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ABSTRACT

Generative recommendation has emerged as a promising paradigm, demonstrat-
ing remarkable results in both academic benchmarks and industrial applications.
However, existing systems predominantly focus on unifying retrieval and ranking
while neglecting the integration of search and recommendation (S&R) tasks. What
makes search and recommendation different is how queries are formed: search
uses explicit user requests, while recommendation relies on implicit user interests.
As for retrieval versus ranking, the distinction comes down to whether the queries
are the target items themselves. Recognizing the query as central element, we pro-
pose IntSR, an integrated generative framework for S&R. IntSR integrates these
disparate tasks using distinct query modalities. It also addresses the increased
computational complexity associated with integrated S&R behaviors and the er-
roneous pattern learning introduced by a dynamically changing corpus. IntSR
has been successfully deployed across various scenarios on a large internet plat-
form serving hundreds of millions of users, leading to substantial improvements:
+9.34% GMV, +2.76% CTR, and +7.04% ACC in three distinct scenarios.

1 INTRODUCTION

Search and recommendation (S&R) services are now commonly provided by online platforms, such
as YouTube and Amazon. These two tasks operate on shared users and items, creating a natural
foundation for the joint modeling and application of S&R. A unified S&R model can better capture
user preferences and enhance the effectiveness of both tasks, while also reducing engineering over-
head (the left side of Fig. 1). Most of the existing studies on unified S&R modeling are based on
traditional deep learning frameworks (Yao et al., 2021; Zhao et al., 2022; Xie et al., 2024).

Despite reliance on extensive human-engineered feature sets and training with massive data vol-
umes, the majority of industrial deep learning based frameworks demonstrate poor computational
scalability (Zhao et al., 2023; Zhai et al., 2024). Inspired by the development of Large Language
Models (LLMs), the generative framework has become an effective method in search or recom-
mendation systems (Zhai et al., 2024; Chen et al., 2025). Integrating S&R into a single generative
framework is a promising paradigm, as it resolves scalability challenges, unifies retrieval and rank-
ing, and leverages joint S&R optimization benefits. However, this problem remains underexplored.

Building such a unified framework primarily faces three key challenges. The first involves unify-
ing search, recommendation, retrieval, and ranking processes in one model. The second addresses
designing a module to reduce the computational requirements for autoregressive training when all
behaviors are aggregated. The third concerns effective negative sampling to prevent temporal mis-
alignment during extended training periods.

To this end, we first unify S&R tasks, along with their retrieval and ranking processes, within a
generative autoregressive framework. To address the first two challenges, we observed that the
fundamental difference between S&R lies in how user intent is conveyed: explicitly via queries for
search, and implicitly through user interactions for recommendation. Motivated by this, we propose
IntSR, a unified framework that formulates both tasks and their retrieval and ranking sub-tasks as
conditional generation problems. To further reduce training complexity, we designed a query-driven
decoder utilizing Key-Value (KV) cache and separate attention calculations for query placeholders.
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Figure 1: S&R systems operate with shared users and items, thus user behaviors and model can be
unified. Temporal availability of items should be considered.

Regarding the third challenge, we found that it is primarily due to temporal misalignment of vo-
cabularies. Diverse negative sampling strategies have been proposed and examined across diverse
domains and tasks. Examples include random negative sampling (RNS), popularity-based negative
sampling (PNS, Mikolov et al. 2013), and hard negative sampling (HNS, Zhang et al. 2013, Lai
et al. 2024), etc. However, existing approaches typically fail to address item lifecycle dynamics (the
right side of Fig. 1). To address this problem, we propose applying a temporal alignment strategy to
existing negative sampling methods, which yields significant performance gains.

The effectiveness of the proposed model is confirmed across two public S&R datasets. Concurrently,
the temporal alignment strategy is validated using a proprietary industrial dataset. IntSR has been
deployed into the production system, serving hundreds of millions of daily active users. Several of
its core components have been fully operational at scale for over six months.

To summarize, our key contributions are threefold:

• Unification of S&R. We propose an integrated generative framework for both S&R, where
tasks are conditioned by different modalities of the queries. This allows to serve diverse
scenarios and tasks with one model.

• Time-varying vocabulary alignment. We formally define and address the problem of
temporal vocabulary misalignment in autoregression models. Our approach offers consid-
erable performance augmentation to all three existing mainstream sampling methods.

• Offline demonstrations and online deployment. We conducted extensive experiments on
both widely-used public datasets and industrial service datasets to demonstrate the effec-
tiveness of IntSR. IntSR has been successfully deployed across multiple S&R scenarios.

2 PRELIMINARIES

Assume we have a set of users and items represented by U and I, respectively, the interactions
between users and items are denoted by A (see Appendix A for full notations). User behav-
ioral patterns are highly dependent on their temporal and spatial contexts. S denote the set of
discrete spatiotemporal tokens. F is the set of user feedback types. For each user u ∈ U ,
Au = [(sv, iv, av)|sv ∈ S, iv ∈ I, av ∈ F , v ∈ {1, 2, ..., n}] denotes the interaction sequence in
chronological order. n is the number of interacted items. We show that both recommendation and
search along with their underlying retrieval and ranking sub-tasks can be modeled as a conditional
generation problem. The objective of the sequential model is to predict the conditional probability
distribution with different conditions expressed by queries:

P rec
retr = P (in+1|Au, sn+1) (1)

P rec
rank = P (an+1|Au, sn+1, in+1) (2)
P src
retr = P (in+1|Au, sn+1, qn+1) (3)

P src
rank = P (an+1|Au, sn+1, in+1, qn+1) (4)

where P rec
retr, P rec

rank, P src
retr, and P src

rank denote the conditional probability for retrieval in recommen-
dation, ranking in recommendation, retrieval in search, and ranking in search, respectively. an+1 is
the action user may execute on in+1 and qn+1 denotes the query expressing user’s current interests.
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Figure 2: IntSR framework. IntSR unifies different sub-tasks by query types: ranking with can-
didates which contains multiple items (Q1), and search with natural language queries (Q2). Item
online/offline status is incorporated into negative sampling to avoid comparing positive samples
with non-existent negatives.

