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ABSTRACT

Building efficient and effective generative models for neural network weights has
been a research focus of significant interest that faces challenges posed by the
high-dimensional weight spaces of modern neural networks and their symmetries.
Several prior generative models are limited to generating partial neural network
weights, particularly for larger models, such as ResNet and ViT. Those that do
generate complete weights struggle with generation speed or require finetuning of
the generated models. In this work, we present DeepWeightFlow, a Flow Match-
ing model that operates directly in weight space to generate diverse and high-
accuracy neural network weights for a variety of architectures, neural network
sizes, and data modalities. The neural networks generated by DeepWeightFlow
do not require fine-tuning to perform well and can scale to large networks. We
apply Git Re-Basin and TransFusion for neural network canonicalization in the
context of generative weight models to account for the impact of neural network
permutation symmetries and to improve generation efficiency for larger model
sizes. The generated networks excel at transfer learning, and ensembles of hun-
dreds of neural networks can be generated in minutes, far exceeding the efficiency
of diffusion-based methods. DeepWeightFlow models pave the way for more ef-
ficient and scalable generation of diverse sets of neural networks.

1 INTRODUCTION

Generating neural network weights is a sampling challenge that explores the underlying high-
dimensional distribution of weights, where neural networks trained on similar datasets and tasks
exhibit statistical regularities. The development of generative models capable of learning the dis-
tributional properties of trained weights faces challenges of symmetries and high-dimensionality
of the weight spaces. Treating large collections of neural network weights as a structured and
high-dimensional data modality promises advances in model editing (Mitchell et al., 2022; Meng
et al., 2022), accelerating transfer learning (Knyazev et al., 2021; Schiirholt et al., 2022), facilitat-
ing uncertainty quantification (Lakshminarayanan et al., 2017), and advancing neural architecture
search (Chen et al., 2019; Chen, 2023). Unlike traditional machine learning tasks that aim to opti-
mize weights for specific downstream tasks, this concept advocates sampling from the weight space
itself. In this work, we focus on the efficient generation of complete neural network weights that
can achieve high performance for a given task and excel at transfer learning thus addressing funda-
mental limitations in current deep learning workflows, such as computational bottlenecks in iterative
training, vulnerability to adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018) and pri-
vacy concerns arising from training data reconstructions (Nasr et al., 2019; Tramer et al., 2022).

Generating neural network weights faces three main challenges: Firstly, neural network weights
have a rich class of symmetries (Hecht-Nielsen, 1990; Entezari et al., 2022; Navon et al., 2023; Zhao
etal., 2025), i.e., transformations of the weights that leave the neural network functionally invariant.
Most prominently, joint permutations of hidden neurons in adjacent layers of multi-layer percep-
trons (MLP) do not change the encoded function. Other architectural choices, such as incorporating
attention heads or the choice of non-linear activation, can induce additional symmetries. Techniques
for dealing with weight space symmetries fall into three main categories: (1) data augmentation,
(2) equivariant architectures, and (3) canonicalization. Prior work, such as Wortsman et al. (2022);
Wang et al. (2024); Soro et al. (2025); Saragih et al. (2025a), does not actively account for symme-
tries in their generative models, while others, such as Saragih et al. (2025b), use equivariant architec-
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Figure 1: Schematic depiction of DeepWeightFlow. a) We construct a training dataset of weights by fully
training neural networks with weights W1, ..., Wy on a given target task. b) Optionally, we use canonical-

ization, i.e., choosing a canonical representative W; from the same orbit as W;, to break the permutation
symmetry in parameter space. c) We train a flow model p for efficient generation of high-performance weights
(Wh,...,WL) ~ p; for the target task.

tures. Data augmentation has also been explored in weight representation learning (Schiirholt et al.,
2024; Shamsian et al., 2023; 2024), and to a lesser extent in weight generation (Schiirholt et al.,
2024; Wang et al., 2025). Finally, canonicalization has recently found application in weight space
learning (Schiirholt et al., 2024; Wang et al., 2024; 2025), borrowing ideas from model merging
and alignment (Ainsworth et al., 2023; Rinaldi et al., 2025). Secondly, neural network weights are
high-dimensional, varying from tens of millions for a small ResNet (He et al., 2016) to hundreds of
billions for modern large language models (Touvron et al., 2023; Guo et al., 2025). This challenge
is often addressed by non-linear, dimensionality reduction techniques, including variational autoen-
coders (VAEs) (Soro et al., 2025) and graph autoencoders (Schiirholt et al., 2022; Saragih et al.,
2025b; Soro et al., 2025). Despite increasing efficiency, dimensionality reduction requires training
an additional model for dimensionality reduction and can be detrimental to the quality of the gener-
ated weights if the compression is lossy. Lastly, generative models proposed recently either generate
partial weights for large models, or require finetuning post-generation, or have long generation time
per sample, making them impractical.

To address these challenges, we propose DeepWeightFlow, a method for efficient generation of high-
performance neural network weights via Flow Matching (FM) and apply it to MLP for vision and
tabular data, as well as ResNet (He et al., 2016), and ViT (Dosovitskiy et al., 2021) for computer
vision tasks, and BERT for natural language processing (NLP) (Devlin et al., 2019). We rely on
canonicalization techniques, such as Git Re-Basin (Ainsworth et al., 2023) and TransFusion (Ri-
naldi et al., 2025), to resolve parameter permutation symmetries, and show that canonicalization
aids weight generation for large neural networks but offers limited benefits when the weight space
dimension is moderate. We show that neural networks generated by DeepWeightFlow excel at the
target task and are competitive with state-of-the-art weight generation methods such as RPG (Wang
et al., 2025), D2NWG (Soro et al., 2025), FLoWN (Saragih et al., 2025b), and P-diff (Wang et al.,
2024) while overcoming several of the limitations of these models. A schematic of our methods
is shown in Figure 1. While DeepWeightFlow samples directly from weight spaces, we show that
the models can scale to generating larger networks using PCA while keeping the training and the
generation time low. In summary, the contributions of this work are as follows:

* DeepWeightFlow is a new method for complete neural network weight generation based on
FM, unconditioned by dataset characteristics, task descriptions, or architectural specifications.
DeepWeightFlow does not require additional training of autoencoders for dimensionality re-
duction and can scale to high-dimensional weight spaces using PCA.

* We show that our method can generate weights for neural networks with O(100M/) parame-
ters, and diverse architectures, such as MLP, ResNet, ViT, and BERT that, without fine-tuning,
exhibit high performance on tasks in the vision, tabular, and natural language domains.

* We empirically elucidate the role of parameter symmetry for weight generation, showing that
canonicalization of the training data aids the generation of very high-dimensional weights but
offers no additional benefit for weights of modest dimension.

* DeepWeightFlow, with a simple MLP implementation, and without any equivariant architec-
ture, is far more efficient in generating diverse samples compared to diffusion-based models.
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2 RELATED WORK

HyperNetworks: Early explorations of neural network generation focus on HyperNetworks, which
learn neural network parameters as a relaxed temporal weight sharing process (Ha et al., 2017). Hy-
perNetworks have been applied to generating weights through density sampling, GAN, and diffusion
methods by learning latent representations of neural network weights (Ha et al., 2017; Frankle &
Carbin, 2019; Ratzlaff & Fuxin, 2019; Schiirholt et al., 2022; Kiani et al., 2024). They have also
been used to build meta-learners — augmentations or substitutes for Stochastic Gradient Descent op-
timization, which condition generation of new weight checkpoints on prior weights and task losses
(Peebles et al., 2022; Zhang et al., 2024a; Wang et al., 2025).

Generative Models for Neural Network Weights: Diffusion-based generative models for weights
have been successful at neural network weight generation, but often do not directly resolve weight
space symmetries. These approaches either provide no treatment (Wang et al., 2024), or rely on
Variational Auto Encoding (VAE) methods to concurrently resolve weight symmetries and reduce
the dimensionality of the generative task (Ha et al., 2017; Frankle & Carbin, 2019; Schiirholt et al.,
2022; Kiani et al., 2024; Soro et al., 2025). In contrast, weight canonicalization is done as a pre-
training step in SANE (Schiirholt et al., 2024), which uses kernel density sampling of hypernetwork
latents to autoregressively populate models layer-wise, allowing for complete weight generation, but
requires fine-tuning, unlike DeepWeightFlow. Diffusion has been applied directly to generating par-
tial (Wang et al., 2024) or complete weights (Soro et al., 2025; Wang et al., 2025). RPG (Wang et al.,
2025) generates complete weights by using a recurrent diffusion model. However, RPG shows long
generation times, often taking hours to generate a set of networks that DeepWeightFlow takes min-
utes to complete. Subsequent Conditional Flow Matching (CFM) methods (Saragih et al., 2025b;a)
explore dataset embeddings as conditioning for transfer learning and weight generation. These
CFMs also report using VAE methods to reduce the dimensionality of the generative task and to
resolve weight symmetries (Saragih et al., 2025b;a). We develop this further with DeepWeightFlow,
which operates directly in deep weight space to generate complete weight sets, and demonstrates the
viability of PCA as a strategy for surpassing O(100M ) parameter sets.

