
Progressive Knowledge Distillation:
Balancing Inference Latency and Accuracy at Runtime

Don Kurian Dennis 1 Abhishek Shetty 2 Anish Sevekari 1 Kazuhito Koishida 3 Virginia Smith 1

Abstract
We study the problem of progressive distillation:
Given a large, pretrained teacher model g, we
seek to decompose the model into smaller, low-
inference cost student models fi, such that pro-
gressively evaluating additional models in this
ensemble results in strict improvements over pre-
vious predictions. For user-facing inference appli-
cations, this allows us to flexibly trade accuracy
for inference latency at runtime. We develop a
boosting based algorithm, B-DISTIL, for progres-
sive distillation, and demonstrate its effectiveness
on standard datasets.

1. Introduction
Knowledge distillation aims to transfer the knowledge of a
large model into a smaller one (Buciluǎ et al., 2006; Hinton
et al., 2015). While this technique is commonly used for
model compression, one downside is that the procedure is
fairly rigid—resulting in a single compressed model of a
fixed size. In this work, we instead consider the problem
of progressive distillation: approximating a large model
via an ensemble of smaller, low-latency models such that
progressively evaluating additional models in this ensemble
leads to improved predictions. The resulting decomposition
is useful for many applications in on-device and low-latency
inference. For example, components of the ensemble can
be selectively combined to flexibly meet accuracy-latency
constraints for user-facing interactive applications, can en-
able efficient parallel inference execution schemes, and can
facilitate early-exit (Bolukbasi et al., 2017; Dennis et al.,
2018) or anytime inference (Ruiz & Verbeek, 2021; Huang
et al., 2017) applications, which are scenarios where infer-
ence may be interrupted due to variable resource availability.
These are particularly relevant as we allow more media of
interactions (ex. speech) with large language models.

1Carnegie Mellon University, Pittsburgh, PA, USA 2University
of California at Berkeley, CA, USA 3Microsoft, Redmond, WA,
USA. Correspondence to: Don Dennis <dondennis@cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

In this work we propose an algorithm for progressive distil-
lation, B-DISTIL and empirically evaluate its effectiveness
in trading execution time (latency) and accuracy in sequen-
tial inference tasks. We supplement the experiments with
theoretical guarantees in terms of in-sample convergence
and generalization performance. While we only look at the
benefits in terms of latency, we can also use B-DISTIL for
other profiling based metrics. For instance, B-DISTIL can
be applied to the cloud based batch-inference setting, to
trade-off accuracy and throughput (in samples per second).

2. Background and Related Work
Knowledge distillation. On device machine learning in-
ference is often resource-constrained in practice due to re-
quirements around metrics such as memory, energy, cost,
or latency. This has spurred the development of numerous
techniques for model compression. A particularly popular
approach is knowledge distillation, which aims to transfer
the knowledge of a larger model (or model ensemble) to a
smaller one (Buciluǎ et al., 2006; Hinton et al., 2015).

Despite its popularity, performing compression via distil-
lation has several known pitfalls. Most notably, it is well-
documented that distillation performs poorly when there is
a capacity gap, i.e., the teacher is significantly larger than
the student (Mirzadeh et al., 2020; Gao et al., 2021; Cho &
Hariharan, 2019; Allen-Zhu & Li, 2020). When performing
distillation onto a weighted combination of ensembles, it has
been observed that adding additional models into the ensem-
ble does not dramatically improve performance over that
of a single distilled model (Allen-Zhu & Li, 2020). There
is also a lack of theoretical work characterizing distillation
and its effectiveness for compression (Gou et al., 2021).

Two-player games, online optimization and boosting.
In this work we formulate progressive distillation as a two
player zero-sum game. The framework of two player games
have lead to a number of important results in machine learn-
ing over the years (von Neumann & Morgenstern, 1944;
Freund, 1990; Schapire, 1990; Mason et al., 1999). While
algorithms like AdaBoost (Freund & Schapire, 1997) have
seen significant success in machine learning, it has only
recently seen success in modern deep learning applications.
In particular, Suggala et al. (2020) propose a generalized

boosting framework to train boosting based ensembles of
deep networks. Their key insight is that allowing function
compositions in feature space can help boost deep neural
networks by bridging the capacity gap problem.