3 METHODOLOGY

The overall framework of IntSR is illustrated in Fig. 2. We first present the details of input sequence
in Section 3.1. Section 3.2 details how search and recommendation, along with their retrieval and
ranking sub-tasks are integrated by query placeholder. When all S&R behaviors are aggregated,
Query-Driven Block (QDB) with customized mask is the core module to model user preference and
reduce computational complexity (see Section 3.3). DSFNet is used as the multi-scenario block and
is detailed in Appendix B. To prevent temporal misalignment during extended training periods, the
temporal candidate alignment method is formulated in Section 3.4.

3.1 MODELING OF SEQUENCE

The input sequence derived by Au comprises four distinct element types, denoted as S, Q, I, and F,
respectively. Each element plays a specific role in encoding behavior patterns:

• S (Scenario tokens). These represent contextual metadata such as geohash-encoded lo-
cation tokens or discretized temporal tokens, allowing the model to capture latent user
interests associated with specific geographic regions and temporal intervals.

• Q (Query placeholders). Functioning as positional markers, Q elements designate lo-
cations requiring predictive modeling. Notably, Q should be added only with items that
are either involved in the loss computation (e.g., during a specific time step in streaming
training) or explicitly searched by the user.

• I (Item tokens). Representing items with which users have interacted, positive or nega-
tive, these tokens form the core interaction history. In IntSR, item embedding are dense
integration of multi-modal information.

• F (Feedback tokens). Encoding interaction types such as purchases and clicks, these to-
kens provide user’s feedback to items that informs the model’s understanding of user intent
and interaction intensity.

3.2 UNIFYING SEARCH AND RECOMMENDATION TASKS

In IntSR, the unification of query-free recommendation tasks and query-equipped search tasks is
achieved by a general query placeholder Q. As illustrated in Fig. 3, in search tasks, the system is
supposed to generate items in response to natural language queries from users, while the information
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Figure 3: Differences of tasks can be captured by queries. Search task queries contain user-input
terms, while ranking task queries include target item information. For recommendation recall, a
common query token is used.

of target items should be incorporated in ranking problems. If neither user’s explicit query nor item
information is integrated, query is replaced by a shared universal token across different users. To
convert natural language user search queries into embeddings, we employ a frozen LLM, Qwen3-
0.6B (Team, 2025), to generate semantic representations. In search ranking task, this representation
is added directly to the embedding of target item or shared query token.

Two strategies are designed to improve generalization of IntSR with respect to natural language
queries. The first strategy is for the construction of the query candidate pool. Beyond the original
user queries, we also leverage variations generated based on item descriptions and the queries them-
selves. Specifically, the query pool contains the following types: (1) original user search queries;
(2) item information including names, categories, and IP (if applicable); (3) item description and the
paraphrased versions of the original description; (4) keywords extracted from (2) and (3); and (5)
expressions generated from keywords mimicking user search behaviors (an example in Appendix C).

As illustrated in Fig. 4, the second strategy addresses how the Q positions within the sequence are
populated using elements from the aforementioned candidate pool. Let B denote the query pool
constructed above, when a user-item interaction occurs subsequent to a search action, the corre-
sponding Q is populated with actual user queries. For interactions not triggered by a search action,
we randomly sample an element from B and, with a certain probability β, use it to populate the Q
position associated with that interaction.

Figure 4: Integrating search queries to the input sequence. I1: interaction occurs subsequent to a
search action. I2 & I3: interactions not triggered by a search action.

3.3 QUERY-DRIVEN DECODER WITH CUSTOMIZED MASK

3.3.1 QUERY-DRIVEN BLOCK

We developed QDB based on HSTU (Zhai et al., 2024) for efficient encoding of user histories. QDB
separate attention calculations for query placeholders, as expressed by Eqs. (5)-(9), where X1, X2

represent the original sequence and the query placeholder sequence, respectively. The split function
partitions the resulting tensor into four components: gating weights W , queries Q, keys K, and
values V . Y1 and Y2 are the outputs with respect to original sequence X1 and query sequence X2.
A1, M1 denotes the attention score and the mask matrix from the original input sequence. A2,k,
M2,k denotes the attention score and the mask matrix calculated between the query sequence and
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the sequence indicated by index k. The mask matrix M is derived by three matrices: causal mask,
session-wise mask, and invalid Q mask. Positional (Raffel et al., 2020) and ALiBi (Press et al.,
2021) temporal relative bias, rabpos and rabtime, are incorporated to refine the initial similarity
scores. SiLU (Elfwing et al., 2018) is used as the activation function. ⊙ denotes Hadamard product.

(Wk, Qk,Kk, Vk) = Split(SiLU(MLP1(Xk))), k ∈ {1, 2} (5)

A1 = M1 ⊙ SiLU(Q1K
T
1 + rabpos + rabtime) (6)

A2,k = M2,k ⊙ SiLU(Q2K
T
k + rabpos + rabtime), k ∈ {1, 2} (7)

Y1 = MLP2(Norm (A1V1)⊙W1) (8)

Y2 = MLP2(Norm (A2,1V1 +A2,2V2)⊙W2) (9)

Considering a ranking task, this optimization reduces HSTU’s computational complexity from
O(c′N2) to O(c′J(N + 1)). c′ is candidates per query, J is query placeholder count, and N is
the original input sequence length. J primarily accounts for behaviors needing learning in Q within
the streaming training time slice, making J ≪ N , attributable to the superior efficiency of QDB
compared to HSTU. Furthermore, similar acceleration gains are achievable if HSTU is replaced by
transformer architectures. More implementation details and efficiency experiments are provided in
Appendix D.

3.3.2 SESSION-WISE MASK AND INVALID Q MASK

To maintain consistency between offline training and online deployment, we propose a session-
wise masking mechanism that imposes additional temporal constraints into the encoding of user
interaction sequences. As illustrated in Fig. 5, a typical user shopping journey follows the sequence:
“browse → click → purchase”. Merely applying causal masking makes that the purchase action
would inappropriately observe preceding interactions with the same item (see top-left of Fig. 5). To
resolve this discrepancy, IntSR introduces the session-wise masking to avoid items within the same
session to interact with each other (see Appendix E for an example).

