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Fig. 1: Left: A dataset of raw driving logs containing image and ego trajectory pairs. Our self supervised method processes such an
unannotated dataset to generate freespace segments essential for autonomous driving. Right: Examples of multimodal freespace segments
generated by our diffusion model on CARLA. At inference, our model denoises a fixed number of noise samples into freespace segments.
We showcase predictions across various weather conditions, times of day, road topologies, and obstacle layouts.

Abstract— Drivable Freespace prediction is a fundamental
and crucial problem in autonomous driving. Recent works have
addressed the problem by representing the entire non-obstacle
road regions as the freespace. In contrast our aim is to estimate
the driving corridors that are a navigable subset of the entire
road region. Unfortunately, existing corridor estimation meth-
ods directly assume a BEV centric representation, which is hard
to obtain. In contrast, we frame drivable freespace corridor
prediction as a pure image perception task, using only monoc-
ular camera input. However such a formulation poses several
challenges as one doesn’t have the corresponding data for such
freespace corridor segments in the image. Consequently, we
develop a novel self-supervised approach for freespace sample
generation by leveraging future ego trajectories and front-view
camera images, making the process of visual corridor estimation
dependent on the ego trajectory. We then employ a diffusion
process to model the distribution of such segments in the image.
However, the existing binary mask based representation for
a segment poses many limitations. Therefore, we introduce
ContourDiff, a specialized diffusion-based architecture that
denoises over contour points rather than relying on binary mask
representations, enabling structured and interpretable freespace
predictions. We evaluate our approach qualitatively and quan-
titatively on both NuScenes and CARLA, demonstrating its
effectiveness in accurately predicting safe multimodal navigable
corridors in the image.

Project Page - https://keshav0306.github.io/diffusion˙fs/

I. INTRODUCTION

The autonomous navigation community is increasingly ex-
ploring vision-based approaches that aim to map the observa-
tions to actions either through direct perception [1–3] or via

1Robotics Research Center, IIIT-Hyderabad, India
2The University of Tartu, Estonia

intermediate metric scene representation such as occupancy
grid or BEV map [4–6]. The former often struggles with
vehicle kinematic constraints, obstacle avoidance, and lane
boundaries due to reliance on error-prone perception modules
that map high-dimensional features to control inputs. In
contrast, humans while driving, identify free-space1 rather
than enumerating and precisely localizing the obstacles. This
free-space perception approach is evident in common driving
scenarios. For instance, a driver merging onto a highway fo-
cuses on regions or “corridors” between vehicles, rather than
their exact position. For driving situations that need more
informed decisions, the navigable space naturally diversifies
into multiple potential paths or corridors, each representing
a distinct mode of navigation. For instance, at a T-junction,
the driver simultaneously perceives multiple valid navigable
options— left turn, right turn, or proceeding straight. Each
represents a distinct viable option where the “correct” path
depends on contextual factors such as destination intent
or traffic flow that are inherently multimodal. Humans in-
stinctively evaluate these multiple plausible paths before
committing to one, relying primarily on a relative sense
of depth perception regarding surrounding traffic agents,
scouting out drivable spaces rather than making precise

1The freespace navigation in literature, is understood under two different
categories: 1. Drivable-Area Prediction [7–10], which represents the entire
non-obstacle road region, broadly studied as lane segmentation and/or road
segmentation task, and 2. Driving-Corridor Estimation [11–14], which
discretize the drivable region into a reachable set where the vehicle can
reach over time from its current ego position without collisions. Our interest
lies in 2nd, posing it as a perception task.
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Fig. 3: Freespace Contour Creation. Left : We show the transformations between the ego vehicle’s frame at time t+ k and the frame
at time t. Right : We show the process of creation of the freespace sample for an image. The top row presents the BEV map in the local
frame of the ego vehicle at time t, while the middle and bottom rows show the corresponding frontal camera images and an alternative
top-down view, illustrating the camera setup and projection process from a third-person perspective. (a) shows the future ego trajectory
of the ego vehicle xt+1:T . (b) shows the corresponding future footprint of the ego vehicle, Ft and its projection Kt in the image plane.
(c) the future footprint Kt is bounded up to the closest overlapping obstacle to obtain the freespace segment, St. (d) the corresponding
freespace contour Ct is obtained.