A more general application of boosting that is similar to our
setup is by Trevisan et al. (2009). They prove that given
a target bounded function g (e.g., the teacher model) and
class of candidate approximating functions f ∈ F , one can
iteratively approximate g arbitrarily well with respect to F
using ideas from online learning and boosting. However,
this work depends on the ability to find a function ft in iter-
ation t that leads to at least a small constant improvement in
a round-dependent approximation loss. A key contribution
of our work is showing that such functions can be found
for the practical application of progressive distillation by
carefully selecting candidate models

3. Progressive Knowledge Distillation
Our goal is to approximate a large model via an ensemble
of smaller, low-latency models so that we can easily trade-
off accuracy and inference-time/latency at runtime. In this
section we formalize the problem of progressive distillation
as a two player game and discuss B-DISTIL

3.1. Problem Formulation and Algorithm

To cast the problem of progressive distillation as a two
player game, we consider starting with a teacher (a model
or an ensemble) g : X → RL along with a non empty set
of low inference cost1 hypothesis classess {Fm}Mm=1. Here
we assume that the set {Fm} is in increasing order of cost
measured in inference time. Given a training dataset {xi},
we aim to ensure that the ensemble is a good approximation
of the teacher model by minimizing the total squared error
between the teacher model and ensemble, i.e., the loss func-
tion of interest is: 1

2

∑
i,j (f(xi)− g(xi))

2
j . We achieve

this by searching for ‘weak learners’ from {Fm}Mm=1.

Concretely, at each iteration t, our proposed algorithm,
B-DISTIL, maintains matrices K+

t ∈ RN×L and K−
t ∈

RN×L of probabilities (in our setting, it turns out to be
easier to maintain the positive errors and the negative er-
rors separately). The matrices K+

t and K−
t are such that

for all j ∈ [L],
∑

i K
+
t (i, j) + K−

t (i, j) = 1. Moreover,
for all (i, j) ∈ [N]× [L], 0 ≤ K+

t (i, j),K−
t (i, j) ≤ 1. At

each round t, with the current probability matrices K−
t ,K+

t ,
B-DISTIL performs two steps; first, it invokes a subrou-
tine FIND-WL that attempts to find a classifier ft ∈ Fr

satisfying the weak learning condition (Definition 1). If
such a predictor is found, we add it to our ensemble and pro-
ceed to the second step, updating the probability matrices

1‘Inference cost’ can be in terms of memory requirements,
compute requirements, or other metrics, based on the use-case.

Algorithm 1 B-DISTIL: Main algorithm

Require: Target g, rounds T , data {(xi, yi)}Ni=1,
learning rate η, model classes {Fm}Mm=1

1: K+
t (i, j),K−

t (i, j)← 1
2N , 1

2N ∀(i, j)
2: F, r, t← ∅, 1, 1
3: while r < R and t < T do
4: ft = FIND-WL(K+

t ,K−
t ,Fr)

5: if ft is NONE then
6: r ← r + 1
7: continue
8: With l := ft − g, update K+

t ,K−
t . ∀(i, j)

K+
t+1(i, j)←K+

t (i, j) exp(−η · l(xi)j) (1)

K−
t+1(i, j)←K−

t (i, j) exp(η · l(xi)j) (2)

9: Normalize K+
t ,K−

t .
10: F, t← F ∪ {ft}, t+ 1

11: Return 1
|F |
∑|F |

i=1 fi

Algorithm 2 FIND-WL

Require: Probability matrices K+,K−, model class F
parameterized by θ ∈ Θ, SGD hyperparameters

1: Obtain {Fr}R1 by expanding F (Section 3.2).

