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Abstract— Epilepsy patients often experience acute
repetitive seizures, known as seizure clusters, which can
progress to prolonged seizures or status epilepticus if left
untreated. Predicting the onset of seizure clusters is crucial
to enable patients to receive preventative treatments. Addi-
tionally, studying the patterns of seizure clusters can help
predict the seizure type (isolated or cluster) after observ-
ing a just occurred seizure. This paper presents machine
learning models that use bivariate intracranial EEG (iEEG)
features to predict seizure clustering. Specifically, we uti-
lized relative entropy (REN) as a bivariate feature to capture
potential differences in brain region interactions under-
lying isolated and cluster seizures. We analyzed a large
ambulatory iEEG dataset collected from 15 patients and
spanned up to 2 years of recordings for each patient,
consisting of 3341 cluster seizures (from 427 clusters) and
369 isolated seizures. The dataset’s substantial number of

Manuscript received 30 April 2023; accepted 7 May 2023. Date of
publication 10 May 2023; date of current version 3 October 2023. This
work was supported in part by NSF under Grant CNS-1624790, in part
by NIH under Grant R01-NS92882 and Grant UH3-NS095495, in part
by the JUMP Arches Foundation, and in part by the Mayo Clinic-lllinois
Fellowship for Technology Based Healthcare Research. (Corresponding
author: Krishnakant V. Saboo.)

The human data for this study was previously collected as part of a
safety and proof-of-concept efficacy investigation of a seizure advisory
system in people with drug resistant epilepsy. The human research
ethics committees of the participating institutes (three clinical centres
in Australia—Austin Health, the Royal Melbourne Hospital, and St
Vincent's Hospital, all of which are part of the Melbourne University
Epilepsy Group) approved the NeuroVista study at the time that the
study was carried out, and all patients gave written informed consent
before participation. In the current study, the legacy, de-identified iEEG
data from the prior NeuroVista study are used within an agreement with
the principal investigator of the study.

Krishnakant V. Saboo, Yurui Cao, and Ravishankar K. lyer are with
the Department of Electrical and Computer Engineering, University of
lllinois Urbana—Champaign, Urbana, IL 61801 USA (e-mail: ksaboo2@
illinois.edu; yuruic2@illinois.edu; rkiyer@illinois.edu).

Vaclav Kremen, Vladimir Sladky, Nicholas M. Gregg, and Gregory
A. Worrell are with Mayo Clinic, Rochester, MN 55902 USA
(e-mail: kremen.vaclav@mayo.edu; sladky.vladimir@mayo.edu;
gregg.nicholas@mayo.edu; Worrell.Gregory@mayo.edu).

Paul M. Arnold is with the Carle Foundation Hospital, Urbana,
IL 61801 USA (e-mail: paul.arnold@carle.com).

Philippa J. Karoly is with the Department of Biomedical Engineering,
The University of Melbourne, Parkville, VIC 3010, Australia (e-mail:
karoly.p@unimelb.edu.au).

Dean R. Freestone is with Seer Medical Pty Ltd., Melbourne,
VIC 3000, Australia (e-mail: Dean@seermedical.com).

Mark J. Cook is with the Department of Medicine, St Vincent's Hospital
Melbourne, University of Melbourne, Fitzroy, VIC 3065, Australia (e-mail:
markcook@unimelb.edu.au).

Digital Object Identifier 10.1109/TNB.2023.3275037

seizures per patient enabled individualized analyses and
predictions. We observed that REN was significantly dif-
ferent between isolated and cluster seizures in majority of
the patients. Machine learning models based on REN: 1)
predicted whether a seizure will occur soon after a given
seizure with up to 69.5% Area under the ROC Curve (AUC),
2) predicted if a seizure is the first one in a cluster with up
to 55.3% AUC, outperforming baseline techniques. Overall,
our findings could be beneficial in addressing the clinical
burden associated with seizure clusters, enabling patients
to receive timely treatments and improving their quality of
life.

Index Terms— Seizure clusters, relative entropy (REN),
intracranial EEG (iEEG), seizure cluster prediction,
bivariate feature.

[. INTRODUCTION

PILEPSY is a neurological disorder that affects millions
Eof people worldwide and is characterized by recurrent,
unpredictable seizures that can significantly impact patients’
quality of life. Seizure clustering i.e., multiple seizures occur-
ring within a short period, is a common phenomenon in people
with epilepsy, with prevalence rates ranging from 13% to
76% [1]. Studies have shown that patients who experience
seizure clusters have worse disease outcomes than those who
do not [2]. Patients are often prescribed stronger anticonvulsant
medications to manage the risk of seizure clusters, which may
cause unwanted side effects [3]. These medications are given
preemptively at the first sign of a seizure cluster (which may be
the first seizure in many patients) since it is unknown whether
another seizure will occur shortly after the termination of a
seizure. Therefore, predicting whether a seizure will cluster,
i.e., additional seizures occur shortly after the termination of
the given seizure, is of great clinical importance.

Our goal is to develop individualized machine learning
(ML) models for predicting seizure type, i.e., whether a seizure
is an isolated seizure or part of a seizure cluster, using
intracranial EEG (iEEG) data. iEEG data can be useful in
creating models that offer precise and personalized predictions
because it has the potential to capture differences in seizures
of different types in patients with drug-resistant epilepsy [1],
[3]. This paper extends our previous work [4], which demon-
strated individualized models for predicting seizure type based
on the differences in network interactions between isolated
and cluster seizures. The current study further evaluates the
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clinical viability of cluster prediction by developing models for
predicting cluster onset, studying the effects of training data
size on prediction performance, and investigating the relation-
ships between patient characteristics and model performance.