Figure 5: Session-wise masking ensures online-offline consistency. This allows the S&R system to
predict item purchases upon page access, even without explicit browsing or clicking.

As previously outlined, Q placeholders accommodate various query types: user search requests, pos-
itive/negative target item sets, and a shared universal token. Since Q is part of the input sequence, its
representation can influence all tokens. However, Q tokens can only serve as keys and values when
encoded as user queries. Invalid Q tokens are explicitly excluded from the attention computation to
ensure reasonable final representations (see Appendix E for an example).

3.4 SOLVING TIME-VARYING VOCABULARY MISALIGNMENT

As demonstrated in prior discussions, comparison should be grounded in the co-existence of positive
and negative samples. This can be achieved by using a loss function with temporal candidate align-
ment. For IntSR, we use the InfoNCE loss to update model parameters, as expressed by Eq. (10).
For each user-item interaction a ∈ Au, i+ denotes the ground truth item, and Ita ⊆ I represents
the available candidate set at timestamp ta when interaction a occurs. Let ou,a denotes the out-
put of DSFNet encapsulating the input sequence, zu,a,i = sim(ou,a, embi) is the score of item i.
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δu,a ∈ {0, 1} is a binary constant that indicates whether the corresponding interaction should be
learned by the model.

L = − 1

|A|
∑
u∈U

∑
a∈Au

δu,alog
exp(zu,a,i+)∑
i∈Ita

exp(zu,a,i)
(10)

Note that calculating Eq. (10) may be computational-expensive under large size of the whole candi-
date set Ita . Thus, negative sampling is necessary to improve training efficiency, which should be
constrained by the temporal alignment, i.e., only instances that exactly exist when user-item inter-
action occurs can be treated as negative samples. This can be expressed by Eq. (11), where probi
represents the probability of item i being sampled as a negative instance and can be defined ac-
cording to specific negative sampling strategy. It represents the set of all available candidates at
timestamp t. The final probability, probi,t, is determined by both probi and It.

probi,t =

{
probi, if i ∈ It,
0, otherwise.

(11)

4 EXPERIMENTS

A series of experiments are conducted and reported to answer the following Research Questions:

• RQ1: How does proposed IntSR perform on S&R tasks compared with other baselines?
• RQ2: To what extent does candidate misalignment impact generative model performance?
• RQ3: How does each module in IntSR contribute to its final performance?
• RQ4: What is the impact of model width and depth on scaling?

4.1 EXPERIMENT SETTINGS

4.1.1 DATASETS AND BASELINES

To evaluate our proposed model, we conduct experiments on a combination of public benchmarks
and industrial datasets. Specifically, to answer RQ1 and RQ3, the overall effectiveness of IntSR
is assessed on two widely used public datasets that contains both S&R behaviors: KuaiSAR1 (Sun
et al., 2023) and Amazon2. We evaluate the effectiveness of candidate alignment on one industrial
dataset (RQ2). Its explicit information of item lifecycle allow temporal-aligned sampling and whole-
candidate-set evaluation for more convincing performance comparisons. We investigated the impact
of model width and depth on scaling (RQ4) using this same industrial dataset. Details of three
datasets are provided in Appendix F.

A series of state-of-the-art methods of recommendation, search, and joint models are used as base-
lines. The recommendation baselines without leveraging search data include the following: (1)
DIN (Zhou et al., 2018) captures user interest from historical behaviors using an attention mecha-
nism. (2) SASRec (Kang & McAuley, 2018) is a classic transformer-based sequential recommen-
dation model. (3) BERT4Rec (Sun et al., 2019) is a sequential recommendation model applying a
bidirectional transformer. (4) FMLP (Zhou et al., 2022) is an all-MLP sequential recommendation
model with feature filtering in frequency domain. (5) HSTU (Zhai et al., 2024) is a autoregressive
architecture designed to model user preference.

The baselines for search tasks without using recommendation data include the following: (1)
HEM (Ai et al., 2017) learns semantic representations of users, queries and items using a hierar-
chical embedding model. (2) ZAM (Ai et al., 2019) applies an attention mechanism for history
aggregation and controls the personalization degree by a zero attention strategy. (3) TEM (Bi et al.,
2020) is a transformer-based embedding model for personalized product search. (4) CoPPS (Dai
et al., 2023) applies contrastive learning to learn user representations.

Joint S&R baselines include the following: (1) JSR (Zamani & Croft, 2018) models S&R tasks
with a joint loss. (2) USER (Yao et al., 2021) models S&R tasks on an integrated sequence of user

1https://kuaisar.github.io/
2http://jmcauley.ucsd.edu/data/amazon/
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behaviors from both domains. (3) UnifiedSSR (Xie et al., 2024) models S&R tasks using a dual-
branch architecture with shared parameters and separated behavior sequences. (4) UniSAR (Shi
et al., 2024) models the transition behaviors between S&R.

4.1.2 IMPLEMENTATION DETAILS

Widely used metrics in S&R systems, top-k Hit Rate (HR@k) and Normalized Discounted Cumu-
lative Gain (NDCG@k), are employed to evaluate model performance, with k ∈ {1, 5, 10}.

Settings of experiments on public datasets are kept as consistent as possible with the open-source
code repository released by Shi et al. (2024). When training IntSR, we use 3 QDBs and set em-
bedding size d to 32. The number of historical recommendation and search behaviors visible for
each action was fixed at 30 during both training and inference. The learning rate is set to 1 × 10−3

and batch size is set to 32. Following previous works, the model performances on public datasets
are evaluated on 99 randomly sampled negative instances that user has not interacted with. For
KuaiSAR, due to sparse search behaviors after 5-core filtering, we train IntSR with recommenda-
tion loss first then fine tune the model with search loss. Since the search behaviors of Amazon
(Kindle Store) are repetition of recommendation behaviors, we apply a mask mechanism to avoid
label leakage during model training and inference. Implementation details of IntSR on the industrial
dataset are provided in Appendix G.

Table 1: Overall performance of IntSR and baselines on search task. * indicates a statistically
significant improvement of IntSR over the strongest baseline (t-test, p-value < 0.01).