2: for F ′ ∈ {Fr}Rr=1 do
3: Initialize initial parameter θ0 ∈ F ′.
4: for i ∈ {1, . . . ,max-search} do
5: Randomly initialize fθi .
6: Run SGD to solve Equation (3).
7: if fθi is a weak learner then
8: Return fθi
9: Return NONE

K−
t ,K+

t based on errors made by ft. If no such predictor
can be found, we invoke the subroutine with the next class,
Fr+1, and repeat the search till a weak learner is found or
we have no more classes to search in. This is similar in
spirit to boosting algorithms such as AdaBoost (Schapire &
Freund, 2013) for binary classification. We formalize our
notion of weak learners in this setting using Definition 1,
which can be seen as a natural extension of the standard
weak learning assumption in the boosting literature. Note
that the elements K+

t (i, j) and K−
t (i, j) can be thought of

as the weight on the residual errors ft−1(x) − g(x) and
g(x)− ft−1(x) respectively, up-weighting large deviations
from the teacher model g(x).
Definition 1 (Weak learning condition). Given a dataset
{(xi, yi)}Ni=1, a target function g : X → RL and probabil-
ity matrices K+

t ,K−
t , a function ft : X → RL is said to

satisfy the weak learning condition with respect to g, ∀j, if
the following sum is strictly positive:∑

i K
+
t (i, j)(ft(xi)−g(xi))j+K−

t (i, j)(g(xi)−ft(xi))j .

3.2. Finding Weak Learners

As mentioned earlier, the main difficulty in provably ap-
proximating the teacher model in this setting is in finding a
single learner ft at round t that satisfies our weak learning
condition simultaneously for all labels j. Thus, along with
controlling temperature for distillation, we employ two ad-
ditional strategies: 1) we use a log-barrier regularizer in the
objective FIND-WL solves to promote weak learning and,
2) we efficiently reuse a limited number of stored activa-
tion outputs of previously evaluated models to increase the
expressivity of the current base class.

Log-barrier regularizer. To find a weak learner, the
FIND-WL method minimizes the sum of two loss terms
using stochastic gradient descent. The first is standard
binary/multi-class cross-entropy distillation loss (Hinton
et al., 2015), with temperature smoothing. The second term
is defined in Equation (3):

− 1

γ

∑
i,j

I+ij log
(
1 +

l(xi)j
2B

)
+ (1− I+ij) log

(
1− l(xi)j

2B

)
(3)

Here I+ij := I[K+
t (i, j) > K−

t (i, j)], B is an upper bound
on the magnitude of the logits, and l(xi) := f(xi)− g(xi).
To see the intuition behind Equation (3), assume the follow-
ing holds; ∀(i, j),

(K+
t (i, j)−K−

t (i, j))(f(xi)− g(xi))j > 0. (4)

Summing over all xi, we can see that this is sufficient for
f to be a weak learner with respect to g. Equation (3) is a
soft log-barrier version of the weak learning condition, that
penalizes those (i, j) for which Equation (4) does not hold.
By tuning γ we can increase the relative importance of the
regularization objective, encouraging ft to be a weak learner
potentially at the expense of classification performance.

Intermediate layer connections and profiling. As dis-
cussed in Section 2, distillation onto a linear combination
of low capacity student models often offers no better perfor-
mance than that of any single model in the ensemble trained
independently. For boosting, empirically we see that once
the first weak learner has been found in some class Fm of
low-capacity deep networks, it is difficult to find a weak
learner for the reweighed objective from the same class
Fm. To work around this we let our class of weak learners
at round t depend on the restricted output of intermediate
layers of previous weak learners (Suggala et al., 2020).

3.3. Theoretical Analysis
In our theoretical analysis we show that the ensemble pro-
duced by algorithm 1 converges to g at O(1/

√
T) rate, pro-

vided that the procedure FIND-WL succeeds at every t (The-
orem 1). We further show excess risk bounds in Theorem 2.
The details of the proof are differed to Appendix A.

Theorem 1. Suppose the class F satisfies that for all f ∈
F , ∥f − g∥∞ ≤ G∞. Let F = {ft} be the ensemble
after T rounds of Algorithm 1, with the final output Ft =
1
T

∑T
t=1 ft. If ft satisfies eq. (4) for all t ≤ T then for

T ≥ ln 2N and η = 1
G∞

√
ln 2N
T , we have for all j

∥Ft,j − gj∥∞ ≤ G∞

√
ln 2N

T
, (5)

where Ft,j and gj are the jth coordinates of the functions
Ft and g respectively.

