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ABSTRACT

Diffusion models have achieved remarkable success in image synthesis, but the
generated high-quality images raise concerns about potential malicious use. Exist-
ing detectors often struggle to capture distinctive features across different training
models, limiting their generalization to unseen diffusion models with varying
schedulers and hyperparameters. To address this issue, we observe that diffusion-
generated images exhibit progressively larger differences from real images across
low- to high-frequency bands. Based on this insight, we propose a novel image
representation called Natural Frequency Deviation (DEFEND). DEFEND applies a
weighted filter to the Fourier spectrum, suppressing less discriminative bands while
enhancing more informative ones. This approach, grounded in a comprehensive
analysis of frequency-based differences between real and diffusion-generated im-
ages, enables robust detection of images from unseen diffusion models and provides
resilience to various perturbations. Extensive experiments on diffusion-generated
image datasets show that our method outperforms state-of-the-art detectors with
superior generalization and robustness.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; [Dhariwal & Nichol, [2021) have achieved remarkable success in
image synthesis, producing high-quality and diverse results. However, the easy accessibility and
realistic generated images present a significant challenge, as they can be easily misused for malicious
purposes, such as fabricating evidence or misleading the public, raising serious social, privacy, and
ethical concerns (Devlin & Cheetham, [2023). Therefore, how to detect diffusion-generated images
has become an urgent and critical issue recently.

Recent methods for detecting diffusion-generated images focus on specific model characteristics, such
as using reconstruction error (Wang et al.,2023)), leveraging pre-trained vision-language models (Ojha
et al.,2023), or identifying artifacts introduced by the upsampling layers (Tan et al.,2024)). However,
these approaches are limited in their generalization to different diffusion models. They often rely on
specific models for reconstruction, require relevant generated images as reference sets, or depend on
architectural features like upsampling layers, making them less effective when detecting images from
unknown or unseen diffusion models.

With all the above concerns in mind, we raise the following question: Can we develop a general
diffusion-generated image detector based on their inherent difference with natural real images? As
we do not rely on specific diffusion-generated images, the detector should be sufficiently general
and robust. To this end, we first analyze the difference between natural real images and diffusion-
generated images in the frequency domain, as the frequency domain contains more distinguishable
information than the pixel domain (Van der Schaaf & van Hateren| [1996), as shown in Fig.[I. We
can observe that there exists a clear discrepancy between natural real images and diffusion-generated
images in their Fourier spectrum, specifically in the mid- and high-frequency band, which could serve
as discriminative clues for detection.

To leverage this, we first conduct a comprehensive frequency analysis on diffusion-generated images
and natural real images to explore the intrinsic discrepancy clues, which indicates that the discrim-
inability increases from low- to high-frequency bands. Based on our analysis, we further propose
a general image representation termed Natural Frequency Deviation (DEFEND): By designing a
frequency-selective function that serves as the weighted filter banks, it restrains the less discriminative
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Figure 1: The magnitude difference between real image and different diffusion-generated
models. The fake images generated by different diffusion models (top) leave traces in their Fourier
spectrum (middle). We explore their differences with natural real images for the detection of the
diffusion-generated images (bottom). The Fourier spectrums are averaged on 1000 sampled images.
The darker the color, the smaller the magnitude; the lighter the color, the larger the magnitude.

bands (i.e., low frequency) and enhances more significant discriminative frequency bands (i.e., high-
frequency) in the Fourier spectrum, thus leading to more discriminative representation. Compared
to detectors only focusing on certain bands, i.e., high frequency, our representation can exploit the
clues existing in all different bands, which should be more general and robust to different diffusion
models and various perturbations. Extensive experiments on various public diffusion-generated image
datasets demonstrate the superiority of our proposed method against other state-of-the-art competitors.
Our main contributions are summarized as follows:

* We conduct a comprehensive frequency analysis on natural real images and diffusion-
generated fake images. We find that the diffusion-generated images exhibit increasingly
significant differences with natural real images, from low- to high-frequency bands.

* To leverage this, we propose DEFEND as a more discriminative representation for detection,
by designing a frequency-selective function that serves as weighted filter banks for restrain-
ing the less discriminative bands (i.e., low-frequency) and enhancing the more discriminative
frequency bands(i.e., high-frequency) in the Fourier spectrum.

 Extensive experiments on various public datasets demonstrate the superiority of our proposed
method against other state-of-the-art competitors in detecting diffusion-generated images
with impressive generalization and robustness.

