum: Turn off exponential moving average updates.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Batch Normalization Recalibration

1: Input: Calibration dataset D (e.g., test dataset), batch size B
2: H and W denote the height and width of feature maps
3: xi,c,h,w denotes the activation of sample i, channel c, at spatial position (h,w).
4: Initialize µ̄c = 0, σ̄2

c = 1, nc = 0 for all channels c
5: Disable exponential moving average (momentum) updates
6: Partition D into mini-batch sequence {B1,B2, . . . ,BK} where

⋃K
k=1 Bk = D

7: Define batch statistics for each Bk and channel c:

µ(k)
c =

1

|Bk|HW

∑
i∈Bk

H∑
h=1

W∑
w=1

xi,c,h,w

σ2(k)
c =

1

|Bk|HW

∑
i∈Bk

H∑
h=1

W∑
w=1

(xi,c,h,w − µ(k)
c)2

8: Compute running statistics where nk = |Bk|HW and n
(k)
c = n

(k−1)
c + nk:

µ̄(k)
c =

n
(k−1)
c µ̄

(k−1)
c + nk · µ(k)

c

n
(k)
c

σ̄2(k)
c =

n
(k−1)
c σ̄

2(k−1)
c + nk · σ2(k)

c +
n(k−1)
c nk

n
(k)
c

(
µ̄
(k−1)
c − µ

(k)
c

)2

n
(k)
c

9: Final recalibrated statistics: µ̄c = µ̄
(K)
c , σ̄2

c = σ̄
2(K)
c for all channels c

10: Restore exponential moving average updates (set momentum = 0.1)

3. Forward pass and incremental update: For each mini-batch in the calibration dataset:

• Compute the mean and variance of the batch for each channel.
• Update the running mean as a weighted average of the previous running mean and the

batch mean.
• Update the running variance by combining the previous variance, the batch variance,

and a correction for the shift in means.
• Update the total sample count.

4. Restore momentum: Re-enable exponential moving average updates with the original
momentum value.

Table 7: Comparing the impact of batch norm recalibration on complete ResNet-18 and 20s generated by
DeepWeightFlow. Recalibrating batch normalization statistics on a small subset of target data significantly
improves the accuracy of generated models.

Model Git Re-Basin Strategy Mean ± Std (%) Min (%) Max (%)
ResNet-18 Yes No Calibration 10.00 ± 0.00 10.00 10.00

Ref BN* 19.06 ± 9.68 10.00 94.05
Recalibrated 93.05 ± 4.42 49.12 93.93

ResNet-18 No No Calibration 10.00 ± 0.00 10.00 10.00
Ref BN 10.28 ± 1.24 6.23 15.93
Recalibrated 93.49 ± 0.21 92.77 93.96

ResNet-20 Yes No Calibration 14.36 ± 3.10 5.84 19.03
Ref BN 17.88 ± 4.66 9.96 26.54
Recalibrated 74.57 ± 0.84 71.47 76.17

ResNet-20 No No Calibration 12.64 ± 2.22 8.12 18.19
Ref BN 10.23 ± 0.79 8.04 14.92
Recalibrated 75.21 ± 0.79 72.06 76.52

* Ref BN: Uses batch normalization statistics from reference model (seed 0)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The algorithm we use for recalibration of the batch normalization running statistics is provided in
Algorithm 1. In Table 7 we show the results of recalibration on the generated neural networks.
This clearly shows the importance of batch normalization, running statistics recalibration on the
generation of neural networks that have batch normalization in their architecture.

D PCA AS AN EFFECTIVE COMPRESSION STRATEGY

Table 8: Accuracy and efficiency comparison of DeepWeightFlow with and without incremental PCA compres-
sion. Training/generation times in minutes. Generation time is the total generation+ inference time for 100
models.