Predicting seizure types presents several challenges. Firstly,
the difficulty of collecting long-term iEEG data with a suffi-
cient number of isolated and clustered seizures for individuals
presents a significant barrier in developing predictive models.
Secondly, the differences in iEEG characteristics of isolated
and cluster seizures are not yet fully understood. Third, there
is limited exploration of machine learning (ML) methods that
can be used for individualized cluster prediction. Although
Ferastraoaru et al. identified differences in the duration of
isolated and cluster seizures by pooling short-term data from
92 patients, they had limited data from each patient (3 —
31 seizures each) to explore patient-specific differences [5].
The patient-specific nature of seizure dynamics suggests that
the differences between isolated and cluster seizures may be
unique to each patient [6]. Karoly et al. found variations in the
pre-ictal iEEG energy between isolated and cluster seizures in
three out of 15 patients in the long-term NeuroVista data [7].
Chen et al. employed support vector machines to predict lead
seizures (i.e., cluster onset) in canines using power in band
features of inter-ictal long-term iEEG [8]. However, these
studies did not investigate fine-grained iEEG features, such as
bivariate features, which may further highlight patient-specific
differences. To the best of our knowledge, previous stud-
ies have not demonstrated individualized iEEG-based seizure
cluster prediction in humans.

Our prior research employed an innovative approach to
address these gaps for predicting individualized seizure type
using ML and a bivariate feature extracted from various phys-
iologic frequency bands from long-term iEEG data [4]. (i) We
studied various frequency bands to capture patient-specific
bands with prominent seizure-related iEEG changes [9]. (ii)
Since epilepsy is a network disorder [10], [11], we employed
a bivariate feature, relative entropy (REN), to quantify the net-
work interactions underlying different seizure types. (iii)) We
used individualized long-term iEEG data to capture a sufficient
number of seizures in each patient to explore patient-specific
differences in dynamics [6] and train individualized models.
Finally, (iv) we trained various linear and non-linear ML
models using REN data as features to predict seizure type.

Here, we extended our approach to predict the onset of
seizure clusters, which is important for administering appro-
priate treatment to prevent progression [12]. Furthermore,
we investigated the minimum training sample size required
to achieve optimal performance of the individualized models.
This could be beneficial in pre-surgical iEEG monitoring when
a limited number of seizures are often recorded [13]. Patients
with implanted iEEG recording devices can also benefit from
earlier predictions that require less training data. Lastly,
we explored the association between patient characteristics
(demographics, disease duration, etc.) and model performance
to guide the selection of patients who could benefit from the
development of individualized prediction models.

We evaluated our approach using NeuroVista data [14], one
of the largest chronic ambulatory iEEG datasets, consisting
of data from 15 patients with up to 2 years of recordings

for each patient. The analysis included 3710 isolated and
cluster seizures. Seizures within 24 hours of each other were
considered to belong to a cluster. For each seizure, iEEG
data from the ictal and 10 minutes pre-ictal period (near-
seizure) were used. We computed REN from the iEEG data
since it has previously been used for seizure detection [15]
and seizure onset zone localization [16]. To evaluate whether
REN captures differences in seizure types, averaged REN
values in different frequency bands for isolated and cluster
seizures were statistically compared [6]. Based on insights
from the statistical analysis, we developed several individu-
alized ML-based prediction models (i) to predict whether the
subsequent seizure will occur shortly in the future after the
given seizure, and (ii) to predict cluster onset. We compared
ML models’ performance with baseline techniques. Finally,
we assessed the robustness of our results by repeating the
analyses with seizures within 8 hours of each other being
considered as part of a cluster.

Our contributions are as follows:

1) We proposed a generic framework (Figure 1, Figure 3)
for investigating the dynamics of cluster seizures and for
predicting if a given patient will experience a seizure
cluster or an isolated seizure.

2) Using REN from various frequency bands, we found
significant differences between the dynamics of isolated
and cluster seizures in six patients, substantially improv-
ing over a previous approach that found differences only
in three patients on the same dataset.

3) Majority of the differences were in the beta and gamma
bands and during the near-seizure period. Compared to
isolated seizure, near-seizure REN was higher and ictal
REN was lower for cluster seizures.

4) Individualized ML models predicted subsequent seizure
onset in the near future with 69.5% AUC and predicted
cluster onset with 55.3% AUC, outperforming baseline
predictors. Patient characteristics were not associated
with the prediction performance.

5) We observed that the minimum number of training
sampled needed to achieve optimal ML performance for
seizure type prediction varied across patients.

6) The results were robust to change in the inter-seizure
interval threshold for clustering.

The models can be clinically valuable in guiding the selec-
tion of anticonvulsant medications based on seizure type.
Moreover, insights into the dynamics of seizure clusters can
guide the exploration of techniques to mitigate their clinical
burden, e.g., through changes in brain stimulation parameters.

[I. METHODS

The overall analyses pipeline is shown in Figure 1. The
details of each step are described below.

A. Long-Term i[EEG Data Collection

We used data that was collected as part of the Neu-
roVista study in Australia [14] (Clinical Trial number -
NCT01043406). In that study, 15 patients with refractory
epilepsy were implanted with an intracranial EEG device that
collected data in an ambulatory setting for up to 2 years in each
patient. Data from six patients was excluded from this study
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Fig. 1. Analysis pipeline. iEEG data was pre-processed to extract bivariate iEEG features. The ground truth information of seizure types along with
the features was used for statistical analyses and machine learning modelling.

due to significant data drops which could affect the analysis
of clustering. The nine patients included in the study had an
average recording duration of 550 £ 208 days. Data for each
patient consisted of iEEG data collected from 16 electrodes (2
lead assemblies with 8 contacts distributed across 2 electrode
arrays each) placed on the presurgically assessed seizure onset
zone. Data was sampled at 400Hz and wirelessly transmitted
from the implanted device to an external, hand-held personal
device.