Theorem 2 (Excess Risk). Suppose data D contains of
N iid samples from distribution D and that the func-
tion g has ϵ margin on data D with probability µ, i.e.,
Prx∼D [|g(x)| < ϵ] < µ. Further, suppose that the class
CT has VC dimension d. Then, for T ≥ 4G2

∞ ln 2N/ϵ2,
with probability 1 − δ over the samples, the output FT of
algorithm 1 satisfies:

err(FT) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ µ .

4. Empirical Evaluation
4.1. Dataset Information

We perform progressive distillation of publically available
pretrained teacher models onto smaller student models us-
ing the CIFAR-10, CIFAR-100, TinyImageNet, ImageNet,
Google-13 speech commands, daily sports activities (DSA)
dataset along with two synthetic datasets for our experi-
ments. For all distillation tasks, for simplicity we design the
student base model class from the same architecture type as
the teacher model, but start with significantly fewer parame-
ters and resource requirements. For detailed information of
all datasets and model parameters used see Appendix B.

4.2. Experimental Evaluation and Results

We apply B-DISTIL to the problem of anytime-inference
where model is required to produce a prediction even when
its execution is interrupted. Standard model architectures
can only output a prediction once the execution is complete
and thus are unsuitable for this setting. We instead compare
against the idealized baseline where we assume oracle ac-
cess to the inference budget which is usually only available
after the execution is finished or is interrupted. Under this
assumption, we can train a set of models suitable various in-
ference time constraints, e.g., by training models at various
depths, and then pick the one that fits the current inference
budget obtained by querying the oracle. We refer to this
baseline as NO-RESHED and compare B-DISTIL to it on both
synthetic and real world datasets in Figure 1. This idealized
baseline can be considered an upper bound on the accuracy
of B-DISTIL for a fixed inference budget.

0.1 0.2 0.3
frac. inference time

80

90

Ac
cu

ra
cy

 (%
)

FC-32,32,64

(a) Cube

0.25 0.50 0.75
frac. inference time

80

85

90

95
FC-16,16,16

(b) Ellipsoid

0.0 0.5 1.0
frac. inference time

70

80

90

ResNet56

(c) CIFAR-10

0.2 0.4 0.6
frac. inference time

50

60

70

DenseNet121

(d) CIFAR-100

0.5 1.0
frac. inference time

20

40

60

Ac
cu

ra
cy

 (%
)

ResNet110

(e) TinyImageNet

0.5 1.0
frac. inference time

20

40

60

80 ResNet101

(f) ImageNet-1k

0.2 0.4
frac. inference time

80.0

82.5

85.0

87.5
GRU32

(g) DSA-19

0.0 0.2 0.4 0.6
frac. inference time

60

80

LSTM128

NORESHED
RESHED
Teacher
B DSTILL

(h) Google-13

Figure 1. Accuracy vs. inference-time trade-offs. Inference time is reported as a fraction of teacher’s inference time along with average
ensemble accuracy and error bars. B-DISTIL performs this trade-off at runtime. The baseline NO-RESHED at inference time τw (x-axis)
is the accuracy of a single model that is allowed |τw − 0| time for inference. Similarly the baseline RESHED at τw is the accuracy of
an ensemble of models, where the model w is allowed |τw − τw−1| time to perform its inference. This is also the latency between the
successive predictions from B-DISTIL. We can see that B-DISTIL (green) remains competitive to the oracle baseline (NO-RESCHED, blue)
and outperforms weighted averaging (RESCHED, yellow).

0 2 4
Round (T)

0.0

0.1

0.2

ResNet56

(a) CIFAR10

0 2 4
Round (T)

0.00

0.05

0.10

0.15

DenseNet121

(b) CIFAR-100

0 1 2 3
Round (T)

0.00

0.05

0.10

0.15

GRU32

(c) DSA-19

0 2 4
Round (T)

0.00

0.05

0.10

0.15

0.20

Fr
ac

. f
lo

ps

LSTM128
Model Conn.

