

000 001 002 003 004 005 INTSR: AN INTEGRATED GENERATIVE FRAMEWORK 006 FOR SEARCH AND RECOMMENDATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Generative recommendation has emerged as a promising paradigm, demonstrating
029 remarkable results in both academic benchmarks and industrial applications.
030 However, existing systems predominantly focus on unifying retrieval and ranking
031 while neglecting the integration of search and recommendation (S&R) tasks. What
032 makes search and recommendation different is how queries are formed: search
033 uses explicit user requests, while recommendation relies on implicit user interests.
034 As for retrieval versus ranking, the distinction comes down to whether the queries
035 are the target items themselves. Recognizing the query as central element, we pro-
036 pose IntSR, an integrated generative framework for S&R. IntSR integrates these
037 disparate tasks using distinct query modalities. It also addresses the increased
038 computational complexity associated with integrated S&R behaviors and the er-
039 roneous pattern learning introduced by a dynamically changing corpus. IntSR
040 has been successfully deployed across various scenarios on a large internet plat-
041 form serving hundreds of millions of users, leading to substantial improvements:
042 +9.34% GMV, +2.76% CTR, and +7.04% ACC in three distinct scenarios.
043
044
045
046
047

1 INTRODUCTION

048 Search and recommendation (S&R) services are now commonly provided by online platforms, such
049 as YouTube and Amazon. These two tasks operate on shared users and items, creating a natural
050 foundation for the joint modeling and application of S&R. A unified S&R model can better capture
051 user preferences and enhance the effectiveness of both tasks, while also reducing engineering over-
052 head (the left side of Fig. 1). Most of the existing studies on unified S&R modeling are based on
053 traditional deep learning frameworks (Yao et al., 2021; Zhao et al., 2022; Xie et al., 2024).

054 Despite reliance on extensive human-engineered feature sets and training with massive data vol-
055 umes, the majority of industrial deep learning based frameworks demonstrate poor computational
056 scalability (Zhao et al., 2023; Zhai et al., 2024). Inspired by the development of Large Language
057 Models (LLMs), the generative framework has become an effective method in search or recom-
058 mendation systems (Zhai et al., 2024; Chen et al., 2025). Integrating S&R into a single generative
059 framework is a promising paradigm, as it resolves scalability challenges, unifies retrieval and rank-
060 ing, and leverages joint S&R optimization benefits. However, this problem remains underexplored.
061
062

063 Building such a unified framework primarily faces three key challenges. The first involves unify-
064 ing search, recommendation, retrieval, and ranking processes in one model. The second addresses
065 designing a module to reduce the computational requirements for autoregressive training when all
066 behaviors are aggregated. The third concerns effective negative sampling to prevent temporal mis-
067 alignment during extended training periods.
068
069

070 To this end, we first unify S&R tasks, along with their retrieval and ranking processes, within a
071 generative autoregressive framework. To address the first two challenges, we observed that the
072 fundamental difference between S&R lies in how user intent is conveyed: explicitly via queries for
073 search, and implicitly through user interactions for recommendation. Motivated by this, we propose
074 IntSR, a unified framework that formulates both tasks and their retrieval and ranking sub-tasks as
075 conditional generation problems. To further reduce training complexity, we designed a query-driven
076 decoder utilizing Key-Value (KV) cache and separate attention calculations for query placeholders.
077
078

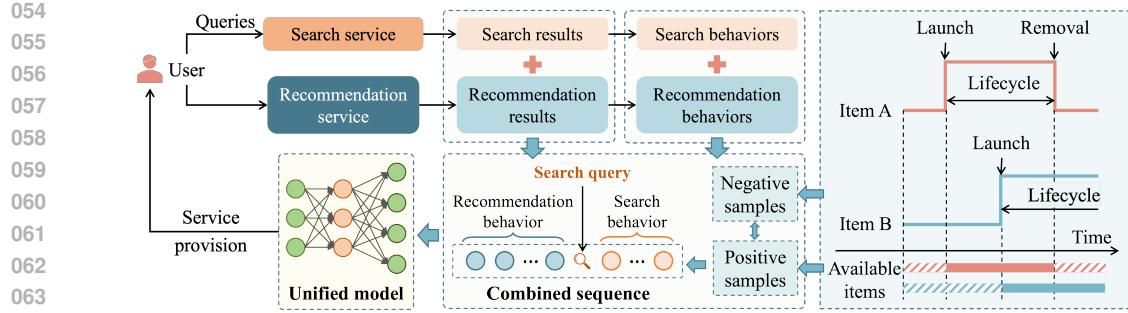


Figure 1: S&R systems operate with shared users and items, thus user behaviors and model can be unified. Temporal availability of items should be considered.

Regarding the third challenge, we found that it is primarily due to temporal misalignment of vocabularies. Diverse negative sampling strategies have been proposed and examined across diverse domains and tasks. Examples include random negative sampling (RNS), popularity-based negative sampling (PNS, Mikolov et al. 2013), and hard negative sampling (HNS, Zhang et al. 2013, Lai et al. 2024), etc. However, existing approaches typically fail to address item lifecycle dynamics (the right side of Fig. 1). To address this problem, we propose applying a temporal alignment strategy to existing negative sampling methods, which yields significant performance gains.

The effectiveness of the proposed model is confirmed across two public S&R datasets. Concurrently, the temporal alignment strategy is validated using a proprietary industrial dataset. IntSR has been deployed into the production system, serving hundreds of millions of daily active users. Several of its core components have been fully operational at scale for over six months.

To summarize, our key contributions are threefold:

- **Unification of S&R.** We propose an integrated generative framework for both S&R, where tasks are conditioned by different modalities of the queries. This allows to serve diverse scenarios and tasks with one model.
- **Time-varying vocabulary alignment.** We formally define and address the problem of temporal vocabulary misalignment in autoregression models. Our approach offers considerable performance augmentation to all three existing mainstream sampling methods.
- **Offline demonstrations and online deployment.** We conducted extensive experiments on both widely-used public datasets and industrial service datasets to demonstrate the effectiveness of IntSR. IntSR has been successfully deployed across multiple S&R scenarios.

2 PRELIMINARIES

Assume we have a set of users and items represented by \mathcal{U} and \mathcal{I} , respectively, the interactions between users and items are denoted by \mathcal{A} (see Appendix A for full notations). User behavioral patterns are highly dependent on their temporal and spatial contexts. \mathcal{S} denote the set of discrete spatiotemporal tokens. \mathcal{F} is the set of user feedback types. For each user $u \in \mathcal{U}$, $\mathcal{A}_u = [(s_v, i_v, a_v) | s_v \in \mathcal{S}, i_v \in \mathcal{I}, a_v \in \mathcal{F}, v \in \{1, 2, \dots, n\}]$ denotes the interaction sequence in chronological order. n is the number of interacted items. We show that both recommendation and search along with their underlying retrieval and ranking sub-tasks can be modeled as a conditional generation problem. The objective of the sequential model is to predict the conditional probability distribution with different conditions expressed by queries:

$$P_{\text{retr}}^{\text{rec}} = P(i_{n+1} | \mathcal{A}_u, s_{n+1}) \quad (1)$$

$$P_{\text{rank}}^{\text{rec}} = P(a_{n+1} | \mathcal{A}_u, s_{n+1}, i_{n+1}) \quad (2)$$

$$P_{\text{retr}}^{\text{src}} = P(i_{n+1} | \mathcal{A}_u, s_{n+1}, q_{n+1}) \quad (3)$$

$$P_{\text{rank}}^{\text{src}} = P(a_{n+1} | \mathcal{A}_u, s_{n+1}, i_{n+1}, q_{n+1}) \quad (4)$$

where $P_{\text{retr}}^{\text{rec}}$, $P_{\text{rank}}^{\text{rec}}$, $P_{\text{retr}}^{\text{src}}$, and $P_{\text{rank}}^{\text{src}}$ denote the conditional probability for retrieval in recommendation, ranking in recommendation, retrieval in search, and ranking in search, respectively. a_{n+1} is the action user may execute on i_{n+1} and q_{n+1} denotes the query expressing user’s current interests.