metric calculations.
Applying this intuition to autonomous driving, we explore

the prediction of multimodal navigable regions directly from
a monocular camera input. While the drivable area prediction
task is not entirely novel [7–14], studying them as vision-
oriented task remains unexplored. Hence, we pose this
problem as visual corridor prediction task which contrasts
with existing work [11–14] that assumes prior knowledge
of obstacle positions and adopt geometric or optimization-
driven strategies to compute navigable regions.

In this paper, we define navigable regions as pixel-level
segments in terms of contour points that are a set of collision-
free regions in the vicinity of the vehicle, as shown in Figure
6.

Our contributions are the following:
1) We formulate the task of visual corridor prediction as

an image perception task for the first time, contrary to
prior works that assume the availability of a BEV centric
representation.

2) We propose a novel self supervised approach for
freespace sample generation from future ego trajectory
and images.

3) ContourDiff - We propose a novel diffusion architecture
for denoising over contour points rather than a standard
binary mask based representation.

II. RELATED WORKS

A. Perception-Based Navigable Region Identification

Perception-driven methods for identifying navigable re-
gions in autonomous driving have been widely explored.
Works like [15, 16] map linguistic commands to goal re-
gions rather than segmenting navigable space. Freespace
segmentation approaches [7–10] classify entire roads as
freespace, losing the essence of true navigable regions. Their
reliance on supervised learning with labeled datasets limits
generalization to diverse road structures. Overcoming these

limitations, DiffusionFS adopts a diffusion-based approach
to generate multimodal predictions of navigable corridors
while maintaining semantic awareness of the surrounding
environment. By explicitly avoiding obstacles and off-road
areas, it constructs feasible driving corridors from the ego
vehicle’s perspective.

B. Diffusion Based Segmentation Approaches

Recent advances in diffusion models have enabled their
application in segmentation by leveraging generative pro-
cesses to create or refine segmentation masks. Unlike tra-
ditional segmentation approaches, which directly classify
pixels, these methods utilize learned diffusion processes to
generate structured masks or extract meaningful features
from the denoising steps. [17] extracts intermediate activa-
tions from pretrained diffusion models, using them as feature
representation for segmentation. SegDiff [18] formulates
segmentation as a conditional generation problem using Con-
ditional Diffusion Probabilistic Models. However, due to the
high dimensionality of segmentation masks, SegDiff suffers
from slow inference and fails to capture the data distribution
properly. To address this, ContourDiff denoises directly on
contour representations rather than full-resolution masks.
This significantly reduces dimensionality while preserving
essential spatial structure, allowing for efficient segmentation
without losing navigable region fidelity.

III. METHODOLOGY

We propose a novel self-supervised method for directly de-
tecting freespace in images without requiring any annotated
data. Instead, our approach leverages raw driving logs of the
ego vehicle, which are naturally abundant, extensive, and eas-
ily accessible from large-scale autonomous driving datasets
or onboard vehicle sensors. Using a diverse set of pairs of
images and corresponding freespaces obtained through this
method, we then train a conditional diffusion model over the
freespace contours. During inference for an image, one can



Fig. 4: Conditional Probability Distribution of Freespace Con-
tours given an image. We show an example of an intersection
where the distribution of freespace contours is likely to be bimodal,
as there is possibility of freespace at both the left and the right turn.
The training data provides enough evidence to approximate this
distribution, as in many driving logs covering a similar scenario,
the ego vehicle must have traversed along both ways.

sample multiple freespace segments allowing for scalable,
annotation-free, and adaptable freespace prediction.