Model Method dh
Original Generated (Accuracy) Time (min)

Mean With Re-basin Without Re-basin Train Generation
ResNet-20 Without PCA 512 73.62 ± 2.24 75.07 ± 1.24 74.92 ± 0.80 11.25 6.00
ResNet-20 With PCA 512 73.62 ± 2.24 75.96 ± 0.89 75.97 ± 0.86 1.23 5.78

Vit-Small-192 Without PCA 384 83.30 ± 0.29 82.99 ± 0.11 82.58 ± 0.07 21.00 3.60
Vit-Small-192 With PCA 1024 83.30 ± 0.29 83.08 ± 0.19 83.28 ± 0.01 2.90 1.75

In Table 8, we show the effects of using PCA to reduce the dimension of the neural network weight
space. This is necessary as DeepWeightFlow cannot be trained on with the full rank of the larger
neural networks, such as ResNet-18, due to memory constraints on a single GPU. Hence, we reduce
dimensionality using PCA and decompress after generation. To test the validity of PCA, we trained
the DeepWeightFlow models on ResNet-20 and ViT with and without using PCA as shown in Ta-
ble 8. We observe that the accuracy and diversity of the neural networks (indicated by the standard
deviation in the accuracy) are sufficiently representative of the original sample with or without PCA.
This gives us confidence that much larger neural networks can be generated by DeepWeightFlow us-
ing PCA. We leave the complete implementation of this as future work.

Here we have performed incremental PCA that lets us perform PCA in chunks without loading
all data into memory, but the math and essential foundation for it is exactly the same as stan-
dard PCA. Incremental PCA reduces the dimensionality of the generated weight matrices, we
start with data of shape (nsamples,flat dim), incremental PCA projects it into a latent space of size
(nsamples, latent dim), where we set latent dim = 99. Since PCA orders components by explained
variance and the rank of the data matrix is bounded by nsamples −1, at most 99 meaningful directions
can exist for 100 samples we used. Therefore, using 99 principal components retains essentially all
the variance of the dataset, while compressing the original high-dimensional representation into a
very compact latent space.

D.1 DUAL PCA

While we have demonstrated results using incremental PCA for models with tens of millions of pa-
rameters, scaling to models with up to 100M parameters introduces significant memory constraints.
Traditional PCA algorithms require loading all data into memory simultaneously, which becomes
infeasible when analyzing thousands of deep neural network models with hundreds of millions to
billions of parameters. In such settings, directly constructing the covariance matrix is computation-
ally expensive and memory-prohibitive. To address this, we exploit the dual PCA formulation, in
which principal directions are recovered from the eigen-decomposition of the Gram matrix rather
than the covariance of the features (Schölkopf et al., 1998; Shawe-Taylor et al., 2005). This approach
has been extended to functional and multivariate settings, where the dual eigenproblem provides a
scalable approximation to the spectra of covariance operators (Golovkine et al., 2024). By project-
ing the data into the space spanned by the nmodels samples instead of the original nparams features,
the dimensionality is reduced from nparams × nparams to nmodels × nmodels; mathematically, this is
equivalent to standard PCA because the nonzero eigenvalues of the covariance matrix XX⊤ and
the Gram matrix X⊤X coincide, and the principal components in the original space can be recon-
structed from the sample-space eigenvectors. To further scale PCA to extremely high-dimensional
models, we combine this dual formulation with randomized numerical linear algebra. Specifically,
the eigendecomposition of the Gram matrix is computed using a randomized SVD scheme, which
reduces computational cost while preserving spectral accuracy (Halko et al., 2011). Since storing
full datasets or full parameter vectors is infeasible, both covariance and Gram matrices are con-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

structed incrementally. We build on the principles of incremental and streaming PCA algorithms
(Ross et al., 2008; Cardot et al., 2018), adapting them to extremely high-dimensional model param-
eters with micro-batch accumulation and GPU-accelerated matrix operations. Model parameters
are streamed from disk in batches, enabling PCA on datasets that exceed available memory. Our
method performs PCA in four stages (D.1): (1) incremental estimation of the empirical mean, (2)
streamed construction of the Gram matrix, (3) randomized eigendecomposition, and (4) vectorized
recovery of the principal components in the original parameter space. This results in a scalable PCA
framework suitable for analyzing collections of models with billions of parameters, even when the
complete dataset cannot fit in memory.