Permutation Symmetries in Weight Space: SANE (Schiirholt et al., 2024) applies Git Re-Basin as
a canonicalization for hypernetwork training (Schiirholt et al., 2022; 2024; Ainsworth et al., 2023).
Unlike DeepWeightFlow, SANE tokenizes weights layer-wise and autoregressively samples them
to populate new neural models. RPG (Wang et al., 2025) uses a different strategy to address per-
mutation symmetry by one-hot encoding models to differentiate between potential permutations
of similar weights. D2NWG (Soro et al., 2025) and FLoWN (Saragih et al., 2025b) both evalu-
ate VAEs, while FLoWN additionally considers permutation invariant graph autoencoding methods
to appeal to the manifold and lottery ticket hypotheses (Ha et al., 2017; Frankle & Carbin, 2019;
Schiirholt et al., 2022; Kiani et al., 2024). DeepWeightFlow extends the canonicalization methods
from previous works to transformers through TransFusion, and thoroughly evaluates the impact of
canonicalization on generating complete weight sets (Schiirholt et al., 2024; Wang et al., 2024; 2025;
Soro et al., 2025).

3 BACKGROUND

DeepWeightFlow is an FM model using an MLP architecture trained on canonicalized neural net-
works. In this section, we give a brief overview of the various methods we use to build it.

3.1 FLOW MATCHING

Flow Matching (Lipman et al., 2023) is a generative technique for learning a vector field to trans-
port a noise vector to a target distribution. Given an unknown data distribution ¢(x), we define a
probability path p; for ¢ € [0,1] with pg ~ A (0,1) and p; ~ ¢(z). FM learns a vector field with
parameters 6, vg(x, t), that transports py to p; by minimizing

‘CFM(G) = Etwu[071]7w~pi(z) “|U‘9(m7 t) - U(Z‘, t)”Q]v (1)

where u(x, t) is the true vector field generating p;(2), and U/ [0, 1] denotes the uniform distribution on
the unit interval [0, 1]. This loss is minimized if vy matches u, effectively following the probability
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path from pg to p;. FM offers several advantages over diffusion for neural network weight gener-
ation as it enables simpler and faster sampling, relies on direct vector field regression for training,
and scales efficiently to high-dimensional spaces, making it particularly well-suited for generating
complete neural network weights.

3.2 PERMUTATION SYMMETRIES OF NEURAL NETWORKS AND RE-BASIN

Permutation symmetry is a common weight space symmetry in neural networks (Hecht-Nielsen,
1990). Consider the activations z, € R% at the ¢ layer of a simple MLP, with weights W, €
Re+1%de hiases by € R%+1, and activation o, zp11 = o(Wpze + by), where zg = x is the input
data. Applying a permutation matrix P € R%+1Xde+1 of appropriate dimension, yields

2041 = PTP2z 1 = PTPo(Wyzp + by) = PTo(PWyz, + Pby), )

where PTP = I. This shows that a permutation of the output features of the ¢*" layer, when met
with the appropriate permutation of the input features of the next layer ¢ + 1, will leave the overall
MLP functionally invariant (Ainsworth et al., 2023).

Similar permutation symmetries (Lim et al., 2024) exist for the channels of convolutional neural
networks and the attention heads of the transformer architecture (Hecht-Nielsen, 1990; Ainsworth
et al., 2023; Rinaldi et al., 2025). These symmetries shape the loss landscape (Pittorino et al.,
2022), impacting optimization(Neyshabur et al., 2015a; Liu, 2023; Zhao et al., 2024) , generaliza-
tion(Neyshabur et al., 2015b; Dinh et al., 2017), and model complexity (Zhao et al., 2025). They
also impact the ability of generative models to learn distributions over neural network weights. Per-
mutation symmetry gives rise to a highly multi-modal loss surface that renders the resulting models
equivalent in task performance (Hecht-Nielsen, 1990; Lim et al., 2024).

In model alignment, weights are aligned with respect to a reference model to produce unique ’canon-
ical’ representations for each equivalence class of the weight permutation symmetry. The Git Re-
Basin (Ainsworth et al., 2023) weight matching approach permutes the hidden units of an MLP
such that the inner product between reference and permuted weights is maximized. The resulting
optimization problem is a sum of bilinear assignment problems (SOBLAP). Git Re-Basin solves
this problem approximately, using coordinate descent, reducing each layer’s subproblem to a linear
assignment and iterating until convergence. TransFusion (Rinaldi et al., 2025) extends this idea of
weight alignment to transformers where permutation symmetries exist both in MLPs and within and
between attention heads, applying iterative alignment steps to reconcile permutations of heads and
hidden units. More details on this can be found in Appendix A and Appendix B.

4 METHODS

We implement a simple MLP-based FM model. The explicit encoding of the symmetries of the neu-
ral networks is done using TransFusion for transformers and Git Re-Basin for all other architectures.

Flow Matching Architecture and Training: DeepWeightFlow uses a time-conditioned neural net-
work that predicts a velocity vector along a trajectory between source and target network weights.
The source is a distribution of Gaussian noise given by x¢ ~ A(0,0%I), and the target is a distribu-
tion of trained weights (21 ~ Prarger). The source distribution has the same dimensions as the target.
Given a sampled time ¢ € [0, 1] (uniformly distributed), an interpolated point along the straight-line
trajectory is computed as iy = (1 —¢)xg + tx1. To stabilize training, stochastic points are generated
by adding Gaussian noise z; = p; + €, with ¢ ~ N(0,02I). The instantaneous target velocity

along this linear trajectory is u; = x1 — xg (since % = x1 — o), which is constant along the
straight-line path. The network sees z; as input, while u, is derived from the endpoints (xg, x1).
The scalar time ¢ is embedded into a higher-dimensional vector tempes = MLP(t) € Réime | where
diime varies depending on the complexity of the model for which we are training DeepWeightFlow.
We use a shallow MLP with layer normalization, dropout regularization, and GELU activations.
This temped 1S concatenated with z, and fed into the main network, allowing the network to condition
on time in a learnable, flexible manner. The network maps (¢, tembed) = Vo (x4, t), Where vy is the
learned vector field. The main network consists of fully connected layers with LayerNorm, GELU
activations, and Dropout, ending with a linear layer mapping back to the flattened weight dimen-
sion. Finally, new weight configurations are generated by integrating the learned vector field from
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random Gaussian inputs in the same flattened weight space as the source distribution. This inte-
gration is performed using a fourth-order Runge-Kutta (RK4) method, which ensures high-accuracy
trajectories in weight space. Concretely, at each integration step, the vector field is evaluated at the
current point and time, and RK4 increments are computed to update the weights. This procedure
allows sampling of realistic neural network weight configurations that smoothly interpolate between
source and target distributions.

Canonicalization: We apply canonicalization to align the training set to a single reference, as neu-
ral network loss landscapes are inherently degenerate due to permutation symmetries in the weight
space. This simplifies the learning process without the need for complex equivariant architectures.
To implement canonicalization for smaller MLPs and ResNets, we use the weight-matching proce-
dure of Git Re-Basin (Ainsworth et al., 2023) for 100 iterations. For ViTs, we use the TransFusion
procedure (Rinaldi et al., 2025) for 10 iterations as the latter uses spectral decomposition and is
slower than Git Re-Basin. The detailed description of these methods can be found in Appendix A
and Appendix B. Subsection D.1 provides an estimate of the time required for canonicalization.

Batch Normalization Statistics Based Recalibration: We implement a post-generation recalibra-
tion procedure where batch normalization (BN) (loffe & Szegedy, 2015) statistics are recomputed
using the training dataset for each set of generated weights. Neural networks with BN pose chal-
lenges for weight generation, as even perfectly generated weights can underperform if BN statistics
are misaligned. DeepWeightFlow addresses this by recalibrating BN statistics after weight gen-
eration, ensuring models are accurate. While the FM framework successfully learns BN weight
parameters (v and (), the running statistics (mean and variance) require more careful processing.
These statistics are intrinsically tied to the training data distribution and must be precisely calibrated
for each generated weight set. Our experiments, summarized in Table 7, reveal that directly trans-
ferring running statistics from a reference model yields suboptimal performance. We provide our
recalibration algorithm in Algorithm | (Wortsman et al., 2021; 2022). Layer normalization (Ba
et al., 2016) is permutation invariant and does not need recalibration (Ainsworth et al., 2023).

Incremental and Dual PCA for scaling to large neural networks: We use incremental and Dual
PCA to scale to larger networks, as training on unprocessed training data for larger neural networks
is limited by available GPU memory. We use incremental PCA to preprocess the training data when
the weight space dimension is of O(10M) and Dual PCA when the dimension of the weight space
is O(100M), and inverse PCA during generation. The algorithmic and computational details of the
latter can be found in Subsection D.1. We also perform ablation studies to show the improvement in
training time by using PCA (Table 8 in Appendix D).

Training Data Generation: All training data used in this work was generated ab initio from a set
of randomly initialized neural networks trained separately, thus generating a diverse set of neu-
ral networks. Details of the training dataset generation can be found in Appendix E. We test
DeepWeightFlow on diverse tasks such as the Iris (Fisher, 1936), MNIST (Lecun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), and Yelp (Xiang Zhang,
2015) datasets for both classification and regression tasks. Recent work by Zeng et al. (2025) has
raised concerns about the lack of diversity of weights sampled from generative models trained on
checkpoints from training a single neural network (Wang et al., 2024). We generate neural network
weights independently trained from random initialization and not drawn from a sequence of check-
points from training a single neural network, thus increasing the diversity of the training set, for
training all DeepWeightFlow models. We provide the hyperparameters in Appendix E.