B. Seizure Detection and the Selection of Near-Seizure
Data

Seizures were detected from the iEEG data for each patient
using a published methodology [17]. This procedure resulted
in an average of 412.2 + 348.4 seizures per patient over
the course of their entire recording. The average duration of
the seizures was 39.0 £ 63.6s. Since pre-ictal activity near
seizure onset can show differences between different seizure
types [7], we included pre-ictal iEEG in our analysis. For each
seizure, pre-ictal iEEG up to 10 minutes prior to seizure onset
was considered because seizure-related changes can manifest
in that duration [18]. In case a seizure had occurred within
the previous 10 minutes of the given seizure, the iEEG data
between the termination of the previous seizure and the onset
of the given seizure was considered. We refer to this pre-ictal
iEEG data as near-seizure.

C. IEEG Preprocessing

iEEG data was preprocessed as follows. First, since ambu-
latory recordings can have several artifacts, we used a bipolar
montage for referencing the signals. Bipolar montage was
computed by taking the difference between the iEEG signals
on consecutive channels on each array, resulting in 12 bipolar
pairs (2 lead assemblies x 2 arrays x 3 bipolar pairs per array)
per patient. For clarity, we refer to each bipolar pair as an
“electrode” for the remainder of the analysis unless otherwise
stated. Seizure and near-seizure iEEG data from each electrode
was divided into 2.5s non-overlapping segments. Segment
length was chosen as 2.5s to provide a sufficient number
of samples in each segment to robustly estimate relative
entropy. Segments in seizure and near-seizure periods were

aligned to seizure onset. Additional artifact removal was not
done because the iEEG data used for the analysis was of a
short duration and since bipolar montage can remove artifacts
that are common across channels. Data in each segment
was filtered into the following physiologic bands for feature
extraction: delta (0.5 - 4Hz), theta (4 - 8Hz), alpha (8 -
12Hz), beta (12 - 25Hz), and gamma (25 - 45Hz) using nd
order Butterworth bandpass filters. The resulting timeseries for
each band and electrode within a segment was independently
normalized to have zero mean and unit variance.

D. Seizure Cluster Detection

Seizure clusters were identified based on the inter-seizure
intervals (ISIs) of successive seizures. Several definitions for
seizure clusters have been proposed in literature based on
a cutoff for the ISI, ranging from 2 hours to 24 hours [5],
[19]. For this analysis, we used 24 hours as the cutoff since
it is widely used. Based on this definition, seizures were
categorized into the following three types: (i) Isolated seizures
were seizures that did not have a seizure 24 hours before or
after them. The remaining seizures were categorized as cluster
seizures. Cluster seizures were further categorized into (ii)
cluster-last, which were the last seizures in clusters, and (iii)
cluster-non last, which were seizures in a cluster that were
not the last seizure. Our analyses also considered (iv) cluster-
first seizures, which were the first seizures in clusters. Seizures
within clusters were subcategorized to study differences and
similarities between those subcategories and isolated seizures.
Near-seizure iIEEG segments were considered to be in the
same category as their corresponding seizure. To assess the
robustness of our results to the definition of seizure clusters,
we also evaluated all the results for an 8 hour ISI cutoff.

E. Bivariate Feature Computation

REN is a bivariate feature and quantifies the dissimilar-
ity in the distribution of iEEG signal amplitudes between
two electrodes. REN was computed for each segment and
band separately. For a pair of electrodes, the distributions of
amplitudes of the filtered signals were compared using KL
divergence (Figure 2). Since KL divergence is nonsymmetric,
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Fig. 2. Examples of REN computation. Panels show the normalized

signals, the distributions of their amplitudes, and the resulting REN
value. The upper panel shows a pair of signals that have a higher REN
value than the signals in the lower panel.

the dissimilarity was measured with each signal as reference
and the maximum was considered as REN [16]. REN was
computed for all pairs of electrodes within a patient.

F. Statistical Analyses

We compared REN of different types of seizures separately
for each band. Since we were primarily interested in differ-
ences between isolated and cluster seizures, in each scenario
three comparisons were done: (i) isolated vs cluster-first, (ii)
isolated vs cluster-non last, and (iii) isolated vs cluster-last.
Wilcoxon rank sum test was used for statistical comparison,
and FDR correction was applied to correct for multiple testing.

G. Machine Learning Prediction Models

We tested several linear and non-linear classification meth-
ods for predicting seizure clustering (Figure 3). The linear
models evaluated in this study were logistic regression and
support vector machine (SVM). Among non-linear classifiers,
random forest, decision trees, and k-nearest neighbors (k-NN)
were evaluated. For each classifier, we used 5-fold stratified
cross validation with 80%-20% training-testing split of the
patient’s data. Classifiers were individualized by only training
and testing on data of the same patient. Since each method had
several hyper-parameters that could affect model performance,
we used inner 5-fold stratified cross validation for selecting
hyper-parameters using only the training data (which was
split into training and validation sets). Hyper-parameters for
each classifier were the same as in the previous study [4].
Due to imbalance in class sizes, samples were weighted
inversely proportional to class size during model training.
We used precision, recall, F1-score, and area under the receiver
operating characteristics curve (AUC) as performance metrics.