D.2 NOTATION AND ALGORITHM

Let W = [w1, . . . , wn] ∈ Rd×n denote the weight matrix where n is the number of trained models,
d is the number of parameters per model, k is the number of principal components to retain, and
wi ∈ Rd is the i-th model’s flattened weights. Let W̃ = W − µ1⊤ ∈ Rd×n denote the centered
weight matrix where µ = 1

n

∑n
i=1 wi is the empirical mean.

The algorithm consists of four sequential passes:

1. Incremental Mean Computation: Compute the empirical mean in batches to avoid loading
all models into memory:

µ =
1

n

n∑
i=1

wi

2. Gram Matrix Construction: Build the n × n Gram matrix block-wise, exploiting GPU
parallelism while keeping only two micro-batches in GPU memory at a time:

Gij = (wi − µ)⊤(wj − µ), i, j = 1, . . . , n

3. Randomized Eigendecomposition: Compute the top k eigenvectors of G using randomized
SVD (Halko et al., 2011):

G ≈ UΣU⊤, U ∈ Rn×k, Σ = diag(σ1, . . . , σk)

where σi are singular values. Since G = W̃⊤W̃ is symmetric, eigenvalues are λi = σ2
i .

4. Principal Components in Parameter Space: Recover components in the original d-
dimensional space via back-projection:

P = W̃U ∈ Rd×k

Components are computed using GPU-accelerated matrix multiplication and normalized to
unit length.

D.2.1 COMPLEXITY ANALYSIS

Time complexity per pass:

• Incremental Mean Computation: O(nd) — single pass through all data
• Gram Matrix Construction: O(n2d) — compute n2 pairwise inner products
• Randomized SVD: O(n2k) — randomized SVD with 5 iterations
• Principal Components in Parameter Space: O(ndk) — back-project to k components

Complexity is practically limited by O(n2d) when k < n ≪ d, dominated by Gram matrix con-
struction.

D.2.2 EMPIRICAL TIMING ANALYSIS

We conducted a comprehensive timing study of our pipeline using a single NVIDIA A100 40GB
GPU to understand the computational costs of each phase. We analyzed the end-to-end timing for
three representative architectures - ResNet18 (11M parameters), ViT-Small-192 (5.5M parameters),
and BERT-Base (118M parameters), each trained on 100 models. All experiments were run on a
single NVIDIA A100 GPU with FP16 precision for Dual PCA implementation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Setup Phase Timing Breakdown on NVIDIA A100

Model Canonicalization PCA Fitting Flow Training Total Setup
ResNet18 (11M) 144s 60s 66s 270s
ViT-Small (2.84M) 1,002s 12s 60s 1,074s
BERT-Base (118M) 6,900s 360s 66s 7,322s

Setup phase is executed once per model collection (100 models) and prepares the system for
subsequent model generation.

Table 10: Generation Phase Timing per Single Model on NVIDIA A100

Model Latent Flow Inverse PCA Inferencea Total
ResNet18 (11M) 0.032s 0.049s 1.68sb 1.76s
ViT-Small (2.84M) 0.031s 0.015s 1.633s 1.67s
BERT-Base (118M) 0.150s 1.60s 20s 21.75s
a Inference includes WSO reconstruction, model loading, and evaluation on test

set.
b ResNet18 inference time includes BatchNorm recalibration

Table 11: Flow Matching Hyperparameters and Performance Results For 100 generated samples projected to
98-99 PCA components using dual PCA

Model Hidden Dim Time Embed Org. Scores Avg Score

ResNet18 (dataset: CIFAR-10, metric: accuracy %)
ResNet18 1024 128 94.45 ± 0.14 93.52 ± 0.16

ViT-Small-192 (dataset: CIFAR-10, metric: accuracy %)
ViT-Small-192 512 64 83.30 ± 0.29 83.83 ± 0.1