A. Self Supervised Freespace Generation

Our key observation is that the ego trajectory is inherently
correlated with the freespace visible in the image, as we
define freespace as the navigable portion of the road that
aligns with human driving behavior. Since the ego vehicle
always moves within a drivable region, its future positions
provide a strong prior for freespace. We define one possible
freespace segment by projecting the ego vehicle’s future
footprints into the image. This segment does not entirely
represent freespace, as the ego vehicle might have crossed
regions in the future where some obstacle is present for the
current timestep. This will yield an overlap of the freespace
segment with the obstacle. We assume access to obstacle
bounding boxes in the image plane, which can be efficiently
obtained using existing object detection models, even for
unannotated datasets using [19]. We limit the segment to the
closest obstacle to guarantee freespace. As different driving
episodes yield varying trajectories for similar scenes, our
method captures multiple plausible freespace regions.

A driving log can be represented as a sequence of
{(It,xt)}Tt=1 pairs, where It ∈ RH×W×3 is the image at the
current timestep, xt = {xt, yt, θt} ∈ R3 is the pose of the
ego vehicle, and T is the episode length. For a given timestep
t in the driving log, our goal is to determine a possible
freespace segment, which depends on the future trajectory
of the ego vehicle, xt+1:T = {xt+1,xt+2, . . . ,xT }.

For each future timestep t+ k, we define the footprint of
the ego vehicle, Mt+k as the segment corresponding to the

rectangular area of the ego vehicle in the local frame of the
ego vehicle at timestep t, with the center of the rectangle as

ck = (xt+k − xt, yt+k − yt)

and the relative orientation as

αk = θt+k − θt

Formally, Mt+k is formed from the 4 points of the oriented
bounding box corresponding to the footprint of the ego
vehicle. Let Pt+k define the set of corner points of the
footprint in the frame of the ego vehicle at timestep t+ k.
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where w, l are the width and length of the ego vehicle. We
next transform each of these points to the frame of the ego
vehicle at timestep t denoted by P t+k

t , by the transformation

P t+k
t = R(αk) · Pt+k + ck

where R(αk) is the 2D rotation matrix corresponding to the
angle αk. The above transformation is visualized in fig. 3.
Let p1, p2, p3, p4 deonte the transformed corner points i.e.
columns of P t+k

t . We get the transformed footprint mask
Mt+k as

Mt+k(u, v) =

1,
if (u, v) is inside the rectangle formed

by {p1, p2, p3, p4},
0, otherwise.

The combined footprint mask, denoted as Ft will be
simply the bitwise OR of these masks for all k.

Ft =

T−t⋃
k=1

Mt+k

On getting Ft, we project this mask to the camera frame
using known camera intrinsics and extrinsic parameters. For
every point (u, v) in Ft, we get the projected point in the
image frame using the camera intrinsics K, camera rotation
matrix R and camera height h using

p′ = K ·R ·

 u
−h
v

 (1)

We denote this transformed mask as Kt. This mask
represents the segmented path taken by the ego vehicle
in future timesteps as viewed in the image plane in the
current timestep, t. Given the set of bounding boxes of all
the obstacles in the image plane denoted as Ot, we limit
Kt to the nearest obstacle in Ot by finding the closest
obstacle overlapping with Kt, from which we get our desired
freespace segment St. For our experiments, we deal with an
equivalent conversion of this segment mask, which is the
ordered set of contour points denoted as Ct. We get Ct from
St using the OpenCV [20] implementation of [21]. Please
refer to fig. 3 for a visual illustration of the process.



B. Diffusion Formulation

Predicting the distribution of freespaces in an image can
be very challenging because of the complex multimodal
nature of the task. To effectively model this, we use a
diffusion model [22] to approximate the true conditional
distribution q(C|I) of freespace contours C given the image
input I through pθ(C|I). Figure 4 presents an illustration of
the approximated distribution expected through the diffusion
process.