2 RELATED WORK

Diffusion models. Diffusion Models have achieved remarkable success in image synthesis task (Ho
let al.,[2020; IDhariwal & Nicholl, 2021} [Rombach et al., 2022). The main idea of diffusion models is
inspired by the non-equilibrium thermodynamics proposed in (Sohl-Dickstein et al., 2015). Typically,
diffusion models define two Markov chains of diffusion steps that first slowly add Gaussian noise
to clean images, until disturbing them into isotropic Gaussian noise (termed diffusion or forward
process); then they learn to reverse the diffusion process to generate clean samples from the noise
(termed denoising or reverse process). Due to substantial efforts focusing on improving model
architectures (Rombach et al.,2022), sampling methods (Song et al., 2020} [Lu et al.} [2022), and
optimizing processes (Ho & Salimans, 2022;|Nichol & Dhariwall, [2021), recent diffusion models
are capable of generating high-quality images beyond human imagination at an extremely low cost,
which can be a double-edged sword. Thus, developing general and robust diffusion-generated image
detectors has recently become a critical issue.

Generated image detection. Recent generative models, such as GANs (Goodfellow et al.|[2014
[Karras et al, 2018} [2019; [Brock et al.| [2018) and Diffusion models (Dhariwal & Nichol, 2021
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Nichol et al.,|2021; Rombach et al.,|2022; [Ramesh et al., 2022), have achieved remarkable success
in image generation task. Various detectors have been proposed to prevent the malicious use of
generated images (Chai et al., 2020; |Qian et al.| 2020). To develop a general GAN-generated
image detector,(Wang et al.,|[2020) introduce carefully designed pre- and post-processing with data
augmentation. To detect generated and manipulated images,(Chai et al., [2020) propose to use patch-
level artifacts. Recently, (Wang et al., 2023) found that diffusion-generated images are easier to
reconstruct by diffusion models than real images. They propose a representation DIRE based on
reconstruction error. (Ojha et al.,[2023) propose to use the pre-trained vision-language models to
learn discriminative clues for detection. NPR (Tan et al.,|2024) explore the artifacts introduced by
the up-sampling layer in diffusion model architectures. These methods still, however, highly rely on
specific patterns in training diffusion-generated images, which could lead to performance drops when
detecting unseen models. Instead, we exploit the intrinsic statistic difference with natural real images
in the frequency domain to discriminate from diffusion-generated images.

Frequency artifacts in generated images. Some prior works have demonstrated that generated
images exist artifacts in the frequency domain (Dzanic et al.}|2020; Ricker et al.|[2022;|Corvi et al.|
2023a;|Yu et al.,|2019; |Chandrasegaran et al., 2021). To detect GAN-generated images,(Frank et al.,
2020) analyzes artifacts by discrete cosine transform (DCT). (Dzanic et al.|[2020) leverage the Fourier
spectrum discrepancy in GAN- and VAE-generated images. (Qian et al., 2020) propose exploring
the frequency clues to detect generated and manipulated images. There are already some works
that find specific patterns in diffusion-generated images in the frequency domain which could serve
as clues for detection, such as (Ricker et al.,[2022) analyze the frequency fingerprints of different
diffusion models, (Corvi et al.,|2023ajb) analyze the artifacts in both spatial and frequency domains,
(L1 et al.; 2024) train a mask on Fourier spectrum and use the cosine similarity with a reference
set for detection. These methods, however, focus mainly on the frequency distribution of specific
diffusion-generated images, which ignores the natural real images’ inherent distributions and may
lead to limited generalization. In this paper, we instead focus on the general frequency difference
between natural real images and diffusion-generated images and propose a new image representation
by restraining the less discriminative bands and enhancing the more discriminative ones.

3 METHODOLOGY

3.1 FREQUENCY ANALYSIS ON NATURAL REAL AND DIFFUSION-GENERATED IMAGES

We first analyze the difference between natural real images and diffusion-generated images in the
frequency domain, as shown in Fig[3](a). Specifically, to transform an image x from the spatial domain
to the frequency domain, we first transform it into a grayscale image since the color information
contributes less to the frequency distribution of an image. Then we compute the Discrete Fourier
Transform and the mean power spectrum F'(x) that can be formulated as follows:

F(x) = log|DFT(x)[?, )
where x is the input image, the DFT(-) is the Discrete Fourier Transform and | - | computes the
magnitude on each pixel. In practice, we use the FFT algorithm to compute the DFT. We compute

and visualize the mean power spectrum on images generated from different diffusion models and
different time steps, as shown in Fig.[2|(a) and (b), respectively.