BERT-Base (dataset: Yelp, metric: Spearman’s correlation)
BERT-Base 1024 64 0.7902 ± 0.0061 0.7909 ± 0.005

D.2.3 SCALABILITY DISCUSSION

The dual PCA formulation is particularly advantageous when d ≫ n, as the Gram matrix G ∈ Rn×n

is much smaller than the d×d covariance matrix required by standard PCA. This reduces both com-
putational cost (from O(nd2) to O(n2d) for covariance construction) and memory requirements
(from O(d2) to O(n2)). With modern high-memory GPUs (e.g., NVIDIA H100 with 80GB HBM3)
and FP16 precision, the micro-batch size m can be tuned to balance GPU memory constraints and
computational efficiency. The FP16 option effectively doubles these capacity limits while introduc-
ing negligible numerical error. As GPU memory and compute continue to improve, we expect this
approach to scale naturally to even larger model collections.

E DATASET GENERATION

Table 12 and Table 13 provide the details of the architecture and training hyperparameters used to
create the trained neural network datasets that were used to train DeepWeightFlow. The training
datasets can be made available on request.

The ResNet-20 neural networks used have notably lower parameter counts than the ResNet-18 neural
networks, as the former is narrower while being deeper to reduce model complexity in training for
smaller datasets. The ResNet-18 configuration is typical (He et al., 2016). The specific block layouts
are described in Table 13.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameters for training the neural networks that were used as the training datasets for Deep-
WeightFlow. Final weights for each seed after the epochs listed in the table are treated as a single datapoint.
We train 100 such models, using early stopping to halt training when validation performance plateaus.

Model Dataset Params LR Schedule Optimizer LR Weight Decay Batch Size Epochs
MLP Iris 131 None Adam 1e-3 0 16 100
MLP MNIST 26.5K None Adam 1e-3 0 64 5
MLP Fashion 118K None AdamW 1e-3 0 128 25
SmallCNN CIFAR-10 12.4K None AdamW 1e-3 1e-3 128 50
ResNet-18 STL-10 11.2M Warmup+Cosine SGD 0.1 5e-4 128 10
ResNet-18 CIFAR-10 11.2M Cosine SGD 0.1 5e-4 128 100
ResNet-20 CIFAR-10 0.27M None Adam 1e-3 0 128 5
Vit-Small-192 CIFAR-10 2.8M Cosine AdamW 3e-4 0.05 128 300
BERT-Base Yelp Review 118M None AdamW 1e-4 0 32 3

Table 13: Model architectures for the neural networks used to train DeepWeightFlow. For the MLPs, the first
number in the Architecture definition is the input dimension. For the ResNets, “blocks” refer to residual blocks.
For training BERT models, we use only a subset of the YelpReview dataset for training and testing for this
experiment.

Model Architecture Parameters Dataset Input Dim
MLP [4, 16, 3] 131 Iris 4 × 150
MLP [784, 32, 32, 10] 26,506 MNIST 28 × 28
MLP [784, 128, 128, 10] 117,770 Fashion-MNIST 28 × 28
SmallCNN 3 conv, 2 FC 12,042 CIFAR-10 32 × 32 × 3
ResNet-20 3 × [3, 3, 3] blocks 272,474 CIFAR-10 32 × 32 × 3
ResNet-18 4 × [2, 2, 2, 2] blocks 11.17M CIFAR-10 32 × 32 × 3
ResNet-18 4 × [2, 2, 2, 2] blocks 11.17M STL-10 96 × 96 × 3
Vit-Small-192 194 embedding dimension, 6 blocks, 3 heads 2.87M CIFAR-10 32 × 32 × 3
BERT-Base 768 embed dim, 12 blocks, 12 heads 118M Yelp Review 128 tokens

