Under review as submission to TMLR

Assisted Learning for Organizations with
Limited Imbalanced Data

Anonymous authors
Paper under double-blind review

Abstract

In the era of big data, many big organizations are integrating machine learning into their
work pipelines to facilitate data analysis. However, the performance of their trained models
is often restricted by limited and imbalanced data available to them. In this work, we
develop an assisted learning framework for assisting organizations to improve their learning
performance. The organizations have sufficient computation resources but are subject to
stringent data-sharing and collaboration policies. Their limited imbalanced data often cause
biased inference and sub-optimal decision-making. In assisted learning, an organizational
learner purchases assistance service from an external service provider and aims to enhance
its model performance within only a few assistance rounds. We develop effective stochastic
training algorithms for both assisted deep learning and assisted reinforcement learning.
Different from existing distributed algorithms that need to frequently transmit gradients or
models, our framework allows the learner to only occasionally share information with the
service provider, but still obtain a model that achieves near-oracle performance as if all the
data were centralized.

1 Introduction

Over the past decade, machine learning has demonstrated its great success in various engineering and
science domains, e.g., robotic control (Kober & Peters, 2014; [Deisenroth et al) 2013), natural language
processing (Li et al., 2016; Bahdanau et al., [2017)), computer vision (Liu et al., 2017; Brunner et al., 2017)),
finance (Lee et al., |2020; Lussange et all |2021; |Koratamaddi et all |2021)). Following this trend, many
organizations, e.g., governments, hospitals, schools, and companies, are integrating machine learning models
into their work pipelines to facilitate data analysis and improve decision-making. For example, according to
a recent survey (Financesonline| 2021)), about 49% of companies worldwide are considering to use machine
learning, 51% of organizations claim to be early adopters of machine learning, and the estimated productivity
improvement obtained by learning models can be as high as 40%.

Although machine learning techniques have been standardized and are relatively easy for organizations to
implement with real-world data, the model performance critically depends on the quality of the training data
they hold (Goodfellow et all 2016]). However, these training data may be of limited size or biased toward
certain distributions. For example, for local banks collecting financial data from economic activities, the
sample size is often limited by the size of the local population and the data distribution is affected by the
local economy. Consequently, machine learning models trained on such limited and imbalanced data may
generalize poorly on test data. Therefore, there is a need to develop a modern machine learning framework
that can assist organizations to improve their model performance.

A natural solution is to connect the organization to an external consulting agent, who has machine learning
expertise and holds a large amount of data that is balanced or complementary to the organization’s imbalanced
data. For example, for a local small hospital, the consulting agent may be a large medical center at the state or
national level. In particular, the organization can purchase some generic assistance service (e.g., information
exchange) from the consulting agent to help improve its model performance. However, organizations’
interactions with external consulting agents are usually subject to stringent regulations and policies. Two

Under review as submission to TMLR

common restrictions are: (i) neither the organization nor the consulting agent wants to share their raw data
with the other side; and (ii) the organization often has a limited budget and hence can purchase very limited
service from the agent. Considering these challenges for organizational machine learning users, it is desired to
develop a machine learning framework for organizations to significantly improve their model performance
by purchasing limited assistance services from external agents without data sharing. This constitutes the
overarching goal of this work.

In this work, we develop an assisted learning framework in the ‘horizontal-splitting’ setting, where the
organization and the consulting agent possess different sets of data samples that are utilized for training a
common model. In our context, the organization’s data are assumed to be limited and imbalanced, while
the consulting agent’s data are large or they complement the organization’s data. Our assisted learning
framework is inspired by organizations’ common characteristics: they may have a limited budget for the
rounds of purchasing external assistance, yet they can exchange a large amount of side information per
assistance round to maximize the performance gain. We summarize our contributions as follows.

1.1 Our Contributions

We formally define an assisted learning framework with ‘horizontal-splitting’ data. In this framework, an
organization (referred to as the learner) is connected to an external service provider (referred to as the
provider) for assistance, and their interaction is subject to the following rules: (i) Neither the learner nor
the provider can share data with each other; (ii) The learner can interact with the provider for only a few
assistance rounds due to limited budget, and it aims to maximize the performance gain; and (iii) In each
assistance round, both the learner and the provider have access to sufficient computation and communication
resources.

We then develop a fully-decentralized assisted learning algorithm named AssistDeep for deep learning tasks.
This algorithm enables the learner to effectively interact with the provider without sharing data. Specifically,
every assistance round of AssistDeep consists of two phases. In the first phase, the learner performs local
training for multiple iterations and sends the generated trajectory of models together with their corresponding
local loss values to the provider. In the second phase, the provider utilizes the learner’s information to
evaluate the global loss of the received models and picks the model that achieves the minimum global loss as
the initialization. Then, the provider performs local training for multiple iterations and sends the generated
trajectory of models together with their corresponding local loss values to the learner. Finally, the learner
utilizes the provider’s information to evaluate the global loss of the received models, and outputs the best
model that achieves the minimum global loss. Moreover, for reinforcement learning tasks, we further propose
a fully-decentralized assisted learning algorithm named AssistPG, which is based on the policy gradient
algorithm and has the same training logic as that of AssistDeep.

Through extensive experiments on deep learning and reinforcement learning tasks, we demonstrate that the
learner can achieve a near-oracle performance with AssistDeep and AssistPG as if the model was trained on
centralized data (i.e., the learner has full access to the provider’s raw data). In particular, as the learner data’s
level of imbalance increases, AssistDeep can help the learner achieve a higher performance gain. Moreover,
data are never exchanged in the assisted learning process for both participants.