From the results, we observe that the diffusion-generated images and natural real images exhibit
significant differences in the frequency domain: their discrepancy becomes increasingly discriminative
from low- to high-frequency bands. This phenomenon can be reflected in pixel space as the diffusion-
generated images are usually smoother and lack the high-fidelity details that indicate the high-
frequency parts. Besides, the images generated by different diffusion models and different timesteps
exhibit different frequency patterns, and more time steps lead to high similarity to real images. And
all of the generated images follow the above observation that their discrepancies with real images
become increasingly discriminative from the low to high frequencies. Thus, we can draw following
conclusion from above analysis:

Remark 1: Diffusion-generated images exhibit significant discrepancies with natural real
images. These discrepancies are increasingly discriminative from low- to high-frequency bands.

Furthermore, we investigate what causes this phenomenon during the diffusion forward/backward
processes. Specifically, we analyze the mean power spectrum of the intermediate results of the
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Figure 2: Mean power spectrum of natural real and diffusion-generated images from different

diffusion models (a) and different time steps (b). We further explore the spectrum during the denoising
process in (c).

last 100 time steps during the DDPM (Ho et al.| 2020) 1000-step denoising process by using the
ADM (Dhariwal & Nichol, 2021), as illustrated in Fig. E] (c). We observe that the mid-high-frequency
parts of generated images are generated towards mainly the end steps of the denoising process. And
these end steps determine the underestimation of mid-high-frequency bands. Note that during training
of diffusion models, a neural network €y is optimized to predict the added noise, given the noisy
image x; and corresponding time step ¢, the optimization target is a sampling and denoising process
which can be defined as follows:

Lo(x0,t) = |le — eg(vayxo + V1 — aye, t)||?, 2)

where ¢ ~ N(0,I), xq is clean image, and « is the predefined noise schedule. By analyzing
the optimization process above, we argue that the underestimation at the end steps is caused by
the optimization objective described in Eq. 2 because the generated images towards the end steps
are closer to denoised clean images. This makes it more difficult to predict the added noise when
compared to pure Gaussian distributions, but the Eq. [2]treats equally the denoising tasks at different
noise levels. There are also some existing analyses (Nichol & Dhariwall, [2021; Ricker et al., 2022)
that agree that this objective cannot lead to good likelihood values. Thus, we can draw following
conclusion for the cause of the frequency discrepancy:

Remark 2: The spectrum discrepancy is highly related to the challenging optimization objective,
when towards denoising step ¢t = 0.

Moreover, some prior studies (Van der Schaaf & van Hateren| |1996; [Field, 1987} Burton & Moorhead,
1987) show that the mean power spectrum of natural real images has the following rule:

S(f)oc [T arm2, 3

where S(-) is the mean power spectrum and f is the frequency.

3.2 NATURAL FREQUENCY DEVIATION REPRESENTATION

With the above observation that diffusion-generated images exist frequency discrepancy with natural
real images, it comes to our mind that if we could design a representation that exploits the most
discriminative clues and removes the similar patterns in the frequency domain, we could obtain a
more effective representation for distinguishing the diffusion-generated images from real ones. To
this end, we propose a novel image representation, termed Natural Frequency Deviation (DEFEND)
for diffusion-generated image detection: it restrains the less discriminative (low frequency) bands and
enhances those more discriminative (mid-high frequency), as shown in Fig[3|(b). As the representation
is designed by the general observation and the principle on natural real and diffusion-generated fake
images, our representation should be general and robust for the detection task.

To achieve this, we first compute the frequency spectrum deviation between natural real and diffusion-
generated images, based on Fig. [2] (a)&(b). Specifically, we compute the subtraction of each spectrum
with the one on natural real images, and visualize them with a scaling factor, as shown in Fig. E
(a)&(b). We aim to design a frequency-selective function w(-) based on the distribution above to



Under review as a conference paper at ICLR 2025

Grayscale

¥ DFT Average.

(2)
natural
real image

Mean Power : ,

Spectrum
il iy

—3

diffusion-
generated
image

classifier

real

Grayscale ked FFT DEF

Figure 3: Overview of our proposed method. We first analyze the discrepancy of mean power
spectrum between natural real and diffusion-generated images, as shown at the top (a). Based on
the analysis, we design a specific weight function w( f) that serves as the filter banks on the Fourier
spectrum to restrain the less discriminative frequency bands and to enhance the more discriminative
ones, thus leading to more discriminative representation, as shown at the bottom (b).

serve as the weighted filter banks applying on the Fourier spectrum to restrain the less discriminative
bands and to enhance the more discriminative bands. Then, we inverse the enhanced Fourier spectrum
to RGB space, thus leading to a more discriminative representation than the original RGB images.
This process can be formulated as follows:

DEFEND(x) = IDFT(DFT(x) - w(f)), 4)

where the x is the input image, DFT(+) is the Discrete Fourier Transform, and the IDFT(-) is the
Inverse Discrete Fourier Transform. In practice, we use the FFT algorithm to compute them.
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Figure 4: Spectrum discrepancy between natural real and diffusion-generated images in (a) and (b).
We further design the weight function based on the discrepancy as shown in (c).