Table 14: DeepWeightFlow Flow Matching training hyperparameters

Parameter Value Parameter Value
Architecture Training
Flow Model Hidden Dims [dh, dh/2, dh]a Optimizer AdamW
Time Embedding Dim 4–128b Learning Rate 5× 10−4 / 1× 10−4h

Activation Function GELU Weight Decay 1× 10−5

Layer Normalization Yes AdamW β (0.9, 0.95)
Dropout Rate 0.1–0.4c Batch Size 2–8d

Flow Matching Training
Time Distribution Uniform / Betai Training Iterations 30,000
Noise Scale (σ) 0.001 Training Data Size 100 models
Source Distribution N (0, σ2

sI)
e LR Scheduler CosineAnnealing

ηmin 1× 10−6

Generation Preprocessing
ODE Solver Runge-Kutta 4 Weight Matching Git Re-Basin/TransFusionf

Integration Steps 100 PCA Method Incremental/Dual PCAj

Generated Samples 25–100k BN Recalibration ResNets onlyg

a dh ∈ {32, 64, 128, 256, 384, 512, 1024} depending on architecture complexity
b Time embedding: 4 for Iris MLP, 64 for ResNet-20/MNIST/Fashion-MNIST/Vit-Small-

192/BERT-Base, 128 for ResNet-18
c Dropout: 0.4 for Iris MLP, 0.1 for all other architectures
d Batch size: 2 for BERT-Base, 4 for Vit-Small-192, 8 for all others
e σs = 0.001 for Vit-Small-192 and BERT-Base, σs = 0.01 for all other architectures
f Git Re-Basin for ResNets/MLPs, TransFusion for Vision Transformers and BERT
g BatchNorm statistics recalibrated using test data only for ResNet architectures post-generation
h Learning rate: 1× 10−4 for BERT-Base, 5× 10−4 for all others
i Time distribution: Beta(2,5) for BERT-Base, Uniform for all others
j PCA: Incremental PCA (scikit-learn) for ResNet-18/Vit-Small-192; GPU-accelerated Dual PCA

(Gram matrix, FP16) for BERT-Base
k Generated samples: 25 for Vit-Small-192, 100 for all other architectures

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F HYPERPARAMETERS OF DEEPWEIGHTFLOW MODELS

In Table 14 we provide the hyperparameters of the DeepWeightFlow models. The FM model
architecture varies by the dimensionality of the neural network weights in the training set and their
architecture.

G COMPUTATIONAL EFFICIENCY: TRAINING AND GENERATION TIME

Table 15: Performance comparison between DeepWeightFlow, RPG, P-diff, and D2NWG (Wang et al., 2025;
2024; Soro et al., 2025). RPG generates a single neural network per run, while DeepWeightFlow generates
neural networks sequentially in a single workflow. D2NWG and P-diff only generate 2048 weights within the
pretrained ResNet18 backbone (Soro et al., 2025).

Model Method Hidden Training Generation Time GPU
Dim Time (1 model)

ResNet-18
(11.7M params)

RPG (sequential)
†

- - 18.6 min H100
RPG (partially parallel)

†
- - 1.8 min H100

RPG (fully parallel)
†

- - 1.7 min H100

DeepWeightFlow
§

1024 3 min 1.38 seconds A100
DeepWeightFlow + rebasin

§
1024 2 min + 3 min 1.38 seconds A100

P-diff
¶

- - 3 hours
∗

-
D2NWG

¶
- - 1.5 hours

∗
-

ViT-Tiny
(5M params)

RPG (flatten)
‡

- 6.2 hours 9.8 min H100
RPG (by channel)

‡
- 14.2 hours 9.8 min H100

RPG (within layer)
‡

- 6.2 hours 9.8 min H100
RPG (partially parallel)

†
- - 1.1 min H100

RPG (fully parallel)
†

- - 1.1 min H100

Vit-Small-192
(2.8M params)

DeepWeightFlow
§

256 21 min 2.16 seconds A100
DeepWeightFlow

§
384 19 min 1.70 seconds H100

DeepWeightFlow + transfusion
§

384 13 min + 19 min 1.70 seconds H100
†

Available RPG inference times from Wang et al. (2025).
‡

RPG training + sequential inference time from Wang et al. (2025) (Table 4 and Table 18); numbers available for single
neural network generation.

