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for Roto-Translation Equivariance in ViTs

Editors: List of editors’ names

Abstract

We propose discrete roto-translation group equivariant self-attention without position en-
coding using convolutional patch embedding and convolutional self-attention. We examine
the challenges involved in achieving equivariance in vision transformers, and propose a sim-
pler way to implement discretized roto-translation group equivariant vision transformers
(ViTs). The experimental results demonstrate the competitive performance of our approach
in comparison to the existing approaches for developing roto-translation equivariant ViTs.

Keywords: Roto-translation Equivariance, Group Covolutional Self-Attention, Equivari-
ant transformers

1. Introduction

Equivariant neural networks preserve symmetry between input and output representations
(Lim and Nelson, 2022; Wang et al., 2023; Guttenberg et al., 2016) by ensuring that all
components transform predictably with input transformations. For instance, in rotation-
equivariant models, rotating the input rotates all feature maps and the output accordingly
(Bekkers et al., 2018; Cohen and Welling, 2016; Wiersma et al., 2020), a property crucial in
molecular analysis (Yi et al., 2023; Liao et al., 2023), medical imaging (Marcos et al., 2017;
Veeling et al., 2018), and robotics (Zhao et al., 2023, 2024). Such networks achieve equiv-
ariance through architectural choices like rotational convolutions, group convolutions, or
equivariant pooling (Marcos et al., 2016; Cohen and Welling, 2016). In 3D tasks, preserving
rotational symmetry benefits molecule modeling (Schiitt et al., 2021), point-cloud orien-
tation (Dym and Maron, 2020; Chen et al., 2021), and graph-based attention approaches
(Liao and Smidt, 2022; Deng et al., 2021). While 2D images lack full 3D positional struc-
ture, they still retain orientation information relative to the projection axis, allowing 2D
rotation-equivariant models to exploit this symmetry for robust and generalizable vision
tasks (Han et al., 2021; Romero and Cordonnier, 2021).

Cohen and Welling (2016) introduced group CNNs to produce rotation-equivariant fea-
ture maps, a concept extendable to roto-translation equivariance by leveraging the inherent
translation equivariance of CNNs (Romero et al., 2020; Bronstein et al., 2017).

In vision transformers, achieving roto-translation equivariance is challenging due to stan-
dard position encodings; however, incorporating equivariance preserving relative position
encoding can enable group-equivariant self-attention (Romero and Cordonnier, 2021).

We propose group-equivariant convolutional self-attention (G-CSA) without position
encoding for discrete roto-translation equivariance, using convolutional patch embedding
and self-attention (Wu et al., 2021). This preserves positional information like in CNNs
while retaining transformers’ global context capture (Dosovitskiy et al., 2021), eliminating
the need for relative position encoding. Experiments with G-CSA ViTs show superior
performance to RPE-based approaches with significantly fewer parameters.
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Figure 1: G-CSA transformer: (a) illustration of lifting layer for a roto-translation group
with 4 elements, and (b) 3D group convolutional self-attention with two degrees
for spatial projection and 1 degree along the group elements from lifting layer

2. Background
2.1. Group Equivariance

Let ® : Vi — V5 be a map between two spaces Vi and Va, and let p; and py be actions of
a group G on Vj and Vs respectively. Then, @ is said to be G-equivariant if the following
condition holds:

[p1(9)f] = p2(9)[®[f]l], Vg€G, feW. (1)

2.2. Position Encoding and Equivariance in Transformers

Position encoding influences both the equivariance properties and computational cost of
self-attention networks. Absolute position encoding (Vaswani et al., 2017) assigns a unique
vector to each position, causing the model to learn position-specific patterns and breaking
equivariance to transformations such as translations or permutations. In contrast, relative
position encoding (RPE) (Shaw et al., 2018) encodes position differences, thus preserving
translation equivariance similarly to convolutional networks. This idea can be extended
to group-equivariant vision transformers (Romero and Cordonnier, 2021) by incorporating
rotation group encodings G(;)—e(;) alongside horizontal and vertical RPE terms Pp(j)_s(;)
and Py (j)—y(i), yielding:

A= XiWo (X + Pagi)—atiy + Pyt)—y(i) + Ge(y—e)WK) - (2)

However, unlike absolute encodings, which are added once to the input, RPE must be
computed in every attention step of every layer, leading to additional complexity.