For the frequency-selective function w(-), we introduce two following principles based on the analysis
above to process the less discriminative band (i.e., low frequency), and more discriminative band (i.e.,
mid-high frequency), respectively, described as follows:

Low-frequency band. In Fig. |4 (a)&(b), the low-frequency part of real and diffusion-generated
images exhibits high similarity, which indicates that there is no significant discrepancy in this band.
Hence, we remove the low-frequency information to restrain the less discriminative band by simply
setting the weight to zero, formulated as follows:

w(f)=0,f <, )

where 7 is the threshold for the low frequency, and we empirically set 7 = 0.1.

Mid-high frequency band. The mid-high frequency parts are increasingly discriminative, as
indicated in Fig.[d (a)&(b). Following the principle that higher weights should be assigned to more
discriminative bands, we compute the weights, based on their discrepancy. To this end, we introduce
another kernel function k() to fit the power spectrum discrepancy distribution in Fig. E (a)&(b),
which can be formulated as follows:

k(f) = lloglG1(f)I* = log|Go(f) P, (©)
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where {G1(f), Go(f)} are the Discrete Fourier Transform distribution of diffusion-generated and
natural real images, respectively. As we only care about the discrepancy between them, we can
simplify the above equation as follows:

1G1(f) = e 2 - Go(f)]- )

Note that, for natural real images, their frequency distribution follows the principle described in Eq.
Therefore, we choose v = 2 which should be an appropriate parameter to approximate the statics of
real images, formulated as:

1
ﬁ .
Thus, we can further compute the discrepancy of each frequency band, based on Eq. [7] & [§]to obtain
the desired weight function as follows:

So(f) = 1Go(f)I* = ®)

5 1
w(f) = G1(f)] = [Go(f)I] = (72 *1)7 ©
Considering both the low and mid-high frequency described above, our final designed frequency-
selective weight function is as follows:

_ fer 10
w(f) = (6@_1)'%’ F>r (10)

Furthermore, based on our observations, we empirically choose the two-degree linear func-
tion (quadratic function) as the kernel function with the coefficients k(f) = —0.2f2 + 0.8 f — 0.05
by fitting the distributions. The corresponding designed function w( f) is shown in Fig. E](c), which
restrains the less discriminative band, (low frequency), and enhances the more discriminative band
(mid-high frequency), thus leading to a more discriminative representation.

3.3 DIFFUSION-GENERATED IMAGE DETECTION

After the representation learning stage, we can obtain the DEFEND representations for both natural
real and diffusion-generated images. We further use the representations as input to train a naive
binary classifier to distinguish the real and generated images by a simple binary cross-entropy loss,
which is formulated as follows:

L(y,9) = =3¢ (yilog(9:) + (1 — ys) log(1 — 4:)), (11)

where n is the mini-batch size, y € {0, 1} is the ground-truth label for real and fake, and § is the
output prediction of the classifier. We choose ResNet-50 (He et al.| 2016) with a fully-connected
layer as our classifier. And during the inference stage, we input the DEFEND representation to the
trained classifier that could be classified as real or diffusion-generated.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. Following recent state-of-the-art diffusion-generated image detectors (Wang et al., [2023;
Ojha et al.| 2023} Tan et al.;2024; Zhu et al.,|2024)), we evaluate our proposed method on three public
diffusion-generated image datasets, including (1) Genlmage (Zhu et al.|[2024), (2) UniformerDiffu-
sion (Ojha et al.}[2023)), and (3) DiffusionForensics (Wang et al.,[2023), described in detail below. (1)
The Genlmage dataset is a recent challenging dataset containing seven different diffusion models
trained on ImageNet, with a broad range of image classes, including ADM (Dhariwal & Nichol, 2021),
Glide (Nichol et al.,|[2021), Midjourney (Midjourney, |2023), Stable-Diffusion-v1.4(Rombach et al.|
2022), Stable-Diffusion-v1.5(Rombach et al.,|[2022), VQDM (Gu et al., 2022), Wukong (Wukong|
2022). (2) The UniformerDiffusion dataset contains images generated from different diffusion models
with various settings, such as different timesteps. It includes ADM, LDM (Rombach et al.|[2022),
Glide, and DALLE (Ramesh et al.| 2021). (3) The DiffusionForensics dataset contains various
different recent diffusion models on LSUN-Bedroom dataset, including ADM, DDPM (Ho et al.|
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2020), iDDPM (Nichol & Dhariwal, [2021), PNDM (Liu et al.,|[2022), Stable-Diffusion-v1, Stable-
Diffusion-v2, LDM, VQDM, IF (Saharia et al.} 2022), DALLE2 (Ramesh et al.,2022), Midjourney.
For training set, we use the fake images generated from ADM trained on ImageNet and real images
from ImageNet, which contain 40,000 fake and real images, respectively.