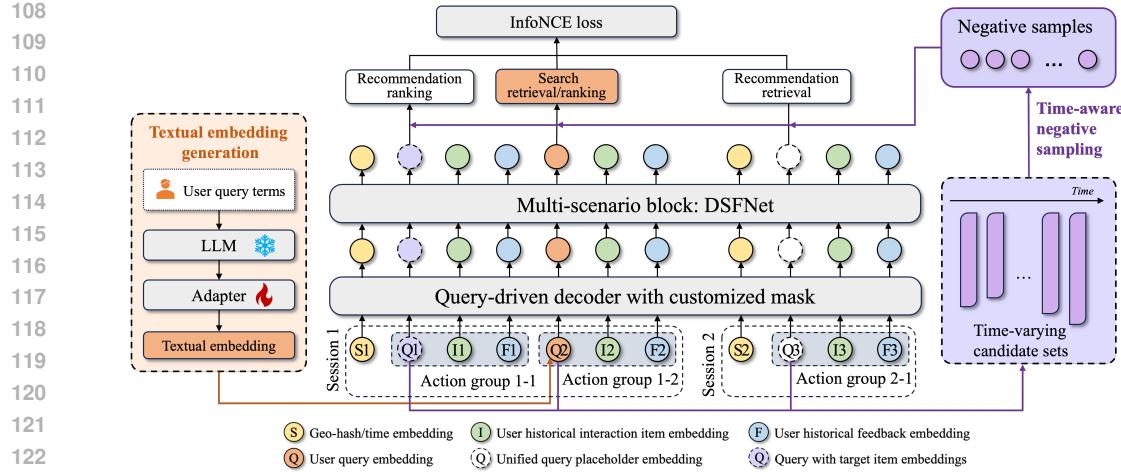


Figure 2: IntSR framework. IntSR unifies different sub-tasks by query types: ranking with candidates which contains multiple items (Q1), and search with natural language queries (Q2). Item online/offline status is incorporated into negative sampling to avoid comparing positive samples with non-existent negatives.

3 METHODOLOGY

The overall framework of IntSR is illustrated in Fig. 2. We first present the details of input sequence in Section 3.1. Section 3.2 details how search and recommendation, along with their retrieval and ranking sub-tasks are integrated by query placeholder. When all S&R behaviors are aggregated, Query-Driven Block (QDB) with customized mask is the core module to model user preference and reduce computational complexity (see Section 3.3). DSFNet is used as the multi-scenario block and is detailed in Appendix B. To prevent temporal misalignment during extended training periods, the temporal candidate alignment method is formulated in Section 3.4.

3.1 MODELING OF SEQUENCE

The input sequence derived by \mathcal{A}_u comprises four distinct element types, denoted as S, Q, I, and F, respectively. Each element plays a specific role in encoding behavior patterns:

- **S (Scenario tokens).** These represent contextual metadata such as geohash-encoded location tokens or discretized temporal tokens, allowing the model to capture latent user interests associated with specific geographic regions and temporal intervals.
- **Q (Query placeholders).** Functioning as positional markers, Q elements designate locations requiring predictive modeling. Notably, Q should be added only with items that are either involved in the loss computation (e.g., during a specific time step in streaming training) or explicitly searched by the user.
- **I (Item tokens).** Representing items with which users have interacted, positive or negative, these tokens form the core interaction history. In IntSR, item embedding are dense integration of multi-modal information.
- **F (Feedback tokens).** Encoding interaction types such as purchases and clicks, these tokens provide user’s feedback to items that informs the model’s understanding of user intent and interaction intensity.

3.2 UNIFYING SEARCH AND RECOMMENDATION TASKS

In IntSR, the unification of query-free recommendation tasks and query-equipped search tasks is achieved by a general query placeholder Q. As illustrated in Fig. 3, in search tasks, the system is supposed to generate items in response to natural language queries from users, while the information

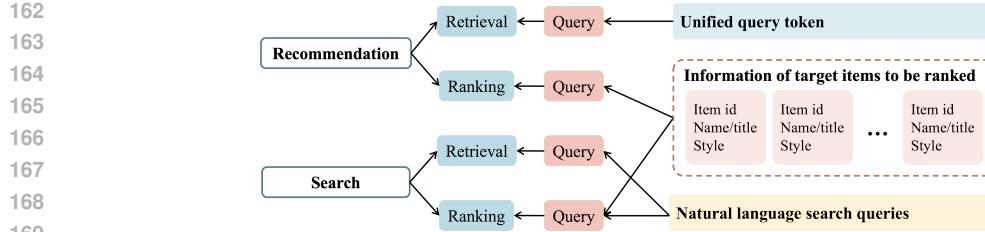


Figure 3: Differences of tasks can be captured by queries. Search task queries contain user-input terms, while ranking task queries include target item information. For recommendation recall, a common query token is used.

of target items should be incorporated in ranking problems. If neither user’s explicit query nor item information is integrated, query is replaced by a shared universal token across different users. To convert natural language user search queries into embeddings, we employ a frozen LLM, Qwen3-0.6B (Team, 2025), to generate semantic representations. In search ranking task, this representation is added directly to the embedding of target item or shared query token.

Two strategies are designed to improve generalization of IntSR with respect to natural language queries. The first strategy is for the construction of the query candidate pool. Beyond the original user queries, we also leverage variations generated based on item descriptions and the queries themselves. Specifically, the query pool contains the following types: (1) original user search queries; (2) item information including names, categories, and IP (if applicable); (3) item description and the paraphrased versions of the original description; (4) keywords extracted from (2) and (3); and (5) expressions generated from keywords mimicking user search behaviors (an example in Appendix C).

As illustrated in Fig. 4, the second strategy addresses how the Q positions within the sequence are populated using elements from the aforementioned candidate pool. Let \mathcal{B} denote the query pool constructed above, when a user-item interaction occurs subsequent to a search action, the corresponding Q is populated with actual user queries. For interactions not triggered by a search action, we randomly sample an element from \mathcal{B} and, with a certain probability β , use it to populate the Q position associated with that interaction.

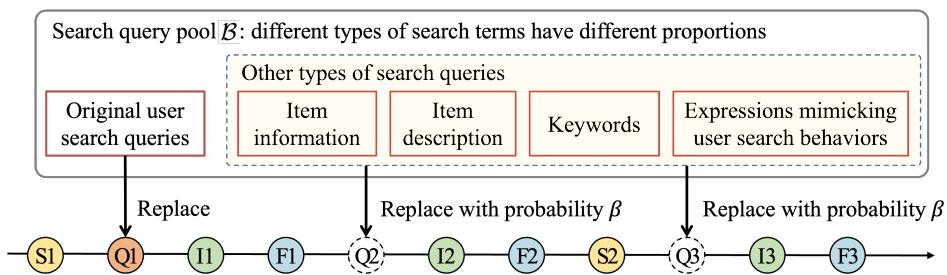


Figure 4: Integrating search queries to the input sequence. I1: interaction occurs subsequent to a search action. I2 & I3: interactions not triggered by a search action.

3.3 QUERY-DRIVEN DECODER WITH CUSTOMIZED MASK

3.3.1 QUERY-DRIVEN BLOCK

We developed QDB based on HSTU (Zhai et al., 2024) for efficient encoding of user histories. QDB separate attention calculations for query placeholders, as expressed by Eqs. (5)-(9), where X_1 , X_2 represent the original sequence and the query placeholder sequence, respectively. The split function partitions the resulting tensor into four components: gating weights W , queries Q , keys K , and values V . Y_1 and Y_2 are the outputs with respect to original sequence X_1 and query sequence X_2 . A_1 , M_1 denotes the attention score and the mask matrix from the original input sequence. $A_{2,k}$, $M_{2,k}$ denotes the attention score and the mask matrix calculated between the query sequence and

216 the sequence indicated by index k . The mask matrix M is derived by three matrices: causal mask,
 217 session-wise mask, and invalid Q mask. Positional (Raffel et al., 2020) and ALiBi (Press et al.,
 218 2021) temporal relative bias, rab_{pos} and rab_{time} , are incorporated to refine the initial similarity
 219 scores. SiLU (Elfwing et al., 2018) is used as the activation function. \odot denotes Hadamard product.
 220

$$(W_k, Q_k, K_k, V_k) = \text{Split}(\text{SiLU}(\text{MLP}_1(X_k))), k \in \{1, 2\} \quad (5)$$

$$A_1 = M_1 \odot \text{SiLU}(Q_1 K_1^T + \text{rab}_{pos} + \text{rab}_{time}) \quad (6)$$

$$A_{2,k} = M_{2,k} \odot \text{SiLU}(Q_2 K_k^T + \text{rab}_{pos} + \text{rab}_{time}), k \in \{1, 2\} \quad (7)$$

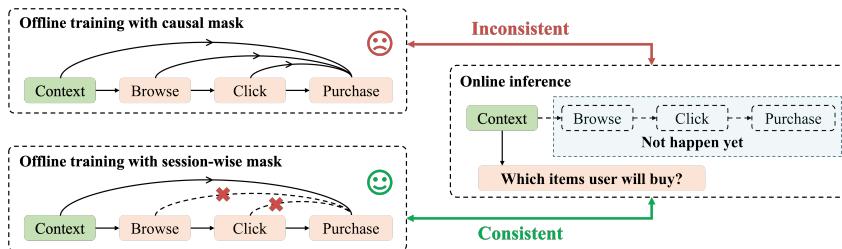
$$Y_1 = \text{MLP}_2(\text{Norm}(A_1 V_1) \odot W_1) \quad (8)$$

$$Y_2 = \text{MLP}_2(\text{Norm}(A_{2,1} V_1 + A_{2,2} V_2) \odot W_2) \quad (9)$$

221 Considering a ranking task, this optimization reduces HSTU’s computational complexity from
 222 $\mathcal{O}(c'N^2)$ to $\mathcal{O}(c'J(N+1))$. c' is candidates per query, J is query placeholder count, and N is
 223 the original input sequence length. J primarily accounts for behaviors needing learning in Q within
 224 the streaming training time slice, making $J \ll N$, attributable to the superior efficiency of QDB
 225 compared to HSTU. Furthermore, similar acceleration gains are achievable if HSTU is replaced by
 226 transformer architectures. More implementation details and efficiency experiments are provided in
 227 Appendix D.