Starting from an initial noisy contour CTmax ∼ N (0, I),
we iteratively denoise it to obtain a set of contours with
decreasing noise levels, {CTmax , CTmax−1, . . . , C2, C1, C0}.
The denoising conversion from Ct to Ct−1 follows the
equation

Ct−1 = α(Ct − γϵθ(C
t, t) +N(0, σ2I))

where α, γ and σ depend on the variance schedule of the dif-
fusion process, and ϵθ is the denoising model parameterized
by θ.

During training, we have access to a dataset D consisting
of pairs of images and freespace contours, (Ii, Ci). We
sample the timestep t uniformly from (0, Tmax), and run
the diffusion forward process for t timesteps on the contour,
C from a randomly sampled pair (I, C) from our dataset.
The diffusion objective is to minimize

min
θ

Et∼U(0,Tmax)
ϵ∼N (0,I)
(I,C)∼D

[
||ϵθ(I, Ct, t)− ϵ||22

]
(2)

C. ContourDiff - Denoising Contours

Our proposed diffusion model architecture operates on
contour points, offering a more interpretable alternative to
diffusion over masks. Unlike mask-based diffusion, our ap-
proach ensures that at each timestep of the reverse process,
we obtain a set of points directly on the image, providing a
clear geometric interpretation of denoising. Such a property
eliminates the need for thresholding to binarize the mask,
as the point positions inherently define it. Additionally,
representing a closed connected mask with points is both
natural and efficient, requiring only N × 2 parameters
compared to the H × W parameters needed for a latent
mask representation. This structured representation acts as
a prior for modeling connected closed segments, making
it particularly well-suited for our task. This also improves
the convergence during training and output quality. Refer to
Figure 5 for details about the architecture.

The input to the model is the set of noisy contour points
at the forward process timestep t,

Ct = {xt
1, x

t
2...x

t
N} ∈ RN×2

and the image I . For this, we pass the image through an
image encoder Fenc first to get the features corresponding
to the image.

F = Fenc(I) ∈ RH′×W ′×Df

where H ′,W ′ is the size of the downsampled feature map
and Df is the dimension of the each element of the feature
map.

We then extract features at the noisy contour point lo-
cations using bilinear sampling, a method that interpolates
features at fractional positions within the feature map. For
each k-th point in the contour, xt

k, the bilinearly sampled
feature is given by:

fk = B(F, xt
k) ∈ RDf

where B is the sampling function that takes the feature map
F and the sampling location xt

k as inputs. The features lack
any inherent position information, making it essential for
the denoising model to be aware of each point’s location to
accurately estimate the noise. To address this, we concatenate
each point’s position with its sampled feature. Specifically,
we first project the 2D position into a higher-dimensional
positional embedding ek ∈ RDe . Thus, for every point, we
obtain the feature vector gk as the concatenation of fk and
ek, forming a structured set of features corresponding to each
contour point in Ct.

G = {g1, g2, . . . , gN} ∈ RN×D

where

gi =

[
fi
ei

]
∈ RD, ∀i ∈ {1, . . . , N}, D = Df +De

The timestep embedding temb is taken as the standard
sinosoidal positional embedding corresponding to timestep
t. We then employ a series of transformer layers, incor-
porating multi-headed self-attention. We pass G along with
the timestep embedding through these layers, enabling each
point to capture dependencies with every other point as well
as the timestep of the forward process. After the transformer
layers, we use an MLP to map the D-dimensional embedding
to the 2-dimensional observed noise ϵt:

H = Transformer(G, temb) ∈ R(N+1)×D

The predicted noise from the denoising model is given by:

ϵ̂t = {MLP(H1), . . . ,MLP(HN )} ∈ RN×2

IV. EXPERIMENTS AND RESULTS

Our experiments in this section are specifically designed
to address the following questions:

1) How does ContourDiff compare to prior works for
segmentation via diffusion and other segmentation ap-
proaches?

