
Under review as a conference paper at ICLR 2024

AED: ADAPTABLE ERROR DETECTION FOR FEW-
SHOT IMITATION POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the behavior error detection of few-shot imitation (FSI) policies, which
behave in novel (unseen) environments. FSI policies would provoke damage to
surrounding people and objects when failing, restricting their contribution to real-
world applications. We should have a robust system to notify operators when FSI
policies are inconsistent with the intent of demonstrations. Thus, we formulate a
novel problem: adaptable error detection (AED) for monitoring FSI policy behav-
iors. The problem involves the following three challenges: (1) detecting errors in
novel environments, (2) no impulse signals when behavior errors occur, and (3)
online detection lacking global temporal information. To tackle AED, we propose
Pattern Observer (PrObe) to parse the discernable patterns in the policy feature
representations of normal or error states. PrObe is then verified in our seven com-
plex multi-stage FSI tasks. From the results, PrObe consistently surpasses strong
baselines and demonstrates a robust capability to identify errors arising from a
wide range of FSI policies. Finally, the visualizations of learned pattern represen-
tations support our claims and provide a better explainability of PrObe.

1 INTRODUCTION

Few-shot imitation (FSI) is a critical and practical framework for future human-robot collabora-
tion. Specifically, a robot solves a set of everyday missions through learning from a few owner’s
demonstrations. By constructing a demonstration-conditioned (DC) policy, existing mainstream FSI
methods (Duan et al., 2017; James et al., 2018; Bonardi et al., 2020; Dasari & Gupta, 2020; Dance
et al., 2021; Yeh et al., 2022; Watahiki & Tsuruoka, 2022) have made a significant breakthrough in
novel environments. A major barrier that still limits their ability to infiltrate our everyday lives is to
detect errors in novel (unseen) environments. Unlike other few-shot visual perception tasks, policies
in FSI that fail to perform tasks in real scenes will cause severe impairments of surrounding objects
and humans, resulting in rarely conducting real-world experiments (or only simple tasks).

Therefore, we propose a challenging and crucial problem: adaptable error detection (AED), which
aims to monitor FSI policies and report their behavior errors. In this work, behavior errors are the
states inconsistent with the demonstrations, and the policy must be timely terminated when they
occur. We emphasize that addressing AED is as critical as enhancing FSI policies’ performance.

As illustrated in Figure 1, our AED problem introduces three novel challenges not present in a
related problem, video few-shot anomaly detection (vFSAD). Specifically, (1) AED monitors the
policy’s behavior in novel environments whose normal states are not seen during training. Although
vFSAD also works in an unseen scenario, the anomalies they monitor are common objects. (2) In
AED, no impulse signals (i.e., notable changes) appear when behavior errors occur. Either (2-a)
minor visual difference or (2-b) task misunderstanding is hard to recognize through adjacent rollout
frames. In contrast, the anomaly in vFSAD raises a notable change in the perception field (e.g.,
a cyclist suddenly appearing on the sidewalk (Mahadevan et al., 2010)). (3) AED requires online
detection to terminate the policy timely, lacking the global temporal information of the rollout.
However, in vFSAD (Sultani et al., 2018; Feng et al., 2021), the whole video is accessible so that its
statistical information can be leveraged, which is straightforward for detecting anomalies.

Unfortunately, previous methods cannot address all three challenges posed by our AED problem.
First, one-class classification (OCC) methods, such as one-class SVMs (Zhou & Paffenroth, 2017)
or autoencoders (Ruff et al., 2018; Park et al., 2018; Chen et al., 2020; Wong et al., 2021), struggle

1

Under review as a conference paper at ICLR 2024

time 0 1 2 t future steps

current observation

2

3

adaptable

error detector

Alarm:

pick failure

agent
(executing FSI policy)

Three Challenges in AED problem

Working in novel environments
(unseen objects and background)

No impulse signals when behavior errors occur
(hard to observe from adjacent frames)

Online detection
(lacking global temporal information)

2-a minor visual difference 2-b task misunderstanding

agent expertfailure success

1

Figure 1: Challenges in adaptable error detection (AED) problem. To monitor the trained few-shot
imitation (FSI) policy πθ, the adaptable error detector needs to address three challenges: (1) it works
in novel environments, (2) no impulse signals (notable changes) when behavior errors occur, and (3)
it requires online detection. These challenges make existing error detection methods infeasible.

due to their inability to handle unseen environments. Clearly, they are trained with normal-only
samples and detect relying on a substantial error when encountering anomalies (errors), i.e., out-
of-distribution (OOD) samples. However, normal states in novel environments containing unseen
backgrounds and objects are already OOD to these methods, leading to poor performance. Second,
multiple instance learning (Maron & Lozano-Pérez, 1997) or patch-based methods (Sultani et al.,
2018; Roth et al., 2022), good at discovering tiny defeats, may alleviate the (2-a) case in the second
challenge. Even so, the minor visual difference and target misunderstandings cannot be recognized
in novel environments if no consistent comparison between the current rollout and demonstrations
is made, even at the instance/patch level. At last, due to lacking the crucial component (global
temporal information from a completed trajectory), existing vFSAD methods (Sultani et al., 2018;
Feng et al., 2021) are unsuitable in AED, where only partial temporal information exists.

As analyzed above, conventional methods run into insurmountable obstacles. To address AED, we
discover the potential to leverage policy understanding, i.e., how policy extracts feature representa-
tions in different situations (normal and error). In addition to obtaining the information from visual
inputs, learning in policy features provides additional knowledge related to FSI tasks. We hypoth-
esize that the feature representations (embeddings) from trained policies have implicit discernible
patterns within the frames of normal and error states. Hence, the Pattern Observer (PrObe) is then
proposed. Precisely, we collect and augment successful and failed rollouts in the base (training)
environments. Then, the trained policy computes feature embeddings of rollout frames. In order to
mitigate the impact of shifting into novel environments (first challenge), PrObe uses an extractor to
parse patterns in policy features to obtain additional task-related knowledge. Next, PrObe computes
the pattern flow containing pattern changes over time, efficiently leveraging existing temporal in-
formation (third challenge). Finally, PrObe conducts the consistent comparison (second challenge)
by a fusion of pattern flow and transformed task-embeddings and distinguishes when the feature
embedding is extracted, i.e., the frame that policy encountered in successful or failed rollouts. With
these designs, PrObe can effectively address the challenging AED problem.

We designed seven challenging multi-stage FSI tasks (329 base and 158 novel environments in
total) to validate PrObe’s effectiveness. From the results, PrObe achieves the best performance and
outperforms strong baselines with a significant gap of up to 40%. Meanwhile, it is the most robust
method for different FSI policies. Also, we provide detailed ablations and the timing accuracy result
to support our claims. Finally, a pilot study on addressing error correction after AED methods detect
an error is conducted to demonstrate the practical scenario of the proposed problem.

Contributions (1) We formulate the adaptable error detection (AED) problem, accelerating the
development of human-robot collaboration. (2) We propose PrObe, addressing AED by learning the
pattern flow in the policy’s feature representations. (3) We develop challenging FSI tasks to evaluate
PrObe’s effectiveness. It outperforms various baselines and is robust for distinct policies. Our work
is expected to become an important cornerstone for FSI to conduct future real-world experiments.

2

Under review as a conference paper at ICLR 2024

2 RELATED WORKS

2.1 FEW-SHOT IMITATION (FSI)

Policy With the recent progress in meta-learning (Finn et al., 2017a), the community explores the
paradigm for learning policies from limited demonstrations during inference (Finn et al., 2017b; Yu
et al., 2018; 2019a). Notably, these works either assume that the agent and expert have the same
configuration or explicitly learn a motion mapping between them (Yu et al., 2018). Conversely,
DC methods (Dance et al., 2021; Yeh et al., 2022; Watahiki & Tsuruoka, 2022) develop a policy
that behaves conditioned both on the current state and demonstrations. Furthermore, they implicitly
learn the mapping between agents and experts, making fine-tuning optional. Thereby, effectively
extracting knowledge from demonstrations becomes the most critical matter. In most FSI works,
no environment interactions are allowed before inference. Hence, policies are usually trained by
behavior cloning (BC) objectives, i.e., learning the likelihood of expert actions by giving expert
observations. Recently, DCRL (Dance et al., 2021) trains a model using reinforcement learning
(RL) objects and performs FSI tasks without interacting with novel environments.

Evaluation tasks Since humans can perform complex long-horizon tasks after watching a few
demonstrations, FSI studies continuously pursue solving long-horizon tasks to verify if machines
can achieve the same level. A set of research applies policy on a robot arm to perform daily life
tasks in the real world (Yu et al., 2018) or simulation (Duan et al., 2017). The task is usually multi-
stage and composed of primitives/skills/stages (Yeh et al., 2022; Hakhamaneshi et al., 2022), such
as a typical pick-and-place task (Yu et al., 2019a) or multiple boxes stacking (Duan et al., 2017).
Besides, MoMaRT (Wong et al., 2021) tackles a challenging mobile robot task in a kitchen scene.

Our work formulates the AED problem to monitor the FSI policies’ behaviors and proposes PrObe to
address AED, which is valuable to extensive FSI research. Besides, we also built seven challenging
FSI tasks containing attributes like realistic simulation, task distractors, and various robot behaviors.