1.2 Related Work

Assisted learning. The concept of assisted learning was originally proposed by the earlier work (Xian
et al., [2020). However, they consider a very different assisted learning setting, i.e., the ‘vertical-splitting’
setting in which the organization and the consulting agent collect different features from the same cohort.
This is in contrast with our setting where they hold the same features but different data samples. Moreover,
their assisted learning algorithm was specially developed for regression-type tasks, whereas our algorithms
apply to both classification and reinforcement learning tasks with general deep models. Consequently, our
algorithm designs and application scenarios are substantially different from the prior work.

Distributed learning. Distributed learning frameworks such as federated learning (Shokri & Shmatikov,
2015; [Konecny et al.l 2016; McMahan et al.,|2017) aim to improve the learning performance for a large number

Under review as submission to TMLR

of learners that have limited data and computation/communication resources. These learning frameworks
are well suited for cloud systems and IoT systems (Rayl 2016; Gomathi et al., 2018) that manage numerous
smart devices through wireless communication. In conventional distributed optimization, the data is evenly
distributed among workers, which collaboratively solves a large-scale problem by frequently exchanging local
information (gradients, models.) via either decentralized networks (Xie et al.| [2016; Lian et al., 2017} 2018)
or centralized networks (Ho et al., |2013; |[Li et al.l |2014} Richtarik & Takavc, |2016; |[Zhou et al. 2016} 2018)).
As a comparison, our assist learning framework requires only a few interaction rounds between the learner
and provider. This is particularly appealing for organizational learners, who can employ a sophisticated
optimization process locally while restricting the rounds of assistance.

2 Assisted Deep Learning

In this section, we introduce the assisted learning framework for deep learning tasks. Throughout the paper,
L denotes a learner who seeks assistance, and P denotes a service provider who provides assistance to L.

2.1 Problem Formulation

We consider the case where the learner L aims to train a machine learning model 6 that performs well on its
own dataset D) and generalizes well to unseen data. In general, L can train a machine learning model by
solving the empirical risk minimization problem mingee f(0; D)), where f(-; D) is the loss on D™ and ©
is the parameter space. Standard statistical learning theories show that the obtained model can generalize
well to intact test samples under suitable constraints of model parsimoniousness (Ding et al., 2018). However,
when the user’s data DI contains a limited number of samples that are highly imbalanced, the learned
model will suffer from overfitting or deteriorated generalization capability to the unseen test data.

To overcome data deficiency, the learner L intends to connect with an external service provider P (e.g., a
commercialized data company), who possesses data D®) that are sufficient or complementary to the learner’s
data DM, Ideally, the user L would improve the model by solving the following data-augmented problem,
where DI-P) .= D) U D) denotes the centralized data.

G(L,P) — aregelgin f(@,'D(L’P)) (1)

We note that f(0; D)) = £(6,DM) + £(6, D™)). If DP) is generated from a distribution that is close to
the underlying data distribution, it is expected that (™F) will achieve significantly improved performance on
unseen data. However, it is unrealistic to centralize the data since the interactions between the learner L
and the provider P are often restricted by stringent regulations. More specifically, in the assisted learning
framework, we consider the following protocols listed below.

Assisted Learning Protocols

1. No data sharing: Neither the learner L nor the provider P will share data with each other.

2. Limited assistance: The learner L has a limited budget for purchasing assistance services. The
learner desires to maximize the performance gain within only a few assistance rounds.

3. Unlimited computation and communication: In each assistance round, both the learner and the
provider can perform unlimited computation and exchange unlimited information.

To elaborate on the above protocols, first note that data sharing is often considered sensitive and prohibited
in modern distributed learning. Also, assistance service between organizations is usually costly and time-
consuming in reality, and organizational learners usually have a limited budget to purchase and manage such
service. Moreover, we generally assume that both the organizational learner and the service provider have
sufficient computation resources, and they can exchange unlimited information in each interaction round, e.g.,
the learner (resp. provider) can send an employee (resp. technician) to deliver a large-capacity hard drive to
the other side.

Under review as submission to TMLR

Algorithm 1 AssistDeep

Input: Initialization model #°, learning rate 7, assistance rounds R, local iterations 7.

for assistance rounds r =1,..., R do
Learner L :

» Initialize 9((JL) =01
» Local training to generate {9£L)}f:7)1.
» Send {GIEL)7 f(@t(L); DI Y1 to provider P .

Provider P :
» Initialize Gép) = arg minee{e“‘)}tg f(G;D(L’P)),
» Local training to generate {ng) thlal_

» Send {0/, £(6"): D)}, 7 to learner L .

Learner L :

» Output 0" = arg min f(0; D)),

0e{0" Y,
end

Output: The best model in {7} 2.

Conventional distributed learning algorithms cannot be applied to enable assisted learning, as they are
developed for distributed systems involving a large number of agents having access to very limited computation
and communication resources, and they often require frequent information exchange among the agents. Hence,
we need to develop a training algorithm specially for assisted learning that can substantially improve the
learner’s model performance via limited interactions with the service provider. Next, we present a generic
assisted learning algorithm for solving deep learning tasks.

2.2 AssistDeep for Assisted Deep Learning

We propose AssistDeep in Algorithm [1] for assisted deep learning. The learning process consists of R rounds,
each consisting of the following interactions between the learner L. and the provider P.

(1) First, the learner L initiates a local learning process. It initializes a model HSL) and applies any standard
deep learning optimizer (e.g., SGD, Adam, etc.) with learning rate) to update it for 7" iterations using
the local dataset D). Then, the learner evaluates the local loss f(-; D) in a subset 7 of the iterations
t=0,1,.. T — 1. Lastly, the learner sends this subset of models and their corresponding local loss to the
provider P .