(d) Google-13

Figure 2. Overhead of connections. The floating point operations required to evaluate the model added in round T , compared to that
required to evaluate just the connections used by this model. We present the results corresponding to datasets that have models with
smaller required FLOPs overall. We see that even for these models the connections add relatively little overhead.

B-DISTIL can improve on its initial prediction whenever
inference jobs are allowed to be rescheduled. To contex-
tualize this possible improvement, we consider the case
where the execution is interrupted and rescheduled (with
zero-latency, for simplicity) at times {τ1, τ2, . . . , τW }. We
are required to output a prediction at each τw. Assum-
ing we know these interrupt points in advance, one solu-
tion can involve selecting models with inference budgets
|τ1|, |τ2 − τ1|, . . . , |τw − τw−1| and sequentially evaluate
them, and at at each interrupt τw, output the (possibly
weighted) average prediction of the w models. We call
this lower-bound baseline as RESCHED.

We see that at all interrupts points in Figure 1, the predic-
tions provided by B-DISTIL are competitive to that of the
idealized baseline RESHED which requires the inference
budget ahead of time for model selection, while being able
to improve on its initial predictions if rescheduled. The
FLOPs required to evaluate the corresponding intermediate
connections is shown in Figure 2. Here, we compare the
FLOPs required to evaluate the model from round T to the
FLOPs required evaluate the intermediate connections used
by this model. Summing up all the FLOPs up to a round
T , gives the total FLOPs required to for the ensemble with
the first T models. For all our models, the overhead of
connections is relatively negligible.

References
Allen-Zhu, Z. and Li, Y. Towards understanding ensem-

ble, knowledge distillation and self-distillation in deep
learning. arXiv preprint arXiv:2012.09816, 2020.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V. Adap-
tive neural networks for efficient inference. In Interna-
tional Conference on Machine Learning, 2017.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. Model
compression. In International Conference on Knowledge
Discovery and Data-mining, 2006.

Cho, J. H. and Hariharan, B. On the efficacy of knowledge
distillation. In Internationa Conference on Computer
Vision, 2019.

Dennis, D., Pabbaraju, C., Simhadri, H. V., and Jain, P.
Multiple instance learning for efficient sequential data
classification on resource-constrained devices. Advances
in Neural Information Processing Systems, 2018.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Freund, Y. Boosting a weak learning algorithm by majority.
In Workshop on Computational Learning Theory, 1990.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 1997.

Gao, M., Wang, Y., and Wan, L. Residual error based
knowledge distillation. Neurocomputing, 2021.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. Knowledge
distillation: A survey. International Journal of Computer
Vision, 2021.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Huang, G., Chen, D., Li, T., Wu, F., Van Der Maaten, L.,
and Weinberger, K. Q. Multi-scale dense networks for
resource efficient image classification. arXiv preprint
arXiv:1703.09844, 2017.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research). URL http://www.
cs.toronto.edu/~kriz/cifar.html.

Le, Y. and Yang, X. S. Tiny imagenet visual recognition
challenge. 2015.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. Boost-
ing algorithms as gradient descent. Advances in Neural
Information Processing Systems, 1999.

Mirzadeh, S. I., Farajtabar, M., Li, A., Levine, N., Mat-
sukawa, A., and Ghasemzadeh, H. Improved knowledge
distillation via teacher assistant. In AAAI Conference on
Artificial Intelligence, 2020.

Ruiz, A. and Verbeek, J. Anytime inference with distilled
hierarchical neural ensembles. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2021.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 2015.

Schapire, R. E. The strength of weak learnability. Machine
learning, 1990.

Schapire, R. E. and Freund, Y. Boosting: Foundations and
algorithms. Kybernetes, 2013.

Suggala, A., Liu, B., and Ravikumar, P. Generalized boost-
ing. Advances in Neural Information Processing systems,
2020.

Trevisan, L., Tulsiani, M., and Vadhan, S. Regularity, boost-
ing, and efficiently simulating every high-entropy distribu-
tion. In IEEE Conference on Computational Complexity,
2009.

von Neumann, J. and Morgenstern, O. Theory of games and
economic behavior, 1944.