2.2 FEW-SHOT ANOMALY DETECTION (FSAD)

Problem setting FSAD is an innovative research topic. Most existing studies deal with FSAD at
the image level (Roth et al., 2022; Sheynin et al., 2021; Pang et al., 2021; Huang et al., 2022a; Wang
et al., 2022) and only a few tackle video anomalies (Lu et al., 2020; Qiang et al., 2021; Huang et al.,
2022b). Moreover, problem settings in the literature are diverse. Some works presume only normal
data are given during training (Sheynin et al., 2021; Wang et al., 2022; Lu et al., 2020; Qiang et al.,
2021), while others train models with normal and a few anomaly data and include unknown anomaly
classes during performance evaluation (Pang et al., 2021; Huang et al., 2022b).

Method summary Studies that only use normal training samples usually develop a reconstruction-
based model with auxiliary objectives, such as meta-learning (Lu et al., 2020), optical flow (Qiang
et al., 2021), and adversarial training (Sheynin et al., 2021; Qiang et al., 2021). Besides, patch-based
methods (Roth et al., 2022; Pang et al., 2021) reveal the performance superiority on main image
FSAD benchmark (Bergmann et al., 2019) since the anomaly are tiny defeats. Regarding video
anomaly detection, existing works access a complete video to compute the temporal information for
determining if it contains anomalies. In addition, vFSAD benchmarks (Mahadevan et al., 2010; Lu
et al., 2013) provide frame-level labels to evaluate the accuracy of locating anomalies in videos.

In our work, we formulate the AED problem. As stated earlier, addressing AED is more challenging
than vFSAD since it brings two more challenges, including no impulse signals and online detection.
Moreover, previous error detection methods are infeasible for the proposed AED problem.

3 PRELIMINARIES

Few-shot imitation (FSI) FSI is a framework worthy of attention, accelerating the development
of human-robot collaboration, such as robots completing pre-tasks alone or interacting with hu-
mans for highly complex tasks. Following Yeh et al. (2022), a FSI task is associated with a set of
base environments Eb and novel environments En. In each novel environment en ∈ En, a few
demonstrations Dn are given. The objective is to seek a policy π that achieves the best performance

3

Under review as a conference paper at ICLR 2024

(e.g., success rate) in novel environments leveraging few demonstrations. Notably, the task in base
and novel environments are semantically similar, but their backgrounds and interactive objects are
disjoint. Besides, observations and demonstrations are RGB-D images that only provide partial
information in recent studies (Dasari & Gupta, 2020; Yeh et al., 2022).

Additionally, there are several challenges when addressing FSI tasks in practice, including (1) the
task is a multi-stage task, (2) demonstrations are length-variant and misaligned, and (3) the expert
and agent have a distinct appearance or configuration, as mentioned in Yeh et al. (2022). Developing
a policy to solve the FSI problem and simultaneously tackle these challenges is crucial.

Demonstration-conditioned (DC) policy As previously stated, the expert and agent usually have
different appearances or configurations in practice. The DC policy π(a | s,D) learns implicit
mapping using current states s and demonstrations D to compute agent actions a. Next, we present
the unified architecture of DC policies and how they produce the action. When the observations and
demonstrations are RGB-D images that only provide partial information, we assume that current
history h (observations from the beginning to the latest) and demonstrations are adopted as inputs.

A DC policy comprises a feature encoder, a task-embedding network, and an actor. After receiving
the rollout history h, the feature encoder extracts the history features fh. Meanwhile, the feature
encoder also extracts the demonstration features. Then, the task-embedding network computes the
task-embedding fζ to retrieve task guidance. Notably, the lengths of agent rollout and demonstra-
tions can vary. The task-embedding network is expected to handle length-variant sequences by
padding frames to a prefixed length or applying attention mechanisms. Afterward, the actor predicts
the action for the latest observation, conditioned on the history features fh and task-embedding fζ .
Besides, an optional inverse dynamics module predict the action between consecutive observations
to improve the policy’s understanding of how actions affect environmental changes. At last, the
predicted actions are optimized by the negative log-likelihood or regression objectives (MSE).

4 AED PROBLEM

We formulate AED to monitor FSI policies and report their behavior errors, i.e., states in policy
rollouts inconsistent with demonstrations. The inevitable challenges faced in addressing AED is
previously presented. Next, we formally state the problem.

Problem statement Let c denote the category of agent’s behavior modes, where c ∈ C,C =
{normal, error}. When the agent (executing trained πθ) performs FSI task in a novel environment en,
an adaptable error detector ϕ can access the agent’s rollout history h and few expert demonstrations
Dn. Then, ϕ predicts the categorical probability ŷ of the behavior mode for the latest state in h by

ŷ = ϕ(h,Dn) = P (c | enc(h,Dn)), (1)

where enc denotes the feature encoder, and it may be encϕ (ϕ contains its own encoder) or encπθ

(based on policy’s encoder). Next, let y represent the ground truth probability, we evaluate ϕ via the
expectation of detection accuracy over agent rollouts Xn in all novel environments En:

Een∼EnEen,πθ(·|·,Dn)Eh∼XnA(ŷ, y), (2)

where A(·, ·) is the accuracy function that returns 1 if ŷ is consistent with y and 0 otherwise. How-
ever, frame-level labels are lacking in novel environments since we only know if the rollout is suc-
cessful or failed at the end. Hence, we present the details of A(·, ·) in the Appendix’s Section E.1.

Protocol To train the adaptable error detector ϕ, we assume it can access the resources in base
environments Eb just like FSI policies, i.e., successful agent rollouts Xb

succ and a few expert demon-
strations Db, which are collected by executing the agent’s and expert’s optimal policies π∗1, respec-
tively. Besides, we collect failed agent rollouts Xb

fail by intervening in the agent’s π∗ at critical
timing (e.g., the timing to grasp objects) so that we have precise frame-level error labels.

1We expect the agent’s optimal policy is known in base environments. Furthermore, successful agent roll-
outs are not demonstrations since the agent and expert have different configurations.

4

Under review as a conference paper at ICLR 2024

Step 1.

policy training

Environment

Accessible

Data

Step 2.

AED training

Policy

Step 3.

AED inference

Policy AED

perform

FSI tasks

monitor

policy

base environments base environments

rollout

augmentation

AEDPolicy

extract features

(optional)

novel environments

demonstrationsor

successful agent rollouts

failed agent rollouts

collected by

Notations

expert executing

agent executing

agent executing w/ intervention

frozen models

trainable models

Figure 2: AED pipeline. Before training, we collect successful agent rollouts Xb
succ, failed agent

rollouts Xb
fail, and a few expert demonstrations Db for all base environments Eb. Then, the process

contains three phases: policy training, AED training, and AED inference. The adaptable error
detector ϕ aims to report policy πθ’s behavior errors when performing in novel environments En.

Figure 2 shows the process: (1) Policy πθ is optimized using successful agent rollouts Xb
succ and

few demonstrations Db. (2) Adaptable error detector ϕ is trained on agent rollouts Xb
succ, Xb

fail and
few demonstrations Db. Besides, ϕ extracts features from policy πθ if it depends on πθ’s encoder.
And πθ’s parameters are not updated in this duration. (3) ϕ monitors policy πθ performing FSI tasks
in novel environments En. No agent rollouts are pre-collected in En; πθ solves the task leveraging
few demonstrations Dn. AED aims to evaluate the detector ϕ’s ability to report πθ’s behavior errors.

5 PATTERN OBSERVER (PROBE)

Overview Our motivation is to detect behavior errors in the space of policy features to acquire
additional task-related knowledge. Thus, we propose Pattern Observer (PrObe), an adaptable error
detector, to discover the unexpressed patterns in the policy features extracted from frames of suc-
cessful or failed states. Even if the visual inputs vary during inference, PrObe leverages the pattern
flow and a following consistent comparison to alleviate the challenges in Figure 1. As a result, it can
address the crucial AED problem effectively. Furthermore, a rollout augmentation is designed to
increase the collected rollout diversity and enhance method robustness, as we now present in detail.

5.1 ROLLOUT AUGMENTATION

To obtain balanced (successful and failed) data and precise frame-level labels, we collect Xb
succ

and Xb
fail using the agent’s optimal policy π∗ with intervention rather than the trained policy πθ.

However, even if πθ is trained on the rollouts collected by the agent executing π∗, the trained πθ will
still deviate from agent’s π∗ due to the limited rollout diversity, i.e., a behavior bias exists between
the two policies, which should be reduced. Otherwise, an adaptable error detector trained on raw
rollouts (Xb

succ and Xb
fail) will yield a high false-positive during AED inference.

Accordingly, we augment agent rollouts so as to increase rollout diversity and dilute the behavior
bias between trained πθ and agent’s π∗. Specifically, we iterate each frame (and its label) from
sampled agent rollouts and randomly apply the following operations: keep, drop, swap, and copy,
with probability 0.3, 0.3, 0.2, and 0.2, respectively. As a result, we inject distinct behaviors into
collected rollouts, such as speeding up (interval frames dropped), slowing down (repetitive frames),
and not smooth movements (swapped frames). We carefully verify its benefits in Section 6.

5.2 PROBE ARCHITECTURE

As depicted in Figure 3, PrObe comprises three major components: a pattern extractor, a pattern
flow generator, and an embedding fusion. Since PrObe detects errors through policy features, the
history features fh and task-embeddings fζ from the trained policy πθ are passed into PrObe.