§
DeepWeightFlow performs sequential generation of models. Numbers reported here are for ResNet-18 generated using
standard incremental PCA and ViT-Small-192 for training and generation without PCA.

¶
P-diff and D2NWG perform only partial generation of 2048 weights within a pretrained backbone (Soro et al., 2025)
(Table 11).

∗
P-diff and D2NWG times reported are likely for generating 100 models; divide by 100 for approximate per-model time
(P-diff: 1.8 min/model, D2NWG: 0.9 min/model).

DeepWeightFlow demonstrates significant computational advantages over existing parameter gener-
ation methods. We compare our approach with RPG (Wang et al., 2025), the current state-of-the-art
in recurrent parameter generation, across multiple architectures and configurations.

When incorporating Git Re-basin (Ainsworth et al., 2023) for weight alignment, the additional com-
putational overhead is minimal:

• ResNet-18: 2 minutes for aligning 100 models
• Vit-Small-192 (Transfusion): 13 minutes for aligning 100 models

The results show that DeepWeightFlow consistently generates high-quality models while having
lower training and inference time on similar GPUs.

H CHOOSING THE RIGHT SOURCE DISTRIBUTION

The choice of source distribution for these generative models has a significant impact on the per-
formance of the generated models. Table Table 16 highlights the importance of selecting a source

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 16: Evaluating the impact of various source distribution choices in FM mapping on the performance of
complete weights generated by DeepWeightFlow.

Model & Source Distribution With Rebasin (%) Without Rebasin (%)

Vit-Small-192 on CIFAR-10
Original Accuracy 83.29 ± 0.29
Gaussian(0, 0.01) 78.31 ± 10.99 76.69 ± 14.37
Gaussian(0, 0.001) 82.90 ± 0.70 82.40 ± 5.29

MLP on MNIST
Original Accuracy 96.32 ± 0.20
Kaiming Initialization 81.33 ± 14.10 67.35 ± 26.10
Gaussian(0, 0.01) 96.18 ± 0.23 96.22 ± 0.22

ViT: Architecture: Vit-Small-192 (2.7M parameters), Dataset: CIFAR-10, Flow
Hidden Dim: 384, Time Embed Dim: 64
MLP: Architecture: MLP (26.5K parameters), Dataset: MNIST, Flow Hidden
Dim: 256, Time Embed Dim: 64 Dropout: 0.1

distribution that aligns well with the target distributions to ensure reliable and high-quality weight
generation.

I DIVERSITY OF THE GENERATED NEURAL NETWORKS

In Table 17, we provide the numerical estimates of mIoU, the Jensen-Shannon, Wasserstein, and
Nearest Neighbors (NN) distances between generated and original neural networks, highlighting the
diversity of the generated neural networks

Table 17: Comparison of 100 complete neural network weights generated by DeepWeightFlow with and without
Git Re-Basin through maximum Intersection over Union (IoU), Jensen-Shannon, Wasserstein, and Nearest
Neighbors (NN) distances. For MNIST, we use MLP with dh = 512 and 10% dropout. For CIFAR-10, we use
ResNet-18 with dh = 1024. Lower scores indicate closer relationships. (Org. - original, Gen. - generated)

Dataset/Architecture Metric Org. to Org. Org. to Gen. Gen. to Org. Gen. to Gen.