(2) Upon receiving the information from the learner L, the provider P first evaluates the global loss f(-; D))
of the received set of models {GEL),t € T} and picks the one that achieves the minimum global loss as the
initialization model GSP). Note that the global loss can be evaluated because the local loss { f (9,§L); DUt e T}
are provided by the learner L , and the provider P just needs to evaluate the local loss {f (9£L); D) te T}
on its local data. After that, the provider applies any standard optimizer with learning rate n to update the
model for T iterations on the local dataset D®). Then, the provider evaluates the local loss fG D(P)) in a
subset 7" of the iterations t = 0,1,...7" — 1, and sends the subset of models and their corresponding local
loss to the learner L.

(3) Once the learner L receives the information sent by the provider P, it evaluates the global loss f(-; D))

of the received set of models {GEP), t € T'} and picks the one that achieves the minimum global loss as the
output model of this assistance round.

Discussions. The above assisted learning algorithm works for general deep learning tasks. It does not
require data sharing between the learner and the provider. In particular, the interaction between the learner
and the provider has the following two prominent features.

Under review as submission to TMLR

o Both the learner and the provider need to store a number of models sampled from the trajectory of
models generated in their local training process and evaluate the corresponding local loss value of
these sampled models. Then, these sampled models and their local loss values are sent to the other
side. Normally, this information exchange may require a large amount of communication. But as we
show later in the experimental studies, it suffices to sample the training trajectory at a low frequency.

o After receiving the models and loss values sent by the other side, both the learner and the provider
will evaluate the global loss of these models on the centralized data, and then will pick the one that
achieves the minimum global loss as the initialization/output model. Here, the global loss of these
models can be evaluated on one side, as the loss values of the models on the other side’s local data
are evaluated and sent by the other side.

3 Assisted Reinforcement Learning

We further extend our assisted learning framework to Reinforcement Learning (RL) scenarios to enhance the
model’s generalizability. We first introduce some basic setups of RL.

Markov Decision Process (MDP). We consider a standard finite-horizon MDP that is denoted by a tuple
M= (S8, A,P,r,m po,T), where S is the state space, A corresponds to the action space, P : SxAxS — [0, 1]
denotes the underlying state transition kernel that drives the new state given the previous state and action,
r:S x A R is the reward function, 7 : § — A is the policy, py denotes the initial state distribution, and
T is the episode length. Given a policy mp parameterized with 6, the goal of RL, also known as on-policy
learning, is to learn an optimal policy parameter 6* that maximizes the expected accumulated reward, namely
* T t—1
0* = argmaxy J(6) :=E[> ", vy

3.1 Problem Formulation

We assume that an RL learner L has collected a small amount of Markovian data D™ by interacting with a
certain environment. It wants to train a policy that generalizes well to other similar environments. However,
the data and environment that the learner L can access are limited. In assisted reinforcement learning, the
learner L aims to enhance its policy’s generalizability to unseen environments by querying assistance from a
service provider P. For example, autonomous-driving startup companies typically own limited data that are
insufficient for training good autonomous driving models that perform well in heterogeneous environments,
and they can purchase assistance services from big companies (who own massive data) to improve the model
performance and generalizability.

Formally, we assume that there is an underlying distribution of transition kernel that models the variability of
the environment. Specifically, denote E3 as an environment with the transition kernel Pz parameterized by
B, which follows an underlying distribution ¢. Let J(6) denote the expected accumulated reward collected
from the environment Ejg following the policy mg. The learner L’s ultimate goal is to learn a good policy that
applies to the underlying distribution of environment, namely, maxgy Eg~q [Jﬁ (9)] In practice, the learner L
only has training data collected from a limited number of environment instances, say) = {ﬁiL), e ,(LI:)}
On the other hand, the service provider may have rich experience interacting with a more diverse set of
environments, say f(P) = {B%P), e ,Bg)}. Consequently, the learner aims to solve the following RL problem
with centralized data.

max Jyur (0) = ST T+ > Jp(0). (2)

Bep™ Brep®

3.2 AssistPG for Assisted Reinforcement Learning

Policy gradient (PG) is a classic RL algorithm for policy optimization. The PG algorithm estimates the
policy gradient V.J(0) via the policy gradient theorem, and applies it to update the policy. Specifically, given
one episode 7 with length T that is collected under the current policy 7y, the corresponding policy gradient
takes the following form, where R(7) = Zthl ~v*=1r, is the discounted accumulated reward over this episode.

Under review as submission to TMLR

In practice, a mini-batch of episodes is used to estimate the policy gradient (Sutton & Barto, 2018]), which is
approximated as follows.

T
VJ(6) ~ R(r) Y Viogms(a;”|s”).
t=1

Algorithm 2 AssistPG
Input: Initialization model §°, learning rate n, assistance rounds R, local iterations T.

for assistance rounds r =1,..., R do
Learner L :

» Initialize ") = 671,
» Local PG training to generate {Qt(L) tT:])l.
» Send {Ht(L), > sepw Jg(GEL))}teT to provider P .

Provider P :
» Initialize 9(()13) = argmax,_pay Jawr ().
» Local PG training to generate {0§P>}f;51.
» Send {Ot(P), > sep® Jg(@t(P))}teT/ to learner L .

Learner L :
» Output #" = arg maxye ey JB(L,P)(H).

end
Output: The best model in {67} .

In Algorithm [2} we present Assisted Policy Gradient (AssistPG)-a policy gradient-type algorithm for
solving the assisted RL problem in Equation . The main logic of the AssistPG algorithm is the same as
that of the AssistDeep for assisted deep learning.

4 Experiments
In this section, we first visualize AssistDeep training to help understand the mechanism of assisted learning.
Then, we provide extensive experiments of deep learning and reinforcement learning to demonstrate the

effectiveness of the proposed assisted learning algorithms.