We considered two prediction tasks. (1) Next seizure predic-
tion: For the first task, we used average REN values from the
different bands and periods as input and predicted whether

Individual patient data
(features, class labels)

v

’ Random shuffling ‘
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Class labels: Seizure type

CV (k=5) for model evaluation
T T T T T
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Fig. 3.  Workflow for developing and evaluating seizure cluster predic-
tion models. Abbr: CV, cross-validation; log. reg., logistic regression.

the next seizure would occur within 24 hours of the given
seizure or not. For this task, seizures were divided as follows:
(1) “isolated + cluster-last” - isolated seizures and the last
seizure in clusters, since no seizure occurs shortly after them;
and (ii) “cluster-non last” - the remaining seizures in clusters.
(2) Cluster onset prediction: For this task, we used average
REN values from the different bands and periods as input and
predicted whether the given seizure was an isolated seizure
or the first seizure in a cluster. For this task, seizures were
divided as follows: (i) “isolated” - isolated seizures since no
seizure occurs shortly after them; and (ii) “cluster-first” - the
first seizure in clusters because it indicates the onset of a
cluster. During robustness analysis, the same classes were used
although the model predicted whether the next seizure would
occur within 8 hours of the given seizure or not.

We compared the models with two baseline predictors:
(i) a chance-level predictor (baseline 1), and (i) a model
that always predicts “cluster”, i.e., another seizure will occur
soon (baseline 2). The theoretical performance for the baseline
predictors were calculated as follows. Assume that the true
probability of a seizure to be cluster-non last is », and the
model predicts the cluster-non last label with probability g.
Then, the precision is r for both baseline I and baseline 2.
The recall is g for baseline 1 and 1 for baseline 2. Thus, the F1
score for baseline 1 is rerZ’ and the F1 score for baseline 2 is

%. The AUC for baseline I is 0.5 and the AUC for baseline 2
can not be computed. The same approach was used to derive
baseline performance for cluster-onset prediction, with » and
q representing the true probability and prediction probability
of a seizure being cluster-first, respectively.

H. Effect of Sample Size on Prediction Performance

To understand the effect of sample size on the prediction
performance, we artificially reduced the training set size and
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TABLE |
PATIENT CHARACTERISTICS. NOTE THAT PATIENT NUMBERING IS
DIFFERENT FROM THE ORIGINAL TRIAL [14]

Age Diagnosis Epileptogenic Previous
Pat. # (yrs) Age (yrs) Sex Zone Resection
1 26 4 Male Parietal-temporal ~ No
2 44 12 Male Occipitoparietal No
3 52 26 Male Frontotemporal No
4 48 20 Male Frontotemporal Yes
5 51 10 Female  Occipitoparietal No
6 50 15 Female  Frontotemporal Yes
7 43 20 Male Temporal No
8 50 20 Male Temporal Yes
9 36 5 Male Temporal Yes

trained ML models with the reduced dataset. We divided
the entire data into a fixed test set (20%) and a training
set (80%). We sampled x% of the training set to train the
model, with x € {20, 40, 60, 80, 100}. Sampling was repeated
five times for each x to account for sampling bias. Model
performance was evaluated on the same complete test set
for different sizes of the training data. Since the number
of seizures varied substantially across patient, the percentage
of training set used for model training doesn’t allow for a
holistic comparison across patients. Therefore, in additional
experiments, we sampled 27 samples from the training set to
train the model, with y € {4, 5, 6,7, 8, 9}, and tested them the
same way as given above. These analyses were restricted to
the next cluster prediction task with a 24 hr ISI threshold.

[1l. RESULTS
A. Patient Characteristics and Seizure Type Distribution

Majority of the patients were male, were diagnosed with
epilepsy by the age of 20 years, and had not undergone
resection surgery previously (Table I). The epileptogenic zone
was in different parts of the brain across patients. We observed
seizures of both types in all the patients (Figure 4). The ratio
of isolated to cluster seizures varied from 0.01 - 4.63 across
patients. For example, patients #3, #4, and #6 had very few
isolated seizures compared to cluster seizures, whereas, patient
#9 had many more isolated seizures than cluster seizures.
Across all patients, there were a total of 369 isolated seizures,
2914 cluster-non last seizures, and 427 cluster-last seizures.

B. Patient-Specific Differences in Grand Average REN

To understand whether there were differences in the dynam-
ics of different seizure types, we compared the grand average
REN values within each patient. To obtain the grand average
REN, REN values for all pairs of electrodes and all segments
within a band and period were averaged separately for each
seizure. In patient #1, there were differences in the delta, theta,
beta, and gamma bands in the near-seizure period, but not dur-
ing seizure, for comparisons between isolated vs cluster-last
and isolated vs cluster non-last seizures (Figures 5A, 5B).
No significant differences were observed between isolated and
cluster-first seizures for patient #1.

Aggregating the grand average REN comparisons from all
patients showed that the majority of the differences were

103

Patient

Fig. 4. Data summary. Number of seizures of each type in each patient
for an ISI threshold of 24 hours. Note that cluster-first seizures are not
shown in the plot because the number of cluster-first seizures is the
same as the number of cluster-last seizures. Abbreviations: |, isolated
seizure; C-L, cluster-last seizure; C-NL, cluster-non last seizure.

seen near-seizure, especially in the beta and gamma bands
(Figure 5C). There were no significant differences between
isolated and cluster-last seizures during the ictal period. Differ-
ences between isolated and cluster-first seizures were observed
only in four instances across two patients.

Interestingly, patient-specific significant differences in grand
average REN were observed in six out of nine patients in
at least one band, duration, and seizure type comparison.
No significant differences were observed in patients #2, #3,
and #4, all of whom had very few seizures of at least one type.
Patient #2 had very few cluster seizures (4 non-last, 4 last),
whereas patients #3 and #4 had very few isolated seizures
(<20) compared to cluster seizures (>600; Figure 4).

We also studied which seizures had higher grand REN
(Figure 6). This analysis was restricted to the cases in which
REN was significantly different between isolated and clustered
seizures. During the near-seizure period, grand average REN
was higher for the clustered seizures than the isolated seizures.
On the other hand, during seizures, grand average REN values
were typically lower for cluster seizures than isolated seizures.