228 3.3.2 SESSION-WISE MASK AND INVALID Q MASK

229 To maintain consistency between offline training and online deployment, we propose a session-
 230 wise masking mechanism that imposes additional temporal constraints into the encoding of user
 231 interaction sequences. As illustrated in Fig. 5, a typical user shopping journey follows the sequence:
 232 “browse → click → purchase”. Merely applying causal masking makes that the purchase action
 233 would inappropriately observe preceding interactions with the same item (see top-left of Fig. 5). To
 234 resolve this discrepancy, IntSR introduces the session-wise masking to avoid items within the same
 235 session to interact with each other (see Appendix E for an example).



236 Figure 5: Session-wise masking ensures online-offline consistency. This allows the S&R system to
 237 predict item purchases upon page access, even without explicit browsing or clicking.

238 As previously outlined, Q placeholders accommodate various query types: user search requests, pos-
 239 itive/negative target item sets, and a shared universal token. Since Q is part of the input sequence, its
 240 representation can influence all tokens. However, Q tokens can only serve as keys and values when
 241 encoded as user queries. Invalid Q tokens are explicitly excluded from the attention computation to
 242 ensure reasonable final representations (see Appendix E for an example).

243 3.4 SOLVING TIME-VARYING VOCABULARY MISALIGNMENT

244 As demonstrated in prior discussions, comparison should be grounded in the co-existence of positive
 245 and negative samples. This can be achieved by using a loss function with temporal candidate align-
 246 ment. For IntSR, we use the InfoNCE loss to update model parameters, as expressed by Eq. (10).
 247 For each user-item interaction $a \in \mathcal{A}_u$, i_+ denotes the ground truth item, and $\mathcal{I}_{t_a} \subseteq \mathcal{I}$ represents
 248 the available candidate set at timestamp t_a when interaction a occurs. Let $o_{u,a}$ denotes the out-
 249 put of DSFNet encapsulating the input sequence, $z_{u,a,i} = \text{sim}(o_{u,a}, \text{emb}_i)$ is the score of item i .

$\delta_{u,a} \in \{0, 1\}$ is a binary constant that indicates whether the corresponding interaction should be learned by the model.

$$L = -\frac{1}{|\mathcal{A}|} \sum_{u \in \mathcal{U}} \sum_{a \in \mathcal{A}_u} \delta_{u,a} \log \frac{\exp(z_{u,a,i^+})}{\sum_{i \in \mathcal{I}_{t_a}} \exp(z_{u,a,i})} \quad (10)$$

Note that calculating Eq. (10) may be computational-expensive under large size of the whole candidate set \mathcal{I}_{t_a} . Thus, negative sampling is necessary to improve training efficiency, which should be constrained by the temporal alignment, i.e., only instances that exactly exist when user-item interaction occurs can be treated as negative samples. This can be expressed by Eq. (11), where prob_i represents the probability of item i being sampled as a negative instance and can be defined according to specific negative sampling strategy. \mathcal{I}_t represents the set of all available candidates at timestamp t . The final probability, $\text{prob}_{i,t}$, is determined by both prob_i and \mathcal{I}_t .

$$\text{prob}_{i,t} = \begin{cases} \text{prob}_i, & \text{if } i \in \mathcal{I}_t, \\ 0, & \text{otherwise.} \end{cases} \quad (11)$$

4 EXPERIMENTS

A series of experiments are conducted and reported to answer the following Research Questions:

- **RQ1:** How does proposed IntSR perform on S&R tasks compared with other baselines?
- **RQ2:** To what extent does candidate misalignment impact generative model performance?
- **RQ3:** How does each module in IntSR contribute to its final performance?
- **RQ4:** What is the impact of model width and depth on scaling?

4.1 EXPERIMENT SETTINGS

4.1.1 DATASETS AND BASELINES

To evaluate our proposed model, we conduct experiments on a combination of public benchmarks and industrial datasets. Specifically, to answer RQ1 and RQ3, the overall effectiveness of IntSR is assessed on two widely used public datasets that contains both S&R behaviors: KuaiSAR¹ (Sun et al., 2023) and Amazon². We evaluate the effectiveness of candidate alignment on one industrial dataset (RQ2). Its explicit information of item lifecycle allow temporal-aligned sampling and whole-candidate-set evaluation for more convincing performance comparisons. We investigated the impact of model width and depth on scaling (RQ4) using this same industrial dataset. Details of three datasets are provided in Appendix F.

A series of state-of-the-art methods of recommendation, search, and joint models are used as baselines. The recommendation baselines without leveraging search data include the following: (1) DIN (Zhou et al., 2018) captures user interest from historical behaviors using an attention mechanism. (2) SASRec (Kang & McAuley, 2018) is a classic transformer-based sequential recommendation model. (3) BERT4Rec (Sun et al., 2019) is a sequential recommendation model applying a bidirectional transformer. (4) FMLP (Zhou et al., 2022) is an all-MLP sequential recommendation model with feature filtering in frequency domain. (5) HSTU (Zhai et al., 2024) is a autoregressive architecture designed to model user preference.

The baselines for search tasks without using recommendation data include the following: (1) HEM (Ai et al., 2017) learns semantic representations of users, queries and items using a hierarchical embedding model. (2) ZAM (Ai et al., 2019) applies an attention mechanism for history aggregation and controls the personalization degree by a zero attention strategy. (3) TEM (Bi et al., 2020) is a transformer-based embedding model for personalized product search. (4) CoPPS (Dai et al., 2023) applies contrastive learning to learn user representations.

Joint S&R baselines include the following: (1) JSR (Zamani & Croft, 2018) models S&R tasks with a joint loss. (2) USER (Yao et al., 2021) models S&R tasks on an integrated sequence of user

¹<https://kuaisar.github.io/>

²<http://jmcauley.ucsd.edu/data/amazon/>

behaviors from both domains. (3) UnifiedSSR (Xie et al., 2024) models S&R tasks using a dual-branch architecture with shared parameters and separated behavior sequences. (4) UniSAR (Shi et al., 2024) models the transition behaviors between S&R.

4.1.2 IMPLEMENTATION DETAILS

Widely used metrics in S&R systems, top- k Hit Rate (HR@ k) and Normalized Discounted Cumulative Gain (NDCG@ k), are employed to evaluate model performance, with $k \in \{1, 5, 10\}$.

Settings of experiments on public datasets are kept as consistent as possible with the open-source code repository released by Shi et al. (2024). When training IntSR, we use 3 QDBs and set embedding size d to 32. The number of historical recommendation and search behaviors visible for each action was fixed at 30 during both training and inference. The learning rate is set to 1×10^{-3} and batch size is set to 32. Following previous works, the model performances on public datasets are evaluated on 99 randomly sampled negative instances that user has not interacted with. For KuaiSAR, due to sparse search behaviors after 5-core filtering, we train IntSR with recommendation loss first then fine tune the model with search loss. Since the search behaviors of Amazon (Kindle Store) are repetition of recommendation behaviors, we apply a mask mechanism to avoid label leakage during model training and inference. Implementation details of IntSR on the industrial dataset are provided in Appendix G.

Table 1: Overall performance of IntSR and baselines on search task. * indicates a statistically significant improvement of IntSR over the strongest baseline (t -test, p -value < 0.01).