4.1 Visualization of AssistDeep Training

Regression Example. We apply AssistDeep to solve a regres- 050 m—

. . . ® L'sinitial
sion problem with simulated data a = [-1,—1], b = [1, —1.25] 0.251 e 6" trajectory
and hyperparameters T = 10, = 0.9” for both the learner X L's local opt
and the provider. We run the algorithm for R = 10 assis- 0.001 e X Pslocal opt
tance rounds. Fig. [T] shows the learning trajectory of §” for i | * Globalopt
r=20,1,...,9. It can be seen that at the beginning, the learner -0
L’s learning trajectory moves toward the oracle solution since _g.501

the directions of two local optima are roughly the same; then,

it oscillates in between two opposite directions and converges ~973]
to the oracle solution. ~1.001 x
Classification Example. We apply AssistDeep to solve a 125 Al

simple logistic regression problem for binary classification. We
generate two classes of data samples: Class A data contains LS e e 10 1
50 points drawn from N'([—1,1],1.5%3) , and Class B data ' ' ' ' ‘ ' '

Figure 1: Learning trajectory of AssistDeep
in a synthetic regression example.

Under review as submission to TMLR

(a) Assisted solutions (b) Oracle solution (82.5%)
6

Assisted atr = 1
(81.9%)

//’ oA . Sen L
/ ~ o “
/r’- .

,,/(Non-assisted local -21
" solution (70.0%)

: l . _4

Assisted at r = 3 —————— Decision Boundary | | e Decision Boundary

(82.4%) + Class A « Class A
—61 Class B =67 Class B
B A N B N
X1 X1

Figure 2: Visualization of AssistDeep in classification: (a) the learner’s classifiers after being assisted by the
provider at different rounds, and (b) oracle classifier obtained by using centralized data. The test accuracies
are shown in the parentheses.

contains 50 points drawn from N ([1, —1],1.5215), where A/ and

I denote Gaussian distribution and identity matrix, respectively.

Suppose that a learner L observes 90% class A samples and 10% class B samples. Another service provider P
observes a similar number of data samples consisting of 10% class A samples and 90% class B samples. The
learning process of AssisSGD is illustrated in Fig. [2] (Left), and we also show the oracle solution trained by
SGD with centralized data in Fig. [2| (Right).

It can be seen that without any assistance, the learner can only achieve 70% accuracy and the corresponding
classifier performs poorly on the samples in class B. In comparison, after a single round of assistance, the
classification performance is significantly improved to 81.9% accuracy. After three rounds of assistance, the
corresponding classifier is relatively close to the oracle classifier, which achieves an accuracy of 82.5%. Hence,
it can be seen that AssistDeep has the potential to achieve a near-oracle performance.

4.2 Assisted Deep Learning Experiments

We test the performance of AssistDeep by comparing it with two baselines: SGD (using centralized
data D(L’P)) and Learner-SGD (using only the learner’s data D(L)). We consider two popular datasets
CIFAR-10 (Krizhevsky, 2009) and SVHN. We implement all these algorithms using the Adam optimizer with
learning rate 0.001 and batch size 256 to train AlexNet and ResNet-18 on CIFAR-10 and SVHN, respectively.

To test AssistDeep, we split the classification dataset into two parts and assign them to the learner and the
provider, respectively. Specifically, the provider’s data consists of half of the total samples of each classification
class, and therefore is balanced and of a large size. On the other hand, the learner’s data is sampled from the
rest half of the data (excluding the provider’s data) and is determined by the data imbalance level parameter
v i= |[DEMNOR) | /| DIMAIOR) | [0 1], where DIMAIOR) and DIMNOR) denote the major class and minor class
of the learner’s local data, respectively, and we fix the major class to include the remaining data samples of
the smallest class. Then, all the other classes are minor class of the learner’s data and their sizes are given by
v |DEMAIOR) | Intuitively, 77, = 1 means that learner’s data is balanced and large, whereas v, = 0 means
that learner’s data is extremely imbalanced and small.

We fix the number of assistance rounds to be 10. The total number of local optimization iterations in each
assistance round is fixed to be 2000. We assign these iteration budget to the learner and provider in proportion
to their local data sizes. Both the learner and provider record their local training models and local loss values
for every I = 50 iterations, which is referred to as the sampling period. In addition, we conducted repeated
experiments with different random seeds to estimate the standard deviation of the above results. We find
that the training loss and the test accuracy of the output model are highly consistent across the repeated
experiments. Specifically, the standard deviation of the training loss and test accuracy are 4e-3 and 3e-3,
respectively. Therefore, in all the figures corresponding to deep learning experiments, we only plot the curves

Under review as submission to TMLR

using the data obtained from one particular experiment, and the curves of all the other repeated experiments
are nearly identical.

4.2.1 Effect of Data Size and Data Imbalance Level

CIFAR-10 Dataset. We first compare these algorithms with balanced learner’s data (v, = 1) and
imbalanced learner’s data (yr, = 0,0.3,0.7) in training an AlexNet on the CIFAR-10 dataset. In Fig. (3| we
plot the training loss (on centralized data DU F)) and the test accuracy (on the 10k test data) against the
number of assistance rounds. Here, one assistance round on the x-axis is interpreted as 2k local iterations
for SGD and Learner-SGD. The training loss of Learner-SGD is not reported as it is trained on D) only.
It can be seen that AssistDeep achieves a comparable performance to that of SGD with centralized data.
In particular, when vy; = 0, meaning that the learner has limited and extremely imbalanced data, the
test performance of AssistDeep is significantly better than Learner-SGD, demonstrating the effectiveness
of querying assistance from the service provider. When v, = 0.3,0.7,1 and the learner has more data,
AssistDeep still achieves a near-oracle performance, and its test performance is better than Learner-SGD.