2) What forms of conditioning or guidance can be added to
the diffusion model to improve the quality of freespace
segmentation?

3) How can we sample efficiently from the diffusion model
to enhance multimodal outputs and have better control
over the generated samples?



Fig. 5: The architecture of the proposed ContourDiff. The image I and the initial noisy contour CTmax are passed as input to the
model. Note that Ct is visualized on top of image, and is not part of the image. The output of the model is the denoised contour C0

which is obtained through running the reverse diffusion process.

Fig. 6: Training Samples : We show different samples generated
on CARLA and nuScenes, on applying the methodology described
in III

A. Datasets

We evaluate and benchmark our model on two datasets:
CARLA [23] and nuScenes [24]. Both datasets provide ego
vehicle trajectory data, which we use to derive navigable
free-space masks.

1) CARLA: We use the CARLA simulator to collect
diverse training data using the LAV [25] data collection
script. The dataset includes various driving scenarios
such as straight roads, intersection turns, lane changes,

and lane following. Our collected dataset comprises
82K frames from Towns 1–7, using three front-facing
cameras with yaw angles of −60◦, 0◦, and 60◦. We split
the dataset into 75K frames for training and 7K frames
for evaluation.

2) nuScenes: The nuScenes [24] dataset provides real-
world urban driving scenarios with ground-truth ego
trajectories. We use its official split, consisting of 700
sequences for training and 150 for validation.

B. Implementation Details

For CARLA, we stitch images from the three front-facing
cameras, resulting in a final input size of 288 × 768. For
nuScenes, the original image of size 900 × 1600 is resized
to an input resolution of 256× 512.

The model is trained with a learning rate of 10−4 and a
batch size of 64 across four NVIDIA RTX 3080 Ti GPUs
(effective batch size: 256). The forward diffusion process
follows a cosine beta schedule with Tmax = 50 timesteps.
The model predicts N = 50 contour points, with features
processed through six transformer blocks. Our empirical
observations indicate that all validation metrics converge up
until 50 training epochs.

TABLE I: Quantitative Results for Freespace Generation.

Method CARLA nuScenes

IoU
(↑)

Obstacle
Overlap (↓)

Off-Road
Overlap (↓)

IoU
(↑)

Obstacle
Overlap (↓)

Off-Road
Overlap (↓)

YOLOv11[26] 0.472 0.026 0.073 0.581 0.006 0.205

SegDiff[18] 0.676 0.052 0.0032 0.628 0.061 0.022
ContourDiff 0.7707 0.0228 0.0470 0.687 0.017 0.21



Fig. 7: Above: CARLA – Comparison of YOLOv11, SegDiff, and
our proposed ContourDiff at an intersection. The non-generative
baseline YOLOv11 struggles to predict the freespace segment. We
present six samples from both SegDiff and ContourDiff, demon-
strating that ContourDiff, with its prior of points and more efficient
parameterization, produces more refined and reasonable segments.
Below: nuScenes – YOLOv11 outputs only a single freespace
segment. SegDiff fails to generate connected samples as it has no
prior for doing so unlike the contour representation. Hence it often
predicts disconnected masks which undermines the task of freespace
prediction. In contrast, ContourDiff significantly improves freespace
segmentation, producing more accurate and diverse results.

C. Evaluation Metrics

For freespace segmentation, we compute the mean Inter-
section over Union (IoU) between the predicted and ground
truth freespace masks. To assess obstacle avoidance and safe
navigation, we measure Off-Road Overlap which is the
percentage of predicted freespace extending beyond the valid
driving area and Obstacle Overlap which is the percentage
of predicted freespace intersecting with detected obstacles.