MNIST - MLP

DeepWeightFlow w/ Re-Basin

IoU - - 0.8187 ± 0.0385 -
Wasserstein - 13.4125 21.2867 11.6721

Jensen-Shannon - 0.7146 0.8326 0.7146
NN 23.0393 ± 0.2214 9.7232 ± 10.4398 1.7526 ± 0.1671 11.7407 ± 10.5471

Cosine Sim. 0.1962 0.2093 0.2093 0.2157
L2 25.5268 25.2278 25.2278 25.1367

DeepWeightFlow w/o Re-Basin

IoU - - 0.8256 ± 0.0748 -
Wasserstein - 15.1185 25.6979 17.6939

Jensen-Shannon - 0.8181 0.8326 0.7293
NN 27.4895 ± 0.2007 12.3710 ± 12.4410 1.7916 ± 0.3753 9.7956 ± 11.2484

Cosine Sim. 0.0088 0.0187 0.0187 0.0189
L2 28.3513 28.1681 28.1681 28.2423

CIFAR-10 - ResNet-18

DeepWeightFlow w/ Re-Basin

IoU - - 0.6289 ± 0.0160 -
Wasserstein - 15.1236 27.5994 20.3590

Jensen-Shannon - 0.8242 0.8326 0.8242
NN 27.9643 ± 0.0841 13.3136 ± 14.0490 0.3649 ± 0.0836 7.9625 ± 12.6314

Cosine Sim. 0.2497 0.2542 0.2542 0.2570
L2 28.9520 28.8494 28.8494 28.8105

DeepWeightFlow w/o Re-Basin

IoU - - 0.6314 ± 0.0198 -
Wasserstein - 16.7654 29.8754 20.9545

Jensen-Shannon - 0.5018 0.8326 0.7014
NN 30.2421 ± 0.0766 13.4767 ± 14.8165 0.3667 ± 0.0590 9.3245 ± 13.7908

Cosine Sim. 0.1754 0.1818 0.1818 0.1832
L2 30.3523 30.2332 30.2332 30.2922

J FINETUNING MODELS FOR TRANSFER LEARNING ON UNSEEN DATASETS

We leverage ResNet-18 models trained and generated on the CIFAR-10 dataset to adapt to other
unseen datasets, specifically STL-10 and SVHN (Table 6). We first evaluate the performance of the
generated CIFAR-10 models on these datasets without any fine-tuning (Epoch 0). Subsequently, we

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

fine-tune the models using the standard training set of the target dataset and evaluate them on the
corresponding test set. Fine-tuning is performed for up to 5 epochs using the AdamW optimizer
with a learning rate of 1 × 10−4, weight decay of 1 × 10−4, and a cosine learning rate scheduler
with Tmax = epochs for smooth decay. We use a detach ratio of 0.4 (same as used by Saragih et al.
(2025b)) and the cross-entropy loss is used as the objective function.

J.1 TRANSFER LEARNING FOR DATASETS WITH DIFFERENT NUMBERS OF CLASSES

Table 18: Zero-shot performance at epoch 0 and fine-tuning results for complete ResNet-18 parameters
trained on CIFAR-10 and transferred to the CIFAR-100 dataset. The parameters come from DeepWeight-
Flow, SANE (Schürholt et al., 2024), RandomInit, and a Pretrained Transfer baseline. RandomInit denotes a
fresh Kaiming-He initialization. Pretrained denotes models first trained on CIFAR-10 and then transferred to
CIFAR-100. Generated denotes parameters sampled from the respective generative model. Models pretrained
on CIFAR-10 (10 classes) have their classification head replaced to accommodate CIFAR-100’s 100 classes
during transfer learning, while retaining the learned convolutional features. Best scores for each fine-tuning
setting are shown in bold.

Epoch Model Method CIFAR-100

0

SANE
tr. fr. scratch 1.00 ± 0.00
Finetuned 1.0 ± 0.3
SANESUB 1.1 ± 0.2

DeepWeightFlow
RandomInit 0.98 ± 0.06
Pretrained 1.01 ± 0.17
Generated 1.06 ± 0.26

1

SANE tr. fr. scratch 17.5 ± 0.7
Finetuned 25.7 ± 1.3
SANESUB 26.9 ± 1.4

DeepWeightFlow
RandomInit 23.36 ± 1.05
Pretrained 37.03 ± 1.34
Generated 38.37 ± 1.15