Warden, P. Speech commands: A dataset for limited-
vocabulary speech recognition, 2018.

http://archive.ics.uci.edu/ml
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

A. Proofs of Main Theorems
Here, we provide a proof of Theorem 1, which is restated below:

Theorem. Suppose the class F satisfies that for all f ∈ F , ∥f − g∥∞ ≤ G∞. Let F = {ft} be the ensemble after T
rounds of Algorithm 1, with the final output Ft =

1
T

∑T
t=1 ft. Then for T ≥ ln 2N and

η =
1

G∞

√
ln 2N

T

we have for all j

∥Ft,j − gj∥∞ ≤ G∞

√
ln 2N

T
− 1

T

T∑
t=1

γt(j)

where Ft,j and gj are the jth coordinates of the functions Ft and g respectively.

Proof. For simplicity, we assume that ft and g are scalar valued functions, since the proof goes through coordinate-wise. At
each time, define the edge of the weak learning algorithm to be

γt =
∑
i

K+
t (i)(ft(xi)− g(xi)) +

∑
i

K−
t (i)(g(xi)− ft(xi))

Let Zt denote the normalizing constant at time t, that is,

Zt =
∑
i

K+
t (i) exp (−η (ft (xi)− g(xi))) +K−

t (i) exp (η (ft (xi)− g(xi)))

From the update rule, we have

K+
T+1(i) =

K+
T (i)eη(fT (xi)−g(xi))

ZT

=
K+

1 (i) exp
(
−η
∑T

t=1 (ft (xi)− g(xi))j

)
∏T

t=1 Zt

=
K+

1 (i) exp (−ηT (FT (xi)− g(xi))∏T
t=1 Zt

and similarly

K−
T+1(i) =

K−
1 (i) exp (ηT (FT (xi)− g(xi))∏T

t=1 Zt

First, we bound ln(Zt):

ln(Zt) = ln

(∑
i

K+
t (i) exp(−η(ft(xi)− g(xi))) +

∑
i

K−
t (i) exp(η(ft(xi)− g(xi)))

)

≤ ln

(∑
i

K+
t (i)

(
1− η(ft(xi)− g(xi)) + η2(ft(xi)− g(xi))

2
)

+
∑
i

K−
t (i)

(
1 + η(ft(xi)− g(xi)) + η2(ft(xi)− g(xi))

2
))

≤ ln

(
1− η

∑
i

K+
t (i)(ft(xi)− g(xi)) + η

∑
i

K−
t (i)(ft(xi)− g(xi)) + η2G2

∞

)
≤ −ηγt + η2G2

∞

where the second step follows from the identity exp(x) ≤ 1 + x+ x2 for x ≤ 1, provided that η ≤ 1
G∞

. This gives us a
bound on regression error after T rounds:

−ηT (FT (xi)− g(xi)) = ln(K+
T+1(i))− ln(K+

1 (i)) +

T∑
t=1

ln(Zt)

≤ ln

(
K+

T+1(i)

K+
1 (i)

)
+

T∑
t=1

−ηγt + η2G2
∞

= ln

(
K+

T+1(i)

K+
1 (i)

)
+ η2TG2

∞ − η

T∑
t=1

γt

≤ ln 2N + η2TG2
∞ − η

T∑
t=1

γt ,

where the last bound follows since K+
1 = 1

2N and K+
T+1 ≤ 1. Similarly, we have the bound

ηT (FT (xi)− g(xi)) ≤ ln 2N + η2TG2
∞ − η

T∑
t=1

γt

Combining the two equations we get that

sup
i
|FT (xi)− g(xi)| = ∥FT − g∥∞ ≤

ln 2N

ηT
+ ηG2

∞ −
1

T

T∑
t=1

γt .

If we choose η = 1
G∞

√
ln 2N
T to minimize this expression, then we get the following bound on regression error:

∥Ft − g∥∞ ≤ −
1

T

T∑
t=1

γt +G∞

√
ln 2N

T
.

which is exactly Equation (5). Note that the value of η only satisfies the condition η ≤ 1
G∞

when T ≥ ln 2N , which is the
time horizon after which the bound holds. This finishes the proof of Theorem 1.