Dataset	Model	HR@1	HR@5	HR@10	N@5	N@10
Amazon	HEM [†]	0.2497	0.6778	0.8267	0.4736	0.5221
	ZAM [†]	0.2954	0.7109	0.8468	0.5147	0.5590
	TEM [†]	0.4090	0.8185	0.9051	0.6303	0.6587
	CoPPS [†]	0.4052	0.8169	0.9051	0.6281	0.6570
	JSR [†]	0.3176	0.7038	0.8225	0.5173	0.5563
KuaiSAR	USER [†]	0.4123	0.7631	0.8697	0.6000	0.6348
	UnifiedSSR [†]	0.3663	0.7744	0.8812	0.5847	0.6196
	UniSAR	<u>0.5343</u>	<u>0.8190</u>	<u>0.8977</u>	<u>0.6875</u>	<u>0.7132</u>
	IntSR	0.5678*	0.8266*	0.8920	0.7091*	0.7305*
	HEM [†]	0.3337	0.6505	0.7653	0.5029	0.5400
KuaiSAR	ZAM [†]	0.2815	0.6117	0.7344	0.4560	0.4959
	TEM [†]	0.3045	0.6502	0.7632	0.4887	0.5254
	CoPPS [†]	0.3117	0.6616	0.7707	0.4977	0.5331
	JSR [†]	0.4543	0.7162	0.7961	0.5962	0.6221
	USER [†]	0.4628	0.7304	0.8149	0.6069	0.6342
KuaiSAR	UnifiedSSR [†]	0.4389	0.7377	0.8320	0.5991	0.6297
	UniSAR	<u>0.5282</u>	<u>0.7476</u>	<u>0.8369</u>	<u>0.6417</u>	<u>0.6708</u>
	IntSR	0.5685*	0.7950*	0.8516	0.6945*	0.7128*

4.2 EFFECTIVENESS OF INTSR IN S&R TASKS (RQ1)

Table 1 and Table 2 provide the results of S&R tasks on two public datasets. We abbreviate NDCG as “N”. The best results are in boldface and the second best are underlined, and this convention holds for all other tables. Baselines marked with [†] mean that the related results are directly reported from their respective papers (Shi et al., 2024). Other values are obtained from our reproduced experiments or our proposed model. IntSR consistently achieves state-of-the-art performance across most evaluation metrics (e.g., HR@1, NDCG@5, NDCG@10) on both the Amazon and KuaiSAR datasets. The model excels in HR@1 and NDCG@5, confirming its enhanced capability to give a high score to the most relevant results. This highlights IntSR’s effectiveness and efficiency in search tasks. For recommendation tasks, according to Table 2, IntSR consistently demonstrates superior

378
 379 Table 2: Overall performance of IntSR and baselines on recommendation task. * indicates a statis-
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867

method employed. Candidate alignment not only improves hit rate but also significantly enhances the ranking quality (NDCG) by placing correct items at more front positions.

4.4 ABLATION STUDY (RQ3)

Table 4: Ablation result. For brevity, “session mask” means “session-wise mask”. All modules contribute positively to the model’s performance. Removing session-wise mask decreases model performance the most. Besides, search queries plays an important role in performance of both task.

Task	Model	HR@1	HR@5	HR@10	N@5	N@10
Search	w/o S	0.5516	0.8169	0.8867	0.6962	0.7189
	w/o search queries	0.4023	0.6453	0.7406	0.5315	0.5624
	w/o session mask	0.2024	0.3958	0.5008	0.3030	0.3369
	w/o DSFNet	0.5560	0.8157	0.8836	0.6975	0.7196
	w/o relative bias	0.5050	0.7861	0.8644	0.6568	0.6823
	IntSR	0.5678	0.8266	0.8920	0.7091	0.7305
Recommendation	w/o S	0.3311	0.6076	0.7162	0.4779	0.5131
	w/o search queries	0.3325	0.6008	0.7090	0.4746	0.5096
	w/o session mask	0.2864	0.5292	0.6355	0.4142	0.4486
	w/o DSFNet	0.3584	0.6329	0.7391	0.5041	0.5386
	w/o relative bias	0.3574	0.6419	0.7464	0.5082	0.5421
	IntSR	0.3740	0.6561	0.7574	0.5242	0.5570

Ablation experiments are performed with five variants of IntSR on Amazon to verify the contribution of each components: (1) w/o S: S tokens carrying the spatiotemporal information (only temporal information in public datasets) is removed in the input sequence; (2) w/o search queries: search queries are removed; (3) w/o session-wise mask: only causal mask and invalid Q mask are applied in self-attention calculation of query-driven block; (4) w/o DSFNet: DSFNet module is replaced by MLPs; and (5) w/o relative bias: both relative positional and temporal bias in QDB are removed.

Table 4 shows the results on both tasks. The experimental results demonstrate a positive contribution from every module to the model’s performance. As mentioned above, search behaviors in Amazon dataset is the duplication of recommendation behaviors, therefore, we can define sessions according to each pair of duplicated behaviors and employ session-wise mask. It is indicated that session-wise mask improves model performance the most, since it prohibits the model focus on user interests rather than the immediate preceding interactions. The results of w/o search queries highlight the advantage of jointly modeling search and recommendation tasks: utilizing search queries improves the recommendation performance.

4.5 SCALING-LAW VALIDATION (RQ4)

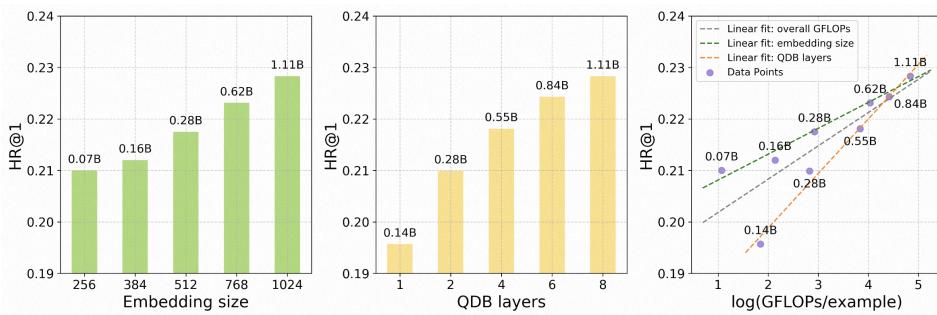


Figure 6: Scaling results of IntSR. Scaling up the model by adjusting the embedding size and the number of QDB layers leads to continuous performance improvement.

We scaled up IntSR by adjusting the embedding size and the number of QDB layers on one of our industrial dataset. The model’s parameter size was varied from 0.07B to 1.11B. Results are

486 presented in Fig. 6. The left subplot shows the effect of various embedding size on HR@1, with
 487 the number of QDB layers fixed at 8. The middle subplot shows the effect of varying the number
 488 of QDB layers, with the embedding size fixed at 1024. The right subplot illustrates the relationship
 489 between HR@1 and FLOPs. The results demonstrate a consistent improvement in HR@1 as the
 490 model size increases, which confirms the strong scalability of IntSR. Specifically, a relative increase
 491 of 14.3% is observed when the model parameter size is scaled up from 0.14B to 1.11B.

492 Additionally, it is observed that the fitted line for the QDB layers has a steeper slope compared to
 493 that for the embedding size. This indicates that, under conditions where embedding size and depth
 494 are no longer limiting factors, adding layers leads to larger performance gains.
 495

496 4.6 ONLINE A/B TEST (RQ1)

497 We conduct online A/B experiments in three product scenarios to validate the effectiveness of IntSR.
 498 For the control group, we randomly selected 10% of users and routed their requests to the production
 499 baseline model. In the first scenario, IntSR has achieved a 9.34% relative increase in the overall
 500 Gross Merchandise Volume (GMV). IntSR also achieves a 2.76% relative lift in Click Through Rate
 501 (CTR) for the second scenario and improves accuracy (ACC) by 7.04% for the third scenario.
 502

503 5 RELATED WORKS

504 **Generative Recommendation.** The recent success of LLMs has inspired a growing interest in
 505 adopting generative frameworks for recommendation and search tasks (Rajput et al., 2023; Zhai
 506 et al., 2024; Chen et al., 2025). These efforts can be categorized into two main paradigms. The
 507 first paradigm leverages LLMs as a direct predictors (Wu et al., 2024). Typically, user’s historical
 508 interaction sequences and profile features are converted into textual inputs (often via task-specific
 509 prompts). LLMs are expected to generate recommendation results based on the inputs. The second
 510 paradigm focuses on utilizing LLMs as feature extractors and reformulating the recommendation
 511 or search task itself into an autoregressive framework, thereby adapting LLM architectures and
 512 knowledge to the recommendation or search domain (Zhai et al., 2024; Deng et al., 2025).
 513

514 **Joint Search and Recommendation.** The integration of S&R has emerged as a significant trend
 515 in recent years. One approach focuses on search-enhanced recommendation, where search data is
 516 utilized as supplementary input to improve the quality of recommendations (Si et al., 2023a;b). The
 517 second category involves unified S&R, which aims for a more holistic joint learning process that
 518 simultaneously enhances model performance in both S&R (Zhao et al., 2022; Xie et al., 2024). As
 519 generative frameworks are independently used in search and recommendation, the integration of
 520 LLMs as direct predictors for joint search and recommendation has commenced (Shi et al., 2025;
 521 Zhao et al., 2025). However, these methods present significant implementation challenges in sce-
 522 narios that require large-scale deployment and low-latency responses. Applying an autoregressive
 523 framework within joint search and recommendation is an important task.