Evaluation metric. Following prior state-of-the-art methods (Wang et al., [2020;2023; Ojha et al.}
2023)), we report the average precision (AP) and accuracy (ACC) with a fixed 0.5 threshold.

Baselines. For fair and comprehensive comparisons, we choose and categorize four different types of
state-of-the-art detectors: traditional image classification backbones (including (1) ResNet-50 (He
et al.,2016) and (2) Swin-T (Liu et al.,|2021)), deepfake detectors (including (3) Patchfor (Chai et al.|
2020) and (4) F3Net (Qian et al., [2020)), diffusion-generated image detectors ((5) DIRE (Wang et al.,
2023)), and universal detectors (including (6) CNNDet (Wang et al.,[2020), (7) uniFD (Ojha et al.,
2023) and (8) NPR (Tan et al., 2024)). We train all aforementioned baselines by using the same
training set, from scratch with their released code. Please refer to the appendix for more details.

4.2 COMPARISON TO THE STATE-OF-THE-ART

Generalization to unknown models. We first evaluate the generalization of our proposed on
unknown diffusion models, which is a major challenge in this task. Specifically, we train all detectors
with the same training dataset generated from ADM on ImageNet, then we evaluate them on the three
aforementioned public datasets. We first evaluate on the challenging Genlmage, which is a recent
and diversified dataset with multi classes trained on ImageNet. The ACC/AP results are presented in
Tab. (1] From the results, we observe that all baseline detectors have a slight performance drop when
encountering more diversified generated images, which is a challenging setting for existing detectors.
Among these detectors, our method still achieves impressive generalization with 99.91% average
ACC, with 5.41% and 10.98% AP improvements compared to the recent DIRE and NPR.

Furthermore, we evaluate the UniformerDiffusion dataset that contains various settings, such as
different time steps. The results are shown in Tab. 2 Our method achieves 5.63% and 5.04% AP
improvements compared to recent DIRE and NPR. We also observe that naive detectors, such as
ResNet-50 and Swin-T, cannot achieve desired performance on diffusion-generated images. Other
detectors designed for GAN-generated, forgery, or universal fake images could all achieve competitive
performance, yet they still suffer performance drops, when detecting specific unknown diffusion
models, such as CNNDet and UniFD on DALLE. Our method maintains the same impressive
performance on all different diffusion models and with various settings. This provides support for the
impressive generalization of our method to various settings of diffusion models.

Moreover, we evaluate on the DiffusionForensics dataset that contains more unknown diffusion
models, i.e., 11 different diffusion models, including recent DALLE-2 and Midjourney. The ACC/AP
results are shown in Tab.[3] Our proposed method also achieves impressive ACC and AP across more
recent and different diffusion models, such as Stable-Diffusion, DALLE-2, and Midjourney, with
10.12% and 3.79% AP improvements compared to CNNDet and UniFD. This indicates the potential
of our method for detecting future challenging diffusion models.

Table 1: Generalization results on GenImage dataset. We report the detection accuracy and average
precision (ACC/AP) averaged over real and fake images on unknown diffusion models.

Detection Different Diffusion Models in Genlmage Total
method = pu Glide  Midjourney SD-vl4  SD-vl.5  VQDM  Wukong Avg.

ResNet-50 81.20/97.42 80.01/93.05 60.85/66.55 55.45/60.71 54.10/60.42 76.40/87.73 51.01/53.59 65.57/74.21
Swin-T  74.84/88.45 75.69/93.59 62.48/70.85 70.69/78.65 71.19/78.02 73.49/75.61 70.03/77.46 71.20/80.38

Patchfor  99.65/99.43 99.81/99.63 57.19/85.88 50.59/61.62 50.64/61.51 99.83/99.95 50.52/61.89 72.60/81.42
F3Net  99.64/99.99 99.84/99.99 51.48/74.93 50.02/59.41 50.33/61.98 99.94/99.99 50.13/52.61 71.63/78.41