5

Under review as a conference paper at ICLR 2024

Policy

pattern extractor flow generator

(LSTM)

t
history

embeddings

task

embeddings

logit error

prediction

logit

fusion

history

embeddings

pattern extractor

gate

sign

IN 𝐿𝑐𝑙𝑠

𝐿𝑡𝑒𝑚

FC IN FC FC

𝐿𝑝𝑎𝑡

IN

𝑓𝑝

pattern

𝑓ℎ

𝑓𝜁

pattern

unit

unit signgate

IN

FC

agent rollout

demonstrations

unit vector

instance

normalization

linear layer

linear w/ sigmoid

concatenate

Hadamard

product

sign of

features

notations

pattern

Figure 3: Architecture of PrObe. PrObe detects behavior errors through the pattern extracted from
policy features. The learnable gated pattern extractor and flow generator (LSTM) compute the pat-
tern flow of history features fh. Then, the fusion with transformed task-embeddings fζ aims to
compare the task consistency. PrObe predicts the behavior error based on the fused embeddings.
Objectives, Lpat, Ltem, and Lcls, optimize the corresponding outputs.

At first, the pattern extractor aims to gather discriminative information from each embedding of
history features fh (the features of a rollout sequence). In more detail, fh is transformed into unit
embeddings divided by its L2 norm, which mitigates biases caused by changes in visual inputs.
Then, a learnable gate composed of a linear layer with a sigmoid function determines the impor-
tance of each embedding cell. A Hadamard product between the sign of unit embeddings and the
importance scores, followed by an instance normalization (IN), is applied to obtain the pattern fea-
tures fp for each timestep. PrObe then feeds fp into a flow generator (a LSTM) to generate the
pattern flow. Intuitively, the changes in the pattern flow of successful and failed rollouts will differ.

On the other hand, the task-embeddings fζ is transformed by an IN layer, a linear layer (FC), and
a tanh function. This step tries to map the task-embeddings into a space similar to pattern flow.
Then, a fusion process concatenates the pattern flow and transformed task-embeddings to compute
the error predictions ŷ. We expect this fusion process to be able to compare the consistency between
agent rollout and tasks and use this as a basis for whether behavior errors occur.

Objectives PrObe is optimized by one supervised and two unsupervised objectives. First, since
accurate frame-level error labels y are available during training, a binary cross-entropy (BCE) objec-
tive Lcls is used to optimize the error prediction ŷ. Second, Lpat is a L1 loss applied to the pattern
features fp. The Lpat objective encourages the pattern extractor to generate sparse pattern features,
which are easier to observe the changes. In addition, a contrastive objective Ltem is added to logit
embeddings (the embedding before the final outputs) to reinforce the difference between the normal
and error states in failed rollouts Xb

fail, i.e., we sample anchors from Xb
fail, and the positive and

negative samples will be logits of the same or opposed states from the same rollout.

However, the logits of adjacent frames will contain similar signals since they contain temporal in-
formation from the pattern flow, even if behavioral errors have occurred (cf. Appendix’s Figure 7).
Blindly forcing the logits of normal and error states to be far away from each other may mislead
the model and have a negative impact. Hence, Ltem is a novel temporal-aware triplet loss (Schroff
et al., 2015). The temporal-aware margin mt in Ltem will be enlarged or reduced considering the
temporal distance of anchor, positive and negative samples. The Ltem objective is calculated by:

Ltem =
1

N

N∑
i=0

max(∥logitai − logitpi ∥2 − ∥logitai − logitni ∥2 +mt, 0), (3)

where mt = m ∗ (1.0 − α ∗ (dap − dan)), m is the margin in the original triplet loss, and dap,
dan are the clipped temporal distances between the anchor and positive sample and the anchor and

6

Under review as a conference paper at ICLR 2024

negative sample, respectively. And N is the number of sampled pairs. Ultimately, the total loss
Ltotal combines Lpat, Ltem, Lcls objectives weighted by λpat, λtem, and λcls.

6 EXPERIMENTS

We design the experiments to verify the following questions: (1) Is detecting behavior errors from
policy features beneficial to addressing the novel AED problem? (2) Can the proposed PrObe pre-
cisely recognize the behavior errors at the accurate timing? (3) Do the embeddings learned by PrObe
have discernable patterns? (4) How practical is our proposed AED research?

6.1 EXPERIMENTAL SETTINGS

Evaluation tasks Existing robotic manipulation benchmarks (Yu et al., 2019b; James et al., 2020;
Fu et al., 2020; Mandlekar et al., 2021) do not suit our needs since we formulate the novel AED
problem. We design seven challenging multi-stage FSI tasks (six indoor and one factory scene) that
contain the challenges introduced in Section 3. Detailed task descriptions, schematic, the number
of environments, and distractors are shown in the Appendix’s Section D. We build the tasks on
Coppeliasim software (Robotics) and use the Pyrep (James et al., 2019) toolkit as a coding interface.

FSI policies To verify if the AED methods can handle various policies’ behaviors, we select three
representative DC policies to perform FSI tasks, which are implemented following the descriptions
in Section 3 and use the same feature extractor and actor architecture. The main difference between
them is how they extract task-embeddings from expert demonstrations. NaiveDC2 (James et al.,
2018) concatenates the first and last frames of demonstrations and averages their embeddings as
task-embeddings; DCT 3 (Dance et al., 2021) performs cross-demonstration attention and fuses
them at the time dimension; SCAN (Yeh et al., 2022) computes the tasks-embeddings using stage-
conscious attention to locate the critical frames in demonstrations.

Error detection baselines We compare our PrObe with four error detection methods that possess
different characteristics. Unlike PrObe, all methods are policy-independent (i.e., containing their
own encoders) and use the same encoder architecture. We briefly introduce them: (1) SVDDED,
an one-class SVM modified from Ruff et al. (2018), is a single-frame DC method trained with only
successful rollouts. (2) TaskEmbED, a single-frame DC method trained with successful and failed
rollouts, uses the NaiveDC (James et al., 2018) policy’s strategy to extract task-embeddings when
predicting errors. (3) LSTMED is a LSTM model (Hochreiter & Schmidhuber, 1997) predicts errors
without demonstration information. (4) DCTED leverages the DCT (Dance et al., 2021) policy’s
strategy to predict errors. The detailed version can be found in the Appendix’s Section C.

Metrics The area under the receiver operating characteristic (AUROC) and the area under
the precision-recall curve (AUPRC), two conventional threshold-independent metrics in error (or
anomaly) detection literature, are reported. We linearly select 5000 thresholds spaced from 0 to 1
(or outputs of SVDDED) to compute the two scores. The accuracy function (presented in the Ap-
pendix’s Section E.1) determines the error prediction results (i.e., TP, TN, FP, FN) at the sequence-
level so that we further conduct and illustrate the timing accuracy experiment in Figure 5.

6.2 EXPERIMENTAL RESULT ANALYSIS

Overall performance Our main experiment aims to answer the first question, i.e., is detecting
the policy’s behavior errors from its feature embedding beneficial? We let NaiveDC, DCT, and
SCAN policies perform in dozens of novel environments for each task and record the results (rollout
observations and the success or failure of the rollout). Policies behave differently, making it difficult
for AED methods to effectively detect behavioral errors in all policies. We then let AED methods
infer the error predictions and report the two metrics. It is worth noting that in this experiment,
AUPRC has more reference value. Because the results of policy rollout are often biased (e.g., many
successes or failures), AUPRC is less affected by the imbalance of labeling.

2Original name is TaskEmb, we renamed it to avoid confusion with error detection baselines.
3Original name is DCRL, we denote it as DCT (transformer) since we do not use RL objectives.

7

Under review as a conference paper at ICLR 2024

Close Drawer Press Button

AUROC AUPRC AUROC AUPRC

Pick & Place

AUROC AUPRC

Move Glass Cup

AUROC AUPRC

AUROC AUPRC AUROC AUPRC

Organize Table Back to Box

AUROC AUPRC

Factory Packing

Figure 4: AED methods’ performance on our seven challenging FSI tasks. The value under the
policy indicates the policy’s success rate in that task. The ranges of the two metrics [↑] are both 0 to
1. Our PrObe gets the best 13 AUROC and 15 AUPRC scores (out of 21 cases), demonstrating its
superiority and robustness. We refer to the Appendix’s Table 7 for detailed values.

From Figure 4, PrObe effectively reports the inconsistency between rollout frames and demonstra-
tions (behavior errors) in novel environments, even some errors not included in the training data.
Our PrObe obtained the best 13 AUROC and 15 AUPRC results out of 21 cases, which reveals its
superiority among AED methods and robustness for different policies. Besides, we investigate the
cases where PrObe got suboptimal performance and found that they can be grouped into two types:
(1) Errors all occur at the same timing (e.g., at the end of the rollout) and can be identified without
reference to the demonstrations (e.g., DCT policy in Organize Table task). (2) Errors are not obvious
compared to the demonstrations, and there is still a chance to complete the task, such as the drawer
being closed to a small gap (SCAN and DCT policies in Close Drawer task). In these cases, the
pattern flow will not change enough to be recognized, resulting in suboptimal results for PrObe.