C. Next Seizure Prediction

Grand average REN from different bands and periods were
used for prediction because they were significantly different
between seizure types in a majority of patients. This resulted
in 10 features for each seizure (5 bands x 2 periods). Patient
#2 was excluded from the prediction analysis because they
had very few cluster-non last seizures (n = 4, Figure 4).
On average across the remaining eight patients, random forests
achieved the best prediction (Table II) with 69.5% AUC while
k-NN achieved the best precision of 80.9 % and best F1-score
of 78.8%. Performance of a majority of the prediction models
was comparable or better than the baseline models.

We provide the patient-specific performance for random
forest because it achieved the best AUC (Table III). The
performance varied across patients, ranging from 54.2% —
94.9% F1-score. Random forest was better than chance level
predictor (baseline 1) for all the patients based on Fl-score.
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Fig. 6. Number of cases in which REN was higher for isolated seizures
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cutoff for ISI. Only cases with a significant difference between seizure
types were considered (Figure 5C). Count was obtained by aggregating
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TABLE Il
NEXT SEIZURE PREDICTION PERFORMANCE AVERAGED ACROSS
PATIENTS WITH A 24 HOURS CUTOFF FOR ISI. CROSS-VALIDATED
MEAN AND STANDARD DEVIATION ARE GIVEN FOR
EACH METRIC (IN %)

Model Precision Recall F1-score AUC

Log. Reg. 69.3 (23.5) 70.0 (16.0) 68.9 (14.4) 65.2 (7.7)
SVM 73.7 (18.6)  76.9(20.7)  73.4 (14.3) 554 (13.2)
KNN 80.9 (13.9) 75.6 (24.2) 78.8 (14.8) 61.7 (7.5)
Decision Tree 73.7 (23.3) 56.5 (15.7)  61.9 (15.8) 61.7 (8.3)
Random Forest  76.6 (19.0) 68.6 (14.9) 73.4 (14.6) 69.5 (11.0)
Baseline 1 62.5 (29.2) 50.0 (0.0) 52.3 (14.6) 50.0 (0.0)
Baseline 2 62.5 (29.2)  100.0 (0.0) 73.0 (25.1) -(-)

Random forest had higher Fl-score than baseline 2 (that
always predicts “cluster”) in two patients. Although baseline 2
achieved a higher F1-score for patients with a higher number
of cluster seizures, it produced a considerable number of
false alarms. ML models reduced the number of false alarms,
as demonstrated by their higher precision (Table III).

We evaluated whether the prediction performance was
dependent on the patient characteristics. Patients were grouped

-+ 9|

AUC

0.4 1

100 4 6 8
Train data count (log2)

20 40 60 80
Train data (%)

Fig. 7. AUC on the test set of models trained with different number of
samples for the next seizure prediction task with a 24 hour ISI cutoff.
Sampling was performed five times for each scenario, with the means
plotted in dots, and standard deviations plotted as vertical lines. Each
color represents an individual patient.

based on variables in Table I and AUC values of patients
from different groups were statistically compared using a
Wilcoxon rank-sums test. For continuous variables, we tested
for correlation with the variable and the AUC. None of
the patient characteristics — sex, epileptogenic zone, previous
resection, age, age of diagnosis, or disease duration — were
associated with the prediction performance.

We also explored the impact of sample size on predic-
tion performance by varying the number of training sam-
ples (Figure 7). Increasing the training set size boosted
model performance. However, we only observed a substantial
improvement in the prediction performance of patient #7.
We speculate that this was because the other patients had
considerably more seizures than patient #7, hence, 20% of
their data enough to train the model. When we examined the
performance changes while increasing the number of training
samples exponentially, we observed that model performance
increased considerably across patients. The minimum num-
ber of samples required to achieve an optimal AUC ranged
from 64 to 256 across patients.
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TABLE IlI
PATIENT-SPECIFIC NEXT SEIZURE PREDICTION PERFORMANCE FOR THE BEST PREDICTOR WITH A 24 HOURS CUTOFF FOR ISI. MEAN AND
STANDARD DEVIATION (IN PARENTHESIS) OVER CROSS-VALIDATION IS PROVIDED FOR EACH METRIC (IN %). PATIENT #2 WAS EXCLUDED FROM
PREDICTION ANALYSIS BECAUSE THEY HAD FEW CLUSTER-NON LAST SEIZURES (n=4)

Pt. Sample Size Random Forest Baseline 1 Baseline 2
# I/C-L. C-NL | Precis. Recall F1 AUC Precis. Recall F1 AUC | Precis. Recall F1 AUC
1 73 107 66.9 (3.1) 59.0 (12.6) 61.9 (7.8) 61.2 (6.0) 59.4 50.0 543  50.0 | 594 1000 746 -
2 41 4 - - - - - - - - - - - -
3 28 648 97.2 (0.6) 92.7 (1.9) 94.9 (0.9) 78.5 (11.1) | 959 50.0 65.7 50.0 95.9 100.0 979 -
4 83 646 90.2 (1.0) 82.5 (54) 86.1 (3.0) 54.8 (8.1) 88.6 50.0 63.9 50.0 88.6 100.0 94.0 -
5 132 148 57.9 (6.6) 51.7 (10.9) 54.2 (8.5) 57.7 (5.6) 529 50.0 514  50.0 | 529 100.0 69.2 -
6 100 793 91.2 (1.3) 78.5 (5.2) 84.3 (3.0 64.8 (4.6) 88.8 50.0 64.0 50.0 | 83.8 1000 941 -
7 28 10 85.0 (26.0) 60.0 (37.4) 72.6 (16.3) 89.0 (11.1) | 26.3 50.0 345 500 | 263 1000 417 -
8 228 540 81.7 (2.5) 70.9 (2.1) 75.9 (1.6) 72.1 3.1) 70.3 50.0 584 500 70.3 100.0 826 -
9 83 18 42.4 (254) 533 (26.7) 57.6 (10.9) 78.3 (8.4) 17.8 50.0 26.3 500 17.8 100.0 303 -
TABLE IV Near-seizure Seizure 4
CLUSTER ONSET PREDICTION PERFORMANCE FOR EACH MODEL delta- 1 0
AVERAGED ACROSS PATIENTS WITH A 24 HOURS CUTOFF FOR ISI.
MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OVER _ 3
theta- 1 0 c
CROSS-VALIDATION ARE PROVIDED FOR EACH METRIC (IN %) S s
Model Precision Recall F1-score AUC % alpha- 1 0 -2 E
Log. Reg. 69.2 (15.5) 70.3 (9.6) 68.5 (4.7) 47.8 (11.5) @ %
SVM 70.4 (16.2)  78.4(19.6) 70.8 (6.9)  55.3 (13.2) beta- 1 0 #
KNN 67.2 (18.2) 727 (24.7) 693 (21.7) 509 (7.5) -1
Decision Tree 68.9 (16.4) 60.5 (7.5) 60.2 (5.2) 52.0 (8.3) |
R gamma- 1 0
andom Forest  67.7 (17.5)  70.1 (19.8) 68.5 (18.8) 51.3 (11.0) 0
Baseline 1 65.9 (15.6)  50.0 (0.0) 56.2 (5.7) 50.0 (0.0) ' ' ' ' ' ' )
Baseline 2 65.9 (15.6)  100.0 (0.0) 78.6 (11.1) - (-) 6(;? C\*\’ 6(;\’ 5(;(‘ C\\\\’ 6(;\’
W2 e T A W (e Y