5 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of our approach across different
architectures, training conditions, and downstream tasks. We show that DeepWeightFlow generates
complete weights for MLPs, ResNets, ViTs, and BERTs with high accuracy, and canonicalization
improves performance at low FM model capacity. We see that incremental and Dual PCA enables
scaling DeepWeightFlow to O(100M) parameters. Our approach is robust across diverse initializa-
tion schemes, including Kaiming, Xavier, Gaussian, and Uniform. We see that Gaussian source
distributions outperform Kaiming, with variance choice being most critical at low capacity. Gen-
erated CIFAR-10 models transfer effectively to STL-10 and SVHN. Lastly, the generated neural
networks are diverse while maintaining strong accuracy, and training and sampling are significantly
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faster than diffusion models such as RPG, D2NWG, and P-diff. Unless explicitly stated, all training
sets are 100 terminal neural networks (not checkpoints from a single training round) initialized with
unique seeds (Appendix E and Appendix F). All DeepWeightFlow models are architecture-specific
except when we probe class-conditioning (Subsection K.2).

5.1 COMPLETE WEIGHT GENERATION ACROSS ARCHITECTURES

Table 1: Comparison of DeepWeightFlow with other SOTA neural network weight generating methods for
complete generation of weights for MNIST classifiers, without finetuning.

Model Neural Network Original Generated Reference

DeepWeightFlow (w/ Git Re-Basin) 96.17 +0.31
DeepWeightFlow (w/o Git Re-Basin) 3-Layer MLP 96.32+0.20 96.19 + 0.27

WeightFlow (Geometric, aligned + OT)  3-Layer MLP 93.3 78.6 Erdogan (2025)
FLoWN (Unconditioned) medium-CNN 92.76 83.58 Saragih et al. (2025b)

Table 2: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for com-
plete ResNet-18 CIFAR-10 classifier weight generation, without fine tuning.

Model Original Generated Generated Reference
(Partial) (Complete) Reference

DeepWeightFlow (w/ Git Re-Basin) 04.45 + 0.14 93.55+0.13

DeepWeightFlow (w/o Git Re-Basin) ’ ’ 93.47 +0.20

RPGT 95.3 - 95.1 Wang et al. (2025)

SANET 92.14 + 0.12 - 68.6 1.2 Schiirholt et al. (2024)

D2NWG 94.56 94.57 + 0.0 - Soro et al. (2025)

NM (Unconditioned) 94.54 94.36 - Saragih et al. (2025a)
. - Wang et al. (2024

P-diff (best neural network) 94.54 94.36 (Sarugﬁl ot nlf 2()25)b)

FLoWN (best neural network) 94.54 94.36 - Saragih et al. (2025b)

TModels use autoregression to generate complete models over multiple passes.

Table 3: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for com-
plete ResNet-18 STL-10 classifier weight generation, without fine-tuning.

Model Original Generated  Generated Reference
(Partial) (Complete)

DeepWeightFlow (w/ Re-Basin) 62.30 + 0.77 62.46 +0.79

DeepWeightFlow (w/o Re-Basin) Y 62.50 + 0.66

P-diff 62.00 62.24 - Wang et al. (2024)

FLoWN 62.00 62.00 - Saragih et al. (2025b)

NM (Unconditioned) 62.00 62.00 - Saragih et al. (2025a)

Table 4: Comparison of DeepWeightFlow with other SOTA neural network weight generating models for ViT
family CIFAR-10 classifiers, without finetuning. We have used ViT-small-192, indicating an embedding dimen-
sion of 192 Wang et al. (2025); Schiirholt et al. (2024); Soro et al. (2025); Dosovitskiy et al. (2021).

Model neural network Original Generated Reference

DeepWeightFlow (w/ TransFusion) Vit-Small-192 83.30 & 0.29 83.07 £ 0.42

DeepWeightFlow (w/o TransFusion) 82.58 + 0.07
P-diff (Best) ViT-mini 73.0 73.6 Wang et al. (2024)
RPG ViT-Base 98.7 98.9 Wang et al. (2025)

DeepWeightFlow generates complete neural network weights and the generated networks perform
as well as the training set. In Table 1, Table 2, Table 3, and Table 4, we highlight the results of gener-
ating MLPs, ResNet-18/20s and ViTs from DeepWeightFlow models. We have conducted our exper-
iments on MNIST, Fashion-MNIST, CIFAR-10, STL-10 (Coates et al., 2011), and SVNH (Goodfel-
low et al., 2013) datasets. As noted before, we generate the complete weights for all neural networks,
including those with batch normalization such as ResNet-18 and ResNet-20. The comprehensive
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weight generation scope of DeepWeightFlow is unlike existing approaches such as FLoWN (Saragih
et al., 2025b) and P-diff (Wang et al., 2024), which primarily generate only partial weight sets (lim-
ited to batch normalization parameters due to lack of scalability with neural network parameter
size). Moreover, DeepWeightFlow generated networks perform as well as the training set without
the requirement of additional conditioning during training or inference. With sufficient flow model
capacity, performance converges regardless of canonicalization or noise scheduling strategy, sug-
gesting that model capacity can compensate for suboptimal design choices. The choice of source
distribution significantly impacts FM performance and generated model diversity (cf. Figure 2).

Effect of Source Distributions: Critical to the success of DeepWeightFlow, is the careful selec-
tion of the standard deviation parameter of the source distribution: optimal results are achieved
when the source distribution’s standard deviation matches or slightly undershoots that of the target
weight distribution. Our empirical analysis demonstrates that Gaussian noise consistently outper-
forms alternative initializations (e.g., Kaiming initialization) as the source distribution (Table 16 in
Appendix H). This sensitivity is particularly pronounced in smaller flow models, where insufficient
capacity amplifies the importance of proper initialization (Saragih et al., 2025b).

Table 5: Canonicalization is beneficial when DeepWeightFlow has limited capacity, leading to superior perfor-
mance. As model capacity increases, both canonicalized and non-canonicalized models perform comparably,
with the best results highlighted in bold.

Original Generated

Dataset Architecture dp* with re-basin without re-basin
(metric) (metric) (metric)
mean &+ st. dev. mean = st. dev. mean =+ st. dev.

Classification Tasks (Accuracy %)

256 91.43 £ 2.07 91.03 + 2.20

. 128 91.43 + 2.46 90.87 + 325
Iris MLP 64 90.70 & 2.02 91.87 + 2.23 90.80 + 4.86
32 90.80 + 2.54 88.93 + 6.09

512 96.17 + 0.31 96.19 + 0.27

256 96.21 + 0.28 96.20 + 0.23

MNIST MLP 128 9032£020 917451037  89.71+ 17.93
64 57.80 + 9.85 25.54 & 12.90

512 89.10 + 0.29 89.11+ 0.28

. 256 89.06 + 0.29 89.02 £ 0.30
Fashion-MNIST =~ MLP 128 8924027 88.09 + 2.24 85.81 + 11.32
64 7776 £ 3.72 53.35 + 3049

512 75.07 + 1.24 74.92 + 0.80

256 7532+ 0.83 7491 + 0.97

CIFAR-10 ResNet-20 e me2+224 axaa Lo
64 2016+ 1344  20.06 + 15.76

384 82.99 + 0.11 82.58 + 0.07

4 256 83.07 + 0.42 82,51 + 0.55

CIFAR-10 Viesmall-192 18 83304020 ST ELA o 8251 05
64 4313+ 30.28 1267 +7.11

1024 93.55 + 0.13 93.47 + 0.20

512 93.49 £ 0.19 93.43 + 0.64

CIFAR-10 ResNet-187 128 94.45 4+ 0.14 57.98 + 34.02 4755 1 3746
64 299241979  21.93 + 19.86

Regression Task (Spearman Correlation)

. 1024 0.7909 & 0.005  0.7884 = 0.012
Yelp Review BERT-118MF g 07902 +0.061 (7804 1+ 0.006 07892 & 0.015

TResNet-18 results use standard incremental PCA-reduced weights.
¥BERT-118M results use dual/Gram PCA approach.
*dy,: flow hidden dimension

Scaling with PCA: DeepWeightFlow can scale to large neural networks using PCA (Wold et al.,
1987; Hotelling, 1933). For models with tens of millions of parameters, we employ incremental
PCA (Ross et al., 2008) to reduce the dimensionality of flattened weight vectors in the training set,
and inverse transformation post-generation. This approach maintains accuracy levels, as can be seen
from Table 8 in Appendix D, while enabling tractable training of DeepWeightFlow for large-scale
architectures. This demonstrates the feasibility of extending our methodology to generate complete
weight sets for contemporary large neural networks without the requirement of training additional
models for dimensionality reduction, such as autoencoders, as is often done for latent diffusion-
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based models (Wang et al., 2024). We demonstrate that DeepWeightFlow can be scaled to O(100M )
parameters with Dual PCA. Given the reduction of resources and time required with Dual PCA, we
estimate that models of O(1B) parameters might be possible to generate using DeepWeightFlow and
leave that as future work.