3. ViT with G-CSA

We use the standard ViT architecture with a few modifications. In addition to removing
position encoding, we use group convolutional self-attention (Figure 1(b)) and a lifting layer
(Figure 1(a)) prior to multi-head attention.
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3.1. Lifting Layer

The lifting layer takes an input signal f : R> — R® (e.g., an image with C channels
) and lifts it to a spatial location associated with multiple transformations under group
G (Bekkers et al., 2018). Since this work deals with discrete roto-translations, we adapt
this lifting operation for discrete rotation groups, where rotations belong to a finite set
O = {#1,60s,...,0n} and the input function is f : Z?> — R® (an image with discrete pixels
with C channels). We define the lifting over position z and the discrete orientations 6
associated with the discrete rotation group, Zy:

F(x,g9) = => > f (2’ = z)), (3)

c z'€Z?

where F : Z2 x Zn — RY" is the lifted feature map, defined over discrete positions and N
discrete orientations, and k.(R, l(x —x)) is a discrete rotation-aware convolutional kernel

defined for each 6 = %, where k € {0,...,N — 1} (Figure. 1(a)).

3.2. Group Convolutional Self-attention

G-CSA (Figure. 1(b)) is a mapping from functions defined on an affine group G = Z? x Zy
to functions on the same group G modified by the action of group elements. It operates on
an input function F : Z2 x Zy — R where F comes from the previous transformer block
with G-CSA or the lifting layer (in the case of the first block).

In CVT (Wu et al., 2021), self-attention learns relationships between spatial locations
on an input f : R? — R, In G-CSA, we extend this concept to a lifted feature space,
where each spatial location is associated with multiple transformations g € G. The query,
key, and value mappings in this lifted space are computed using:

Q(xhg) = WQ * F(.’E,g), K(‘TMQ) = Wk * F(‘Thg)? V(.T,g) =Wy % F(xhg)? (4)

where F' represents the feature at position x and transformation g. Wg, Wi, Wy, are group-
equivariant convolutional kernels and * denotes convolution.

Finally, to implement G-CSA, we modify typical self-attention by incorporating group
structure:

G-CSA(x,g) = Z ZA$gy, V(y,h) (5)

yeN (z) heG

where N(x) denotes the local neighborhood of = defined by the receptive field of the con-
volution, and the attention weights A are calculated as:

exp (M)

Vd
2,9),K(y' b’
ny,h/eXP(<Q( g)\/a(y )>>

where (-,-) represents the dot product. This ensures that attention operates over both
spatial and group dimensions while preserving translation equivariance via convolution.
Appendix A expands on the equivariance of G-CSA

A(z,g;y,h) = (6)



Approach Model Config PatchCamelyon Rotated MNIST
Acc. (%) | Params | Acc. (%) | Params | Mul-Add (M) | Total Size (MB)

Z25A 83.04 96.37 60.16 29.58

SA with RPE Romero and Cordonnier (2021) p4SA 83.44 205.66K 97.30 44.67K 232.49 161.77
p8SA 83.58 97.90 462.29 198.05
Z2CSA 84.58 95.97 29.10 9.09

Ours (CSA without RPE) p4CSA 87.07 104.96K 97.27 33.35K 116.37 35.84
p8CSA 87.37 97.83 232.98 71.72

Table 1: Classification accuracy and parameters for each model. Model complexity is also
provided in terms of total multiplication-addition operations (in millions) and the
model memory size (in Megabytes) when trained with batch size of 16.

4. Experimental Results

We test the proposed group-equivariant convolutional self-attention (G-CSA) for vision
transformers by implementing models for 2D Integer Translation (Z?) group equivariance,
and for p4 and p&§ roto-translation group equivariance. In the following text, we refer to
these models as Z2CSA, p4CSA, and pS8CSA, respectively. We compare G-CSA models
against corresponding models with group equivariant self-attention (G-SA) enriched with
relative position encoding (Romero and Cordonnier, 2021).