Ablations We conduct and summarize several ablations on the proposed components in the Ap-
pendix. First, Figure 11 indicates that the rollout augmentation (RA) strategy can increase the roll-
out diversity and benefits AED methods with temporal information. Second, Figure 12 proves that
PrObe’s design can effectively improve performance. Finally, Figure 13 shows PrObe’s performance
stability by executing multiple experiment runs on a subset of tasks and computing the performance
variance. For an exhaustive version, please refer to the corresponding paragraphs in the Appendix.

Timing accuracy Our main experiment examines whether the AED methods can accurately report
behavior errors when receiving the complete policy rollouts. To validate if they raise the error at the

8

Under review as a conference paper at ICLR 2024

Successful rollout case Failed rollout case

label SVDDED TaskEmbED LSTMED DCTED PrObe (Ours)

Figure 5: Visualization of timing accuracy. Raw probabilities and SVDDED outputs of selected
successful rollout (left) and failed rollout (right) are drawn. Our PrObe can raise the error at the
accurate timing in the failed rollout and stably recognizes normal states in the successful case.

PrObe (ours)LSTMEDTaskEmbED

normal states

error states

rollout progress

begin

(dark)

end

(bright)

success rollout

failed rollout

error occurred

Figure 6: t-SNE visualization of learned embeddings (representations). The green and red circles
represent normal and error states, respectively. The brightness of the circle indicates the rollout
progress (from dark to bright). The embeddings learned by our PrObe have better interpretability
because they exhibit task progress and homogeneous state clustering characteristics.

right timing, we manually annotate a subset of policy rollouts (SCAN policy in Pick & Place task)
and visualize the raw outputs of all AED methods, where SVDDED outputs the embedding distance
between observation and task-embedding while others compute the probabilities, as shown in Figure
5. In the successful rollout case, our PrObe and LSTMED stably recognize the states are normal,
while other methods misidentify and increase the probability that inputs may be the error states. In
the failed rollout case, PrObe detects the error after it has happened for a while (< 5 frames) and
significantly increases the probability. We attribute this short delay to the fact that the pattern flow
takes a short period to cause enough change. Even so, PrObe is the one that detects the error at
the closest timing; other methods raise the probability too early or too late. We emphasize that this
situation is ubiquitous and is not a deliberate choice.

Embedding visualization To analyze if the learned embeddings possess discernable patterns, we
present the t-SNE transform (van der Maaten & Hinton, 2008) of three AED methods’ embeddings in
Figure 6. The same 20 rollouts from the annotated dataset above are extracted by the three methods
to obtain the embeddings. Obviously, the embeddings learned by TaskEmbED and LSTMED are
scattered and have no explainable structure. In contrast, our PrObe’s embeddings have task progress
and homogeneous state clustering characteristics, i.e., the states with similar properties (e.g., the
beginnings of rollouts, the same type of failures) are closer. This experiment supports the hypothesis
that our PrObe can learn the implicit patterns from the policy’s feature embeddings.

7 CONCLUSION

In this work, we point out the importance of monitoring policy behavior errors to accelerate the
development of FSI research. To this end, we formulate the novel adaptable error detection (AED)
problem, whose three challenges make previous error detection methods infeasible. To address
AED, we propose the novel Pattern Observer (PrObe) by detecting errors in the space of policy
features. With the extracted discernable patterns and additional task-related knowledge, PrObe ef-
fectively alleviates AED’s challenges. It achieves the best performance, which can be verified by our
main experiment and detailed ablations. We also demonstrate PrObe’s superiority using the timing
accuracy experiment and the learned embedding visualization. Finally, we provide the pilot study
on error correction in the Appendix to confirm the practicality of our AED problem. Our work is an
essential cornerstone in developing future FSI research to conduct complex real-world experiments.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Greg Anderson, Swarat Chaudhuri, and Isil Dillig. Guiding safe exploration with weakest precon-
ditions. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=zzqBoIFOQ1.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad — a comprehen-
sive real-world dataset for unsupervised anomaly detection. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9584–9592, 2019.

Alessandro Bonardi, Stephen James, and Andrew J. Davison. Learning one-shot imitation from
humans without humans. IEEE Robotics and Automation Letters, 5(2):3533–3539, 2020.

Tingting Chen, Xueping Liu, Bizhong Xia, Wei Wang, and Yongzhi Lai. Unsupervised anomaly
detection of industrial robots using sliding-window convolutional variational autoencoder. IEEE
Access, 8:47072–47081, 2020.

Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy Liang, and Dorsa Sadigh.
No, to the right: Online language corrections for robotic manipulation via shared autonomy. In
Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, pp.
93–101, 2023.

Christopher R. Dance, Julien Perez, and Théo Cachet. Demonstration-conditioned reinforcement
learning for few-shot imitation. In Proceedings of the 38th International Conference on Machine
Learning, volume 139, pp. 2376–2387, 18–24 Jul 2021.

Sudeep Dasari and Abhinav Gupta. Transformers for one-shot imitation learning. In Proceedings of
the Conference on Robot Learning, 2020.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Advances in Neural
Information Processing Systems, volume 30, 2017.

Jia-Chang Feng, Fa-Ting Hong, and Wei-Shi Zheng. Mist: Multiple instance self-training frame-
work for video anomaly detection. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 14004–14013, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135, 06–11 Aug 2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imita-
tion learning via meta-learning. In CoRL 2017, pp. 357–368, 13–15 Nov 2017b.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. In Advances in Neural Information Processing Systems, 2022.

Kourosh Hakhamaneshi, Ruihan Zhao, Albert Zhan, Pieter Abbeel, and Michael Laskin. Hierar-
chical few-shot imitation with skill transition models. In International Conference on Learning
Representations, 2022.

Geoffrey Hinton. Rmsprop optimizer. http://www.cs.toronto.edu/˜tijmen/csc321/
slides/lecture_slides_lec6.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Chaoqin Huang, Haoyan Guan, Aofan Jiang, Ya Zhang, Michael Spratlin, and Yanfeng Wang. Regis-
tration based few-shot anomaly detection. In European Conference on Computer Vision (ECCV),
2022a.

10

https://openreview.net/forum?id=zzqBoIFOQ1
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Under review as a conference paper at ICLR 2024

Ruiquan Huang, Jing Yang, and Yingbin Liang. Safe exploration incurs nearly no additional sample
complexity for reward-free RL. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=wNUgn1n6esQ.

Xin Huang, Yutao Hu, Xiaoyan Luo, Jungong Han, Baochang Zhang, and Xianbin Cao. Boosting
variational inference with margin learning for few-shot scene-adaptive anomaly detection. IEEE
Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2022b.

Stephen James, Michael Bloesch, and Andrew J Davison. Task-embedded control networks for
few-shot imitation learning. In Proceedings of the Conference on Robot Learning, 2018.

Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing v-rep to deep robot learning.
arXiv preprint arXiv:1906.11176, 2019.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–
3026, 2020.

Mengxi Li, Alper Canberk, Dylan P. Losey, and Dorsa Sadigh. Learning human objectives from
sequences of physical corrections. In 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 2877–2883, 2021. doi: 10.1109/ICRA48506.2021.9560829.

Cewu Lu, Jianping Shi, and Jiaya Jia. Abnormal event detection at 150 fps in matlab. In 2013 IEEE
International Conference on Computer Vision, pp. 2720–2727, 2013.

Yiwei Lu, Frank Yu, Mahesh Kumar Krishna Reddy, and Yang Wang. Few-shot scene-adaptive
anomaly detection. In European Conference on Computer Vision, 2020.

Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. Anomaly detection in crowded
scenes. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 1975–1981, 2010.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In 5th Annual Conference on Robot Learning,
2021.

Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning. In M. Jordan,
M. Kearns, and S. Solla (eds.), Advances in Neural Information Processing Systems, volume 10,
1997.

Guansong Pang, Choubo Ding, Chunhua Shen, and Anton van den Hengel. Explainable deep few-
shot anomaly detection with deviation networks. arXiv preprint arXiv:2108.00462, 2021.

Daehyung Park, Yuuna Hoshi, and Charles C. Kemp. A multimodal anomaly detector for robot-
assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation
Letters, 3(3):1544–1551, 2018.

Yong Qiang, Shumin Fei, and Yiping Jiao. Anomaly detection based on latent feature training in
surveillance scenarios. IEEE Access, 9:68108–68117, 2021.

Coppelia Robotics. Coppeliasim software. https://www.coppeliarobotics.com/.

Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler.
Towards total recall in industrial anomaly detection. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 14298–14308, 2022.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In Proceedings
of the 35th International Conference on Machine Learning, volume 80, pp. 4393–4402, 10–15
Jul 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

11

https://openreview.net/forum?id=wNUgn1n6esQ
https://www.coppeliarobotics.com/

Under review as a conference paper at ICLR 2024

Pratyusha Sharma, Balakumar Sundaralingam, Valts Blukis, Chris Paxton, Tucker Hermans, An-
tonio Torralba, Jacob Andreas, and Dieter Fox. Correcting Robot Plans with Natural Language
Feedback. In Proceedings of Robotics: Science and Systems, New York City, NY, USA, June
2022. doi: 10.15607/RSS.2022.XVIII.065.