Dataset Model HR@1 HR@5 HR@10 N@5 N@10

Amazon

HEM† 0.2497 0.6778 0.8267 0.4736 0.5221
ZAM† 0.2954 0.7109 0.8468 0.5147 0.5590
TEM† 0.4090 0.8185 0.9051 0.6303 0.6587
CoPPS† 0.4052 0.8169 0.9051 0.6281 0.6570

JSR† 0.3176 0.7038 0.8225 0.5173 0.5563
USER† 0.4123 0.7631 0.8697 0.6000 0.6348
UnifiedSSR† 0.3663 0.7744 0.8812 0.5847 0.6196
UniSAR 0.5343 0.8190 0.8977 0.6875 0.7132
IntSR 0.5678∗ 0.8266∗ 0.8920 0.7091∗ 0.7305∗

KuaiSAR

HEM† 0.3337 0.6505 0.7653 0.5029 0.5400
ZAM† 0.2815 0.6117 0.7344 0.4560 0.4959
TEM† 0.3045 0.6502 0.7632 0.4887 0.5254
CoPPS† 0.3117 0.6616 0.7707 0.4977 0.5331

JSR† 0.4543 0.7162 0.7961 0.5962 0.6221
USER† 0.4628 0.7304 0.8149 0.6069 0.6342
UnifiedSSR† 0.4389 0.7377 0.8320 0.5991 0.6297
UniSAR 0.5282 0.7476 0.8369 0.6417 0.6708
IntSR 0.5685∗ 0.7950∗ 0.8516 0.6945∗ 0.7128∗

4.2 EFFECTIVENESS OF INTSR IN S&R TASKS (RQ1)

Table 1 and Table 2 provide the results of S&R tasks on two public datasets. We abbreviate NDCG
as “N”. The best results are in boldface and the second best are underlined, and this convention
holds for all other tables. Baselines marked with † mean that the related results are directly reported
from their respective papers (Shi et al., 2024). Other values are obtained from our reproduced
experiments or our proposed model. IntSR consistently achieves state-of-the-art performance across
most evaluation metrics (e.g., HR@1, NDCG@5, NDCG@10) on both the Amazon and KuaiSAR
datasets. The model excels in HR@1 and NDCG@5, confirming its enhanced capability to give a
high score to the most relevant results. This highlights IntSR’s effectiveness and efficiency in search
tasks. For recommendation tasks, according to Table 2, IntSR consistently demonstrates superior
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Table 2: Overall performance of IntSR and baselines on recommendation task. * indicates a statis-
tically significant improvement of IntSR over the strongest baseline (t-test, p-value < 0.01).

Dataset Model HR@1 HR@5 HR@10 N@5 N@10

Amazon

DIN† 0.2159 0.5170 0.6525 0.3726 0.4165
SASRec† 0.2059 0.5295 0.6772 0.3747 0.4225
BERT4Rec† 0.2481 0.5311 0.6658 0.3954 0.4390
FMLP† 0.1991 0.5356 0.6879 0.3739 0.4232
HSTU 0.3446 0.6205 0.7278 0.4908 0.5256

JSR† 0.2346 0.5467 0.6779 0.3970 0.4396
USER† 0.2361 0.5441 0.6854 0.3964 0.4422
UnifiedSSR† 0.2013 0.5196 0.6707 0.3662 0.4151
UniSAR 0.3010 0.5874 0.7020 0.4513 0.4885
IntSR 0.3740∗ 0.6561∗ 0.7574∗ 0.5242∗ 0.5570∗

KuaiSAR

DIN† 0.1629 0.4509 0.6179 0.3104 0.3643
SASRec† 0.1249 0.4065 0.6007 0.2671 0.3298
BERT4Rec† 0.1061 0.3699 0.5885 0.2381 0.3083
FMLP† 0.1370 0.4292 0.6159 0.2851 0.3453
HSTU 0.1881 0.4920 0.6757 0.3444 0.4037

JSR† 0.1754 0.4791 0.6453 0.3315 0.3853
USER† 0.1489 0.4086 0.5627 0.2820 0.3318
UnifiedSSR† 0.1225 0.3981 0.5939 0.2617 0.3249
UniSAR 0.1990 0.5169 0.6792 0.3632 0.4158
IntSR 0.2179∗ 0.5373∗ 0.7248∗ 0.3815∗ 0.4421∗

performance. Notably, IntSR’s impressive performance in HR@1 underscores its exceptional ability
to position the most relevant item at the top, which is crucial for effective recommendation systems.

4.3 INFLUENCE OF CANDIDATE SET MISMATCH (RQ2)

Table 3: Performance comparison of different negative sampling strategies on industrial dataset.

Negative sampling strategy HR@1 HR@5 HR@10 N@5 N@10

RNS 0.1426 0.3691 0.4991 0.2592 0.3012
RNS (aligned) 0.1810 0.4269 0.5573 0.3075 0.3497
PNS (best) 0.1430 0.3655 0.4914 0.2576 0.2983
PNS (best, aligned) 0.1760 0.3949 0.5327 0.2817 0.3264
HNS 0.1569 0.3880 0.5150 0.2763 0.3173
HNS (aligned) 0.1842 0.4305 0.5601 0.3112 0.3533

We validate the effectiveness of temporal candidate alignment on the industrial dataset with several
popular negative sampling strategies. Instead of the common practice of evaluating the model against
the entire set of items, we evaluate it using only the items that were available at the time each
user-item interaction occurred. The number of negative samples are set to 20. For hard sampling
strategy, we choose 20 items with the highest prediction scores at each training step as negative
samples. Results are presented in Table 3. “aligned” indicates that these strategies are enhanced
with candidate alignment. For PNS which uses a power coefficient α to control sampling probability
based on frequency, we tune α over a range of values and report the best results.

As shown in the Table 3, incorporating our proposed temporal alignment strategy for candidate
sets consistently yields substantial performance improvements, regardless of the negative sampling
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method employed. Candidate alignment not only improves hit rate but also significantly enhances
the ranking quality (NDCG) by placing correct items at more front positions.

4.4 ABLATION STUDY (RQ3)

Table 4: Ablation result. For brevity, “session mask” means “session-wise mask”. All modules
contribute positively to the model’s performance. Removing session-wise mask decreases model
performance the most. Besides, search queries plays an important role in performance of both task.