D. Cluster Onset Prediction

We used the 10 grand average REN from different bands
and periods for predicting cluster onset. Patients #2, #3, #7,
#9 were excluded because they had very few isolated or
cluster-first seizures (n < 10, Figure 4). SVM achieved the
best prediction (Table IV) with 70.4 % precision and 55.3 %
AUC. Performance of a majority of the ML models was
comparable or better than the baseline models.

The performance for SVM varied across patients, ranging
from 60.6% — 78.5% F1-score (Table V). SVM was better
than chance level predictor (baseline 1) for all the patients
based on Fl-score. Similar to the next seizure prediction task,
although baseline 2 had better or comparable Fl-score as
SVM, it produced more false positives than SVM.

The performance for next seizure prediction (Table II) was
better than cluster onset prediction (Table IV) based on the
AUC. This concurs with the statistical analysis (Figure 5) in
which more differences were observed between isolated vs
cluster non-last seizures than between isolated vs cluster-first
seizures. Non-linear ML models were the best performing
models for the next seizure prediction task whereas linear
models achieved better performance for cluster onset predic-
tion. It is possible that linear models fit the data better because
fewer samples were available for cluster onset prediction.

E. Robustness Analyses

We evaluated the robustness of our results to the definition
of clusters by repeating the analyses using an 8 hour ISI cutoff.
Overall, the results with the modified cutoff were largely con-
sistent with the 24 hours cutoff results. There were 948 isolated

Seizure types compared

Fig. 8. Significant differences in grand average REN aggregated across
patients with an 8 hours cutoff for ISI. FDR correction was applied for all
comparisons across patients. Annotations show the number of patients
in whom there were significant differences. Abbreviations: |, isolated
seizure; C-NL, cluster-non last seizure; C-L, cluster-last seizure.

clusters, 2123 cluster-non last seizures, and 639 cluster-last
seizures. Grand average REN was significantly different in
eight patients (Figure 8). Majority of the differences were
observed in the beta and gamma bands. There were no differ-
ences in grand average REN between isolated and cluster-last
seizures during the ictal period. Isolated and cluster-first
seizures were significantly different for four patients (#4, #6,
#7, #8). Fewer differences were observed between isolated vs
cluster-first seizures than isolated vs cluster-non last seizures.
During the near-seizure period, REN was typically higher for
the clustered seizures than the isolated seizures but the reverse
was observed during seizures (Figure 9).

Patients with less than 10 seizures of any category were
removed for the prediction analyses — patients #2 and #7
for next seizure prediction and patients #2, #7, and #9 for
cluster onset prediction. For the next seizure prediction task,
random forest models were the best predictors with 70.3%
AUC averaged across patients (Table VI). Random forest also
achieved the best AUC of 64.2 % in predicting cluster onset
(Table VII). ML techniques were better than or comparable to
baseline predictors for both prediction tasks.

IV. RELATED WORK

We discuss related work from: (i) seizure forecasting, which
tackles a similar problem of predicting the next seizure and
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TABLE V
PATIENT-SPECIFIC CLUSTER ONSET PREDICTION PERFORMANCE FOR THE BEST PREDICTOR WITH A 24 HOURS CUTOFF FOR IS|. MEAN AND
STANDARD DEVIATION (IN PARENTHESIS) OVER CROSS-VALIDATION IS PROVIDED FOR EACH METRIC (IN %). PATIENTS WITH FEWER