Impact of Canonicalization: We observe a capacity-dependent behavior of DeepWeightFlow mod-
els with and without canonicalization. At lower capacity of the FM models, models trained on
canonicalized neural network weights generate higher performing ensembles than the FM models
trained on non-canonicalized data. However, as the capacity of the FM model increases, the perfor-
mance of the ensembles of generated neural networks become similar. In general, FM models trained
on canonicalized neural network weights approach the performance of the training set (“original”
neural networks) with lower capacity. Moreover, when flow model parameters are limited, models
trained on canonicalized data generate neural networks with observably lower variance in accuracy
In Table 5, we show the performance of DeepWeightFlow with and without canonicalization.

Robustness Across Initialization Schemes: To evaluate generalization capability, we conducted
extensive robustness testing using MLP models trained on the Iris dataset with diverse initialization
strategies (Kaiming (He et al., 2015), Xavier (Glorot & Bengio, 2010), Kaiming weights and zero
for biases, normal, and uniform distributions). Training a single flow model on this heterogeneous
collection (100 models total: 20 seeds x 5 initialization types) successfully generated novel weights
achieving high test accuracy, demonstrating the framework’s ability to learn from and generate
weights across different initialization regimes. All other experiments maintained consistency by
using Kaiming initialization with varied random seeds.

5.2 TRANSFER LEARNING ON UNSEEN DATASETS

Our generated models can be effectively used for transfer learning (Nava et al., 2023; Zhang et al.,
2024b) across unseen datasets. In our experiments, we trained DeepWeightFlow on ResNet-18 mod-
els for the CIFAR-10 dataset using PCA, generated 5 models, and recalibrated their batch normaliza-
tion running mean and variance on a small subset of CIFAR-10 in the same way as applied in Table 5
and elaborated on in Table 14. These models were then evaluated under zero-shot and finetuning
settings on STL-10 and SVHN datasets. The results are presented in Table 6. DeepWeightFlow-
generated models consistently outperformed state-of-the-art FM models such as FIoWN (Saragih
et al., 2025b) in both zero-shot and finetuning evaluations. Furthermore, they significantly outper-
formed randomly initialized models, proving the effectiveness of the method. The same comparison
is done with SANE (Schiirholt et al., 2024) and reaches the same conclusion. Results on transfer
learning for CIFAR-100 models fine-tuned on CIFAR-10 ResNet-18 backbone can be found in Ap-
pendix J.

5.3 DIVERSITY OF GENERATED MODELS

To evaluate the DeepWeightFlow models’ generative capabilities, we compute the maximum IoU
(mIoU) between the generated neural networks and the neural networks in the training set (referred
to as the “original” neural networks). The mloU is constructed from the intersection over union
of the wrong predictions made by the neural networks (Wang et al., 2024). It is defined as IoU =
|PYRORE N PO /| PO U P8 | where Py comes from the set being compared (such as from
the generated set) and P, comes from a reference set (such as the set of original neural networks).
We disregard the IoU of a neural network with itself as it is trivially 1. The mloU measure scales
from complete dissimilarity at O to complete similarity at 1.

In Figure 2, we compare the original neural networks with the generated ones, with noise added to
the weights of the original neural networks, and with neural networks generated with different FM
source distributions. The upper row compares the cases for the FM models trained with re-basin,
and the lower panels, without. In the left-most panels, we see that i) the original networks are quite
diverse from each other, as evident from the blue cloud. This is the case as, unlike several previous
works, we do not use checkpoints from the training of a single neural network as the training set
of the DeepWeightFlow model. ii) The yellow and green clouds show that adding progressively in-
creasing Gaussian noise to the original networks makes them progressively diverse from the original
networks as expected (< 1). iii) The red cloud representing the generated networks shows diversity
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Table 6: Transfer learning performance across different architectures. For ResNet-18, we compare CIFAR-
10 classifiers generated by DeepWeightFlow, FLoWN, and Randomlnit. For SmallCNN, we compare with
SANE (Schiirholt et al., 2024) trained on CIFAR-10 and transferred to STL-10 using the same architecture as
mentioned in Schiirholt et al. (2024). Randomlnit refers to randomly initialized neural networks with Kaiming-
He initialization. Pretrained refers to neural networks from our training dataset, and Generated refers to
weights sampled from the respective generative model.

Architecture  Epoch Model Method STL-10 SVHN
ResNet-18 Results (Comparison with FLoWN (Saragih et al., 2025b))
Randomlnit 10.00 £ 0.00  10.00 £ 0.00
FLoWN Generated 3516+ 124 17.99 % 0.82
ResNet-18 0 Randomlnit 11.18 +-1.48 8.01 =141
DeepWeightFlow  Pretrained 48.31+0.17 11.51 +0.31
Generated 4832 +£034 11.57 £0.49
Randomlnit 18.94 £0.09  19.50 £ 0.03
FLoWN Generated 36,15+ 1.14  68.64 £ 7.07
ResNet-18 1 Randomlnit 3828 £1.07 84.07 £ 1.76
DeepWeightFlow  Pretrained 79.81 £0.54 91.29 +£0.76
Generated 79.69 +£1.08  91.66 + 0.79
Randomlnit 28.24 £ 0.01 39.59 £+ 10.0
FLoWN Generated 3743119 77.36 + 1.07
ResNet-18 5 Randomlnit 51.35 £ 0.51 93.82 £0.16
DeepWeightFlow  Pretrained 84.61 £0.21 95.82 +0.16
Generated 84.63 £ 0.17  95.85 £ 0.09
SmallCNN Results (Comparison with SANE (Schiirholt et al., 2024))
Train fr. scratch ~10 -
SANE Pretrained 16.2 +2.3 -
SANEsyup 174+ 14 -
SmallCNN 0
Randomlnit 9.47 + 0.52 -
DeepWeightFlow  Pretrained 35.18 £0.71 -
Generated 35.29 + 048 -
Train fr. scratch 213+ 1.6 -
SANE Pretrained 24.8 +0.8 -
SANEsyB 25.6 £ 1.7 -
SmallCNN 1
Randomlnit 21.09 £2.52 -
DeepWeightFlow  Pretrained 41.66 + 1.75 -
Generated 41.03 £ 1.22 -
Train fr. scratch 440+ 1.0 -
SANE Pretrained 49.0 £ 0.9 -
SANEsyB 49.8 £0.6 -
SmallCNN 25
Randomlnit 4433 + 1.54 -
DeepWeightFlow  Pretrained 62.14 £0.84 -
Generated 62.62 + 0.46 -

from the original set but seems to overlap with the green set, which represents the set created by
adding noise sampled from A/(0,0.01) to the original neural network weights.

From the middle panels in Figure 2, we see that the red cloud representing the generated neural net-
works is sufficiently diverse from the original ones with added noise sampled from N (0, 0.01). This
gives us confidence that the generated neural networks are, indeed, not the same as the original net-
works with noise added to the weights. Lastly, the right-most panels show how diverse the generated
neural networks are when generated with different source distributions. Hence, DeepWeightFlow
is capable of generating a diverse set of neural networks while maintaining the accuracy of the
task. In Appendix I, we provide the numerical estimates of mloU, the Jensen-Shannon, Wasserstein,
L?, cosine similarity, and Nearest Neighbors (NN) distances between generated and original neural
networks and supplemental mloU analysis of ResNet-18 weights generated by DeepWeightFlow.

5.4 TRAINING AND SAMPLING EFFICIENCY

DeepWeightFlow is significantly faster to train and generate neural network weights when compared
to diffusion models in complete neural network weights generation. DeepWeightFlow takes up to
O(10) minutes to train for most neural network architectures with up to O(100M ) parameters. as
compared to the several hours that it takes to train RPG (Wang et al., 2025). DeepWeightFlow takes
a few seconds to generate neural networks compared to the minutes or hours it takes to generate



Under review as a conference paper at ICLR 2026

With Git Re-Basin

_’” g% N

9.
[T ura 080 085 050 005 L0 07} [ 06 07 s 9 Lo
Mo ToU Similaity vs Original + A°(0,0.01) Modes Maximum foU Similarity vs Original Modcls

Without G1t Re-Basin

9.
055 070 095 080 08 000 % Lo0 07} 05 06 0T 08 9 Lo
i o0 Sty o Ot - AC(0,001) Modle Maxinum loU Similarity vs Original Models

Figure 2: Maximum loU vs test set accuracy for MNIST classifying MLPs. Lower maximum loU implies greater
diversity in the neural network weights. The left panels are generated and original neural networks (from the
DeepWeightFlow training set) with different scales of Gaussian noise added to the original neural networks.
The middle panels show that the generated neural networks and the original neural networks with noise added,
which overlap in the left panels, are concretely different. The right panels contain the original and generated
neural networks with different source distributions. All panels include 500 generated neural networks.

using RPG, P-Diff, or D2NWG. Yet, DeepWeightFlow generates ensembles of neural networks that
have comparable outcomes for ResNet-18s and ViTs. This is primarily because the other models are
diffusion models, whereas DeepWeightFlow is based on FM using a simple MLP implementation.
A detailed comparison of training and generation efficiency can be found in Appendix G.