Shelly Sheynin, Sagie Benaim, and Lior Wolf. A hierarchical transformation-discriminating gen-
erative model for few shot anomaly detection. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 8475–8484, 2021.

Aivar Sootla, Alexander Imani Cowen-Rivers, Jun Wang, and Haitham Bou Ammar. Enhancing safe
exploration using safety state augmentation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=GH4q4WmGAsl.

Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly detection in surveillance
videos. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6479–
6488, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Ze Wang, Yipin Zhou, Rui Wang, Tsung-Yu Lin, Ashish Shah, and Ser-Nam Lim. Few-shot fast-
adaptive anomaly detection. In Advances in Neural Information Processing Systems, 2022.

Hayato Watahiki and Yoshimasa Tsuruoka. One-shot imitation with skill chaining using a goal-
conditioned policy in long-horizon control. In ICLR 2022 Workshop on Generalizable Policy
Learning in Physical World, 2022.

Josiah Wong, Albert Tung, Andrey Kurenkov, Ajay Mandlekar, Li Fei-Fei, Silvio Savarese, and
Roberto Martı́n-Martı́n. Error-aware imitation learning from teleoperation data for mobile ma-
nipulation. In 5th Annual Conference on Robot Learning, 2021.

Jia-Fong Yeh, Chi-Ming Chung, Hung-Ting Su, Yi-Ting Chen, and Winston H. Hsu. Stage con-
scious attention network (scan): A demonstration-conditioned policy for few-shot imitation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8866–8873, Jun.
2022.

Tianhe Yu, Chelsea Finn, Sudeep Dasari, Annie Xie, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. In
Robotics: Science and Systems (RSS), 26-30 June 2018.

Tianhe Yu, Pieter Abbeel, Sergey Levine, and Chelsea Finn. One-shot composition of vision-based
skills from demonstration. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2643–2650, 2019a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019b.

Chong Zhou and Randy C. Paffenroth. Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 665–674, 2017.

12

https://openreview.net/forum?id=GH4q4WmGAsl

Under review as a conference paper at ICLR 2024

APPENDIX

This appendix presents more details of our work, following a similar flow to the main paper. First,
Section A introduces the few-shot imitation (FSI) policies. Then, additional descriptions of PrObe’s
are provided in Section B. Besides, we introduce the implemented baselines of adaptable error de-
tection in Section C. Next, in Section D, we exhaustively describe the designed multi-stage FSI
tasks, including task configurations, design motivations, and possible behavior errors. In addition,
more experimental results are shown in Section E to support our claims. At last, we responsibly
present the limitations of this work in Section F.

A FSI POLICIES DETAILS

We follow the main paper’s Section 3 to implement three state-of-the-art demonstration-conditioned
(DC) policies, including NaiveDC(James et al., 2018), DCT(Dance et al., 2021), and SCAN(Yeh
et al., 2022), and monitor their behaviors.

Architecture settings In our work, we employ the same visual head and actor architecture for all
policies to conduct a fair comparison. Table 1 and Table 2 present the settings of general components
(visual head and actor) and respective task-embedding network settings for better reproducibility.

In the visual head, we added fully-connected (FC) and dropout layer after a single resnet18 to avoid
overfitting the data from base environments. Furthermore, the input dimension of the actor module is
dependent on the summation of the output dimensions from the visual head and the task-embedding
network. For the DCT and SCAN policies, the task-embedding dimension matches the visual head’s
output. However, the NaiveDC policy has a task-embedding dimension that is twice the size.

In terms of the task-embedding networks, NaiveDC concatenates the first and last frames of each
demonstration and computes the average as the task-embedding, without involving any attention
mechanism. DCT, on the other hand, incorporates cross-demo attention to fuse demonstration fea-
tures and then applies rollout-demo attention to compute the task-embedding. SCAN uses an atten-
tion mechanism to attend to each demonstration from the rollout, filtering out uninformative frames,
and fuses them to obtain the final task-embedding. Besdies, We did not employ the bi-directional
LSTM, which differs from the original setting in Yeh et al. (2022).

Table 1: General componets settings of FSI policies
Visual head

input shape T × 4 × 120 × 160
architecture a resnet18 with a FC layer and a dropout layer

out dim. of resnet18 512
out dim. of visual head 256

dropout rate 0.5

Actor

input dim. 512 or 768
architecture a MLP with two parallel FC layers (pos & control)

hidden dims. of MLP [512 or 768, 256, 64]
out dim. of pos layer 3

out dim. of control layer 1

Training details To optimize the policies, we utilize a RMSProp optimizer (Hinton) with a learn-
ing rate of 1e-4 and a weight regularizer with a weight of 1e-2. Each training epoch involves iter-
ating through all the base environments. Within each iteration, we sample five demonstrations and
ten rollouts from the sampled base environment. The total number of epochs varies depending on
the specific tasks and is specified in Table 4. All policy experiments, including both training and
inference, are conducted on a Ubuntu 20.04 machine equipped with an Intel i9-9900K CPU, 64GB
RAM, and a NVIDIA RTX 3090 24GB GPU.

13

Under review as a conference paper at ICLR 2024

Table 2: Task-embedding network settings of FSI policies
NaiveDC

input data demonstrations
process concat the first and last demonstration frames and average
out dim. 512

DCT (Transformer-based)

input data current rollout and demonstrations
process a cross-demo attention followed by a rollout-demo attention

number of encoder layers 2
number of decoder layers 2

number of heads 8
normalization eps 1e-5

dropout rate 0.1
out dim. 256

SCAN

input data current rollout and demonstrations
process rollout-demo attentions for each demonstration and then average

number of LSTM layer 1
bi-directional LSTM False

out dim. 256

B PROBE DETAILS

In this work, we propose the Pattern Observer (PrObe) to address the novel AED problem by de-
tecting behavior errors from the policy’s feature representations, which offers two advantages: (1)
PrObe has a better understanding of the policy because the trained policy remains the same during
both AED training and testing. This consistency enhances its effectiveness in identifying errors.
(2) The additional task knowledge from the policy encoder aids in enhancing the error detection
performance. We have described PrObe’s components and their usages in the main paper. Here, we
introduce more details about the design of model architecture and training objectives.

Architecture design of PrObe The pattern extractor aims to transform the policy features into
observable patterns. To achieve this, we can leverage discrete encoding, as used in Hafner et al.
(2022). However, the required dimension of discrete embedding might vary and be sensitive to the
evaluation tasks. To address this, we leverage an alternative approach that operates in a continuous
but sparse space. Besides, for the pattern flow generator, we use a standard LSTM model instead of
a modern transformer. This is motivated by the characteristics of the AED problem, where policy
rollouts are collected sequentially, and adjacent frames contain crucial information when behavior
errors occur. Thus, the LSTM model is better suited for addressing the AED problem. The contri-
butions of PrObe’s components are verified and shown in Figure 12. From the results, our designed
components significantly improve the performance.

Objectives We leverage three objectives to optimize our PrObe: a BCE loss Lcls for error classifi-
cation, a L1 loss Lpat for pattern enhancement, and a novel temporal-aware triplet loss Ltem for logit
discernibility. First, the PrObe’s error prediction ŷ can be optimized by Lcls since the ground-truth
frame-level labels y are accessible during training. The Lcls is calculated by,

Lcls = − 1

Nr

1

Th

Nr∑
i=0

Th∑
j=0

(yi,j · ln ŷi,j + (1− yi,j) · ln(1− ŷi,j)), (4)

where Nr and Th are the number and length of rollouts, respectively. Then, we leverage the L1
objective Lpat to encourage the pattern extractor to learn a more sparse pattern embedding fp, which
can be formulated by

14

Under review as a conference paper at ICLR 2024

anchorpositive negative

anchor negativepositive

positive anchor negativetime →

Case 1.

soft contrastive

high task consistency

low temporal connection

Case 2.

standard contrastive

high task consistency

medium temporal connection

Case 3.

hard contrastive

high task consistency

high temporal connection

Relationship between anchor and positive/negative sample

error occur

Figure 7: Schematic of our novel temporal-aware triplet loss Ltem. When the anchor and positive
sample are more related in both the time and task aspects, the temporal-aware margin mt will be
larger (the closer the two embeddings are encouraged). Besides, mt provides a slight encouragement
in case the positive sample and anchor are far away on temporal distance.

Lpat =
1

Nr

1

Th

Nr∑
i=0

Th∑
j=0

|fp,i,j |. (5)

With the objective Lpat, the pattern embeddings are expected to be sparse and easily observable of
changes, which benefits the model in distinguishing behavior errors. Next, as previously pointed
out, when applying contrastive learning to temporal-sequence data, the time relationship should also
be considered in addition to considering whether the frames are normal or errors for the task. Thus,
Ltem is a novel temporal-aware triplet loss (Schroff et al., 2015), and the temporal-aware margin
mt in Ltem will have different effects depending on the relationship between the anchor and the
positive/negative sample, as depicted in Figure 7. The Ltem can be calculated by:

Ltem =
1

N

N∑
i=0

max(∥logitai − logitpi ∥2 − ∥logitai − logitni ∥2 +mt, 0), (6)

where mt = m ∗ (1.0 − α ∗ (dap − dan)), m is the margin in the original triplet loss, and dap,
dan are the clipped temporal distances between the anchor and positive sample and the anchor and
negative sample, respectively. In addition, N is the number of sampled pairs. With Ltem, PrObe
can efficiently perform contrastive learning without getting confused by blindly pulling temporally
distant anchors and positive samples closer. Lastly, the total loss Ltotal is the combination of three
objectives:

Ltotal = λpatLpat + λtemLtem + λclsLcls, (7)

where λpat, λtem, and λpat are weights to balance different objectives.