524 **Negative sampling.** Negative sampling refers to the strategy that samples several items from unla-
 525 beled data as negative instances. RNS is easy to implement and has been widely employed across
 526 diverse recommendation models and tasks (He et al., 2020; Yang et al., 2022). Unlike RNS adopts a
 527 uniform sampling probability, PNS selects negative instances according to the popularity (Mikolov
 528 et al., 2013; Caselles-Dupré et al., 2018). HNS chooses items that are most likely to be confused
 529 with positive samples as negative instances (Huang et al., 2021; Lai et al., 2024).
 530

531 6 CONCLUSION REMARKS

532 This study presents IntSR, a novel framework that successfully unifies the traditionally separate tasks
 533 of recommendation, search, retrieval, and ranking under a single generative paradigm. Our core
 534 insight is that these tasks can be elegantly unified by treating the query as the central, distinguishing
 535 element. Additionally, the time-varying vocabulary misalignment problem is first identified and
 536 formulated. We demonstrated that failing to account for the dynamic nature of candidate sets over
 537 time leads to erroneous pattern learning. Negative sampling with a dynamic corpus is proposed to
 538 address this critical issue. The successful large-scale online deployment of IntSR, yielding state-of-
 539 the-art online metrics including substantial increases in CTR, ACC, and GMV.

540 ETHICS STATEMENT
541

542 Experiments in this study were conducted on two types of datasets: two publicly available datasets
543 and one proprietary industrial dataset. The public datasets are openly accessible, have undergone
544 anonymization, and are broadly employed in prior research. For the proprietary industrial dataset,
545 the collection of all data was authorized by users through their consent obtained during the utilization
546 of the respective software products. All user-related information was anonymized to protect
547 personal privacy, ensuring that researchers could not identify or locate any user-specific private in-
548 formation from the data. We maintained academic integrity throughout all experiments. We will
549 openly share our industrial dataset (fully or partially) and code with respect to temporal-aligned
550 negative sampling, thereby facilitating ethical review and valuable community dialogue.

551
552 REPRODUCIBILITY STATEMENT
553

554 To ensure the full reproducibility of the findings presented in this manuscript, we have made com-
555 prehensive efforts to document and share the necessary components. The detailed architecture and
556 implementation of our proposed IntSR are thoroughly described and illustrated in Section 3, Ap-
557 pendix B, D, and E. Our experiments utilize tow public datasets and one proprietary industrial
558 dataset. The acquisition, preprocessing steps, and data splitting strategies of public datasets are
559 described in Appendix F. For the private dataset, we provide the statistic information in Appendix F
560 and are going to make it open-access (fully or partially). Implementation details of all experiments
561 are provided in Section 4.1.2. We will make publicly available the code for our temporal-aligned
562 negative sampling strategy to advance studies concerning dynamic vocabulary alignment.

563
564 USE OF LLMs
565

566 In the preparation of this manuscript, Large Language Models (LLMs) were utilized solely as a
567 general-purpose writing assistant. Their application was strictly limited to language refinement, cor-
568 recting spelling and grammatical errors, and enhancing the overall fluidity and clarity of expression.
569 It is crucial to emphasize that all core scientific content, intellectual contributions, and novel ideas
570 presented in this manuscript were exclusively conceived, developed, and verified by the human au-
571 thors, independent of any LLM involvement. This includes, but is not limited to, the definition of the
572 research problem, the comprehensive literature review, the conceptualization and implementation of
573 the core methodology of IntSR for problem-solving, all content within figures and tables, the collec-
574 tion of all data, the design and execution of experiments, and the subsequent analysis of results. The
575 LLM served purely as a linguistic aid and was not involved in any conceptual or analytical aspect of
576 this research. The authors take full responsibility for the content presented herein.

577
578 REFERENCES
579

580 Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft. Learning a hierarchical
581 embedding model for personalized product search. In *Proceedings of the 40th International ACM*
582 *SIGIR Conference on Research and Development in Information Retrieval*, pp. 645–654, 2017. 6
583 20

584 Qingyao Ai, Daniel N Hill, SVN Vishwanathan, and W Bruce Croft. A zero attention model for
585 personalized product search. In *Proceedings of the 28th ACM International Conference on Infor-*
586 *mation and Knowledge Management*, pp. 379–388, 2019. 6

588 Keping Bi, Qingyao Ai, and W Bruce Croft. A transformer-based embedding model for personalized
589 product search. In *Proceedings of the 43rd International ACM SIGIR Conference on Research*
590 *and Development in Information Retrieval*, pp. 1521–1524, 2020. 6

592 Hugo Caselles-Dupré, Florian Lesaint, and Jimena Royo-Letelier. Word2vec applied to recom-
593 mendation: Hyperparameters matter. In *Proceedings of the 12th ACM conference on recommender*
systems, pp. 352–356, 2018. 10

594 Ben Chen, Xian Guo, Siyuan Wang, Zihan Liang, Yue Lv, Yufei Ma, Xinlong Xiao, Bowen Xue,
 595 Xuxin Zhang, Ying Yang, et al. Oneresearch: A preliminary exploration of the unified end-to-end
 596 generative framework for e-commerce search. *arXiv preprint arXiv:2509.03236*, 2025. 1, 10
 597

598 Shitong Dai, Jiongan Liu, Zhicheng Dou, Haonan Wang, Lin Liu, Bo Long, and Ji-Rong Wen.
 599 Contrastive learning for user sequence representation in personalized product search. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp.
 600 380–389, 2023. 6
 601

602 Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen Hu, Weifeng Ding, Qiang Luo, and Guorui
 603 Zhou. Onerec: Unifying retrieve and rank with generative recommender and iterative preference
 604 alignment, 2025. URL <https://arxiv.org/abs/2502.18965>. 10
 605

606 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
 607 function approximation in reinforcement learning. *Neural networks*, 107:3–11, 2018. 5
 608

609 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
 610 Simplifying and powering graph convolution network for recommendation. In *Proceedings of the
 43rd International ACM SIGIR conference on research and development in Information Retrieval*,
 611 pp. 639–648, 2020. 10
 612

613 Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu Wang, and Jie Tang.
 614 Mixgcf: An improved training method for graph neural network-based recommender systems. In
 615 *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp.
 665–674, 2021. 10
 616

617 Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In *2018 IEEE
 618 international conference on data mining (ICDM)*, pp. 197–206. IEEE, 2018. 6
 619

620 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 621 arXiv:1412.6980*, 2014. 21
 622

623 Ruiwei Lai, Rui Chen, Qilong Han, Chi Zhang, and Li Chen. Adaptive hardness negative sampling
 624 for collaborative filtering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 8645–8652, 2024. 2, 10
 625

626 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed represen-
 627 tations of words and phrases and their compositionality, 2013. URL <https://arxiv.org/abs/1310.4546>. 2, 10
 628

629 Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
 630 enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021. 5
 631

632 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 633 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 634 transformer. *Journal of machine learning research*, 21(140):1–67, 2020. 5
 635

636 Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
 637 Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with gen-
 638 erative retrieval. *Advances in Neural Information Processing Systems*, 36:10299–10315, 2023.
 639 10
 640

641 Teng Shi, Zihua Si, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Dewei Leng, Yanan Niu, and
 642 Yang Song. Unisar: Modeling user transition behaviors between search and recommendation. In
 643 *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
 644 Information Retrieval*, pp. 1029–1039, 2024. 7, 20
 645

646 Teng Shi, Jun Xu, Xiao Zhang, Xiaoxue Zang, Kai Zheng, Yang Song, and Enyun Yu. Unified
 647 generative search and recommendation. *arXiv preprint arXiv:2504.05730*, 2025. 10
 648

649 Zihua Si, Zhongxiang Sun, Xiao Zhang, Jun Xu, Yang Song, Xiaoxue Zang, and Ji-Rong Wen.
 650 Enhancing recommendation with search data in a causal learning manner. *ACM Transactions on
 651 Information Systems*, 41(4):1–31, 2023a. 10

648 Zihua Si, Zhongxiang Sun, Xiao Zhang, Jun Xu, Xiaoxue Zang, Yang Song, Kun Gai, and Ji-
 649 Rong Wen. When search meets recommendation: Learning disentangled search representation for
 650 recommendation. In *Proceedings of the 46th international ACM SIGIR conference on research*
 651 *and development in information retrieval*, pp. 1313–1323, 2023b. 10

652 Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequenti-
 653 al recommendation with bidirectional encoder representations from transformer. In *Proceedings*
 654 *of the 28th ACM international conference on information and knowledge management*, pp. 1441–
 655 1450, 2019. 6

656 Zhongxiang Sun, Zihua Si, Xiaoxue Zang, Dewei Leng, Yanan Niu, Yang Song, Xiao Zhang, and
 657 Jun Xu. Kuaisar: A unified search and recommendation dataset. 2023. doi: 10.1145/3583780.
 658 3615123. URL <https://doi.org/10.1145/3583780.3615123>. 6, 20

660 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 661 4

662 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
 663 Zhu, Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. *World*
 664 *Wide Web*, 27(5):60, 2024. 10

666 Jiayi Xie, Shang Liu, Gao Cong, and Zhenzhong Chen. Unifiedssr: A unified framework of se-
 667 quential search and recommendation. In *Proceedings of the ACM Web Conference 2024*, pp.
 668 3410–3419, 2024. 1, 7, 10