5

SANE tr. fr. scratch 36.5 ± 2.0
Finetuned 45.7 ± 1.0
SANESUB 45.6 ± 1.2

DeepWeightFlow
RandomInit 56.79 ± 0.69
Pretrained 67.39 ± 0.38
Generated 67.37 ± 0.53

K CONDITIONAL GENERATION WITH MODIFIED DEEPWEIGHTFLOW

K.1 MULTI-CLASS GENERATION WITH DEEPWEIGHTFLOW

To demonstrate the ability of DeepWeightFlow to generalize across tasks, we show conditional gen-
eration across datasets by operating directly in weight space with simple time and class embeddings
at the flow model input (Lipman et al., 2023). The models displayed in Table 19 are different from
the MLPs described in Appendix E in that they have equal weight space sizes and an identical
architecture.

Table 19: Multiclass DeepWeightFlow generation results without PCA compression and with Git Re-Basin.

Dataset Original Generated

MNIST 96.74 ± 0.25 96.61 ± 0.22
Fashion-MNIST 86.80 ± 0.31 86.46 ± 0.28

K.2 MULTI-CLASS AND MULTI-ARCHITECTURE CONDITIONAL GENERATION

To adapt DeepWeightFlow for multi-class and multi-architecture conditional generation, we incor-
porated a class embedding MLP to produce dense class embeddings, which are concatenated with
the input and time embeddings. These combined vectors are then fed into the flow model. We be-
gan by training a single flow matching model to generate weights for MNIST and Fashion-MNIST
datasets using an MLP architecture that is identical across both datasets. By conditioning on these

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

class embeddings, the single flow model successfully generated weights that achieved good perfor-
mance for both datasets. Next, we attempted to train DeepWeightFlow to learn multiple classes in
the full-rank weight space, which requires that the models have identical parameter counts. While
full-rank learning across multiple classes proved difficult, using PCA-reduced weight space allowed
the model to handle multiple classes and architectures simultaneously. However, the generated mod-
els did not achieve extremely high accuracy. A key reason is that FM models perform best when the
weight space distribution is smooth and consistent. Introducing multiple architectures or datasets
fragments this space, making it challenging for a single learned flow to interpolate or extrapolate
correctly. This remains a work in progress.

Table 20: Conditional Multiclass Cross-Architecture Generation with PCA Compression. Shows 4 classes
across distinct architectures. DeepWeightFlow trained with all classes canonicalized. All values are mean ±
standard deviation. Models were generated with PCA compression.

Class (Dataset) Original Generated

Class 0 (MNIST) 96.78 ± 0.23 54.11 ± 23.88
Class 1 (Fashion-MNIST) 86.82 ± 0.33 43.21 ± 19.65
Class 2 (Iris) 70.23 ± 9.29 53.03 ± 17.37
Class 3 (ResNet20-CIFAR10) 73.62 ± 2.24 50.90 ± 31.24

27

	Introduction
	Related Work
	Background
	Flow matching
	Permutation symmetries of neural networks and re-basin

	Methods
	Experiments
	Complete Weight Generation Across Architectures
	Transfer Learning on Unseen Datasets
	Diversity of Generated Models
	Training and Sampling Efficiency

	Conclusion
	Git Re-Basin
	TransFusion
	Recalibration of batch normalization weights
	Standard Batch Normalization
	Recalibration Process

	PCA as an effective compression strategy
	Dual PCA
	Notation and Algorithm
	Complexity Analysis
	Empirical Timing Analysis
	Scalability Discussion

	Dataset generation
	Hyperparameters of DeepWeightFlow models
	Computational Efficiency: Training and Generation Time
	Choosing the Right Source Distribution
	Diversity of the generated neural networks
	Finetuning Models For Transfer Learning on Unseen Datasets
	Transfer Learning for Datasets with Different Numbers of Classes

	Conditional generation with modified DeepWeightFlow
	Multi-class Generation with DeepWeightFlow
	Multi-class and Multi-architecture Conditional Generation