6 CONCLUSION

In this work, we introduce DeepWeightFlow, a generative model for neural network weights that
performs FM directly in weight space, unconditioned by dataset characteristics, task descriptions, or
architectural specifications, and avoiding nonlinear dimensionality reduction. We show that Deep-
WeightFlow generates diverse neural network weights for a variety of architectures (MLP, ResNet,
ViT, BERT) that show excellent performance on vision, tabular classification, and natural language
tasks (regression). We provide empirical evidence that canonicalizing the training data facilitates
the generation of larger networks but is of limited use for moderate-dimensional weights or with
increasing FM model capacity. DeepWeightFlow can be combined with simple linear dimension-
ality reduction techniques like incremental PCA and Dual PCA to alleviate restrictions on neural
network size and demonstrate scalability to large neural networks of O(100M) parameters with
possibilities of scaling even further. The compatibility of DeepWeightFlow with model distilla-
tion, low-rank approximations, or sparsity remains as future work. As such, some open questions
about the relative merits of canonicalization, equivariant architecture design, and data augmentation
for learning in deep weight spaces remain. Lastly, we demonstrate DeepWeightFlow’s ability to
generalize to multi-class generation through class conditioning (Appendix K). We extend Deep-
WeightFlow to combining multi-class and multi-architecture generation of complete weights. The
results do not seem promising and we leave further exploration to future work with possibilities of
combining DeepWeightFlow and dataset conditioning similar to FLoWN or D2NWG. Nevertheless,
DeepWeightFlow shows promise for extension to real-world applications such as rapid generation
of neural networks for vision and NLP tasks in distributed devices for sensing of changing environ-
ments and in privacy-protecting model distribution to avoid leakage of training data.

REPRODUCIBILITY STATEMENT

The architectural details along with the hyperparameters used to generate the data have been pro-
vided in the main text and Appendix E and Appendix F. The dataset will be made available on
request and/or uploaded to a data repository. The code necessary to reproduce the results is in
https://github.com/anonymousacademicc/DeepWeightFlow—ICLR.
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A GIT RE-BASIN

Git Re-Basin weight matching, formulated by Ainsworth et al. (2023), is a greedy permutation
coordinate descent algorithm for moving a model’s weights 64 into the same ’basin’ in the loss
landscape of the model class f; as a reference model’s weights 0.
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This operation is applied here as a canonicalization step before weight flattening and the subsequent
training of the DeepWeightFlow models. The procedure reduces the space of the task from R’ to a
quotient space of R’ modulo permutation symmetry.

Applying this across the model layers constructs a transformed model ¢’ by

W, = PW,, b, = Pby, W,y = Wi PT 3)

The "distance’ between two permutations is therefore a Frobenius inner product of P, WZA and WJ2,
written as (A, B) = 3, ; A; ; B; j for real-valued matrices A and B. Accounting for the transforms
outlined above, the process of matching the permutations across the stack of layers becomes,

L
argmax Y (WP PBW/ P ) with Pl =1 (4)
W:{Pf}f n=1

This formulation presents a Symmetric Orthogonal Bilinear Assignment Problem (SOBLAP), which
is NP-hard. However, when relaxed to focus on a single permutation P at a time - ceteris paribus,
the problem simplifies to a series of Linear Assignment Problems (LAPs) of the form below
(Ainsworth et al., 2023; Zhao et al., 2025; Rinaldi et al., 2025). These LAPs can be solved in
polynomial time by methods like the Hungarian Algorithm (Jonker & Volgenant, 1987).

arg max (WP, PWAPE )+ (WE L, PeaWiL PF) (5)
[4

The product of this process is a permutation 7’ of model A’s weights into the same basin in fg’s
loss landscape as model B with exact functional equivalence (fg, = fr(s,))- However, sequences
of LAPs are understood to be coarse approximations of SOBLAPs and, as such, strong conclusions
cannot be drawn about the optimality of 7’ (Rinaldi et al., 2025; Ainsworth et al., 2023).

B TRANSFUSION

We canonicalize a collection of Vision Transformers (ViTs) using the method of Rinaldi et al.
(2025), which introduces a structured alignment procedure for multi-head attention transformer
weights (Rinaldi et al., 2025).

The core difficulty in transformers arises from multi-head attention and residual connections: Naive
global permutations either mix information across heads or break functional equivalence in residual
branches (Zhao et al., 2025). To address this, the method applies a two-level permutation scheme:

1. Inter-Head Alignment: For each multi-head attention layer, attention heads from different
checkpoints are first matched. This is done by comparing the singular value spectra of their
projection matrices, which are invariant under row and column permutations, and then
solving the resulting assignment problem with the Hungarian algorithm. This step ensures
that corresponding heads are correctly paired across models.

For a sub matrix representing a single attention head in model A, h#t = [W]A € RF*™,
where £ is the key value dimension and m is the attention embedding dimension, apply
singular value decomposition (A = UXVT) to access the spectral projection matricies ¥,
which are invariant to row and column permutations. For every head in a layer of model A,
construct a distance, d;, j = ||X; —X,||. These distances can be constructed for ¢, k, and v
for each head and combined linearly Dz g=dii+ df ;+dy ; with D; j € RF>H (H is the
number of heads). Therefore the optimal palrlng of heads for model A and B is (Rinaldi
et al., 2025),

Rn r head = arg I Dz i (6)
ter head PgGSH Z ,Pli]

2. Intra-Head Alignment: Once heads are paired, the method refines the alignment by per-
muting rows and columns within each head independently, again solved via assignment on
pairwise similarity scores. Restricting permutations within heads preserves head isolation
and guarantees that residual connections remain valid after alignment.
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After matching the heads of A to B the goal aligns closely with Git Re-Basin (Ainsworth
et al., 2023) - to reorder hf},[i] such that the Frobenius inner product is maximized between
H sub portions (Rinaldi et al., 2025),
' A
F)i(r:t)ra heaa = argmax(h, Phiy) (7
By iterating these two stages across all transformer layers, the procedure yields a canonicalized
parameterization in which weights are aligned up to permutation symmetries. The goal is to permute
units in such a way that two weight sets #4 and 6 become functionally comparable, reducing the
effective size of the weight space that the FM encounters Rinaldi et al. (2025). This is similar to the
case of Git Re-Basin (Ainsworth et al., 2023) for canonicalization.

C RECALIBRATION OF BATCH NORMALIZATION WEIGHTS

Given a generated neural network with randomly initialized or flow-matched weights, the batch
normalization layers contain statistics that may not match the actual data distribution. Naively inter-
polating weights of trained networks can lead to variance collapse (Jordan et al., 2022; Ainsworth
et al., 2023), where the per-channel activation variances shrink drastically, breaking normalization
and degrading performance. The recalibration process computes proper running statistics using the
target dataset(Izmailov et al., 2018; Maddox et al., 2019; Shomron & Weiser, 2020; Wang et al.,
2021).

We include these statistics parameters of batch normalization layers in the PermutationSpec of Git
Re-Basin, a config that defines the permutation ordering across layers for weight matching, so that
these statistics are also permuted and correctly maintained, ensuring that the permuted networks
retain the same weights and accuracy as the original network.

C.1 STANDARD BATCH NORMALIZATION

For a feature map x € RVXCxHxW

dimensions:

where N is batch size, C is channels, and H, W are spatial

1 N H W
He = NHW Z Z Z Ln,c,h,w (8)

1 N H W
0-3 = NHW Z Z Z(xn,c,h,w - MC)Q (9)

‘%n,c,h,w = % (10)
VO, + €
Yn,c,h,w = ’Ycin,c,h,w + B (11)

where . and 3. are learnable scale and shift parameters, and € is a small constant for numerical
stability. During training, BatchNorm (loffe & Szegedy, 2015) maintains running statistics using
an exponential moving average:

= (1= a)pt = +apl (12)
720 = (1 — )52t 4 qo2® (13)
where « is the momentum parameter, typically 0.1, and ¢ denotes the time step.
C.2 RECALIBRATION PROCESS
For generated networks, recompute running BatchNorm statistics:

1. Reset: Initialize running mean and variance for all channels, and set total sample count to
zero.

2. Disable momentum: Turn off exponential moving average updates.
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Algorithm 1 Batch Normalization Recalibration

1: Input: Calibration dataset D (e.g., test dataset), batch size B
H and W denote the height and width of feature maps

Initialize i, = 0, 53 =1, n. = 0 for all channels ¢
Disable exponential moving average (momentum) updates

AN A S

Define batch statistics for each B and channel c:

NEk)_ |B |HW Zzlec}”‘)

i€BL h=1w=1

O'S(k) |Bk H Z Z Z Li,c,h,w — Mgk))z

1€BL h=1w=1

8: Compute running statistics where ny = |Bi|HW and ne
k—1) —(k—1 k
_(k):né )NE )+nk'ﬂg)

n®

B

k) = plE=b 4 Nk

Ti.c,h,w denotes the activation of sample ¢, channel c, at spatial position (k, w).

Partition D into mini-batch sequence {B1, Ba, ..., Bk} where Uszl B, =D

_ _ nk=D 2
EDGEED) 4y o209 4 2D () (0)

~2(k) _

o =
c ngk)

9: Final recalibrated statistics: fi. = ﬁEK), 5'3 = 63(K) for all channels ¢

10: Restore exponential moving average updates (set momentum = 0.1)

3. Forward pass and incremental update: For each mini-batch in the calibration dataset:

* Compute the mean and variance of the batch for each channel.