CIFAR-10, AlexNet, y,=0 CIFAR-10, AlexNet, y,=0.3
25 - 80 2.5 - 80
q -©-SGD (Baseline) i -©-SGD (Baseline)
2 -8 AssistDeep 2 -8 AssistDeep
2 60 2 60
@ &) <
g g £1s £
= g | 5
= S 40 -SGD (Baseline) E S 40
E 2 ¢ Learner-SGD (Baseline) 5 1 <
& 20 -5 AssistDeep & 20 ©-SGD (Baseline)
0.5 -¢Learner-SGD (Baseline)
[: 0 -B-AssistDeep
0 0 0 0
012345678910 012345678910 012345678910 012345678910
Number of Rounds Number of Rounds Number of Rounds Number of Rounds
CIFAR-10, AlexNet, y,=0.7 CIFAR-10, AlexNet, y;=1
25 - 80 2.5 - 80
q -©-SGD (Baseline) q -©-SGD (Baseline)
-8 AssistDeep 2 -8 AssistDeep
I 60 & 60
% & 2 &
¢ ?j 40 b § 40
=] =
: R <
& z = z :
E 50 ©-SGD (Baseline) E o ©-SGD (Baseline)
- Learner-SGD (Baseline) 05 - Learner-SGD (Baseline)
-+ AssistDeep [-8 AssistDeep
0 0 0 3 0
012345678910 012345678910 012345678910 0123456782910
Number of Rounds Number of Rounds Number of Rounds Number of Rounds

Figure 3: Comparison of AssistDeep, SGD, and Learner-SGD with v, = 0,0.3,0.7,1 in training an AlexNet
on CIFAR-10.

We further test and compare these algorithms with balanced learner’s data vy, = 1 and imbalanced learner’s
data vy, = 0,0.3,0.7 in training a ResNet-18 on CIFAR-10. The results on ResNet-18 are shown in Fig. [It
can be seen that in all the results, AssistDeep achieves a comparable test performance to that of SGD. Also,
its test performance is better than Learner-SGD, especially when the learner has limited and imbalanced data
(v = 0,0.3,0.7). Combining these results with those in Figs. |3] we conclude that AssistDeep improves the
test performance more (compare to Learner-SGD) when the learner’s data is more imbalanced and limited.

SVHN Dataset. In Figs. [}l and [f] we repeat the above experiments with a different SVHN dataset using
the same hyper-parameter settings. One can make the same observations from these results, which show that
our proposed AssistDeep works well on diverse types of datasets.

4.2.2 Effect of Sampling Period

On CIFAR-10, we explore whether increasing the sampling frequency of the model and loss value can improve
the performance of AssistDeep. We consider v, = 0,1 and compare AssistDeep with centralized SGD under
different sampling periods 20 and 50. The comparison results in training AlexNet and ResNet-18 are shown in

Under review as submission to TMLR

CIFAR-10, ResNet-18, y,=0 CIFAR-10, ResNet-18, y,=0.3

25 100 25 100
q -©-SGD (Baseline) q -©-SGD (Baseline)
-8~ AssistDeep -8- AssistDeep
2 80 i 2
« g ” &
¢15 £ 60 S15 £
St St
= =
E o1 < 40 5-SGD (Baseline) E <
= f: -« Learner-SGD (Bascline) & k 550D B
05 20 & AssistDeep 05 20 %Lea.mer-SGD (Baseline)
[5: -8 AssistDeep
= ﬁ—E—E——E)

0
0123456728910
Number of Rounds

0
0123456782910
Number of Rounds

0
0123456738910
Number of Rounds

0
0123456782910
Number of Rounds

CIFAR-10, ResNet-18, y,=0.7 CIFAR-10, ResNet-18, y;,=1

25 100 25 = 100
aq q (Baseline)
-8 AssistDeep -8 AssistDeep
2 80 2 80
I g
§ 15 g 60 g 15 £ 60
CE? g St g
= =
B=i < B <
g1 = 40 HE 1 2 40
& 5-SGD (Baseline) & 5-SGD (Baseline)
05 20 - Learner-SGD (Baseline) 05 20 ¢ Learner-SGD (Baseline)
- AssistDeep -8 AssistDeep
0 £-8 0 0 S i 0
012345678910 012345678910 012345678910 012345678910

Number of Rounds Number of Rounds Number of Rounds Number of Rounds

Figure 4: Comparison of AssistDeep, SGD, and Learner-SGD with v, = 0,0.3,0.7,1 in training a ResNet-18
on CIFAR-10.

SVHN, AlexNet, y,=0 SVHN, AlexNet, y;=0.3

25 100 25 100
a q
7]
2 80 2 80
I I
: .
3 15 E 60 3 15 Z 60
k] & k! =
s o1 = 40 -©-SGD (Baseline) s 1 JT)
g E - Learner-SGD (Baseline) = H% “©-SGD (Baseline)
05 20 -8-AssistDeep 05 20 -%-Learner-SGD (Baseline)
- ® |5 AssistDeep
0 8=8 0 0 =8 0
0123456728910 0123456738910 0123456738910 0123456738910
Number of Rounds Number of Rounds Number of Rounds Number of Rounds
SVHN, AlexNet, y;=0.7 SVHN, AlexNet, y,=1
100 25 100
q
80 2 80
I Iy
% £ 2 &
3 g 60 3 15 § 60
] =)
g < B <
S = 40 g1 < 40
& 5-SGD (Baseline) = & 5-SGD (Baseline)
20 >« Learner-SGD (Baseline) 05 20, -%-Learner-SGD (Baseline)
- AssistDeep L -8 AssistDeep

0
0123456782910
Number of Rounds

0
0123456728910
Number of Rounds

0
0123456738910
Number of Rounds

0
0123456782910
Number of Rounds

Figure 5: Comparison of AssistDeep, SGD, and Learner-SGD with v, = 0,0.3,0.7,1 in training an AlexNet
on SVHN.