669 Yuhao Yang, Chao Huang, Lianghao Xia, Yuxuan Liang, Yanwei Yu, and Chenliang Li. Multi-
 670 behavior hypergraph-enhanced transformer for sequential recommendation. In *Proceedings of*
 671 *the 28th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 2263–2274,
 672 2022. 10

674 Jing Yao, Zhicheng Dou, Ruobing Xie, Yanxiong Lu, Zhiping Wang, and Ji-Rong Wen. User: A
 675 unified information search and recommendation model based on integrated behavior sequence. In
 676 *Proceedings of the 30th ACM International Conference on Information & Knowledge Manage-
 677 ment*, pp. 2373–2382, 2021. 1, 6

678 Jiahao Yu, Yihai Duan, Longfei Xu, Chao Chen, Shuliang Liu, Kaikui Liu, Fan Yang, Xiangxiang
 679 Chu, and Ning Guo. Dsfnet: Learning disentangled scenario factorization for multi-scenario route
 680 ranking. In *Companion Proceedings of the ACM on Web Conference 2025*, pp. 567–576, 2025.
 681 16

682 Hamed Zamani and W Bruce Croft. Joint modeling and optimization of search and recommendation.
 683 *arXiv preprint arXiv:1807.05631*, 2018. 6

685 Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong,
 686 Fangda Gu, Jiayuan He, et al. Actions speak louder than words: trillion-parameter sequential
 687 transducers for generative recommendations. In *Proceedings of the 41st International Conference*
 688 *on Machine Learning*, pp. 58484–58509, 2024. 1, 4, 6, 10

689 Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. Optimizing top-n collaborative filtering via
 690 dynamic negative item sampling. In *Proceedings of the 36th international ACM SIGIR conference*
 691 *on Research and development in information retrieval*, pp. 785–788, 2013. 2

693 Jujia Zhao, Wenjie Wang, Chen Xu, Xiuying Chen, Zhaochun Ren, and Suzan Verberne. Unify-
 694 ing search and recommendation: A generative paradigm inspired by information theory. *arXiv*
 695 *preprint arXiv:2504.06714*, 2025. 10

696 Kai Zhao, Yukun Zheng, Tao Zhuang, Xiang Li, and Xiaoyi Zeng. Joint learning of e-commerce
 697 search and recommendation with a unified graph neural network. In *Proceedings of the Fifteenth*
 698 *ACM International Conference on Web Search and Data Mining*, pp. 1461–1469, 2022. 1, 10

700 Zhuokai Zhao, Yang Yang, Wenyu Wang, Chihuang Liu, Yu Shi, Wenjie Hu, Haotian Zhang, and
 701 Shuang Yang. Breaking the curse of quality saturation with user-centric ranking. *arXiv preprint*
 702 *arXiv:2305.15333*, 2023. 1

702 Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
703 Han Li, and Kun Gai. Deep interest network for click-through rate prediction. In *Proceedings*
704 *of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
705 1059–1068, 2018. 6

706 Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for
707 sequential recommendation. In *Proceedings of the ACM web conference 2022*, pp. 2388–2399,
708 2022. 6

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A NOTATIONS
757
758759 This appendix provides the meanings of notations used in this study, see Table 5.
760
761
762763 Table 5: Notations.
764

Symbol	Description
\mathcal{U}	Set of all users; the elements in the set are denoted by u
\mathcal{I}	Set of all items; the elements in the set are denoted by i
\mathcal{I}_t	Set of available items at timestamp t ; $\mathcal{I}_t \subseteq \mathcal{I}$
\mathcal{A}	Set of all user-item interactions
\mathcal{A}_u	Interaction sequence of user $u \in \mathcal{U}$
\mathcal{S}	Set of geo-hash and temporal tokens; the elements in the set are denoted by s
\mathcal{B}	Query set containing both original and LLM-generated queries
\mathcal{C}_j	Candidate set with respect to the j th query token of input sequence
q_{n+1}	Query of user u expressing user's interests of the $(n+1)$ th interaction
p_{n+1}	Page context features of the $(n+1)$ th interaction
b_{n+1}	Task tag of the $(n+1)$ th interaction to indicate search or recommendation
L	Loss function
$\delta_{u,a}$	Binary constant; $\delta_{u,a} = 1$ indicates the corresponding interaction should be learned by the model (prediction loss is contained); otherwise, $\delta_{u,a} = 0$
$o_{u,a}$	Output of DSFNet related to user u and interaction a
emb_i	Embedding vector of item i
$z_{u,a,i}$	Similarity of emb_i and $o_{u,a}$; $z_{u,a,i} = \text{sim}(o_{u,a}, \text{emb}_i)$
prob_i	Probability of sampling item i as negative (without candidate alignment)
$\text{prob}_{i,t}$	Probability of sampling item i as negative at t (with candidate alignment)
X	Input features of QDB; X_1 is the original sequence; X_2 is the query sequence
Q, K, V	Query, key, and value matrix before self-attention calculation; when a subscript k is used, $k = 1$ refers to the original input sequence, and $k = 2$ refers to the query sequence
M	Mask matrix for attention scores in QDB; calculated as the Hadamard product of causal mask M_c , session-wise mask M_s , and invalid Q mask M_Q ; $M_{2,k}$ denotes the mask between the query sequence and the sequence indicated by index k
A	Attention scores in QDB; $A_{2,k}$ denotes the attention score calculated between the query sequence and the sequence indicated by index k
rab_{pos}	Relative positional bias
rab_{time}	Relative temporal bias
W	Attention output gating weights
Y	Output of QDB
f	User profile features
R	Scenario features; is the combination of f , p_{v+1}^u , and request features
h	Number of query-driven block layers
N	Length of input sequence consisting of S, Q, I, F tokens
N_g	The number of scenarios defined in DSFNet
d	Dimension of embedding space
X_{DSF}, \tilde{X}_{DSF}	Input features of DSFNet before and after scenario-aware feature filtering
$\gamma_{g,l}$	Multi-scenario weights in l th DSFNet layer for scenario $g \in \{1, 2, \dots, N_g\}$
$\tilde{W}_{g,l}, \tilde{b}_{g,l}$	Learnable parameters of scenario g and l th DSFNet layer
W_l, b_l	Parameters of l th DSFNet layer; equals the weighted sum of $\tilde{W}_{g,l}, \tilde{b}_{g,l}$
c, c'	The number of negative samples and candidates per query, respectively
β	Replacement probability of non-search Q tokens

808
809

810 B DSFNET FOR MULTI-SCENARIO MODELING

812 Users' behaviors are highly correlated with spatiotemporal context: they exhibit different preferences across various scenarios. These scenarios are formed by combining spatiotemporal features, 813 user's current page context, search or recommendation tag, and personalized user profiles. To address this multi-scenario problem, we employ DSFNet (Yu et al., 2025) after QDB. N_g is a hyper-parameter 814 representing the number of scenarios. For each scenario $g \in \{1, 2, \dots, N_g\}$, the multi-scenario weights in l_{th} layer, $\gamma_{g,l}$, are derived from the spatiotemporal information s_{n+1} , page 815 context p_{n+1} , task tag b_{n+1} , and user profiles f :

$$816 \quad R = \text{concat}(s_{n+1}, p_{n+1}, b_{n+1}, f) \quad (12)$$

$$817 \quad \gamma_{g,l} = 2 * \sigma(\text{MLP}_{g,l}(R)) \quad (13)$$

818 where $\sigma(\cdot)$ is sigmoid activation function. The factor of 2 allows the weights to exceed 1, enabling 819 feature amplification. The dynamic parameters of l_{th} layer, W_l and b_l , are calculated as the weighted 820 sum of all scenarios, as expressed by Eq. (14). $\tilde{W}_{g,l}$ and $\tilde{b}_{g,l}$ are learnable parameters of scenario 821 g and l_{th} layer. Moreover, the scenario information R is used to perform scenario-aware feature 822 filtering on the input feature X_{DSF} before it is passed to the DSFNet block. This is formulated in 823 Eq. (15), where \tilde{X}_{DSF} is features after filtering.

$$824 \quad W_l = \sum_{g=1}^{N_g} \gamma_{g,l} \tilde{W}_{g,l}, b_l = \sum_{g=1}^{N_g} \gamma_{g,l} \tilde{b}_{g,l} \quad (14)$$

$$825 \quad \tilde{X}_{DSF} = X_{DSF} \odot \sigma(\text{MLP}_3(\text{concat}(X_{DSF}, R))) \quad (15)$$

830 C SEARCH QUERY GENERATION

831 We give an example of item Hello Kitty:

- 832 • **Original user search queries:**

- 833 – Hello Kitty
- 834 – Cartoon

- 835 • **Item information:**

- 836 – Name: Hello Kitty
- 837 – IP: Hello Kitty
- 838 – Category: Anime

- 839 • **Item description:**

- 840 – An iconic, mouth-less white kitten featuring a signature red bow on her head, round 841 eyes, and a pink nose. Her design is simple and soft.
- 842 – Characterized as innocent, kind-hearted, quiet, and friendly, she embodies pure joy 843 “without negative emotions”. Her dialogue style is warm, sweet, and adorable.