* Update the running mean as a weighted average of the previous running mean and the

batch mean.

* Update the running variance by combining the previous variance, the batch variance,

and a correction for the shift in means.

» Update the total sample count.

4. Restore momentum: Re-enable exponential moving average updates with the original

momentum value.

Table 7: Comparing the impact of batch norm recalibration on complete ResNet-18 and 20s generated by
DeepWeightFlow. Recalibrating batch normalization statistics on a small subset of target data significantly

improves the accuracy of generated models.

Model Git Re-Basin  Strategy Mean + Std (%) Min (%) Max (%)
ResNet-18  Yes No Calibration  10.00 % 0.00 10.00 10.00
Ref BN* 19.06 + 9.68 10.00 94.05
Recalibrated 93.05 + 4.42 49.12 93.93
ResNet-18  No No Calibration ~ 10.00 % 0.00 10.00 10.00
Ref BN 10.28 +1.24 6.23 15.93
Recalibrated 93.49 + 0.21 92.77 93.96
ResNet-20  Yes No Calibration  14.36 + 3.10 5.84 19.03
Ref BN 17.88 + 4.66 9.96 26.54
Recalibrated 74.57 + 0.84 71.47 76.17
ResNet-20  No No Calibration 12.64 +2.22 8.12 18.19
Ref BN 10.23 £0.79 8.04 14.92
Recalibrated 75.21 £ 0.79 72.06 76.52

* Ref BN: Uses batch normalization statistics from reference model (seed 0)
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The algorithm we use for recalibration of the batch normalization running statistics is provided in
Algorithm 1. In Table 7 we show the results of recalibration on the generated neural networks.
This clearly shows the importance of batch normalization, running statistics recalibration on the
generation of neural networks that have batch normalization in their architecture.

D PCA AS AN EFFECTIVE COMPRESSION STRATEGY

Table 8: Accuracy and efficiency comparison of DeepWeightFlow with and without incremental PCA compres-
sion. Training/generation times in minutes. Generation time is the total generation+ inference time for 100
models.

Model Method dp, Original Generated (Accuracy) Time (min)
Mean With Re-basin  Without Re-basin Train Generation
ResNet-20 Without PCA 512 73.62+2.24 75.07 £+ 1.24 74.92 £ 0.80 11.25 6.00
ResNet-20 With PCA 512 73.62+2.24 75.96 + 0.89 75.97 £ 0.86 1.23 5.78
Vit-Small-192  Without PCA 384  83.30 £0.29 82.99 £0.11 82.58 +0.07 21.00 3.60
Vit-Small-192  With PCA 1024 83.30+0.29 83.08 + 0.19 83.28 £ 0.01 2.90 1.75

In Table 8, we show the effects of using PCA to reduce the dimension of the neural network weight
space. This is necessary as DeepWeightFlow cannot be trained on with the full rank of the larger
neural networks, such as ResNet-18, due to memory constraints on a single GPU. Hence, we reduce
dimensionality using PCA and decompress after generation. To test the validity of PCA, we trained
the DeepWeightFlow models on ResNet-20 and ViT with and without using PCA as shown in Ta-
ble 8. We observe that the accuracy and diversity of the neural networks (indicated by the standard
deviation in the accuracy) are sufficiently representative of the original sample with or without PCA.
This gives us confidence that much larger neural networks can be generated by DeepWeightFlow us-
ing PCA. We leave the complete implementation of this as future work.

Here we have performed incremental PCA that lets us perform PCA in chunks without loading
all data into memory, but the math and essential foundation for it is exactly the same as stan-
dard PCA. Incremental PCA reduces the dimensionality of the generated weight matrices, we
start with data of shape (nsamples, flat-dim), incremental PCA projects it into a latent space of size
(Msamples, latent_dim), where we set latent_dim = 99. Since PCA orders components by explained
variance and the rank of the data matrix is bounded by ngampies — 1, at most 99 meaningful directions
can exist for 100 samples we used. Therefore, using 99 principal components retains essentially all
the variance of the dataset, while compressing the original high-dimensional representation into a
very compact latent space.

D.1 DuaL PCA

While we have demonstrated results using incremental PCA for models with tens of millions of pa-
rameters, scaling to models with up to 100M parameters introduces significant memory constraints.
Traditional PCA algorithms require loading all data into memory simultaneously, which becomes
infeasible when analyzing thousands of deep neural network models with hundreds of millions to
billions of parameters. In such settings, directly constructing the covariance matrix is computation-
ally expensive and memory-prohibitive. To address this, we exploit the dual PCA formulation, in
which principal directions are recovered from the eigen-decomposition of the Gram matrix rather
than the covariance of the features (Scholkopf et al., 1998; Shawe-Taylor et al., 2005). This approach
has been extended to functional and multivariate settings, where the dual eigenproblem provides a
scalable approximation to the spectra of covariance operators (Golovkine et al., 2024). By project-
ing the data into the space spanned by the nyege1s sSamples instead of the original nparams features,
the dimensionality is reduced from 7params X Tparams 10 Tmodels X Tmodels; Mathematically, this is
equivalent to standard PCA because the nonzero eigenvalues of the covariance matrix X X ' and
the Gram matrix X ' X coincide, and the principal components in the original space can be recon-
structed from the sample-space eigenvectors. To further scale PCA to extremely high-dimensional
models, we combine this dual formulation with randomized numerical linear algebra. Specifically,
the eigendecomposition of the Gram matrix is computed using a randomized SVD scheme, which
reduces computational cost while preserving spectral accuracy (Halko et al., 2011). Since storing
full datasets or full parameter vectors is infeasible, both covariance and Gram matrices are con-
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structed incrementally. We build on the principles of incremental and streaming PCA algorithms
(Ross et al., 2008; Cardot et al., 2018), adapting them to extremely high-dimensional model param-
eters with micro-batch accumulation and GPU-accelerated matrix operations. Model parameters
are streamed from disk in batches, enabling PCA on datasets that exceed available memory. Our
method performs PCA in four stages (D.1): (1) incremental estimation of the empirical mean, (2)
streamed construction of the Gram matrix, (3) randomized eigendecomposition, and (4) vectorized
recovery of the principal components in the original parameter space. This results in a scalable PCA
framework suitable for analyzing collections of models with billions of parameters, even when the
complete dataset cannot fit in memory.

D.2 NOTATION AND ALGORITHM

Let W = [wy, ..., w,] € R¥™ denote the weight matrix where n is the number of trained models,
d is the number of parameters per model, k is the number of principal components to retain, and
w; € R is the i-th model’s flattened weights. Let W=Ww-— plT € RI*™ denote the centered
weight matrix where y = % > i, w; is the empirical mean.

The algorithm consists of four sequential passes:

1. Incremental Mean Computation: Compute the empirical mean in batches to avoid loading
all models into memory:
1 n
m= n z; Wi
1=

2. Gram Matrix Construction: Build the n x n Gram matrix block-wise, exploiting GPU
parallelism while keeping only two micro-batches in GPU memory at a time:

Gij Z(wi—u)—r(u}j—u), i,j=1,...,n

3. Randomized Eigendecomposition: Compute the top k eigenvectors of G using randomized
SVD (Halko et al., 2011):

GrUXU", UeR™k % =diag(oy,... o)
where o; are singular values. Since G = WTW is symmetric, eigenvalues are \; = o7.

4. Principal Components in Parameter Space: Recover components in the original d-
dimensional space via back-projection:

P=WU e R¥**

Components are computed using GPU-accelerated matrix multiplication and normalized to
unit length.

D.2.1 COMPLEXITY ANALYSIS
Time complexity per pass:

* Incremental Mean Computation: O(nd) — single pass through all data

 Gram Matrix Construction: O(n?d) — compute n? pairwise inner products
 Randomized SVD: O(n?k) — randomized SVD with 5 iterations

* Principal Components in Parameter Space: O(ndk) — back-project to & components

Complexity is practically limited by O(n?d) when k < n < d, dominated by Gram matrix con-
struction.

D.2.2 EMPIRICAL TIMING ANALYSIS

We conducted a comprehensive timing study of our pipeline using a single NVIDIA A100 40GB
GPU to understand the computational costs of each phase. We analyzed the end-to-end timing for
three representative architectures - ResNet18 (11M parameters), ViT-Small-192 (5.5M parameters),
and BERT-Base (118M parameters), each trained on 100 models. All experiments were run on a
single NVIDIA A100 GPU with FP16 precision for Dual PCA implementation.
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Table 9: Setup Phase Timing Breakdown on NVIDIA A100

Model Canonicalization = PCA Fitting Flow Training  Total Setup
ResNet18 (11M) 144s 60s 66s 270s
ViT-Small (2.84M) 1,002s 12s 60s 1,074s
BERT-Base (118M) 6,900s 360s 66s 7,322s

Setup phase is executed once per model collection (100 models) and prepares the system for
subsequent model generation.