THAN 10 ISOLATED OR CLUSTER-FIRST SEIZURES WERE EXCLUDED FROM THE PREDICTION ANALYSIS

Pt. | Sample Size SVM Baseline 1 Baseline 2
# I C-F Precis. Recall F1 AUC Precis. Recall FI AUC | Precis. Recall FI AUC
1 31 42 57.1 (0.0)  100.0 (0.0) 72.7 (0.0) 54.2 (14.3) | 57.5 50.0 53.5 50.0 57.5 100.0 73.0 -
2 37 4 - - - - - - - - - - - -
3 6 22 - - - - - - - - - - - -
4 13 70 88.6 (6.5) 71.4(7.8) 78.5 (4.1) 45.7 (24.5) | 84.3 50.0 62.8  50.0 84.3 100.0 915 -
5 65 67 51.7 (2.5) 96.9 (3.8) 674 (24) 39.7 (10.4) | 50.8 50.0 504  50.0 50.8 100.0 673 -
6 19 81 84.2 4.5) 70.0 (20.7) 74.6 (11.9) 67.1 (25.5) | 81.0 50.0 61.8  50.0 81.0 100.0 895 -
7 22 6 - - - - - - - - - - - -
8 101 127 70.5 (7.0)0 53.6 (11.8) 60.6 (10.1)  70.1 (6.7) 55.7 50.0 52.7 50.0 55.7 100.0 71.5 -
9 75 8 - - - - - - - - - - - -
. — Nea;—;;izure Seizure TABLE VII
; = RENC’“5< 150 CLUSTER ONSET PREDICTION PERFORMANCE FOR EACH MODEL
cius > RENso
6 AVERAGED ACROSS PATIENTS WITH AN 8 HOURS CUTOFF FOR ISI.
MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OVER
‘gi CROSS-VALIDATION ARE PROVIDED FOR EACH METRIC (IN %)
(o]
. 3 Model Precision Recall F1-score AUC
) Log. Reg. 52.7 (11.0) 704 (16.0) 59.0 (11.0) 614 (5.4)
SVM 51.2 (10.1)  74.6(20.2) 60.9 (12.0) 54.5(7.5)
1 KNN 56.0 (5.9) 49.8 (14.5) 519 (10.1) 61.2 (6.8)
0 Decision Tree 59.5 (12.0) 59.6 (18.8) 56.9 (13.3) 64.0 (10.1)
delta theta alpha beta gamma delta theta alpha beta gamma Random Forest 57.0 (9.9) 60.0 (7.5) 57.6 (8.1) 64.2 (8.5)
Band Baseline 1 44.8 (12.1)  50.0 (0.0) 46.6 (6.8) 50.0 (0.0)
Baseline 2 44.8 (12.1)  100.0 (0.0) 61.1 (11.5) - ()

Fig. 9. Number of cases when REN was higher for isolated seizures
(in blue) or higher for clustered seizures (in orange) with an 8 hour
cutoff for ISI. Only cases with a significant difference between seizure
types were considered (Figure 5C). Count was obtained by aggregating
across patients and seizure type comparisons.

TABLE VI
NEXT SEIZURE PREDICTION PERFORMANCE FOR EACH MODEL
AVERAGED ACROSS PATIENTS WITH AN 8 HOURS CUTOFF FOR ISI.
MEAN AND STANDARD DEVIATION (IN PARENTHESIS) OVER
CROSS-VALIDATION ARE PROVIDED FOR EACH METRIC (IN %)

Model Precision Recall F1-score AUC

Log. Reg. 62.8 (20.5) 71.0 (4.5) 66.1 (13.1) 67.7 (6.1)
SVM 60.0 (19.9) 789 (23.2) 69.8 (15.0) 51.6 (14.8)
KNN 72.8 (15.6) 64.4(258) 67.1 (21.1) 70.3 (10.4)
Decision Tree 64.2 (19.5) 59.4 (8.1) 59.5 (12.0) 65.2 (5.6)
Random Forest  67.3 (17.0)  59.3 (9.1) 64.7 (13.1)  70.3 (5.8)
Baseline 1 48.2 (25.3)  50.0 (0.0) 45.8 (15.4)  50.0 (0.0)
Baseline 2 48.2 (25.3)  100.0 (0.0) 614 (24.6) -(-)

has motivated the use of different features in our analysis; (ii)
seizure cluster detection and analyses, which have highlighted
salient characteristics of cluster seizures, and (iii) seizure
cluster prediction, which have used long term iEEG and
non-iEEG data from canines and humans to predict clustering.

A. Seizure Forecasting

Seizure forecasting considers the problem of predicting the
likelihood of a seizure at a given time in the future based
on inter-ictal and pre-ictal data. Several techniques have been
developed for seizure forecasting, ranging from traditional
ML methods to more recent deep learning models [20], [21]
Univariate, bivariate, and multivariate features extracted from
inter-ictal EEG data have been used for seizure forecasting
with varying degrees of success [22], [23]. CNNs applied to

EEG forecasted seizures in canines and humans better than
hand-crafted features combined with traditional ML meth-
ods [21], [24]. Our approach differs from the forecasting
literature in the use of pre-ictal and ictal data to predict
seizures, while a majority of forecasting models use inter-ictal
data only.

B. Seizure Cluster Detection and Comparison Analyses

Previous methods have mainly addressed the detection of
seizure clusters retrospectively based on inter-seizure inter-
vals (ISI) using threshold-based methods and statistical meth-
ods [25]. Threshold based methods classify seizures with
IST less than the given threshold (for e.g., 8 hrs, 24hrs) as
belonging to a cluster [S]. While these methods are easy to use,
they do not account for the differences in baseline seizure rate
of individuals and can be prone to false positives/negatives.
On the other hand, statistical methods rely on trends in the
data to identify clusters. Chiang et al. proposed a change
point detection-based method that relies on seizure diaries
to identify seizure clusters and identified several clusters that
were missed by threshold detectors [19]. For the NeuroVista
data, Seneviratne et al. visualized trends in ISI to identify
seizure clusters and seizure bursts [26]. Most cluster detection
methods rely on ISI for detection and are, therefore, not
suitable for the proposed prediction task.

Few studies have statistically compared isolated seizures
and seizure clusters to identify differences in their characteris-
tics. Ferastraoaru et al. compared the duration of isolated and
cluster seizures pooled from 92 patients and observed that
isolated seizures were longer than the first seizure in a cluster
and intracluster seizures, but were similar in duration to the last
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seizure in a cluster [5]. Karoly et al. compared isolated seizures
and cluster seizures with very short ISI, termed as seizure
bursts, in the NeuroVista data [7], and observed differences in
the energy in the pre-ictal period of isolated seizures and burst
seizures in some patients. Previous studies have not compared
seizure type using a bivariate iEEG feature.