- 844 • **Keywords:** Hello Kitty, Anime, cartoon, kind, quiet, friendly.

- 845 • **Expressions mimicking user search behaviors:**

- 846 – Recommend some Hello Kitty items for me.
- 847 – Any recommendations for Anime?

848 Fig. 4 depicts how the search queries are integrated into the input sequence. In addition to original 849 user submissions, four other types of queries are incorporated into the input sequence with a pre-defined 850 probability, a method that significantly improves the model's generalization and robustness.

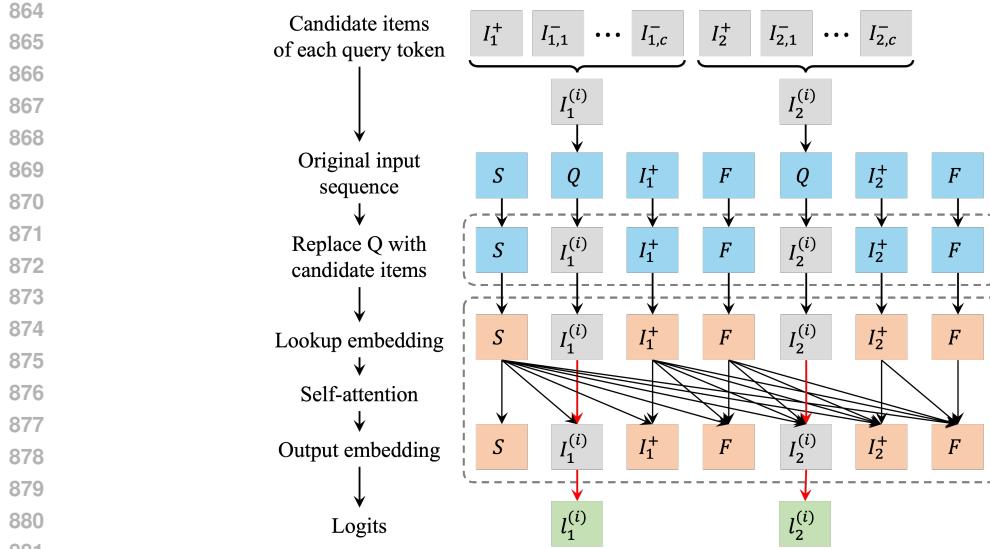


Figure 7: An Ranking Query Example. Each query token is replaced with candidate item tokens for logit prediction. In the attention operation, the candidate tokens can only attend to themselves, as indicated by the red arrows.

D IMPLEMENTATION DETAILS OF QUERY-DRIVEN DECODER

D.1 RANKING QUERY EXAMPLE

A query token can be a user query, a unified token, some item representations, or a mix of these. As illustrated in Fig. 7, using the recommendation ranking task as an example, query-driven decoder aims to predict the probability of query tokens at specific positions marked by query placeholders. These predictions provide ranking scores for each candidate item.

Each group of candidates consists of one positive and multiple negative samples. During training, each query token q_j (a sequence may contain multiple such placeholders) is replaced with its corresponding candidate item token $I_{j,i}$, where $j \in \{1, 2, \dots, J\}$ is the j_{th} query token and J represents the total number of query tokens in the input sequence. The modified sequence is input to IntSR and the output is converted to logits of each candidate $z_{a,i}$ by a MLP. At inference time, the query placeholder is appended to the sequence, and the ranking results is determined by the output logits.

D.2 EFFICIENT CANDIDATE LOGIT COMPUTATION

Direct implementation of HSTU introduces significant computational overhead. Specifically, if we denote the number of negative samples per query as c , the computational cost of the ranking model, measured in GFLOPs, becomes $c' = c + 1$ times that of the retrieval model. To mitigate this inefficiency, we adopt a tow-stage computation as shown in Fig. 8.

The first stage processes the original sequence via self-attention and caches the resulting KV-Cache pairs from each layer. In the second stage, candidate embeddings are appended to the original sequence and efficiently processed through the self-attention layers by leveraging the pre-computed KV-Cache. For sequences with multiple query placeholders, the corresponding candidate groups are concatenated sequentially and masked according to Section 3.3.

Let N denote the length of original input sequence, since we transfer repeated computation on the whole sequence into appending candidates to the sequence, the attention mask is thereby enlarged from $N \times N$ to $(N + C) \times (N + C)$ where $C = \sum_{j=1}^J |\mathcal{C}_j| = Jc'$, where \mathcal{C}_j is the candidate set with respect to j_{th} query token, including both positive and negative instances. As shown in Fig. 9, the expanded attention matrix is constructed by following steps: (1) the left-up $N \times N$ block is identity to original attention mask; (2) the bottom-right part is an identity matrix of size $Jc' \times Jc'$, as the

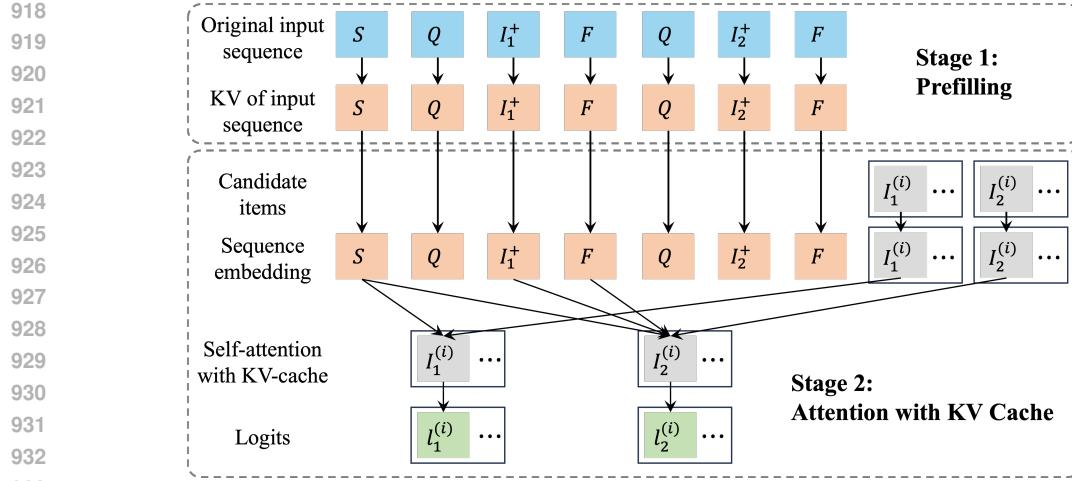


Figure 8: Efficient candidate logit computation with KV-Cache. Initially, the original sequence is encoded by the HSTU (not shown) to compute the keys and values for each token in every HSTU layer. Subsequently, candidate embeddings are computed by applying self-attention using the cached keys and values from the original sequence.

candidate tokens cannot attend to other tokens except for themselves; (3) the top-right part contains J blocks with dimension of $N \times |\mathcal{C}_j|$ and is set to all zeros to prevent candidates from attending to original tokens; and (4) the bottom-left block, comprising J sub-blocks of size $|\mathcal{C}_j| \times N$. To create each sub-block in step (4), we locate the self-attention row corresponding to j_{th} query token within the top-left matrix and replicate it $|\mathcal{C}_j|$ times. As our goal is to compute outputs only for the candidates, the initial N rows of the attention output are omitted. This leaves the last Jc' rows as the final result.

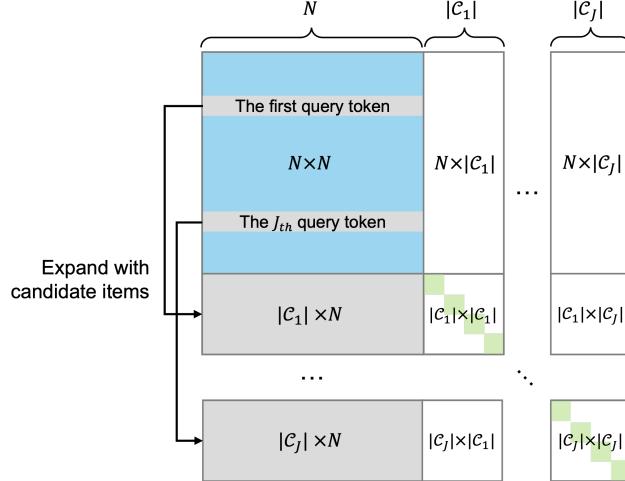


Figure 9: Expanded mask for efficient candidate logit prediction. Matrix dimensions are annotated. White regions indicate zero values. Gray stripes denote single rows, and green squares represent individual elements.