Table 1 shows the performance comparisons of G-CSA against SA with RPE on rotated
MNIST dataset (Larochelle et al., 2007) and PatchCamelyon dataset (RGB images of breast
tissue labeled tumorous or non-tumorous) (Veeling et al., 2018). The results show that our
models match the performance of the models where group equivariant attention needed
to be enriched with RPE in every attention layer. The compared models had the same
number of layers and expansions per layer. Table 1 also compares the memory required
by the models along with the total number of multiplication and addition operations. The
results show a significant reduction in the number of operations in the case of REViTs with
G-CSA. Additionally, average inference runtimes on an RTX3090 GPU for a batch of 32
images were 91 ms for G-CSA models and 144 ms for SA with RPE.

5. Discussion and Future Works

Our results show that despite the simpler formulation of ViTs with G-CSA, we were able to
achieve competitive results compared to typical group self-attention with RPE. In particu-
lar, our results on PatchCamelyon dataset show the effectiveness of our approach on larger
image sizes for a real-world application that may benefit from roto-translation equivariant
classification. G-CSA not only outperforms, but it also does so with a simpler architecture
and smaller roto-translation group sizes.

We proposed G-CSA for roto-translation equivariant transformers. Though more rig-
orous testing is needed in the future, our results demonstrate that our approach compares
well with the existing approaches for roto-translation equivariant image classification. In
the future, we also plan to scale up our G-CSA based ViTs to more complex datasets with
larger image resolutions, e.g. ImageNet (Deng et al., 2009). Models trained on such datasets
also have the potential to be used as roto-translation equivariant backbones for downstream
tasks like object detection and image segmentation.
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Appendix A. Equivariance of G-CSA

Here, we show that G-CSA is group equivariant. Let Tj; be a group transformation acting
on a feature function F': X x G — R?. A transformation g € G acts as:

(TyF)(x,h) = F(g~'z,g""h) (7)

where ¢~ 'z is undoing the transformation g on the spatial point x, and ¢~ 'h refers to

inverting the transformation g before applying the transformation h.
Given the transformed feature Ty F', we compute the query, key, and value mappings
from (4) using group-equivariant convolutions:

Qq(z, h) =Wo x (TyF)(z,h), Kg(z, h) = Wi * (TyF)(z, h),

Vy(x,h) = Wy * (T, F)(x, h) (8)

Since these are implemented via equivariant convolutions:
Qy(x,h) = Qg w97 h), Ky(x,h) = K(g~ @, h), Vy(a,h) =V(g'w,g7'h)  (9)
Then, we compute the attention weights for the transformed feature using (6):

<Qy($;h)xKg(yxh/)>
o B — P ( Vd )
Ag(x,h7yah) - (10)

Qg (x,h),Kq(y’,h"
3y o exp (GBI )

Using the equivariance of @ and K from (9), we substitute:

(Qg(a,h), Ko(y, h)) = (Q(g™ ", 97 h), K(g7 'y, g~ 'h')). (11)
Since the dot product is invariant to transformations applied to both vectors, we rewrite:
Qg 2,97 'h), K(g7y, g7 'h')) = (Q(2', h), K(y', b)) (12)

1

where 2/ = ¢~ 'z and v/ = g~ 'y. This implies:

Ag(z by, 1) = A(g'w, g7 hsg ty, g7 H) (13)
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Using (5), G-CSA output is:

G-CSAg(x,h) =Y Aglw, hsy, 1) Vy(y, )
v,

Substituting the equivariance property of V; from (9):
Vo(y, 1) = V(g™ 'y, g~h)

we obtain:

G-CSAg(x,h) =Y Alg 'z, g hig ly,g W)V (g y, g7 ).

y,h
Rewriting with v/ = ¢~ 'y, b/ = g~ A’
G-CSAg(xz,h) =T, (G-CSA(x,h))
which shows equivariance:

G-CSA(T,F) = T, (G-CSA(F))

(14)

(17)

(18)
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