Now, we provide a proof of Theorem 2 which follows from the VC dimension bound and Theorem 1. Before we begin, we
setup some notation. Given a function f , distribution D over space X × Y where X is the input space and Y is the label
space, and data D consisting of N iid samples (x, y) ∼ D, we define

êrr(f) = Pr
(x,y)∼D

[sign(FT (x) ̸= y)] err(f) = Pr
(x,y)∼D

[sign(FT (x) ̸= y)]

Theorem (Excess Risk). Suppose data D contains of N iid samples from distribution D. Suppose that the function g has
large margin on data D, that is

Pr
x∼D

[|g(x)| < ϵ] < µ

Further, suppose that the class CT has VC dimension d, then for

T ≥ 4G2
∞ ln 2N
ϵ2 ,

with probability 1 − δ over the draws of data D, the generalization error of the ensemble FT obtained after T round of
Algorithm 1 is bounded by

err(FT) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ µ

Proof. Recall the following probability bound Schapire & Freund (2013, theorem 2.5) which follows Sauer’s Lemma:

Pr [∃f ∈ CT : err(f) ≥ êrr(f) + ϵ] ≤ 8
(me

d

)d
e−mϵ2/32

which holds whenever |D| = N ≥ d. It follows that with probability 1− δ over the samples, we have for all f ∈ CT

err(f) ≤ êrr(f) +O

(√
d ln(N/d) + ln(1/δ)

N

)
(6)

Since we choose T =
4G2

∞ ln 2N
ϵ2 , by Theorem 1, we have

∀x ∈ D : ∥Ft − g∥1 ≤ G∞

√
ln 2N

T
≤ ϵ

2

Since g has ϵ margin on data with probability 1− µ, we have

êrr(Ft) ≤ êrr(g) + µ (7)

Combining eqs. (6) and (7), we conclude the proof,

err(FT) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ µ.

B. Dataset Information and Training Recipe
B.1. Dataset

Dataset Train-samples Test/Val-samples Num.-labels Source

CIFAR-10 50000 10000 10 (Krizhevsky et al.)
CIFAR-100 50000 10000 100 (Krizhevsky et al.)
DSA-19 6800 2280 19 (Dua & Graff, 2017)
Google-13 52886 6835 13 (Warden, 2018)
ImageNet-1k 1281167 50000 1000 (Russakovsky et al., 2015)
TinyImageNet-200 100000 10000 200 (Le & Yang, 2015)

We use two synthetic datasets in our experiments, ellipsoid and cube. To construct the ellipsoid dataset, we first sample a
32× 32 matrix B, each entry sampled iid. We define A := BTB as our positive semi-definite matrix, and I[xTAx ≥ 0]
determines the label of a data point x. We sample 10k points uniform randomly from [−1, 1]32 and determine their labels to
construct our data sample. We randomly construct a 80-20 train-test split for our experiments.

To construct cube, we first sample 16 vertices uniform randomly from [−1, 1]32 and split them into 4 equal sets, say
{S1, . . . , S4}. As before, we sample 10k points uniformly from [−1, 1]32 and determine the label y(x) of each point x
based on the closest vertex in {S1, . . . , S4}.

y(x) = argmin
i

min
x′∈Si

∥x− x′∥.

B.2. Training Recepies

We use stochastic gradient descent (SGD) with momentum for all our experiments. For experiments on CIFAR100 and
CIFAR10, we use a learning rate of 0.1, a momentum parameter of 0.9, and weight decay of 5× 10−4. We train for 200
epochs and reduce the learning rate by a factor of 0.2 in after 30%, 60% and 90% of the epoch execution. We perform a
4-GPU data-parallel training for ImageNet with a per-gpu batch size of 256, learning rate 0.1, momentum 0.9, regularization
γ of 1.0, and a weight decay of 1e− 4. We train for 90 epochs with and discount the learning rate by a factor of 0.1 at 30%
and 60% epochs. For experiments with time series data, Google-13 and DSA-19, we use a fixed learning rate of 0.05 and a
momentum of 0.9. We do not use weight decay or learning rate scheduling for time-series data.