DIRE  61.35/97.91 61.65/99.17 61.65/94.83 59.55/92.09 59.30/92.94 61.05/96.88 58.70/88.31 60.46/94.59

CNNDet 64.55/83.73 62.45/70.72 51.15/50.69 56.30/54.72 54.30/54.08 62.70/69.97 56.85/57.76 58.33/63.10
UniFD  72.45/91.45 62.30/63.65 53.50/50.83 67.00/78.58 67.10/74.38 72.25/95.35 70.45/85.94 66.44/77.17
NPR  77.90/96.91 77.95/93.69 73.30/86.76 75.40/83.14 73.50/83.40 80.15/91.35 74.00/87.88 76.03/89.02

DEFEND 99.95/100.0 99.95/100.0 99.95/100.0 99.90/99.99 99.95/100.0 99.90/100.0 99.80/100.0 99.91/100.0
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Table 2: Generalization results on UniformerDiffusion dataset. We report the detection accuracy
and average precision (ACC/AP) averaged over real and fake images on unknown diffusion models.

. Different Diffusion Models in UniformerDiffusion Total
Detection

method ADM LDM Glide DALLE Avg.

200 steps 200 w/ CFG 100 steps 100 & 27 50 & 27 100 & 10

ResNet-50 81.95/97.95 78.40/89.24 74.70/86.17 78.60/89.92 80.35/94.36 80.95/95.47 81.10/95.29 76.70/89.52 79.09/92.24
Swin-T  79.74/84.82 78.94/80.08 75.44/80.01 78.19/79.60 79.89/91.82 79.98/90.96 80.04/92.40 77.24/84.35 76.68/85.51

Patchfor  99.71/99.91 99.69/99.98 99.61/99.97 99.69/100.0 99.56/99.97 99.58/99.97 99.55/99.97 99.54/99.97 99.62/99.97
F3Net  99.49/100.0 99.54/99.99 99.49/99.99 99.54/99.91 99.44/99.97 99.50/99.98 99.49/99.98 99.49/99.93 99.50/99.97

DIRE  62.05/98.68 59.85/90.97 58.00/86.30 60.40/91.71 62.00/98.92 62.05/100.0 62.01/98.95 59.45/89.42 60.73/94.37

CNNDet 68.95/94.31 63.20/67.56 57.35/56.07 63.90/71.44 66.05/77.16 66.75/80.46 66.30/77.64 63.80/69.19 64.54/74.23
UniFD  73.30/93.35 73.20/95.94 64.45/75.67 73.35/95.83 70.80/82.33 70.50/83.24 69.90/82.13 70.75/87.32 70.78/86.98
NPR  83.15/96.32 83.25/92.34 83.10/93.69 83.25/93.37 81.90/95.86 82.45/96.51 82.60/96.52 83.05/95.10 82.84/94.96

DEFEND 100.0/100.0 99.90/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 99.99/100.0

Table 3: Generalization results on DiffusionForensics dataset. We report the detection accuracy

and average precision (ACC/AP) averaged over real and fake images on unknown diffusion models.
Detection Different Diffusion Models in DiffusionForensics Total
method ADM DDPM iDDPM PNDM SD-v1 SD-v2 LDM VQDM IF DALLE-2 Midjourney ~ Avg.

ResNet-50 61.95/90.07 59.45/77.73 61.90/90.45 92.50/99.43 96.25/99.71 97.15/99.77 99.35/99.98 99.45/100.0 99.20/99.98 95.73/99.05 92.00/62.86 86.81/92.64
Swin-T  59.18/96.35 62.54/97.12 60.33/98.10 55.03/97.64 94.90/99.86 94.69/99.94 98.29/99.98 95.79/99.98 98.79/99.96 99.99/99.99 100.0/99.99 83.59/98.99

Patchfor  61.20/92.08 59.65/84.47 57.52/88.39 97.40/99.73 51.75/68.86 50.75/68.77 91.45/97.98 91.63/97.98 91.86/99.24 65.67/54.61 89.54/84.73 73.49/85.17
F3Net  90.24/98.35 94.96/98.83 94.39/99.01 98.44/99.86 51.03/53.87 51.08/61.56 98.94/99.99 98.94/99.99 98.94/99.99 65.44/71.09 89.08/94.62 84.68/88.83

DIRE  85.00/99.76 83.09/99.89 85.05/99.97 83.45/96.82 85.05/99.96 85.06/100.0 85.01/99.98 85.05/99.97 85.00/99.97 80.07/99.94 72.82/99.89 83.15/99.65

CNNDet 70.75/82.84 66.91/81.64 72.35/86.42 72.60/92.97 72.65/89.18 70.25/78.86 71.55/87.75 72.95/100.0 72.85/95.96 63.93/95.74 50.64/97.35 68.86/89.88
UniFD  66.15/91.11 79.50/96.82 87.30/98.31 91.25/98.83 93.05/99.42 85.25/98.22 55.25/88.49 95.00/99.71 58.35/87.76 99.50/100.0 90.50/99.64 81.92/96.21
NPR  99.50/99.78 99.83/99.77 99.55/99.71 99.85/99.83 99.85/99.69 99.75/99.73 99.70/99.79 99.85/99.77 99.85/100.0 99.80/99.53 99.73/96.31 99.75/99.45

DEFEND 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0 100.0/100.0

The impressive performance across the three aforementioned datasets further demonstrates the
superiority of our proposed DEFEND representation, as it restrains the less discriminative clues and
enhances those more discriminative in the frequency domain for detection.