Table 10: Generation Phase Timing per Single Model on NVIDIA A100

Model Latent Flow Inverse PCA  Inference? Total
ResNet18 (11M) 0.032s 0.049s 1.68s" 1.76s
ViT-Small (2.84M) 0.031s 0.015s 1.633s 1.67s
BERT-Base (118M) 0.150s 1.60s 20s 21.75s

4 Inference includes WSO reconstruction, model loading, and evaluation on test
set.
b ResNet18 inference time includes BatchNorm recalibration

Table 11: Flow Matching Hyperparameters and Performance Results For 100 generated samples projected to
98-99 PCA components using dual PCA

Model Hidden Dim  Time Embed Org. Scores Avg Score
ResNet18 (dataset: CIFAR-10, metric: accuracy %)
ResNet18 1024 128 94.45 +£0.14 93.52+0.16

ViT-Small-192 (dataset: CIFAR-10, metric: accuracy %)
ViT-Small-192 512 64 83.30+0.29 83.83+0.1

BERT-Base (dataset: Yelp, metric: Spearman’s correlation)
BERT-Base 1024 64 0.7902 £ 0.0061  0.7909 + 0.005

D.2.3 SCALABILITY DISCUSSION

The dual PCA formulation is particularly advantageous when d > n, as the Gram matrix G € R™*"
is much smaller than the d x d covariance matrix required by standard PCA. This reduces both com-
putational cost (from O(nd?) to O(n?d) for covariance construction) and memory requirements
(from O(d?) to O(n?)). With modern high-memory GPUs (e.g., NVIDIA H100 with 0GB HBM3)
and FP16 precision, the micro-batch size m can be tuned to balance GPU memory constraints and
computational efficiency. The FP16 option effectively doubles these capacity limits while introduc-
ing negligible numerical error. As GPU memory and compute continue to improve, we expect this
approach to scale naturally to even larger model collections.

E DATASET GENERATION

Table 12 and Table 13 provide the details of the architecture and training hyperparameters used to
create the trained neural network datasets that were used to train DeepWeightFlow. The training
datasets can be made available on request.

The ResNet-20 neural networks used have notably lower parameter counts than the ResNet-18 neural
networks, as the former is narrower while being deeper to reduce model complexity in training for
smaller datasets. The ResNet-18 configuration is typical (He et al., 2016). The specific block layouts
are described in Table 13.
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Table 12: Hyperparameters for training the neural networks that were used as the training datasets for Deep-
WeightFlow. Final weights for each seed after the epochs listed in the table are treated as a single datapoint.
We train 100 such models, using early stopping to halt training when validation performance plateaus.

Model Dataset Params LR Schedule Optimizer LR Weight Decay  Batch Size  Epochs
MLP Iris 131 None  Adam le-3 0 16 100
MLP MNIST 26.5K None  Adam le-3 0 64 5

MLP Fashion 118K None  AdamW le3 0 128 25
SmallCNN CIFAR-10 12.4K None AdamW le-3  le3 128 50
ResNet-18 STL-10 11.2M  Warmup+Cosine ~ SGD 0.1 Se-4 128 10
ResNet-18 CIFAR-10 11.2M Cosine  SGD 0.1 Se-4 128 100
ResNet-20 CIFAR-10 0.27M None  Adam le-3 0 128 5
Vit-Small-192  CIFAR-10 2.8M Cosine  AdamW 3e-4  0.05 128 300
BERT-Base Yelp Review 118M None  AdamW le-4 0 32 3

Table 13: Model architectures for the neural networks used to train DeepWeightFlow. For the MLPs, the first
number in the Architecture definition is the input dimension. For the ResNets, “blocks” refer to residual blocks.
For training BERT models, we use only a subset of the YelpReview dataset for training and testing for this

experiment.
Model Architecture Parameters Dataset Input Dim
MLP [4, 16, 3] 131 Iris 4 x 150
MLP [784, 32,32, 10] 26,506 MNIST 28 x 28
MLP [784, 128, 128, 10] 117,770 Fashion-MNIST 28 x 28
SmallCNN 3 conv, 2 FC 12,042 CIFAR-10 32x32x3
ResNet-20 3 x [3, 3, 3] blocks 272,474 CIFAR-10 32x32x3
ResNet-18 4 x[2,2,2,2] blocks 11.17M CIFAR-10 32x32x3
ResNet-18 4 x[2,2,2,2] blocks 11.17M STL-10 96 x 96 x 3
Vit-Small-192 194 embedding dimension, 6 blocks, 3 heads 2.87TM CIFAR-10 32%x32x%x3
BERT-Base 768 embed dim, 12 blocks, 12 heads 118M Yelp Review 128 tokens
Table 14: DeepWeightFlow Flow Matching training hyperparameters

Parameter Value | Parameter Value

Architecture Training

Flow Model Hidden Dims  [dp, dp/2, dn]* | Optimizer AdamW

Time Embedding Dim 4-128° Learning Rate 5x107%/1 x 107*"

Activation Function GELU Weight Decay 1x107°

Layer Normalization Yes AdamW g (0.9, 0.95)

Dropout Rate 0.1-0.4¢ Batch Size 2-8¢

Flow Matching | Training

Time Distribution Uniform / Beta' | Training Iterations 30,000

Noise Scale (o) 0.001 Training Data Size 100 models

Source Distribution N(0,021)° LR Scheduler CosineAnnealing

TImin 1x 1076

Generation Preprocessing

ODE Solver Runge-Kutta 4 | Weight Matching Git Re-B asin/TransFus»ionf

Integration Steps 100 PCA Method Incremental/Dual PCA’

Generated Samples 25-100% BN Recalibration ResNets only®

*dp, € {32,64,128,256,384,512,1024} depending on architecture complexity

® Time embedding: 4 for Iris MLP, 64 for ResNet-20/MNIST/Fashion-MNIST/Vit-Small-
192/BERT-Base, 128 for ResNet-18

¢ Dropout: 0.4 for Iris MLP, 0.1 for all other architectures

4 Batch size: 2 for BERT-Base, 4 for Vit-Small-192, 8 for all others

¢ g5 = 0.001 for Vit-Small-192 and BERT-Base, o5 = 0.01 for all other architectures

f Git Re-Basin for ResNets/MLPs, TransFusion for Vision Transformers and BERT

€ BatchNorm statistics recalibrated using test data only for ResNet architectures post-generation

" Learning rate: 1 x 10~* for BERT-Base, 5 x 10~ for all others

! Time distribution: Beta(2,5) for BERT-Base, Uniform for all others

7 PCA: Incremental PCA (scikit-learn) for ResNet-18/Vit-Small-192; GPU-accelerated Dual PCA
(Gram matrix, FP16) for BERT-Base
¥ Generated samples: 25 for Vit-Small-192, 100 for all other architectures
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F HYPERPARAMETERS OF DEEPWEIGHTFLOW MODELS

In Table 14 we provide the hyperparameters of the DeepWeightFlow models. The FM model
architecture varies by the dimensionality of the neural network weights in the training set and their
architecture.

G COMPUTATIONAL EFFICIENCY: TRAINING AND GENERATION TIME

Table 15: Performance comparison between DeepWeightFlow, RPG, P-diff, and D2NWG (Wang et al., 2025;
2024; Soro et al., 2025). RPG generates a single neural network per run, while DeepWeightFlow generates
neural networks sequentially in a single workflow. D2NWG and P-diff only generate 2048 weights within the
pretrained ResNetl8 backbone (Soro et al., 2025).

Model Method Hidden Training Generation Time GPU
Dim Time (1 model)
RPG (sequential)lf - - 18.6 min H100
RPG (partially parallel)’ - - 1.8 min H100
RPG (fully parallel)’ ; ; 1.7 min H100
ResNet-18
(11.7M params) DeepWeightFlow ° 1024 3 min 1.38 seconds A100
DeepWeightFlow + rebasin’ 1024 2 min + 3 min 1.38 seconds A100
P-diff" - - 3 hours” -
D2NWG' - - 1.5 hours” -
RPG (ﬂatten)i - 6.2 hours 9.8 min H100
RPG (by channel)j£ - 14.2 hours 9.8 min H100
ViT-Tiny RPG (within layer)* y 6.2 hours 9.8 min H100
(SM params) RPG (partially parallel)’ - - 1.1 min H100
RPG (fully paralleI)T - - 1.1 min HI100
DeepWeightFlow * 256 21 min 216 seconds  A100
Vit-Small-192 DeepWeightFlow 8 384 19 min 1.70 seconds HI100
(2.8M params) DeepWeightFlow + transfusion’ 384 13 min + 19 min 1.70 seconds H100

i Available RPG inference times from Wang et al. (2025).

: RPG training + sequential inference time from Wang et al. (2025) (Table 4 and Table 18); numbers available for single
neural network generation.

’ DeepWeightFlow performs sequential generation of models. Numbers reported here are for ResNet-18 generated using
standard incremental PCA and ViT-Small-192 for training and generation without PCA.

¥ P_diff and D2NWG perform only partial generation of 2048 weights within a pretrained backbone (Soro et al., 2025)
(Table 11).

" P-diff and D2NWG times reported are likely for generating 100 models; divide by 100 for approximate per-model time
(P-diff: 1.8 min/model, D2NWG: 0.9 min/model).

DeepWeightFlow demonstrates significant computational advantages over existing parameter gener-
ation methods. We compare our approach with RPG (Wang et al., 2025), the current state-of-the-art
in recurrent parameter generation, across multiple architectures and configurations.

When incorporating Git Re-basin (Ainsworth et al., 2023) for weight alignment, the additional com-
putational overhead is minimal:

* ResNet-18: 2 minutes for aligning 100 models

* Vit-Small-192 (Transfusion): 13 minutes for aligning 100 models

The results show that DeepWeightFlow consistently generates high-quality models while having
lower training and inference time on similar GPUs.