Task Model HR@1 HR@5 HR@10 N@5 N@10

Search

w/o S 0.5516 0.8169 0.8867 0.6962 0.7189
w/o search queries 0.4023 0.6453 0.7406 0.5315 0.5624
w/o session mask 0.2024 0.3958 0.5008 0.3030 0.3369
w/o DSFNet 0.5560 0.8157 0.8836 0.6975 0.7196
w/o relative bias 0.5050 0.7861 0.8644 0.6568 0.6823
IntSR 0.5678 0.8266 0.8920 0.7091 0.7305

Recommendation

w/o S 0.3311 0.6076 0.7162 0.4779 0.5131
w/o search queries 0.3325 0.6008 0.7090 0.4746 0.5096
w/o session mask 0.2864 0.5292 0.6355 0.4142 0.4486
w/o DSFNet 0.3584 0.6329 0.7391 0.5041 0.5386
w/o relative bias 0.3574 0.6419 0.7464 0.5082 0.5421
IntSR 0.3740 0.6561 0.7574 0.5242 0.5570

Ablation experiments are performed with five variants of IntSR on Amazon to verify the contribution
of each components: (1) w/o S: S tokens carrying the spatiotemporal information (only temporal
information in public datasets) is removed in the input sequence; (2) w/o search queries: search
queries are removed; (3) w/o session-wise mask: only causal mask and invalid Q mask are applied
in self-attention calculation of qeury-driven block; (4) w/o DSFNet: DSFNet module is replaced by
MLPs; and (5) w/o relative bias: both relative positional and temporal bias in QDB are removed.

Table 4 shows the results on both tasks. The experimental results demonstrate a positive contribution
from every module to the model’s performance. As mentioned above, search behaviors in Amazon
dataset is the duplication of recommendation behaviors, therefore, we can define sessions according
to each pair of duplicated behaviors and employ session-wise mask. It is indicated that session-wise
mask improves model performance the most, since it prohibits the model focus on user interests
rather than the immediate preceding interactions. The results of w/o search queries highlight the
advantage of jointly modeling search and recommendation tasks: utilizing search queries improves
the recommendation performance.

4.5 SCALING-LAW VALIDATION (RQ4)

Figure 6: Scaling results of IntSR. Scaling up the model by adjusting the embedding size and the
number of QDB layers leads to continuous performance improvement.

We scaled up IntSR by adjusting the embedding size and the number of QDB layers on one of
our industrial dataset. The model’s parameter size was varied from 0.07B to 1.11B. Results are
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presented in Fig. 6. The left subplot shows the effect of various embedding size on HR@1, with
the number of QDB layers fixed at 8. The middle subplot shows the effect of varying the number
of QDB layers, with the embedding size fixed at 1024. The right subplot illustrates the relationship
between HR@1 and FLOPs. The results demonstrate a consistent improvement in HR@1 as the
model size increases, which confirms the strong scalability of IntSR. Specifically, a relative increase
of 14.3% is observed when the model parameter size is scaled up from 0.14B to 1.11B.

Additionally, it is observed that the fitted line for the QDB layers has a steeper slope compared to
that for the embedding size. This indicates that, under conditions where embedding size and depth
are no longer limiting factors, adding layers leads to larger performance gains.

4.6 ONLINE A/B TEST (RQ1)

We conduct online A/B experiments in three product scenarios to validate the effectiveness of IntSR.
For the control group, we randomly selected 10% of users and routed their requests to the production
baseline model. In the first scenario, IntSR has achieved a 9.34% relative increase in the overall
Gross Merchandise Volume (GMV). IntSR also achieves a 2.76% relative lift in Click Through Rate
(CTR) for the second scenario and improves accuracy (ACC) by 7.04% for the third scenario.

5 RELATED WORKS

Generative Recommendation. The recent success of LLMs has inspired a growing interest in
adopting generative frameworks for recommendation and search tasks (Rajput et al., 2023; Zhai
et al., 2024; Chen et al., 2025). These efforts can be categorized into two main paradigms. The
first paradigm leverages LLMs as a direct predictors (Wu et al., 2024). Typically, user’s historical
interaction sequences and profile features are converted into textual inputs (often via task-specific
prompts). LLMs are expected to generate recommendation results based on the inputs. The second
paradigm focuses on utilizing LLMs as feature extractors and reformulating the recommendation
or search task itself into an autoregressive framework, thereby adapting LLM architectures and
knowledge to the recommendation or search domain (Zhai et al., 2024; Deng et al., 2025).

Joint Search and Recommendation. The integration of S&R has emerged as a significant trend
in recent years. One approach focuses on search-enhanced recommendation, where search data is
utilized as supplementary input to improve the quality of recommendations (Si et al., 2023a;b). The
second category involves unified S&R, which aims for a more holistic joint learning process that
simultaneously enhances model performance in both S&R (Zhao et al., 2022; Xie et al., 2024). As
generative frameworks are independently used in search and recommendation, the integration of
LLMs as direct predictors for joint search and recommendation has commenced (Shi et al., 2025;
Zhao et al., 2025). However, these methods present significant implementation challenges in sce-
narios that require large-scale deployment and low-latency responses. Applying an autoregressive
framework within joint search and recommendation is an important task.

Negative sampling. Negative sampling refers to the strategy that samples several items from unla-
beled data as negative instances. RNS is easy to implement and has been widely employed across
diverse recommendation models and tasks (He et al., 2020; Yang et al., 2022). Unlike RNS adopts a
uniform sampling probability, PNS selects negative instances according to the popularity (Mikolov
et al., 2013; Caselles-Dupré et al., 2018). HNS chooses items that are most likely to be confused
with positive samples as negative instances (Huang et al., 2021; Lai et al., 2024).