Fig. [7]and [§] respectively. It can be seen that using a low sampling frequency for AssistDeep already achieves
the baseline performance of SGD. It implies that AssistDeep does not require much information exchange
between the learner and provider. This helps save computation resources and reduce information leakage.

4.3 Assisted Reinforcement Learning Experiments

We demonstrate the effectiveness of AssistPG via two RL applications: CartPole (Barto et al. [1983) and
LunarLander (Brockman et all|2016). In the CartPole problem, a controller aims to stabilize a pole attached

Under review as submission to TMLR

Train Loss

[
o

N

=
&

-

o
5

0
012345678910

25

Train Loss

15

0.5

o

SVHN, ResNet-18, 7,=0

Number of Rounds

100
i}

80

I

g

®

2 60

o

54

< -

= 40 ©-SGD (Baseline)

éﬁ - Learner-SGD (Baseline)
20 -8 AssistDeep

0
0123456782910
Number of Rounds

SVHN, ResNet-18, y;=0.7

0
0123456738910
Number of Rounds

80
I
s
<
2 60
o
g
<
< 40
3 -©-SGD (Baseline)
& 2 ¢ Learner-SGD (Baseline)
-8 AssistDeep

0
0123456782910
Number of Rounds

Train Loss

Train Loss

=
o

[N

o
o

0 88 D
012345678910

= I
[o N

I
2

SVHN, ResNet-18, y;,=0.3

Number of Rounds

100

N @ ®
o o o

Test Accuracy

N
o

&

©5-SGD (Baseline)
-%-Learner-SGD (Baseline)
-8 AssistDeep

0
0123456738910

Number of Rounds

SVHN, ResNet-18, y,=1

0 3}
0123456718 910
Number of Rounds

100

Test Accuracy
£y [=2] [
S & o

N
ol

-©-SGD (Baseline)
-%-Learner-SGD (Baseline)
-8 AssistDeep

0
0123456738910

Number of Rounds

Figure 6: Comparison of AssistDeep, SGD, and Learner-SGD with «; = 0,0.3,0.7,1 in training a ResNet-18
on SVHN.

Train Loss

Figure 7: Comparison of AssistDeep and SGD with ~y,

0
012345678910

CIFAR-10, AlexNet, 7,=0

-©-SGD (Baseline)
AssistDeep with Period=20
-8 AssistDeep with Period=50

C—weo6-5 8

Number of Rounds

AlexNet on CIFAR-10.

Train Loss

Test Accuracy

-©-SGD (Baseline)
AssistDeep with Period=20)|
q -8 AssistDeep with Period=50)

0
012345678910
Number of Rounds

CIFAR-10, ResNet-18, y,=0

@ |-©-SGD (Baseline)
AssistDeep with Period=20
-8 AssistDeep with Period=50)

Number of Rounds

0 5898
012345678910

100

80

60

40

Test Accuracy

©-SGD (Baseline)
20 AssistDeep with Period=20)
@ |5 AssistDeep with Period=50

0
012345678910
Number of Rounds

Train Loss

CIFAR-10, AlexNet, y,=1

6-SGD (Bascline)
AssistDeep with Period=20
-5+ AssistDeep with Period=50

&\S—Mﬂ

3

0
012345678910

Number of Rounds

80

Test Accuracy
IS @
S s

n
o

q

-©-SGD (Baseline)
AssistDeep with Period=20
-8 AssistDeep with Period=50

0
0

12345678910
Number of Rounds

= 0, 1 under different sampling periods in training an

Train Loss

0
012345678910

CIFAR-10, ResNet-18, y,=1

@ |-©-SGD (Baseline)
AssistDeep with Period=20)
-8 AssistDeep with Period=50

Number of Rounds

100
80
>
15
g
= 60
153
o
<
= 40
8
= -©-SGD (Baseline)
20 AssistDeep with Period=20)
@ |5 AssistDeep with Period=50)

0
012345678910

Number of Rounds

Figure 8: Comparison of AssistDeep and SGD with «; = 0,1 under different sampling periods in training a

ResNet-18 on CIFAR-10.

to a cart by applying left or right force to the cart (see the first figure in Fig. E[), and we show that AssistPG
can help the controller stabilize the pole with different pole lengths. For the LunarLander problem, a lander

10

Under review as submission to TMLR

initializes its landing from top left of the sky and aims to land on a landing pad by controlling its engine (see
the first figure in Fig. . We show that AssistPG can help land the lander with different engine powers.

100 1000 1000
—=— AssistPG —=— AssistPG
5 80 800 —e— PG (Baseline) 800 —e— PG (Baseline)
1 Learner-PG (Baseline) Learner-PG (Baseline)
2
pivot point K] e €
= 60 z 600 2 600
E 2 g
o o E
S Y = =
2 40 7 400 g 400
- < = =
‘Em £ 2 ASSIstPG 200 200
—e— PG (Baseline)
Learner-PG (Baseline) . X
0 0 0=
123456 78910 0123456 78910 1234567 8910
Rounds Rounds Rounds

Figure 9: Comparison of AssistPG, PG, and Learner-PG in the CartPole game.

100 100

w
o
S

—a— AssistPG
0 —e— PG (Baseline)

u
=)
N
=
S

E 0 100 Agent-PG (Baseline)
2 J
— — i 8 T -100 2
left . right € -50] g o
LI g g
wn . 3 -100 < 200} < _100
do landing pad g = =
> B - 0 _
8 -150 8 300 8 200
E—ZOO —=— AssistPG —=— AssistPG —-300
_250 —e— PG (Baseline) —4001 —e— PG (Baseline) —400
Agent-PG (Baseline) Agent-PG (Baseline)
-300 -500 -500
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Rounds Rounds Rounds

Figure 10: Comparison of AssistPG, PG, and Learner-PG in the LunarLander game.