Robustness to unseen perturbations. The robustness to unseen perturbations is also a major concern
for existing detectors, as there are various but common post-preprocessing perturbations in real-
scenario applications, such as compression. To address this issue, we evaluate all detectors’ robustness
against three common but widely used perturbations on images generated from ADM (the same as
the training set), including Gaussian Noise, Gaussian Blur, and JPEG Compression, following (Wang
et al.,|2020;2023)). For each perturbation, we employ three different severity levels to disrupt images:
o = 0.001,0.005,0.01 for Gaussian Noise, o = 1, 2, 3 for Gaussian Blur, and quality = 75, 50, 25
for JPEG Compression. The results are shown in Fig. [5. From the results, we first observe that
existing detectors would suffer from common perturbations, especially for Gaussian Noise. This
indicates that some of the representations these detectors rely on might not be sufficiently robust to
real scenario disruptions. Our proposed representation suffers significantly less from the above three
perturbations, with only slight or even no performance drops. This indicates that, by exploring the
discriminative clues with natural real images across all frequency bands, our proposed representation
has impressive robustness against common perturbations.

4.3 ABLATION STUDY

Comparison with different image representations. To examine whether our proposed represen-
tation is better than other image representations for detecting diffusion-generated images, we first
conduct further ablation studies on various inputs for detection, including RGB and grayscale images.
The results on GenImage dataset are presented in Tab. [, which indicates that RGB and grayscale
images cannot achieve the desired generalization on unknown diffusion models. One explanation
could be that pixel space does not share common distributions among different diffusion models.
Their comparisons with our proposed DEFEND demonstrate that our representation serves as a
general and robust image representation, thus contributing to a generalizable detector than simply
using RGB images. This also provides more evidence for the superiority of our method by exploring
the discriminative clues with natural real images in the frequency domain.
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Figure 5: Robustness results to unseen perturbations. Average precision (AP) of different methods,
when detecting real/fake images under three different types of perturbations with three different
severity levels: Gaussian Noise (¢ = 0.001,0.005,0.01), Gaussian Blur (o = 1,2, 3), and JPEG
Compression (quality = 75, 50, 25) (from left to right).

Table 4: Ablation study on different image representation. We report the ACC/AP results on the
Genlmage dataset that indicates our designed representation can achieve improved performance.

Different Diffusion Models in Genlmage Total
ADM Glide Midjourney ~ SD-v1.4 SD-v1.5 VQDM Wukong Avg.

RGB 78.40/96.28 76.95/89.49 60.10/65.20 55.60/60.94 53.75/59.68 71.65/80.70 50.60/54.01 63.86/72.33
Grayscale ~ 97.90/99.75 98.00/99.81 75.85/89.44 65.65/81.87 65.65/82.68 92.90/98.61 67.00/83.52 80.42/90.81

DEFEND  99.95/100.0 99.95/100.0 99.95/100.0 99.90/99.99 99.95/100.0 99.90/100.0 99.80/100.0 99.91/100.0

Representation

Effect of the minimum threshold on low frequency. We conduct further ablation studies on
the threshold for restraining low-frequency bands by employing a different minimum threshold 7
or not, as presented in Tab. [5. We observe that the performance is improved when employing a
suitable minimum threshold to restrain the low-frequency band. This demonstrates that low-frequency
band cannot provide discriminative information for diffusion-generated image detection and that
eliminating them could boost the performance. Additionally, the performance will drop when the
threshold is too low or too high, which indicates that both introducing too much low-frequency
information or ignoring too much mid-high frequency information could undermine the performance.

Table 5: Ablation study on low-frequency bands. We report the ACC/AP results on the Genlmage
dataset that indicates that introducing both too much low-frequency and ignoring too much mid-high-
frequency information can undermine the performance.
Minimum Different Diffusion Models in Genlmage Total
threshold 7 - -
ADM Glide Midjourney  SD-v1.4 SD-v1.5 VQDM Wukong Avg.