6 CONCLUSION REMARKS

This study presents IntSR, a novel framework that successfully unifies the traditionally separate tasks
of recommendation, search, retrieval, and ranking under a single generative paradigm. Our core
insight is that these tasks can be elegantly unified by treating the query as the central, distinguishing
element. Additionally, the time-varying vocabulary misalignment problem is first identified and
formulated. We demonstrated that failing to account for the dynamic nature of candidate sets over
time leads to erroneous pattern learning. Negative sampling with a dynamic corpus is proposed to
address this critical issue. The successful large-scale online deployment of IntSR, yielding state-of-
the-art online metrics including substantial increases in CTR, ACC, and GMV.
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ETHICS STATEMENT

Experiments in this study were conducted on two types of datasets: two publicly available datasets
and one proprietary industrial dataset. The public datasets are openly accessible, have undergone
anonymization, and are broadly employed in prior research. For the proprietary industrial dataset,
the collection of all data was authorized by users through their consent obtained during the utiliza-
tion of the respective software products. All user-related information was anonymized to protect
personal privacy, ensuring that researchers could not identify or locate any user-specific private in-
formation from the data. We maintained academic integrity throughout all experiments. We will
openly share our industrial dataset (fully or partially) and code with respect to temporal-aligned
negative sampling, thereby facilitating ethical review and valuable community dialogue.

REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of the findings presented in this manuscript, we have made com-
prehensive efforts to document and share the necessary components. The detailed architecture and
implementation of our proposed IntSR are thoroughly described and illustrated in Section 3, Ap-
pendix B, D, and E. Our experiments utilize tow public datasets and one proprietary industrial
dataset. The acquisition, preprocessing steps, and data splitting strategies of public datasets are
described in Appendix F. For the private dataset, we provide the statistic information in Appendix F
and are going to make it open-access (fully or partially). Implementation details of all experiments
are provided in Section 4.1.2. We will make publicly available the code for our temporal-aligned
negative sampling strategy to advance studies concerning dynamic vocabulary alignment.

USE OF LLMS

In the preparation of this manuscript, Large Language Models (LLMs) were utilized solely as a
general-purpose writing assistant. Their application was strictly limited to language refinement, cor-
recting spelling and grammatical errors, and enhancing the overall fluidity and clarity of expression.
It is crucial to emphasize that all core scientific content, intellectual contributions, and novel ideas
presented in this manuscript were exclusively conceived, developed, and verified by the human au-
thors, independent of any LLM involvement. This includes, but is not limited to, the definition of the
research problem, the comprehensive literature review, the conceptualization and implementation of
the core methodology of IntSR for problem-solving, all content within figures and tables, the collec-
tion of all data, the design and execution of experiments, and the subsequent analysis of results. The
LLM served purely as a linguistic aid and was not involved in any conceptual or analytical aspect of
this research. The authors take full responsibility for the content presented herein.
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A NOTATIONS

This appendix provides the meanings of notations used in this study, see Table 5.

Table 5: Notations.

Symbol Description

U Set of all users; the elements in the set are denoted by u
I Set of all items; the elements in the set are denoted by i
It Set of available items at timestamp t; It ⊆ I
A Set of all user-item interactions
Au Interaction sequence of user u ∈ U
S Set of geo-hash and temporal tokens; the elements in the set are denoted by s
B Query set containing both original and LLM-generated queries
Cj Candidate set with respect to the jth query token of input sequence
qn+1 Query of user u expressing user’s interests of the (n+ 1)th interaction
pn+1 Page context features of the (n+ 1)th interaction
bn+1 Task tag of the (n+ 1)th interaction to indicate search or recommendation
L Loss function

δu,a
Binary constant; δu,a = 1 indicates the corresponding interaction should be
learned by the model (prediction loss is contained); otherwise, δu,a = 0

ou,a Output of DSFNet related to user u and interaction a
embi Embedding vector of item i
zu,a,i Similarity of embi and ou,a; zu,a,i = sim(ou,a, embi)
probi Probability of sampling item i as negative (without candidate alignment)
probi,t Probability of sampling item i as negative at t (with candidate alignment)
X Input features of QDB; X1 is the original sequence; X2 is the query sequence

Q,K, V
Query, key, and value matrix before self-attention calculation; when a
subscript k is used, k = 1 refers to the original input sequence, and k = 2
refers to the query sequence

M

Mask matrix for attention scores in QDB; calculated as the Hadamard
product of causal mask Mc, session-wise mask Ms, and invalid Q mask MQ;
M2,k denotes the mask between the query sequence and the sequence
indicated by index k

A
Attention scores in QDB; A2,k denotes the attention score calculated between
the query sequence and the sequence indicated by index k

rabpos Relative positional bias
rabtime Relative temporal bias
W Attention output gating weights
Y Output of QDB
f User profile features
R Scenario features; is the combination of f , puv+1, and request features
h Number of query-driven block layers
N Length of input sequence consiting of S, Q, I, F tokens
Ng The number of scenarios defined in DSFNet
d Dimension of embedding space
XDSF , X̃DSF Input features of DSFNet before and after scenario-aware feature filtering
γg,l Multi-scenario weights in lth DSFNet layer for scenario g ∈ {1, 2, ..., Ng}
W̃g,l, b̃g,l Learnable parameters of scenario g and lth DSFNet layer
Wl, bl Parameters of lth DSFNet layer; equals the weighted sum of W̃g,l, b̃g,l
c, c′ The number of negative samples and candidates per query, respectively
β Replacement probability of non-search Q tokens
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B DSFNET FOR MULTI-SCENARIO MODELING

Users’ behaviors are highly correlated with spatiotemporal context: they exhibit different prefer-
ences across various scenarios. These scenarios are formed by combining spatiotemporal features,
user’s current page context, search or recommendation tag, and personalized user profiles. To ad-
dress this multi-scenario problem, we employ DSFNet (Yu et al., 2025) after QDB. Ng is a hyper-
parameter representing the number of scenarios. For each scenario g ∈ {1, 2, ..., Ng}, the multi-
scenario weights in lth layer, γg,l, are derived from the spatiotemporal information sn+1, page
context pn+1, task tag bn+1, and user profiles f :

R = concat(sn+1, pn+1, bn+1, f) (12)

γg,l = 2 ∗ σ (MLPg,l (R)) (13)

where σ(·) is sigmoid activation function. The factor of 2 allows the weights to exceed 1, enabling
feature amplification. The dynamic parameters of lth layer, Wl and bl, are calculated as the weighted
sum of all scenarios, as expressed by Eq. (14). W̃g,l and b̃g,l are learnable parameters of scenario
g and lth layer. Moreover, the scenario information R is used to perform scenario-aware feature
filtering on the input feature XDSF before it is passed to the DSFNet block. This is formulated in
Eq. (15), where X̃DSF is features after filtering.