C. Seizure Cluster Forecasting and Prediction

Ilyas et al. used long-term seizure timing data to forecast
seizure clusters in humans [27]. They built individualized
autoregressive models that predicted the probability of seizure
clustering, derived from the Kolmogorov-Smirnov statistic,
and demonstrated better than chance performance in cluster
forecasting. Another recent study predicted lead seizures (i.e.,
cluster onset) using long-term iEEG data in canines [8]. They
used univariate power in band features from pre-ictal and inter-
ictal iEEG combined with SVM to predict the onset of clusters
and achieved high accuracy. Our approach of using ictal iEEG
data to predict the next seizure provides a complementary
technique to existing approaches.

V. DISCUSSION

We leveraged a bivariate iEEG measure applied to long-term
iEEG to discover differences in the seizure dynamics of
isolated and clustered seizures and to predict individualized
seizure clustering. The dynamics for isolated and cluster
seizures were different in six out of nine patients. The majority
of the differences were observed in the higher frequency bands
(beta and gamma) and in the pre-ictal (near-seizure) period.
Patient-specific ML models based on REN achieved 69.5%
AUC in predicting clustering, i.e., the occurrence of another
seizure shortly after a seizure, and were only slightly better
than chance (55.3% AUC) in predicting cluster onset. Our
approach can be clinically valuable in personalizing epilepsy
treatment by guiding the selection of anticonvulsant drug
suitable for a given seizure type. Our approach also supports
the application of graph-theoretic methods [9], [28] to gain
further insights into seizure progression of different seizure
types, which can be useful in predicting seizure clusters.

Fine-Grained iEEG Features are Valuable for Differentiat-
ing Seizure Type Dynamics: Karoly et al. [7] found differences
in the energy of pre-ictal iEEG in three out of 15 patients
in the same dataset. In contrast, we observed differences in
six out of nine patients by analysing different physiological
bands separately and using REN, which captures network-level
interactions between electrodes. These could have provided a
greater resolution for differentiating seizure type dynamics.
The majority of the differences were observed in the beta and
gamma bands, whose contribution to iEEG energy is substan-
tially lower than delta and theta bands that showed similar
dynamics for the different seizure types. REN was higher
for cluster seizures than isolated seizures in the near-seizure
period but lower during the seizure period, suggesting that the
network interactions underlying cluster and isolated seizures
are different. Further investigation of these bands could pro-
vide insights into the network interactions that increase the
propensity for cluster seizures.

Long-Term Data on Individuals is Vital to Characterize and
Predict Seizure Type: 1t is critical to use iEEG data of a large
number of seizures from a patient to study the dynamics of
different seizure types due to (i) patient-specific differences in
the dynamics and (ii) the variation in iEEG characteristics of
seizures across patients. Sensitivity to seizure numbers is also
supported by our statistical and machine learning analyses.
The three patients for whom we observed no differences
across seizure types had few seizures (< 20) of at least one
type. Long-term data with sufficient number of seizures is
also crucial for developing individualized prediction models.
Our results demonstrated an increase in model performance
when training with more samples. Since the minimum number
of samples required to achieve optimal performance ranged
from 64 to 256 across patients, presurgical iEEG recordings
may not provide sufficient samples for optimal model train-
ing [13].

Pre-Ictal Dynamics of Cluster-Last Seizures are Differ-
ent From Isolated Seizures: Inspired by Ferastraoaru et
al. [5], we subcategorized cluster seizures into cluster-last
and cluster-non last seizures for comparison with isolated
seizures. They found that isolated seizures were similar in
duration to cluster-last seizures [5]. In line with their result,
we observed no differences in grand average REN during
seizure period between isolated and cluster-last seizures. How-
ever, we also observed significant differences between iso-
lated and cluster-last seizures during the near-seizure period.
Our results suggest that onset mechanisms of isolated and
cluster-last seizures may be different. Future work studying
differences in the dynamics of cluster-last and cluster-non last
seizures can be useful in predicting the end of a seizure cluster.

Challenges in Predicting Seizure Clustering: Although the
current results uniquely demonstrate the possibility of predict-
ing seizure clusters, improvement in the performance is needed
for clinical utility. Limited number of samples (isolated and
cluster seizures) and data imbalance present major challenges
in the application of sophisticated ML methods. There is a
considerable overlap between the REN values of cluster and
isolated seizures, which further affects prediction performance
and motivates the need for better iEEG features. The similarity
in REN between isolated and cluster-first seizures made it dif-
ficult to predict cluster onset, as has been observed in previous
studies [29]. Future studies may consider these challenges for
improving prediction.

Limitations and Future Work: There are several limitations
of our study related to design choices, data aggregation, and
ML analyses. Firstly, we used a threshold-based approach for
detecting seizure clusters. It has been argued that differences
in the baseline rate of seizures of individuals must be taken
into account for detecting seizure clusters [19]. Secondly,
seizure onset zone and non-seizure onset zone electrodes
have different dynamics [16] although we did not distinguish
between them in the current study.

Thirdly, we averaged REN values across time segments,
thus smoothing out temporal trends in REN which could be
indicative of seizure progression and type [30]. A challenge
in comparing temporal trends in REN across seizures is the
variability in seizure duration. Methods to transform timeseries
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of varying lengths to the same length have been previously
used for analysing seizures and can be useful [28], [31].

Finally, further improvements are required in the prediction
performance. Advanced ML methods that can learn complex
short- and long-term relationships in REN timeseries and
that pool data across patients to improve sample size may
boost predictive performance [32]. We plan to address these
limitations in future work.
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