For CARLA, to analyze multimodality, we introduce an
additional metric called Directional Deviation (DD) to quan-
tify variations in predicted samples. Specifically, we extract
the centerline from the freespace mask by sampling the
contour generated by the diffusion model. We then compute
the angle of the line segment connecting the first and last
points of the centerline. This process is repeated for six
samples per image, and we calculate the mean and variance
of these angles. Finally, we compute the average variance
and average mean across the entire dataset to measure the
diversity of the generated outputs. Additionally, we evaluate
the Mean Extent of the angles, defined as the difference
between the maximum and minimum angles among the
six samples, providing further insight into the spread of
predictions.

D. Comparing ContourDiff with other Segmentation Ap-
proaches

As mentioned before, since our goal is to predict front-
view safe navigable contours using diffusion, we found no
prior works that define freespace as corridors in the image
frame. To the best of our knowledge, this problem remains
unexplored in existing research. Therefore, we establish two
baselines:

1) Non Generative - YOLOv11: We train a
YOLOv11[26] segmentation model to demonstrate the
limitations of a non-generative approach for this task.

2) Generative - SegDiff: To compare against a genera-
tive segmentation approach, we adopt SegDiff [18], a
well-known diffusion-based image segmentation model
which denoises over a standard mask based representa-
tion, as our baseline.

Table I presents a comparison of segmentation evaluation
metrics between the baselines and our proposed ContourDiff.
Since a non-generative supervised model can only predict
a fixed set of masks deterministically given an input im-
age, YOLOv11 struggles to capture the inherent variability
in navigable contour prediction. The poor performance on
CARLA and nuScenes further highlights the necessity of a
generative model for this task. The generative baseline shows
our model outperforming SegDiff in IoU and obstacle over-
lap, highlighting the benefits of contour-based predictions
over segmentation masks. Notably, ContourDiff maintains
low off-road overlap. In contrast, SegDiff often predicts no
masks, lowering both validation IoU and obstacle overlap,
resulting in a lower obstacle overlap than ContourDiff.
Qualitative results are shown in Figure IV-B.

TABLE II: Conditioning Results for Freespace Generation
(CARLA).

Method
IoU
(↑)

Obstacle
Overlap

(↓)

Off-Road
Overlap

(↓)

ContourDiff 0.7707 0.0228 0.0470
Obstacle Guidance + ContourDiff 0.7653 0.0191 0.0436
Class Conditioned ContourDiff 0.6866 0.02513 0.055
Noise Template + ContourDiff 0.7613 0.0257 0.0519
Obstacle Guidance + Class Conditioned 0.6765 0.0239 0.0542

E. Enhancing Freespace Segmentation with Conditioning
and Guidance

1) Class Conditioning-High Level Command Condition-
ing: We examine the effect of conditioning on a class token
representing broader driving behaviors, such as lane changes
or turns, on the generation of multimodal predictions. For
every frame, we have a label corresponding to one of the 6
high level commands. Possible highlevel commands include
turn-left, turn-right, go-straight, follow-lane, change-lane-to-
left, change-lane-to-right. We one-hot encode the high-level
command and project it to match the feature dimension of the
transformer tokens. During training, we add this projected
encoding to the set of input tokens. During inference, we
sample a freespace segment for each of the six high-level
commands, enabling diverse multimodal freespace predic-
tions.

As shown in the Table II, the class-conditioned model gen-
erates contours that align with the expected driving behavior.
However, since the ground truth represents only a single
specific behavior, the model’s diverse predictions—capturing
multiple plausible behaviors—are evaluated against a single
reference, leading to a lower validation IoU compared to the
base model. Table III presents a comparison of Val IoU and
DD for different ablations of the base model across various
road scenarios in CARLA. Importantly, we see the effect of



TABLE III: Multimodality evaluation of Freespace Generation Across Road Scenarios (CARLA).