Wl =

Ng∑
g=1

γg,lW̃g,l, bl =

Ng∑
g=1

γg,lb̃g,l (14)

X̃DSF = XDSF ⊙ σ (MLP3(concat(XDSF , R))) (15)

C SEARCH QUERY GENERATION

We give an example of item Hello Kitty:

• Original user search queries:

– Hello Kitty
– Cartoon

• Item information:

– Name: Hello Kitty
– IP: Hello Kitty
– Category: Anime

• Item description:

– An iconic, mouth-less white kitten featuring a signature red bow on her head, round
eyes, and a pink nose. Her design is simple and soft.

– Characterized as innocent, kind-hearted, quiet, and friendly, she embodies pure joy
“without negative emotions”. Her dialogue style is warm, sweet, and adorable.

• Keywords: Hello Kitty, Anime, cartoon, kind, quiet, friendly.

• Expressions mimicking user search behaviors:

– Recommend some Hello Kitty items for me.
– Any recommendations for Anime?

Fig. 4 depicts how the search queries are integrated into the input sequence. In addition to original
user submissions, four other types of queries are incorporated into the input sequence with a pre-
defined probability, a method that significantly improves the model’s generalization and robustness.
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Figure 7: An Ranking Query Example. Each query token is replaced with candidate item tokens for
logit prediction. In the attention operation, the candidate tokens can only attend to themselves, as
indicated by the red arrows.

D IMPLEMENTATION DETAILS OF QUERY-DRIVEN DECODER

D.1 RANKING QUERY EXAMPLE

A query token can be a user query, a unified token, some item representations, or a mix of these. As
illustrated in Fig. 7, using the recommendation ranking task as an example, query-driven decoder
aims to predict the probability of query tokens at specific positions marked by query placeholders.
These predictions provide ranking scores for each candidate item.

Each group of candidates consists of one positive and multiple negative samples. During training,
each query token qj (a sequence may contain multiple such placeholders) is replaced with its corre-
sponding candidate item token Ij,i, where j ∈ {1, 2, ..., J} is the jth query token and J represents
the total number of query tokens in the input sequence. The modified sequence is input to IntSR
and the output is converted to logits of each candidate za,i by a MLP. At inference time, the query
placeholder is appended to the sequence, and the ranking results is determined by the output logits.

D.2 EFFICIENT CANDIDATE LOGIT COMPUTATION

Direct implementation of HSTU introduces significant computational overhead. Specifically, if we
denote the number of negative samples per query as c, the computational cost of the ranking model,
measured in GFLOPs, becomes c′ = c + 1 times that of the retrieval model. To mitigate this
inefficiency, we adopt a tow-stage computation as shown in Fig. 8.

The first stage processes the original sequence via self-attention and caches the resulting KV-Cache
pairs from each layer. In the second stage, candidate embeddings are appended to the original
sequence and efficiently processed through the self-attention layers by leveraging the pre-computed
KV-Cache. For sequences with multiple query placeholders, the corresponding candidate groups are
concatenated sequentially and masked according to Section 3.3.

Let N denote the length of original input sequence, since we transfer repeated computation on the
whole sequence into appending candidates to the sequence, the attention mask is thereby enlarged
from N×N to (N+C)×(N+C) where C =

∑J
j=1 |Cj | = Jc′, where Cj is the candidate set with

respect to jth query token, including both positive and negative instances. As shown in Fig. 9, the
expanded attention matrix is constructed by following steps: (1) the left-up N ×N block is identity
to original attention mask; (2) the bottom-right part is an identity matrix of size Jc′ × Jc′, as the
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Figure 8: Efficient candidate logit computation with KV-Cache. Initially, the original sequence is
encoded by the HSTU (not shown) to compute the keys and values for each token in every HSTU
layer. Subsequently, candidate embeddings are computed by applying self-attention using the cached
keys and values from the original sequence.

candidate tokens cannot attend to other tokens except for themselves; (3) the top-right part contains
J blocks with dimension of N × |Cj | and is set to all zeros to prevent candidates from attending
to original tokens; and (4) the bottom-left block, comprising J sub-blocks of size |Cj | × N . To
create each sub-block in step (4), we locate the self-attention row corresponding to jth query token
within the top-left matrix and replicate it |Cj | times. As our goal is to compute outputs only for the
candidates, the initial N rows of the attention output are omitted. This leaves the last Jc′ rows as
the final result.

Figure 9: Expanded mask for efficient candidate logit prediction. Matrix dimensions are annotated.
White regions indicate zero values. Gray stripes denote single rows, and green squares represent
individual elements.

The above optimization reduces the total computational complexity from O(c′N2) to O(c′J(N +
c′J)). By solving the corresponding quadratic inequality, we find that the overall complexity is
reduced when

N >
J(1 +

√
1 + 4c′)

2
.
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However, when a sequence contains a large number of query tokens (i.e., large J), the algorithm
becomes less efficient due to the quadratic dependency on Jc′. To further improve computational
efficiency, we focus on the bottom-right Jc′ × Jc′ diagonal block of the attention mask, which
governs the interactions among candidate tokens. Most entries in this block are masked out (set
to zero), as each candidate token can only attend to itself. An intuitive solution is to decouple the
computation of this block from the full attention mechanism, enabling specialized optimization for
this structured sparse pattern.

To implement this method, we define (input feature matrix X is omitted here for brevity):

• Q ∈ RJc′×d: query matrix for candidate tokens, where d denotes the dimension of embed-
ding space;

• [·; ·]: vertical concatenation; [·, ·]: horizontal concatenation;
• K = [K1;K2], V = [V1;V2]: key and value matrices with divided blocks K1, V1 ∈ RN×d

and K2, V2 ∈ RJc′×d; thus, K,V ∈ R(N+Jc′)×d;

• M = [M1,M2]: attention mask with divided blocks M1 ∈ RJc′×N and M2 ∈ RJc′×Jc′ ;
thus, M ∈ RJc′×(N+Jc′).