C ERROR DETECTOR DETAILS

We compare our PrObe with several strong baselines that possesses different attributes, aiming to
verify their effectiveness on addressing the adaptable error detection (AED) problem. In this section,
we comprehensively present the attributes and training details associated with these baselines.

15

Under review as a conference paper at ICLR 2024

Table 3: Attributes of error detection methods

method name policy training temporal DC-based output typedependent rollouts information

SVDDED successful only ✓ distance to center
TaskEmbED both ✓ probability

LSTMED both ✓ probability
DCTED both ✓ ✓ probability

PrObe (ours) ✓ both ✓ ✓ probability

Baseline attributes Table 3 presents the attributes of all error detection baselines (and our PrObe).
All baselines have their own encoder and are independent of the policies, which offers the advantage
that they only need to be trained once and can be used for various policies. However, as a result,
they recognize errors only based on visual information. Now we describe the details of baselines:

• SVDDED: A modified one-class SVM method (Ruff et al., 2018) trained with only suc-
cessful rollouts. It relies on measuring the distance between rollout embeddings to the
center embedding to detect behavior errors, without considering the temporal information.
We average demonstration features as the center and minimize the embedding distance
between rollout features and the center during training.

• TaskEmbED: A single-frame baseline trained with successful and failed rollouts, which is
a modification from the NaiveDC policy (James et al., 2018). It concatenates and averages
the first and last demonstration frames as the task-embedding. Then, it predicts the behavior
errors conditioned on the current frame and task-embedding.

• LSTMED: A standard LSTM model (Hochreiter & Schmidhuber, 1997) predicts errors
based solely on the current rollout. It is trained with successful and failed rollouts with no
demonstration knowledge provided. It is expected to excel in identifying errors that occur
at similar timings to those observed during training. However, it may struggle to recognize
errors that deviate from the demonstrations.

• DCTED: A baseline derived from the DCT policy (Dance et al., 2021) with temporal infor-
mation. It is trained with successful and failed rollouts and incorporates with demonstration
information. One notable distinction between DCTED and our PrObe lies in their policy
dependencies. DCTED detects errors using its own encoder, which solely leverages visual
information obtained within the novel environment. Conversely, PrObe learns within the
policy feature space, incorporating additional task-related knowledge.

Training details Similar to optimizing the policies, we utilize a RMSProp optimizer with a learn-
ing rate of 1e-4 and a weight regularizer with a weight of 1e-2 to train the error detection models.
During each iteration within an epoch, we sample five demonstrations, ten successful agent rollouts,
and ten failed rollouts from the sampled base environment for all error detection models except
SVDDED. For SVDDED, we sample five demonstrations and twenty successful agent rollouts since
it is trained solely on normal samples. Notably, all error detection experiments are conducted on the
same machine as the policy experiments, ensuring consistency between the two sets of experiments.

D EVALUATION TASKS

To obtain accurate frame-level error labels in the base environments and to create a simulation envi-
ronment that closely resembles real-world scenarios, we determined that existing robot manipulation
benchmarks/tasks (Yeh et al., 2022; Yu et al., 2019b; James et al., 2020; Fu et al., 2020; Mandlekar
et al., 2021) did not meet our requirements. Consequently, seven challenging FSI tasks containing
329 base and 158 novel environments are developed. Their general attributes are introduced in Sec-
tion D.1 and Table 4; the detailed task descriptions and visualizations are provided in Section D.2
and Figure 8-9, respectively.

16

Under review as a conference paper at ICLR 2024

start end start end start end

start endstart end

Close Drawer

Press Button Move Glass Cup

Pick & Place Organize Table

Back to Box

ba
se

en

vi
ro

nm
en

t
no

ve
l

en
vi

ro
nm

en
t

ba
se

en

vi
ro

nm
en

t
no

ve
l

en
vi

ro
nm

en
t

start end

Figure 8: Visualizations of our designed indoor FSI tasks. The backgrounds (wall, floor) and inter-
active objects are disjoint between base and novel environments.

Figure 9: Progress visualization of our Factory Packing task. The agent needs to wait for the box’s
arrival. It then places the product into the box and lets the box move to the next conveyor belt.

D.1 GENERAL TASK ATTRIBUTES

• Generalization: To present the characteristics of changeable visual signals in real scenes,
we build dozens of novel environments for each task, comprising various targets and task-
related or environmental distractors. Also, Dozens of base environments are built as train-
ing resources, enhancing AED methods’ generalization ability. Letting them train in base
environments with different domains can also be regarded as a domain randomization tech-
nique (Bonardi et al., 2020), preprocessing for future sim2real experiments.

• Challenging: Three challenges, including multi-stage tasks, misaligned demonstrations,
and different appearances between expert and agent, are included in our designed FSI tasks.
Moreover, unlike existing benchmarks (e.g., RLBench (James et al., 2020)) attaching the
objects to the robot while grasping, we turn on the gravity and friction during the whole
process of simulation, so grasped objects may drop due to unsmooth movement.

• Realistic: Our tasks support multi-source lighting, soft shadow, and complex object texture
to make them closer to reality (see Figure 9). Existing benchmarks usually have no shadow
(or only a hard shadow) and simple texture. The gravity and friction stated above also make
our tasks more realistic.

17

Under review as a conference paper at ICLR 2024

D.2 TASK DESCRIPTIONS

Close Drawer (1-stage, indoor):

• Description: Fully close the drawer that was closed by the expert in demonstrations. Be-
sides, the objects on the table will be randomly set in the designated area.

• Success condition: The target drawer is fully closed, and the drawer on the other side
(distractor) must not be moved.

• Behavior errors: (1) Not fully close the target drawer. (2) Close the distractor, not the
target drawer. (3) Close the two drawers at the same time.

Press Button (1-stage, indoor):

• Description: Fully press the button that is randomly placed in a designated area.
• Success condition: The button is fully pressed.
• Behavior errors: (1) Not touching the button at all. (2) The button is not fully pressed.

Pick & Place (2-stages, indoor):

• Description: Pick and place the mug/cup into the bowl the expert placed in demonstrations.
• Success condition: The mug/cup is fully placed in the target bowl.
• Behavior errors: (1) Failed to pick up the mug/cup. (2) Failed to place it into the target

bowl. (3) Misplaced the mug/cup into the other bowl (distractor).

Move Glass Cup (2-stages, indoor):

• Description: Pick up and place a glass of water on the coaster the expert placed in demon-
strations.

• Success condition: The glass of water is placed on the target coaster and no water is spilled.
• Behavior errors: (1) Failed to pick up the glass of water. (2) drips spilling. (3) Not placed

on the target coaster.

Organize Table (3-stages, indoor):

• Description: Pick up and place the used object in front of the target bookshelf, and push it
under the shelf.

• Success condition: The object is fully under the target shelf.
• Behavior errors: (1) Failed to pick up the object. (2) Losing object during moving. (3)

Not fully placed under the target shelf.

Back to Box (3-stages, indoor):

• Description: Pick up the magic cube/dice and place it into the storage box. Then, push the
box until it is fully under the bookshelf.

• Success condition: The magic cube/dice is in the storage box, and the box is fully under
the bookshelf.

• Behavior errors: (1) Failed to pick up the magic cube/dice. (2) Failed to place the magic
cube/dice into the storage box. (3) The box is not fully under the bookshelf.

Factory Packing (4-stages, factory):

• Description: Wait until the product box reaches the operating table, place the product in
the box, and pick and place the box on the next conveyor belt.

• Success condition: The product is inside the box, and the box reaches the destination table.
• Behavior errors: (1) Failed to place the product into the box. (2) Failed to pick up the box.

(3) Failed to place the box on the next conveyor belt.

18

Under review as a conference paper at ICLR 2024

Table 4: FSI task configurations

Task # of # of # of # of # of # of
stages epochs base env. novel env. task distractors env. distractors

Close Drawer 1 160 18 18 1 3
Press Button 1 40 27 18 0 3
Pick & Place 2 50 90 42 1 0

Move Glass Cup 2 50 49 25 1 0
Organize Table 3 50 49 25 1 0

Back to Box 3 50 60 18 0 3
Factory Packing 4 80 36 12 0 0

E ADDITIONAL EXPERIMENTAL DETAILS

This section reports experimental details not presented in the main paper. We introduce the accuracy
function used for determining an error prediction result in Section E.1. Besides, more experiment
results are provided in Section E.2.

E.1 ACCURACY FUNCTION FOR OUR AED PROBLEM

rollout successful? any error raised? marked as

 false positive (FP)

 true negative (TN)

 true positive (TP)

 false negative (FN)

Figure 10: Rules of the accuracy function A(·, ·) to determine the error prediction results.

As stated in the main paper, the frame-level label is lacking during inference because novel envi-
ronments only indicate whether the current rollout is a success or failure. Hence, we follow similar
rules in Wong et al. (2021) to define the accuracy function A(·, ·), i.e., how to determine the error
prediction outcome, as elaborated in Figure 10. The A(·, ·) determines the prediction result at the
sequence-level, which may not sufficiently reflect whether the timing to raise the error is accurate.
Thus, we further conduct the timing accuracy experiment (shown in Figure 5 of the main paper).