0.00 99.35/99.99 99.80/99.99 99.75/99.95 99.30/99.96 99.20/99.98 99.65/99.96 98.75/99.96 99.40/99.97
0.05 99.90/100.0 99.85/100.0 99.95/100.0 99.80/99.99 99.85/100.0 99.90/100.0 99.75/100.0 99.86/100.0
0.20 99.75/100.0 99.85/100.0 99.95/100.0 99.90/99.99 99.95/100.0 99.90/100.0 99.78/100.0 99.87/100.0
0.10 99.95/100.0 99.95/100.0 99.95/100.0 99.90/99.99 99.95/100.0 99.90/100.0 99.80/100.0 99.91/100.0

Effect of different kernel functions on mid-high frequency. We use the two-degree linear func-
tion (quadratic function) as the kernel function k( f) to achieve the enhanced DEFEND representation
during the evaluation above. To examine whether this is an optimal function, we conduct further
ablation studies by using different kernel functions to fit the frequency distributions. We choose
the following functions: simple linear function k(f) = f, exponential function, and logarithm
function. The parameters of exponential and logarithm functions are set by fit to distributions above
(k(f) = 650 - >3/ — 650 for exponential and k(f) = 0.18 - log(0.25f) + 0.48). The results
are presented in Tab.[6, We observe that different kernel functions lead to different performance,
which indicates that a suitable weight function is necessary for the enhanced representation, e.g., the
exponential function is not a suitable weight function. We analyze that a suitable and desired function
should fit the distributions properly with no overfitting or underfitting. The naive functions also cannot
achieve competitive performance, such as k(f) = f, which could also be explained by underfitting.
The logarithm functions achieve impressive performance, and quadratic functions further improve
the results, which indicates that our specifically designed frequency-selective function is a suitable
function for restraining the less discriminative bands and enhancing those more discriminative ones.
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Table 6: Ablation study on different kernel functions for mid-high frequencies. We report the
ACC/AP on the Genlmage dataset, from which we observe that only a suitable weight function can
achieve impressive performance.

Kerqel Different Diffusion Models in Genlmage Total
function ADM Glide  Midjourney SD-vl4  SD-vl5  VQDM  Wukong Avg.
k(f) 99.15/99.93 99.50/99.91 99.30/99.97 98.85/99.80 99.20/99.97 99.10/99.97 98.35/99.87 99.06/99.92

=f
=a-e" +¢ 50.00/54.00 50.00/54.00 50.00/54.00 50.00/54.00 50.00/54.00 50.00/54.00 50.00/52.92 50.00/53.85
=a-log(bf)+c 99.75/99.99 99.95/100.0 99.95/100.0 99.95/100.0 99.90/99.97 99.90/99.98 99.90/99.98 99.90/99.99

k(f) =af?>+bf +c  99.95100.0 99.95/100.0 99.95/100.0 99.90/99.99 99.95/100.0 99.90/100.0 99.80/100.0 99.91/100.0

4.4 VISUALIZATION

To analyze our designed representation more directly, we visualize the Fourier spectrum and our
designed representation on real and different diffusion-generated images, as shown in Fig. [6. We
observe that our designed representations remove the low-frequency information, which is less
discriminative, and that they enhance the high-frequency clues, such as edges and details, which
are more discriminative. The representations on real images preserve more mid-high-frequency
information of original images compared to diffusion-generated images that are more distinguishable
serving as clues for the detection task.

ADM Midjourney VQDM

Figure 6: The visualization of Fourier spectrum and our designed representation on real and
different diffusion-generated images. We observe that our representation enhances the mid-high-
frequency clues and removes low-frequency information, which makes it more discriminative for
distinguishing real and fake images.

5 CONCLUSION

In this paper, we focus on the intrinsic statistical difference between natural real images and diffusion-
generated images in the frequency domain. Specifically, we first conduct a comprehensive frequency
analysis that shows that the diffusion-generated images exhibit increasing differences with natural
real images from low- to high-frequency bands. Upon this observation, we propose a new image
representation DEFEND by designing a specific frequency-selective function that serves as the
weighted filter banks on the Fourier spectrum to restrain the less-discriminative frequency bands,
low-frequency and to enhance the more discriminative ones, high-frequency. Extensive experiments
on various public diffusion-generated image datasets demonstrate the superiority of our proposed
method with impressive generalization and robustness against other state-of-the-art competitors. We
hope our method could provide insights for detecting generated images from the perspective of
analyzing natural real images, i.e., in the frequency domain. In the future, we aim to extend our
idea and method to other Al-generated content (AIGC) detection tasks, such as different generative
models to facilitate the development of AIGC safety.

10
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