We assume that the learner and the provider can query episode data by interacting with diverse environments.
Specifically, for the CartPole problem, we parameterize the environment using the pole length. Both the
learner and the provider train their control policies by playing 5 Cartpole games with the pole length randomly
generated from Uniform(4,5) (for the learner) and Uniform(0, 1) (for the provider). For the LunarLander
problem, we parameterize the environment using the engine power. Both the learner and provider train
their control policies by playing 10 LunarLander games with the engine power randomly generated from
Uniform(10, 15) (for the learner) and Uniform(35,40) (for the provider). Moreover, we consider two sets of
testing environments that are uniform (“Test I”) and non-uniform (“Test II”), respectively. For the CartPole
problem, Test I environments randomly generate the pole length from Uniform(0, 5), and Test I environments
randomly generate the pole length from Beta(1,5) with probability 0.2 and Uniform(0,5) with probability 0.8.
For the LunarLander problem, Test I environments randomly generate the engine power from Uniform(10, 40),
and Test IT environments randomly generate the engine power as 30r + 10, where r ~ Beta(5, 1).

We test AssistPG on both RL problems and compare its performance with two baselines: the standard
PG (using centralized episode data), and the Learner-PG (using only learner’s episode data). All these
algorithms are implemented with learning rate 5 x 10~3 and episode batch size 32. We model the policy
using a three-layer feed-forward neural network with 4 and 32 hidden neurons for CartPole and LunarLander,
respectively. Moreover, for AssistPG, we fix the total number of assistance rounds to be 10 and 5 for CartPole
and LunarLander, respectively. The total number of local PG iterations in each assistance round is fixed to
be 20 for both problems. We also set the sampling period to be four, namely, the learner and the provider
record their local model and discounted training reward for every four local PG iterations. Fig. [9] and [10] plot
the discounted training rewards (collected in local environment only), Test I cumulative rewards, and Test II
cumulative rewards against the assistance round obtained by all these algorithms, for solving the CartPole
and LunarLander problems, respectively. Here, one assistant round is interpreted as 20 local PG iterations
for algorithms other than AssistPG.

Fig. [9] indicates that AssistPG outperforms Learner-PG, when the testing environments include diverse
lengths of poles. Also, AssistPG can achieve a comparable performance to that of the PG with centralized
data. Moreover, Fig. indicates that AssistPG can swiftly adapt to scenarios out of their comfort zone
(namely the training environments) in only a few rounds. These experiments demonstrate that our assisted

11

Under review as submission to TMLR

learning framework can help the learner significantly improve the quality of the policy for handling complex
RL problems.

4.4 Visualization of LunarLander Experiment

In this section, we visualize the landing trace of the LunarLander trained by AssistPG and Leaner-PG in
different test environments.

engine power = 10 engine power =20 engine power = 30 engine power =40

— AssistPG
—— Learner-PG

—— AssistPG
—— Learner-PG

— AssistPG
—— Learner-PG

— AssistPG
—— Leamner-PG

— AssistPG — AssistPG — AssistPG —— AssistPG

—— Learner-PG —— Learner-PG —— Learner-PG — Learner-PG

Figure 11: Landing traces of LunarLander with engine power = 10, 20, 30, 40 trained by AssistPG and
Learner-PG.

Test | Test Il

— AssistPG — AssistPG — AssistPG — AssistPG
— Learner-PG — Learner-PG — Learner-PG — Learner-PG

Figure 12: Landing traces with engine power ~ Uniform(10,40) and ~ 30%Beta(5, 1)+ 10 trained by AssistPG
and Learner-PG.

Specifically, we consider a fixed map and set the engine power of the lander to be 10, 20, 30, and 40, respectively.
In each setting, we train the lander using both AssistPG and Learner-PG for R = 5 rounds. After each
round of training, we let the lander play an episode using the trained model and plot the corresponding
landing trace. These traces are plotted in Fig. From these figures, it can be seen that the lander with
engine power 20-40 trained by AssistPG can successfully land on the landpad after 5 rounds of assisted
learning. As a comparison, the lander trained by Learner-PG cannot even land after 5 rounds of training.
This demonstrates the advantage of AssistPG. On the other hand, when the lander has a small engine power
10, it is challenging for both algorithms to land the lander properly, as the engine cannot provide sufficient
acceleration. Moreover, after 5 rounds of training (using both AssistPG and Learner-PG), we test the lander

12

Under review as submission to TMLR

in both the test environment I (“Test I”) and II (“Test I1”), and plot the landing traces in Fig. Here, for
each test, we consider a fixed map and randomly generate 4 different engine powers from Uniform(10,40) (for
Test I) and 30 * Beta(5,1) + 10 (for Test II).

From both figures, it can be seen that the lander trained by the AssistPG lands more smoothly in all test
environments under diverse engine powers than that trained by the Learner-PG. The video version for the
CartPole and LunarLander games can be accessed from the anonymous link https://www.dropbox.com/
sh/0z2jswj361i41kh/AADaQn4Nj67vImdIHKDLN6nAa?d1=0. In the CartPole game, four videos record the
performance of AssistPG and Learner-PG against the first five rounds with pole length equaling 1, 2, 3, and
4, respectively. Another two videos record 10 plays in the test environment I and II, respectively. In all the
plays, both AssistPG and Learner-PG use the model trained from the fifth round. In the LunarLander game,
four videos record the performance of AssistPG and Learner-PG against the first five rounds with engine
power equaling 10, 20, 30, and 40, respectively. Another two videos record 10 plays in the test environment I
and II, respectively. In all the plays, both AssistPG and Learner-PG use the model trained from the fifth
round. The videos show that with the assistance from the provider, the user can quickly generalize its model
to more diverse environments.