E.2 MORE EXPERIMENTAL RESULTS

FSI policy performance The policy performance is originally reported in Figure 4 of the main
paper. Here, we summarize the comprehensive overview in Table 5. It is important to note that the
standard deviations (STD) are relatively large since they are calculated across novel environments
rather than multiple experiment rounds. The difficulty variability of novel environments, such as
variations in object size or challenging destination locations, leads to different performance out-
comes for the policies. Besides, the policy will conduct 20 executions (rollouts) for each novel
environment to get the success rate (SR). Then, the average success rate and its STD are calculated
across those SRs. Furthermore, these rollouts are also used for later AED inference.

In general, NaiveDC policy achieves the best result in the simplest task because the task-embedding
from the concatenation of the first and last two frames is enough to provide effective information.
However, its performance will drop rapidly as the task difficulty increases. On the other hand, DCT
policy excels in tasks where the misalignment between demonstrations is less severe since it fuses
the task-embeddings at the temporal dimension. At last, SCAN policy outperforms on the more
difficult tasks because its attention mechanism filters out uninformative demonstration frames.

19

Under review as a conference paper at ICLR 2024

Table 5: FSI policy performance. Success rate (SR) [↑] and standard deviation (STD) are reported.
Notably, STD is calculated across novel environments, rather than multiple experiment rounds.

Close Drawer Press Button Pick & Place Organize Table

NaiveDC 91.11± 20.85% 51.94± 18.79% 55.00± 24.98% 12.20± 13.93%
DCT 80.56± 26.71% 80.56± 11.65% 64.05± 19.77% 79.00± 09.27%

SCAN 88.33± 13.94% 75.56± 12.68% 71.19± 15.38% 66.60± 23.18%

Move Glass Cup Back to Box Factory Packing

NaiveDC 39.00± 28.63% 08.89± 09.21% 45.42± 30.92%
DCT 51.80± 23.99% 29.17± 09.46% 88.75± 07.11%

SCAN 72.60± 11.84% 58.89± 10.87% 63.75± 33.11%

0.5

0.9

-00.49% -05.07% +03.93% +06.45% -00.77%

0.5

0.9

+05.83% +01.32% +00.61% +08.17% +02.34%

0.5

0.9

-02.96% -05.72% +13.91% +18.83% +03.68%

0.5

0.9

+00.03% -03.32% +01.25% +06.58% -01.51%

0.5

0.9

-03.18% +02.36% +03.38% +14.11% +02.50%

0.5

0.9

+03.39% -01.26% +20.83% +25.17% +01.89%

SVDDED TaskEmbED LSTMED DCTED PrObe SVDDED TaskEmbED LSTMED DCTED PrObe

AUROC AUPRC

S
C

A
N

D
C

T
N

a
iv

e
D

C

Figure 11: Effectiveness of rollout augmentation (RA). AUROC[↑] and AUPRC[↑] are reported.
Methods trained without RA (dark) and with RA(bright) and their performance gap are listed. RA
is more beneficial for methods with time information (rightmost three columns). Also, the improve-
ment from RA is more evident when the performance of FSI policy is higher (SCAN case).

Main experiment’s detailed values and ROC curves The main experiment result is originally
reported in Figure 4 of the main paper. Here, Table 7 and Figure 15 present the main experiment’s
detailed values and ROC curves, which better demonstrate our PrObe’s performance gap against
other methods. To highlight again, our proposed PrObe obtains the best performance on both metrics
and can handle the various behaviors from different policies.

Rollout augmentation As stated before, the collected agent rollouts have limited rollout diversity.
In this experiment, we aim to validate whether the rollout augmentation (RA) increases the rollout
diversity so that error detectors can have better robustness. In Figure 11, we present the results
of all error detection methods (trained w/ and w/o RA) monitoring policies solving Pick & Place
task, with the following findings: (1) RA provides a minor or even negative influence on SVDDED,
which can be expected. Since SVDDED is only trained on (single) frames from successful rollouts,
the frame dropped by RA decreases the frame diversity. (2) RA benefits methods with temporal
information (LSTMED, DCTED, and PrObe), especially when FSI policy performs better (SCAN
case) because error detectors cannot casually raise an error, or they will easily make a false-positive
prediction. The results indicate that methods trained with RA raise fewer false-positive predictions
and demonstrate improved robustness to different policy behaviors.

Contribution of PrObe components We verify the component contributions of the proposed
PrObe, as shown in Figure 12, which results from monitoring the SCAN policy solving the Pick
& Plcae task. The naive model (first column) removes the pattern extractor and uses a FC layer
followed by an IN layer to transform history embeddings. Obviously, the designed components
and objectives boost the performance, especially when adding the pattern extractor into the model.
We attribute this to the extracted embedding (representation) patterns by our components are more
informative and discernible.

20

Under review as a conference paper at ICLR 2024

0.7664

0.7827 0.7842
0.7904

0.8012

0.7223

0.7657
0.7714

0.7884

0.8072

0.70

0.75

0.80

0.85
AUROC
AUPRC

𝐿𝑝𝑎𝑡

𝐿𝑡𝑒𝑚

pattern

extractor ✓ ✓

✓

✓

✓

✓

✓

✓

Figure 12: Component contributions. AUROC[↑] and AUPRC[↑] are reported. The pattern extrac-
tor and two auxiliary objectives significantly improve the performance.

0.3

0.5

0.7

0.9

0.1020 0.0542 0.0479 0.0410 0.0063

0.3

0.5

0.7

0.9

0.1082 0.1341 0.0209 0.0471 0.0078

0.3

0.5

0.7

0.9

0.2256 0.0849 0.0207 0.0377 0.0055

0.3

0.5

0.7

0.9

0.1348 0.0541 0.0229 0.0423 0.0093

0.3

0.5

0.7

0.9

0.0826 0.0391 0.0419 0.0769 0.0106

0.3

0.5

0.7

0.9

0.0800 0.1034 0.0296 0.0796 0.0170

S
C

A
N

D
C

T
N

a
iv

e
D

C

AUROC AUPRC

SVDDED TaskEmbED LSTMED DCTED
PrObe

(Ours)
SVDDED TaskEmbED LSTMED DCTED

PrObe

(Ours)

P
o

li
c

y

Error Detector Error Detector

Figure 13: Performance results with error bars (standard deviation, STD). AUROC[↑], AUPRC[↑]
are reported. Here, STDs are computed across multiple experiment rounds (random seeds). It is
obvious that in the representative Pick & Place task, PrObe not only achieves the highest scores
when detecting all policies’ behavior errors but also has the best stability (the smallest STD).

Performance stability Our work involves training and testing of all policies and AED methods
to produce the results for an FSI task. In addition, each task consists of numerous base and novel
environments. These factors make it time-consuming and impractical to report the main experiment
(Figure 4 of the main paper) with error bars. Based on our experience, generating the results of the
main experiment once would require over 150 hours.

Therefore, we select the most representative Pick & Place task among our FSI tasks and conduct
multiple training and inference iterations for all AED methods. We present the AUROC, AUPRC,
and their standard deviations averaged over multiple experimental rounds (with five random seeds)
in Figure 13. From the results, our proposed PrObe not only achieves the best performance in
detecting behavior errors across all policies but also exhibits the most stable performance among all
AED methods, with the smallest standard deviation.

Case study on PrObe’s failure prediction We analyze the cases in which PrObe is poor at de-
tecting behavior errors and visualize the results in Figure 14. As stated in the main paper, our PrObe
requires a short period after the error occurs to make the pattern flow causing enough changes.
However, in the Figure 14 case, the mug had fallen off the table, causing this rollout to be stopped

21

Under review as a conference paper at ICLR 2024

label SVDDED TaskEmbED LSTMED DCTED PrObe (Ours)

0

14

28

13

27

error

Figure 14: PrObe’s failure prediction. In Pick & Place task, the rollout is terminated immediately if
the mug is no longer on the table, which means the error detectors have only six frames to detect the
error in this case. However, it took a while for our Probe’s pattern flow to cause enough change. By
the last frame, ProObe was just about to increase its predicted probability, but it was too late.

Table 6: Error Correction Results. Success Rate (SR) [↑] is reported. The detection threshold is set
as 0.9 for all compared methods. The values indicate the performance of the DCT policy without
correction (first column) and its collaboration with the correction policy and four AED methods
(remaining columns). Our PrObe is the only method that can improve the performance since it
detects the error most accurately.

DCT policy w/ TaskEmbED w/ LSTMED w/ DCTED w/ PrObe

80.56± 11.65% 80.56± 11.65% 80.28± 11.60% 71.67± 20.75% 82.22± 10.17%

immediately. Such time is insufficient for ProObe to reflect adequately, causing it to be unable to
(substantially) increase the prediction probability of behavior errors at the last moment. Developing
mechanisms for quick responsive pattern flow is one of our future research direction.

Pilot study on error correction To further examine the practicality of our AED problem, we
conducted a pilot study on error correction. In this experiment, the FSI policy is paused after the
AED methods detect an error. Then, a correction policy from Wong et al. (2021), which resets the
agent to a predefined safe pose, is applied. At last, the FSI policy continues to complete the task.