Method
NoLane SingleLane MultiLane Intersection

IoU DD IoU DD IoU DD IoU DD

Mean Stddev Extent Mean Stddev Extent Mean Stddev Extent Mean Stddev Extent

Base Model 0.7919 98.35 3.12 7.5 0.7608 94.79 3.49 8.52 0.7739 96.06 2.95 7.26 0.7461 86.19 4.78 11.15
Noise Template 0.785 99.86 5.18 13.72 0.7522 94.23 5.18 13.53 0.7733 95.85 3.59 9.51 0.7017 88.43 11.24 27.48
Class Conditioning 0.7353 97.29 7.54 19.54 0.6863 94.39 7.06 18.55 0.7022 95.16 5.63 14.93 0.645 87.16 12.78 32.42
Obstacle Guidance 0.785 98.82 3.42 8.89 0.7573 95.5 3.51 9.36 0.7662 96.77 3.05 8.23 0.7206 87.65 5.48 14.04
Obstacle Guidance Class Conditioned 0.7342 98.83 7.73 19.92 0.6851 95.63 7.23 18.8 0.700 96.39 5.79 15.29 0.625 89.97 13.54 33.91

Fig. 8: Effect of denoising from a set of predefined noise
templates vs random noise template in the base model. Left:
Multimodality tends to increase as different modes are explored
with different noise template initializations. Right: With random
noise as initialization, the outputs tend to converge to a fixed
sample.

class conditioning on the diversity of the freespace samples
predicted in Table III, where we see a much higher extent
in all cases than other methods.

2) Obstacle Guidance: We evaluate the role of obstacle
masks in guiding freespace prediction. The diffusion model
is encouraged to avoid predicting contours inside obstacle
regions by applying a correction gradient to points that fall
within obstacles. The correction gradient points outside the
obstacle and forces the contour points to move outside the
mask.

As demonstrated in Table II, obstacle guidance slightly
reduces overlap with obstacles, ensuring that the predicted
freespace aligns more closely with drivable regions.

F. Efficient Sampling for Enhanced Multimodal Generation

Motivated by the image editing technique in image dif-
fusion models [27], where noise is added to an input image
and then denoised through the diffusion model to produce an
edited version, we investigate the impact of spatially varying
noise patterns on generating well-defined multimodal results.

Figure 8 right presents samples generated starting from
random noise alongside their corresponding starting noise.
We observe that denoising from random noise often leads to
convergence to fixed samples instead of exhibiting true mul-
timodal behavior. This phenomenon is evident in Table III,
where for the base model, the average extent at intersections,
for example, is around 11 degrees.

To address this, we introduce structured initializations,
allowing the model to reach local optima more effectively. As
shown in Figure 8, we generate predefined noise templates
by averaging K ground truth contours following a specific
high-level command, K being a hyperparameter, and then
applying the forward diffusion process for t timesteps. Dur-
ing denoising, we initialize from these templates and start
the reverse denoising process from the same t timestep. The
hyperparameter t is set to 10 in our experiments.

We find that initializing from six distinct noise templates,
corresponding to six different high-level commands, signif-
icantly improves the multimodal behavior of the diffusion
model while maintaining the other val metrics, as demon-
strated in Table II and III, where both the extent and the
variance are higher than that of the base model.

V. CONCLUSION

In this paper, we present a self supervised method for
predicting visual corridors using diffusion models. Unlike
previous approaches that rely on known obstacle locations,
we treat the task as an image perception challenge, aiming to
predict safe navigable contours directly from visual data. We
introduce a self-supervised strategy for generating freespace
samples by utilizing future ego trajectories and images. Addi-
tionally, we create a contour-based diffusion architecture that
focuses on denoising contour points rather than employing a
binary mask, resulting in outputs that are more structured and
interpretable. We also perform comprehensive experiments
on various conditioning strategies, guidance methods, and
sampling techniques to improve multimodality and control
over the generated samples. Our findings highlight the ef-
fectiveness of ContourDiff in generating diverse and precise
freespace predictions, laying the groundwork for future re-
search in generative methods for autonomous navigation.
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