The above optimization reduces the total computational complexity from $\mathcal{O}(c'N^2)$ to $\mathcal{O}(c'J(N + c'J))$. By solving the corresponding quadratic inequality, we find that the overall complexity is reduced when

$$N > \frac{J(1 + \sqrt{1 + 4c'})}{2}.$$

972 However, when a sequence contains a large number of query tokens (i.e., large J), the algorithm
 973 becomes less efficient due to the quadratic dependency on Jc' . To further improve computational
 974 efficiency, we focus on the bottom-right $Jc' \times Jc'$ diagonal block of the attention mask, which
 975 governs the interactions among candidate tokens. Most entries in this block are masked out (set
 976 to zero), as each candidate token can only attend to itself. An intuitive solution is to decouple the
 977 computation of this block from the full attention mechanism, enabling specialized optimization for
 978 this structured sparse pattern.

979 To implement this method, we define (input feature matrix X is omitted here for brevity):
 980

- 981 • $Q \in \mathbb{R}^{Jc' \times d}$: query matrix for candidate tokens, where d denotes the dimension of embed-
 982 ding space;
- 983 • $[\cdot; \cdot]$: vertical concatenation; $[\cdot, \cdot]$: horizontal concatenation;
- 984 • $K = [K_1; K_2]$, $V = [V_1; V_2]$: key and value matrices with divided blocks $K_1, V_1 \in \mathbb{R}^{N \times d}$
 985 and $K_2, V_2 \in \mathbb{R}^{Jc' \times d}$, thus, $K, V \in \mathbb{R}^{(N+Jc') \times d}$;
- 986 • $M = [M_1, M_2]$: attention mask with divided blocks $M_1 \in \mathbb{R}^{Jc' \times N}$ and $M_2 \in \mathbb{R}^{Jc' \times Jc'}$;
 987 thus, $M \in \mathbb{R}^{Jc' \times (N+Jc')}$.

989 Under this formulation, the self-attention computation can be equivalently decomposed as Eq (16).
 990

$$\begin{aligned} 991 \quad QK^T &= Q[K_1^T, K_2^T] = [QK_1^T, QK_2^T], \\ 992 \quad \text{Attn} &= M \odot (QK^T) = [M_1 \odot QK_1^T, M_2 \odot QK_2^T], \\ 993 \quad \text{Attn}V &= (M_1 \odot QK_1^T)V_1 + (M_2 \odot QK_2^T)V_2 \end{aligned} \quad (16)$$

996 While the term $(M_1 \odot QK_1^T)V_1$ remains challenging to optimize, we observe a key structural prop-
 997 erty: $M_2 \odot QK_2^T$ is a diagonal matrix (Fig. 9). This implies that only the diagonal entries of QK_2^T
 998 need to be computed. Moreover, the result of $(M_2 \odot QK_2^T)V_2$ is equivalent to scaling each row of
 999 V_2 by the corresponding diagonal element of $M_2 \odot QK_2^T$.

1000 By avoiding the full computation of the $Jc' \times Jc'$ matrix, the complexity of this term is reduced
 1001 from $\mathcal{O}((Jc')^2)$ to $\mathcal{O}(Jc')$. Because calling the rows of V_2 does not change computation complexity,
 1002 the total computational complexity drops from $\mathcal{O}(Jc'(N+Jc'))$ to $\mathcal{O}(Jc'(N+1))$. Therefore, the
 1003 condition for complexity reduction becomes

$$1004 \quad J < \frac{N^2}{N+1} = N - \frac{N}{N+1} \approx N - 1$$

1007 This condition, $J < N - 1$, is strictly satisfied, as the input sequence encodes more than just the
 1008 query tokens.
 1009

1010 D.3 EFFICIENCY EXPERIMENTS

1012 Table 6 provides the comparison experiments on Amazon dataset to measure the efficiency gains of
 1013 QDB. We compared QDB against its original, un-optimized version within the same IntSR model
 1014 architecture. Both inference latency (average time to process a single instance) and throughput
 1015 (instances processed per second) are measured on the same hardware environment (a single NVIDIA
 1016 H20 GPU with 96 GB memory) with a fixed batch size 64.

1017 Table 6: Performance of QDB in improving latency and throughput
 1018

1019 Model version	1020 Training throughput (instances/sec) \uparrow	1021 Inference latency (ms/instance) \downarrow	1022 Inference throughput (instances/sec) \uparrow
1022 Original module	21 (1.0 \times)	22.5 (1.0 \times)	85 (1.0 \times)
1023 QDB	100 (4.76 \times)	18.5 (0.82 \times)	160 (1.88 \times)

1024 According to Table 6, QDB increases training throughput by a factor of 4.76x, and increases infer-
 1025 ence throughput by 1.88x while reducing per-instance latency by 18%. The speed-up during training

1026 is more pronounced than during inference. This is because training requires both a forward pass and
 1027 a computationally expensive backward pass to calculate gradients and update parameters.
 1028

1029 As analyzed above, the acceleration effect of QDB is directly correlated with the proportion of query
 1030 tokens in the input sequence. In our industrial application, we employ a stream-training paradigm
 1031 where query tokens are assigned only to the newly added interactions in a user’s history. This leads
 1032 to a much lower overall ratio of query tokens. For example, in the industrial dataset we mentioned
 1033 above, the daily volume of new user interactions accounts for less than 1% of the total dataset size.
 1034 Therefore, the performance gains from QDB are more significant.
 1035

E AN EXAMPLE OF CUSTOMIZED MASK

	S1	Q1	I1	F1	Q2	I2	F2	S2	Q3	I3	F3
S1	1										
Q1		1									
I1			1								
F1				1	1						
Q2						1					
I2						1	1				
F2							1	1	1		
S2					1	1	1	1	1	1	
Q3						1	1	1	1	1	
I3						1	1	1	1	1	1
F3							1	1	1	1	1

1051 Figure 10: An example of customized masking mechanism. Rows are queries and columns are keys.
 1052

1053 Fig. 10 illustrates an example of our customized masking mechanism. Taking the input sequence
 1054 “S1 → Q1 → I1 → F1 → Q2 → I2 → F2 → S2 → Q3 → I3 → F3” in Figure 2 as an example,
 1055 Figure 10 illustrates our customized masking mechanism on an $N \times N$ mask matrix, where rows are
 1056 queries and columns are keys, and N signifies the length of the input sequence. Visibility (green
 1057 with number 1) and invisibility (white) are determined by the following three rules:
 1058

- 1059 • Causal masking: all tokens are masked from attending to subsequent positions in the se-
 1060 quence, resulting in the white upper triangle.
- 1061 • Invalid Q masking: Q1 and Q3, as invalid instances, are made invisible as a key, preventing
 1062 it from exposing to other tokens.
- 1063 • Session-wise masking: tokens within the same session are mutually invisible. For example,
 1064 action Group 1-1 (Q1, I1, F1) and Action Group 1-2 (Q2, I2, F2) cannot attend to each
 1065 other. Therefore, Q1’s attention is restricted to itself and S1, while Q3 can observe the
 1066 history of the first session (excluding invalid Q1) as it initiates a new session.

F DATASET DETAILS

1068 The overall effectiveness of IntSR is assessed on two widely used public datasets that contains both
 1069 S&R behaviors: (1) KuaiSAR (Sun et al., 2023) is a dataset of authentic S&R user interactions
 1070 related to short videos. We adopt the same data preprocessing steps as Shi et al. (2024), and use
 1071 the last day’s data as the test set, the data of second last day as valid set, and the remaining data
 1072 for training. (2) Amazon is a well-known review dataset in recommendation systems. The search
 1073 queries and behaviors are created synthetically according to Ai et al. (2017). We choose the subset
 1074 of “Kindle Store” of the 5-core Amazon dataset. Users and items with less than 5 interactions
 1075 are removed. Following previous works (Shi et al., 2024), we adopt the leave-one-out strategy
 1076 to construct train, valid and test dataset. Additionally, one industrial dataset is used to evaluate
 1077 the effectiveness of temporal alignment sampling. Due to preprocessing and filtering, statistics in
 1078 Table 7 should not be interpreted as a reflection of the true user population or the entire item corpora.
 1079

Table 7: Statistics of the datasets

Dataset	Users	Items	User-item interactions	
			Mean	Median
Amazon (Kindle Store)	68223	61934	28	15
KuaiSAR	22700	673415	218	106
Industrial dataset	52 M	819	12	2

G IMPLEMENTATION DETAILS ON INDUSTRIAL DATASETS

IntSR model on industrial dataset is trained using Adam optimizer (Kingma & Ba, 2014) with learning rate of 1×10^{-4} on 8 NVIDIA H20 GPUs with 96 GB memory. For RQ3, we use 3 QDBs, a sequence length of 500, and an embedding dimension of 128 ($h = 3, N = 500, d = 128$). The batch size is set to 64. Additionally, the number of scenarios for DSFNet is fixed at 2 and 3 layers of DSFNet is used for all experiments. For validation of scaling characteristic (RQ4), we adjusted the number of QDB layers h from 1 to 8, embedding size d from 256 to 1024, and used a fixed sequence length $N = 200$.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133