Under this formulation, the self-attention computation can be equivalently decomposed as Eq (16).

QKT = Q[KT
1 ,K

T
2 ] = [QKT

1 , QKT
2 ],

Attn = M ⊙ (QKT ) = [M1 ⊙QKT
1 ,M2 ⊙QKT

2 ],

AttnV = (M1 ⊙QKT
1 )V1 + (M2 ⊙QKT

2 )V2

(16)

While the term (M1 ⊙QKT
1 )V1 remains challenging to optimize, we observe a key structural prop-

erty: M2 ⊙QKT
2 is a diagonal matrix (Fig. 9). This implies that only the diagonal entries of QKT

2
need to be computed. Moreover, the result of (M2 ⊙QKT

2 )V2 is equivalent to scaling each row of
V2 by the corresponding diagonal element of M2 ⊙QKT

2 .

By avoiding the full computation of the Jc′ × Jc′ matrix, the complexity of this term is reduced
from O((Jc′)2) to O(Jc′). Because caling the rows of V2 does not change computation complexity,
the total computational complexity drops from O(Jc′(N + Jc′)) to O(Jc′(N +1)). Therefore, the
condition for complexity reduction becomes

J <
N2

N + 1
= N − N

N + 1
≈ N − 1

This condition, J < N − 1, is strictly satisfied, as the input sequence encodes more than just the
query tokens.

D.3 EFFICIENCY EXPERIMENTS

Table 6 provides the comparision experiments on Amazon dataset to measure the efficiency gains of
QDB. We compared QDB against its original, un-optimized version within the same IntSR model
architecture. Both inference latency (average time to process a single instance) and throughput
(instances processed per second) are measured on the same hardware environment (a single NVIDIA
H20 GPU with 96 GB memory) with a fixed batch size 64.

Table 6: Performance of QDB in improving latency and throughput

Model version Training throughput Inference latency Inference throughput
(instances/sec) ↑ (ms/instance) ↓ (instances/sec) ↑

Original module 21 (1.0×) 22.5 (1.0×) 85 (1.0×)
QDB 100 (4.76×) 18.5 (0.82×) 160 (1.88×)

According to Table 6, QDB increases training throughput by a factor of 4.76x, and increases infer-
ence throughput by 1.88x while reducing per-instance latency by 18%. The speed-up during training
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is more pronounced than during inference. This is because training requires both a forward pass and
a computationally expensive backward pass to calculate gradients and update parameters.

As analyzed above, the acceleration effect of QDB is directly correlated with the proportion of query
tokens in the input sequence. In our industrial application, we employ a stream-training paradigm
where query tokens are assigned only to the newly added interactions in a user’s history. This leads
to a much lower overall ratio of query tokens. For example, in the industrial dataset we mentioned
above, the daily volume of new user interactions accounts for less than 1% of the total dataset size.
Therefore, the performance gains from QDB are more significant.

E AN EXAMPLE OF CUSTOMIZED MASK

Figure 10: An example of customized masking mechanism. Rows are queries and columns are keys.

Fig. 10 illustrates an example of our customized masking mechanism. Taking the input sequence
“S1 → Q1 → I1 → F1 → Q2 → I2 → F2 → S2 → Q3 → I3 → F3” in Figure 2 as an example,
Figure 10 illustrates our customized masking mechanism on an N×N mask matrix, where rows are
queries and columns are keys, and N signifies the length of the input sequence. Visibility (green
with number 1) and invisibility (white) are determined by the following three rules:

• Causal masking: all tokens are masked from attending to subsequent positions in the se-
quence, resulting in the white upper triangle.

• Invalid Q masking: Q1 and Q3, as invalid instances, are made invisible as a key, preventing
it from exposing to other tokens.

• Session-wise masking: tokens within the same session are mutually invisible. For example,
action Group 1-1 (Q1, I1, F1) and Action Group 1-2 (Q2, I2, F2) cannot attend to each
other. Therefore, Q1’s attention is restricted to itself and S1, while Q3 can observe the
history of the first session (excluding invalid Q1) as it initiates a new session.

F DATASET DETAILS

The overall effectiveness of IntSR is assessed on two widely used public datasets that contains both
S&R behaviors: (1) KuaiSAR (Sun et al., 2023) is a dataset of authentic S&R user interactions
related to short videos. We adopt the same data preprocessing steps as Shi et al. (2024), and use
the last day’s data as the test set, the data of second last day as valid set, and the remaining data
for training. (2) Amazon is a well-known review dataset in recommendation systems. The search
queries and behaviors are created synthetically according to Ai et al. (2017). We choose the subset
of “Kindle Store” of the 5-core Amazon dataset. Users and items with less than 5 interactions
are removed. Following previous works (Shi et al., 2024), we adopt the leave-one-out strategy
to construct train, valid and test dataset. Additionally, one industrial dataset is used to evaluate
the effectiveness of temporal alignment sampling. Due to preprocessing and filtering, statistics in
Table 7 should not be interpreted as a reflection of the true user population or the entire item corpora.
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Table 7: Statistics of the datasets

Dataset Users Items User-item interactions

Mean Median

Amazon (Kindle Store) 68223 61934 28 15
KuaiSAR 22700 673415 218 106
Industrial dataset 52 M 819 12 2

G IMPLEMENTATION DETAILS ON INDUSTRIAL DATASETS

IntSR model on industrial dataset is trained using Adam optimizer (Kingma & Ba, 2014) with learn-
ing rate of 1 × 10−4 on 8 NVIDIA H20 GPUs with 96 GB memory. For RQ3, we use 3 QDBs,
a sequence length of 500, and an embedding dimension of 128 (h = 3, N = 500, d = 128). The
batch size is set to 64. Additionally, the number of scenarios for DSFNet is fixed at 2 and 3 layers of
DSFNet is used for all experiments. For validation of scaling characteristic (RQ4), we adjusted the
number of QDB layers h from 1 to 8, embedding size d from 256 to 1024, and used a fixed sequence
length N = 200.
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