5 Conclusion

This work develops a learning framework for assisting organizational learners to improve their learning
performance with limited imbalanced data. In particular, the proposed AssistDeep and AssistPG allow
the provider to assist the learner’s training process and significantly improve its model quality within only
a few assistance rounds. We demonstrate the effectiveness of both assisted learning algorithms through
experimental studies. In the future, we expect that this learning framework can be integrated with other
learning frameworks such as meta-learning and multi-task learning. A limitation of this study is that it only
considers a pair of learner and provider. An interesting future direction is to emulate the current assisted
learning framework to allow multiple learners or service providers.

References

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville,
and Yoshua Bengio. An actor-critic algorithm for sequence prediction. In Proc. International Conference
on Learning Representations, 2017.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5):834-846, 1983.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Gino Brunner, Oliver Richter, Yuyi Wang, and Roger Wattenhofer. Teaching a machine to read maps with
deep reinforcement learning. In Proc. Association for the Advancement of Artificial Intelligence (AAAI, 11
2017.

M. P. Deisenroth, G. Neumann, and J. Peters. A Survey on Policy Search for Robotics. 2013.

Jie Ding, Vahid Tarokh, and Yuhong Yang. Model selection techniques—an overview. IEEE Signal Process.
Mayg., 35(6):16-34, 2018.

Financesonline. Market share & data analysis. https://financesonline.com/
machine-learning-statistics/, 2021. Accessed: 2021-01-18.

RM Gomathi, G Hari Satya Krishna, E Brumancia, and Y Mistica Dhas. A survey on iot technologies,
evolution and architecture. In Proc. ICCCSP, pp. 1-5. IEEE, 2018.

Tan J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA, USA,
2016.

13

https://www.dropbox.com/sh/oz2jswj36li4lkh/AADaQn4Nj67v9mdIHKDLN6nAa?dl=0
https://www.dropbox.com/sh/oz2jswj36li4lkh/AADaQn4Nj67v9mdIHKDLN6nAa?dl=0
https://financesonline.com/machine-learning-statistics/
https://financesonline.com/machine-learning-statistics/

Under review as submission to TMLR

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Garth A Gibson,
Greg Ganger, and Eric P Xing. More effective distributed ML via a stale synchronous parallel parameter
server. In Proc. NeurIPS, pp. 1223-1231. 2013.

Jens Kober and Jan Peters. Reinforcement Learning in Robotics: A Survey, pp. 9-67. Springer, 2014.

Jakub Konecny, H Brendan McMahan, Felix X Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

Prahlad Koratamaddi, Karan Wadhwani, Mridul Gupta, and Dr. Sriram G. Sanjeevi. A multi-agent
reinforcement learning approach for stock portfolio allocation. In ACM IKDD CODS, pp. 410, 2021.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Jinho Lee, Rachyun Kim, Seok-Won Yi, and Jaewoo Kang. Maps: Multi-agent reinforcement learning-based
portfolio management system. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pp. 4520-4526, 7 2020.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. Deep reinforcement
learning for dialogue generation. In Proc. Conference on Empirical Methods in Natural Language Processing,
pp. 1192-1202, 2016.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In
Proc. OSDI, pp. 583-598, 2014.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In
Proc. NeurIPS, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient
descent. In Proc. ICML, volume 80, pp. 3043-3052, 2018.

F. Liu, S. Li, L. Zhang, C. Zhou, R. Ye, Y. Wang, and J. Lu. 3denn-dgn-rnn: A deep reinforcement learning
framework for semantic parsing of large-scale 3d point clouds. In Proc. International Conference on
Computer Vision (ICCV), pp. 5679-5688, 2017.

Johann Lussange, Ivan Lazarevich, Sacha Bourgeois-Gironde, Stefano Palminteri, and Boris Gutkin. Modelling
stock markets by multi-agent reinforcement learning. Computational Economics, 57, 01 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Proc. AISTATS, pp. 1273-1282. PMLR,
2017.

Partha Pratim Ray. A survey of iot cloud platforms. Future Computing and Informatics Journal, 1(1-2):
35-46, 2016.

P. Richtarik and M. Takavc. Distributed Coordinate Descent Method for Learning with Big Data. J. Mach.
Learn. Res., 2016.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proc. CCS, pp. 1310-1321. ACM,
2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Xun Xian, Xinran Wang, Jie Ding, and Reza Ghanadan. Assisted learning: A framework for multi-organization
learning. Proc. NeurIPS, 2020.

14

Under review as submission to TMLR

Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhimanu Kumar, Yaoliang Yu, and Eric Xing. Lighter-
communication distributed machine learning via sufficient factor broadcasting. In Proc. UAI, pp. 795804,
2016.

Y. Zhou, Y.L. Yu, W. Dai, Y.B. Liang, and E.P. Xing. On convergence of model parallel proximal gradient
algorithm for stale synchronous parallel system. In Proc. AISTATS, 2016.

Yi Zhou, Yingbin Liang, Yaoliang Yu, Wei Dai, and Eric P. Xing. Distributed proximal gradient algorithm
for partially asynchronous computer clusters. J. Mach. Learn. Res., 19(19):1-32, 2018.

15

	Introduction
	Our Contributions
	Related Work

	Assisted Deep Learning
	Problem Formulation
	AssistDeep for Assisted Deep Learning

	Assisted Reinforcement Learning
	Problem Formulation
	AssistPG for Assisted Reinforcement Learning

	Experiments
	Visualization of AssistDeep Training
	Assisted Deep Learning Experiments
	Effect of Data Size and Data Imbalance Level
	Effect of Sampling Period

	Assisted Reinforcement Learning Experiments
	Visualization of LunarLander Experiment

	Conclusion