H CHOOSING THE RIGHT SOURCE DISTRIBUTION

The choice of source distribution for these generative models has a significant impact on the per-
formance of the generated models. Table Table 16 highlights the importance of selecting a source
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Table 16: Evaluating the impact of various source distribution choices in FM mapping on the performance of
complete weights generated by DeepWeightFlow.

Model & Source Distribution ~ With Rebasin (%) Without Rebasin (%)
Vit-Small-192 on CIFAR-10

Original Accuracy 83.29 £0.29
Gaussian(0, 0.01) 78.31 + 10.99 76.69 + 14.37
Gaussian(0, 0.001) 82.90 + 0.70 82.40 +5.29
MLP on MNIST

Original Accuracy 96.32 £ 0.20
Kaiming Initialization 81.33 £ 14.10 67.35 4+ 26.10
Gaussian(0, 0.01) 96.18 + 0.23 96.22 + 0.22

ViT: Architecture: Vit-Small-192 (2.7M parameters), Dataset: CIFAR-10, Flow
Hidden Dim: 384, Time Embed Dim: 64

MLP: Architecture: MLP (26.5K parameters), Dataset: MNIST, Flow Hidden
Dim: 256, Time Embed Dim: 64 Dropout: 0.1

distribution that aligns well with the target distributions to ensure reliable and high-quality weight
generation.

I DIVERSITY OF THE GENERATED NEURAL NETWORKS

In Table 17, we provide the numerical estimates of mloU, the Jensen-Shannon, Wasserstein, and
Nearest Neighbors (NN) distances between generated and original neural networks, highlighting the
diversity of the generated neural networks

Table 17: Comparison of 100 complete neural network weights generated by DeepWeightFlow with and without
Git Re-Basin through maximum Intersection over Union (loU), Jensen-Shannon, Wasserstein, and Nearest
Neighbors (NN) distances. For MNIST, we use MLP with dj, = 512 and 10% dropout. For CIFAR-10, we use
ResNet-18 with dy, = 1024. Lower scores indicate closer relationships. (Org. - original, Gen. - generated)

Dataset/Architecture Metric Org. to Org. Org. to Gen. Gen. to Org. Gen. to Gen.
MNIST - MLP
ToU - - 0.8187 4 0.0385 -
Wasserstein - 13.4125 21.2867 11.6721
DeepWeightFlow w/ Re-Basin Jensen-Shannon - 0.7146 0.8326 0.7146
23.0393 £+ 0.2214 9.7232 + 10.4398 1.7526 + 0.1671 11.7407 &+ 10.5471
Cosine Sim. 0.1962 0.2093 0.2093 0.2157
L? 25.5268 25.2278 25.2278 25.1367
TIoU - - 0.8256 £ 0.0748 -
Wasserstein - 15.1185 25.6979 17.6939
DeepWeightFlow w/o Re-Basin Jensen-Shannon - 0.8181 0.8326 0.7293
N 27.4895 + 0.2007 12.3710 + 12.4410 1.7916 + 0.3753 9.7956 £ 11.2484
Cosine Sim. 0.0088 0.0187 0.0187 0.0189
L? 28.3513 28.1681 28.1681 28.2423
CIFAR-10 - ResNet-18
ToU - - 0.6289 £ 0.0160 -
Wasserstein - 15.1236 27.5994 20.3590
DeepWeightFlow w/ Re-Basin Jensen-Shannon - 0.8242 0.8326 0.8242
NN 27.9643 + 0.0841 13.3136 + 14.0490 0.3649 + 0.0836 7.9625 + 12.6314
Cosine Sim. 0.2497 0.2542 0.2542 0.2570
L? 28.9520 28.8494 28.8494 28.8105
ToU - - 0.6314 4+ 0.0198 -
Wasserstein - 16.7654 29.8754 20.9545
DeepWeightFlow w/o Re-Basin Jensen-Shannon - 0.5018 0.8326 0.7014
NN 30.2421 4+ 0.0766 13.4767 £ 14.8165 0.3667 4+ 0.0590 9.3245 £ 13.7908
Cosine Sim. 0.1754 0.1818 0.1818 0.1832
L? 30.3523 30.2332 30.2332 30.2922

J FINETUNING MODELS FOR TRANSFER LEARNING ON UNSEEN DATASETS

We leverage ResNet-18 models trained and generated on the CIFAR-10 dataset to adapt to other
unseen datasets, specifically STL-10 and SVHN (Table 6). We first evaluate the performance of the
generated CIFAR-10 models on these datasets without any fine-tuning (Epoch 0). Subsequently, we
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fine-tune the models using the standard training set of the target dataset and evaluate them on the
corresponding test set. Fine-tuning is performed for up to 5 epochs using the AdamW optimizer
with a learning rate of 1 x 10~*, weight decay of 1 x 10~*, and a cosine learning rate scheduler
with T},,x = epochs for smooth decay. We use a detach ratio of 0.4 (same as used by Saragih et al.
(2025b)) and the cross-entropy loss is used as the objective function.

J.1 TRANSFER LEARNING FOR DATASETS WITH DIFFERENT NUMBERS OF CLASSES

Table 18: Zero-shot performance at epoch 0 and fine-tuning results for complete ResNet-18 parameters
trained on CIFAR-10 and transferred to the CIFAR-100 dataset. The parameters come from DeepWeight-
Flow, SANE (Schiirholt et al., 2024), RandomlInit, and a Pretrained Transfer baseline. RandomlInit denotes a
fresh Kaiming-He initialization. Pretrained denotes models first trained on CIFAR-10 and then transferred to
CIFAR-100. Generated denotes parameters sampled from the respective generative model. Models pretrained
on CIFAR-10 (10 classes) have their classification head replaced to accommodate CIFAR-100’s 100 classes
during transfer learning, while retaining the learned convolutional features. Best scores for each fine-tuning
setting are shown in bold.

Epoch Model Method CIFAR-100
tr. fr. scratch 1.00 + 0.00
SANE Finetuned 1.0£0.3
SANEsyp 1.1£0.2
0 RandomInit 0.98 4 0.06
DeepWeightFlow  Pretrained 1.01 £0.17
Generated 1.06 + 0.26
tr. fr. scratch 175+ 0.7
SANE Finetuned 257+ 1.3
SANEsyB 269+ 1.4
1 Randomlnit 23.36 + 1.05
DeepWeightFlow  Pretrained 37.03 £ 1.34
Generated 38.37 £ 1.15
tr. fr. scratch 36.5+2.0
SANE Finetuned 457+ 1.0
SANEsyp  456+12
5 RandomlInit 56.79 £ 0.69
DeepWeightFlow  Pretrained 67.39 + 0.38
Generated 67.37 £ 0.53

K CONDITIONAL GENERATION WITH MODIFIED DEEPWEIGHTFLOW

K.1 MULTI-CLASS GENERATION WITH DEEPWEIGHTFLOW

To demonstrate the ability of DeepWeightFlow to generalize across tasks, we show conditional gen-
eration across datasets by operating directly in weight space with simple time and class embeddings
at the flow model input (Lipman et al., 2023). The models displayed in Table 19 are different from
the MLPs described in Appendix E in that they have equal weight space sizes and an identical
architecture.

Table 19: Multiclass DeepWeightFlow generation results without PCA compression and with Git Re-Basin.

Dataset Original Generated

MNIST 96.74 £0.25  96.61 +0.22
Fashion-MNIST  86.80 +0.31  86.46 +0.28

K.2 MULTI-CLASS AND MULTI-ARCHITECTURE CONDITIONAL GENERATION

To adapt DeepWeightFlow for multi-class and multi-architecture conditional generation, we incor-
porated a class embedding MLP to produce dense class embeddings, which are concatenated with
the input and time embeddings. These combined vectors are then fed into the flow model. We be-
gan by training a single flow matching model to generate weights for MNIST and Fashion-MNIST
datasets using an MLP architecture that is identical across both datasets. By conditioning on these
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class embeddings, the single flow model successfully generated weights that achieved good perfor-
mance for both datasets. Next, we attempted to train DeepWeightFlow to learn multiple classes in
the full-rank weight space, which requires that the models have identical parameter counts. While
full-rank learning across multiple classes proved difficult, using PCA-reduced weight space allowed
the model to handle multiple classes and architectures simultaneously. However, the generated mod-
els did not achieve extremely high accuracy. A key reason is that FM models perform best when the
weight space distribution is smooth and consistent. Introducing multiple architectures or datasets
fragments this space, making it challenging for a single learned flow to interpolate or extrapolate
correctly. This remains a work in progress.

Table 20: Conditional Multiclass Cross-Architecture Generation with PCA Compression. Shows 4 classes
across distinct architectures. DeepWeightFlow trained with all classes canonicalized. All values are mean +
standard deviation. Models were generated with PCA compression.

Class (Dataset) Original Generated

Class 0 (MNIST) 96.78 £0.23  54.11 £ 23.88
Class 1 (Fashion-MNIST) 86.82+0.33  43.21 £19.65
Class 2 (Iris) 70.23£9.29  53.03 +17.37

Class 3 (ResNet20-CIFAR10)  73.62+2.24  50.90 + 31.24
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