We conducted the study on Press Button, which will most likely be corrected after the error happens.
In this task, the correction policy is defined as moving to the top of the table center. We let the DCT
policy cooperate with the correction policy and four AED methods (SVDDED excluded), whose
results are summarized in Table 6. We have two findings from the results: (1) Our PrObe is verified
to be the most accurate method again. In contrast, other AED methods will raise the errors at the
wrong timing, so the correction policy cannot benefit the performance (even negative influence for
original success trials). (2) The performance gain from the correction policy is minor since it lacks
precise guidance in unseen environments.

We believe error correction in novel environments deserves a separate study due to its challenging
nature, as we observed in the pilot study. One potential solution is the human-in-the-loop correction
works through instructions (Sharma et al., 2022; Cui et al., 2023) or physical guidance (Li et al.,
2021). However, their generalization ability and cost when applying to our AED problem need
further discussion and verification. We will leave it as our future work.

22

Under review as a conference paper at ICLR 2024

F LIMITATIONS

Offline evaluation? Our ultimate goal is to terminate (or pause) the policy instantly when detect-
ing a behavior error online. However, in our main experiment, only the trained policies performed
in novel environments online, whose rollouts are collected. AED methods later use the offline roll-
outs to predict errors for a fair comparison. Nevertheless, we illustrate that PatObs can effectively
address the online detection challenge through the time accuracy experiment. Also, the pilot study
on error correction runs AED methods online to correct the error promptly.

Not evaluated on benchmarks or in real-world environments? Due to the practical challenges
inherent in FSI tasks and the AED problem, none of the existing robot manipulation benchmarks
align with our specific requirements. For instance, FSI tasks necessitate multi-stage scenarios or
variations in configurations and appearances between experts and agents. In the case of AED, it is
crucial to gather failed rollouts in the base environments efficiently. As a result, we have to develop
our own environments and tasks.

Moreover, the lack of real-world experiments is caused by three factors: (1) Deploying the needed
resources for the AED problem in the real world requires a high cost and long-term plan. (2) The
FSI policies still fail to perform complex tasks in the real world, making assessments less than
comprehensive. (3) Although our PrObe achieves the best performance, there is still significant
room for improvement on the AED problem.

We emphasize that rashly conducting AED and FSI research in real environments may cause ir-
reparable damage. Even previous error correction work (Wong et al., 2021) or related safe explo-
ration research (Sootla et al., 2022; Anderson et al., 2023; Huang et al., 2023) were conducted in
simulation environments, which shows that it is reasonable and valuable for us to conduct detailed
verification in the simulation first. As mentioned earlier, we develop seven challenging and realistic
multi-stage FSI tasks containing dozens of base and novel environments. To our knowledge, the
simulation environments we established are the closest to the real scenarios in the literature.

23

Under review as a conference paper at ICLR 2024

Table 7: AED methods’ performance on our seven challenging FSI tasks. The value under the policy
indicates the policy’s success rate in that task. Our proposed PrObe demonstrates its superiority
among all the methods on both metrics and is the most robust method for different policies.

Metric [↑] AED
Close Drawer Press Button

NaiveDC DCT SCAN NaiveDC DCT SCAN
91.11% 80.56% 88.33% 51.94% 80.56% 75.56%

AUROC

SVDDED 0.7404 0.8378 0.4079 0.4113 0.5710 0.4280
TaskEmbED 0.8395 0.7081 0.6498 0.4872 0.5429 0.4754

LSTMED 0.8186 0.6590 0.7867 0.3769 0.4886 0.4066
DCTED 0.8250 0.6413 0.7218 0.7194 0.7306 0.7491
PrObe 0.9133 0.7680 0.6978 0.7957 0.7506 0.7782

AUPRC

SVDDED 0.2626 0.7039 0.1411 0.6956 0.3789 0.4653
TaskEmbED 0.6840 0.5995 0.2220 0.7280 0.3597 0.4657

LSTMED 0.7700 0.6493 0.6677 0.7051 0.4468 0.4487
DCTED 0.7813 0.6739 0.6390 0.8405 0.5734 0.6757
PrObe 0.8350 0.7438 0.5829 0.8851 0.7474 0.7505

Metric [↑] AED
Pick & Place Move Glass Cup

NaiveDC DCT SCAN NaiveDC DCT SCAN
55.00% 64.05% 71.19% 39.00% 51.80% 72.60%

AUROC

SVDDED 0.7074 0.6125 0.5646 0.4447 0.6201 0.6473
TaskEmbED 0.6810 0.7523 0.6381 0.8370 0.5779 0.7950

LSTMED 0.7116 0.6555 0.7050 0.8086 0.6670 0.6804
DCTED 0.7493 0.7743 0.7482 0.7143 0.5954 0.6401
PrObe 0.7635 0.8173 0.8012 0.7487 0.6697 0.7425

AUPRC

SVDDED 0.7971 0.7001 0.5078 0.8323 0.7188 0.6251
TaskEmbED 0.8028 0.8173 0.6065 0.9609 0.6823 0.8204

LSTMED 0.8148 0.7304 0.7103 0.9420 0.7720 0.6404
DCTED 0.8041 0.8294 0.7063 0.9012 0.7086 0.5713
PrObe 0.8665 0.8780 0.8072 0.9228 0.7907 0.7495

Metric [↑] AED
Organize Table Back to Box

NaiveDC DCT SCAN NaiveDC DCT SCAN
12.20% 79.00% 66.60% 08.89% 29.17% 58.89%

AUROC

SVDDED 0.2581 0.5622 0.5000 0.4621 0.5537 0.5498
TaskEmbED 0.8078 0.6382 0.6193 0.3221 0.7220 0.7041

LSTMED 0.5946 0.7001 0.6734 0.4148 0.7707 0.8237
DCTED 0.5844 0.6702 0.5962 0.6022 0.4772 0.7489
PrObe 0.6808 0.6550 0.6759 0.8446 0.7276 0.8614

AUPRC

SVDDED 0.8911 0.4800 0.5086 0.9367 0.8652 0.6433
TaskEmbED 0.9786 0.3922 0.4865 0.9375 0.9314 0.7401

LSTMED 0.9611 0.6352 0.6356 0.9555 0.9546 0.8913
DCTED 0.9452 0.5515 0.5255 0.9679 0.8534 0.7880
PrObe 0.9652 0.5905 0.6983 0.9903 0.9438 0.9097

Metric [↑] AED
Factory Packing Statistics

NaiveDC DCT SCAN Top 1 Avg.
45.42% 88.75% 63.75% counts Rank

AUROC

SVDDED 0.3338 0.3849 0.6151 1 4.2
TaskEmbED 0.5564 0.7201 0.6916 3 3.2

LSTMED 0.6471 0.7934 0.7836 4 2.8
DCTED 0.5361 0.7509 0.5006 0 3.2
PrObe 0.6635 0.7670 0.8256 13 1.5

AUPRC

SVDDED 0.5583 0.1600 0.5657 0 4.5
TaskEmbED 0.7057 0.5002 0.7287 3 3.5

LSTMED 0.7667 0.6335 0.8063 3 2.5
DCTED 0.6772 0.6224 0.6306 0 3.1
PrObe 0.7676 0.6759 0.8622 15 1.4

24

Under review as a conference paper at ICLR 2024

N
ai

ve
D

C
 p

ol
ic

y
D

C
T

po
lic

y
S

C
A

N
 p

ol
ic

y

C
lo

se
 D

ra
w

er
Pr

es
s

B
ut

to
n

N
ai

ve
D

C
 p

ol
ic

y
D

C
T

po
lic

y
S

C
A

N
 p

ol
ic

y

Pi
ck

 &
 P

la
ce

N
ai

ve
D

C
 p

ol
ic

y
D

C
T

po
lic

y
S

C
A

N
 p

ol
ic

y

M
ov

e
G

la
ss

 C
up

N
ai

ve
D

C
 p

ol
ic

y
D

C
T

po
lic

y
S

C
A

N
 p

ol
ic

y

O
rg

an
iz

e
Ta

bl
e

N
ai

ve
D

C
 p

ol
ic

y
D

C
T

po
lic

y
S

C
A

N
 p

ol
ic

y

B
ac

k
to

 B
ox

N
ai

ve
D

C
 p

ol
ic

y
D

C
T

po
lic

y
S

C
A

N
 p

ol
ic

y

Fa
ct

or
y

Pa
ck

in
g

N
ai

ve
D

C
 p

ol
ic

y

D
C

T
po

lic
y

S
C

A
N

 p
ol

ic
y

Figure 15: AED methods’s ROC curves of all FSI tasks. The AUROC scores reported in Table 7 are
the area under the curves.

25

	Introduction
	Related Works
	Few-shot Imitation (FSI)
	Few-shot Anomaly Detection (FSAD)

	Preliminaries
	AED Problem
	Pattern Observer (PrObe)
	Rollout Augmentation
	PrObe Architecture

	Experiments
	Experimental Settings
	Experimental Result Analysis

	Conclusion
	FSI Policies Details
	PrObe Details
	Error Detector Details
	Evaluation Tasks
	General Task Attributes
	Task Descriptions

	Additional Experimental Details
	Accuracy function for our AED problem
	More Experimental Results

	Limitations

