
TOP-ERL: TRANSFORMER-BASED OFF-POLICY
EPISODIC REINFORCEMENT LEARNING

Ge Li∗ Dong Tian Hongyi Zhou Xinkai Jiang
Rudolf Lioutikov Gerhard Neumann
Karlsruhe Institute of Technology, Germany

ABSTRACT

This work introduces Transformer-based Off-Policy Episodic Reinforcement
Learning (TOP-ERL), a novel algorithm that enables off-policy updates in the
ERL framework. In ERL, policies predict entire action trajectories over multiple
time steps instead of single actions at every time step. These trajectories are typ-
ically parameterized by trajectory generators such as Movement Primitives (MP),
allowing for smooth and efficient exploration over long horizons while capturing
high-level temporal correlations. However, ERL methods are often constrained
to on-policy frameworks due to the difficulty of evaluating state-action values for
entire action sequences, limiting their sample efficiency and preventing the use of
more efficient off-policy architectures. TOP-ERL addresses this shortcoming by
segmenting long action sequences and estimating the state-action values for each
segment using a transformer-based critic architecture alongside an n-step return
estimation. These contributions result in efficient and stable training that is re-
flected in the empirical results conducted on sophisticated robot learning environ-
ments. TOP-ERL significantly outperforms state-of-the-art RL methods. Thor-
ough ablation studies additionally show the impact of key design choices on the
model performance.

1 INTRODUCTION

This work introduces a novel off-policy Reinforcement Learning (RL) algorithm that utilizes a
transformer-based architecture for predicting the state-action values for a sequence of actions. These
returns are effectively used to update the policy that predicts a smooth trajectory instead of a single
action in each decision step. Predicting a whole trajectory of actions is commonly done in episodic
RL (ERL) (Kober & Peters, 2008) and differs conceptually from conventional step-based RL (SRL)
methods like PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018a) where an action is sam-
pled in each time step. The action selection concept in ERL is promising as shown in recent works
in RL (Otto et al., 2022; Li et al., 2024). Similar insights have been made in the field of Imitation
Learning, where predicting action sequences instead of single actions has led to great success (Zhao
et al., 2023; Reuss et al., 2024). Additionally, decision-making in ERL aligns with the human’s
decision-making strategy, where the human generally does not decide in each single time step but
rather performs a whole sequence of actions to complete a task – for instance, swinging an arm to
play tennis without overthinking each per-step movement.

Episodic RL is a distinct family of RL that emphasizes the maximization of returns over entire
episodes, typically lasting several seconds, rather than optimizing the intermediate states during
environment interactions (Whitley et al., 1993; Igel, 2003; Peters & Schaal, 2008). Unlike SRL,
ERL shifts the solution search from per-step actions to a parameterized trajectory space, leveraging
techniques like Movement Primitives (MPs) (Schaal, 2006; Paraschos et al., 2013) for generating
action sequences. This approach enables a broader exploration horizon (Kober & Peters, 2008),
captures temporal and degrees of freedom (DoF) correlations (Li et al., 2024), and ensures smooth
transitions between re-planning phases (Otto et al., 2023). Recent advances have integrated ERL
with deep learning architectures, demonstrating significant potential in areas such as versatile skill

∗Corresponding author. Email to <geli.bruce.ai@gmail.com, ge.li@kit.edu>

1

acquisition (Celik et al., 2024) and safe robot reinforcement learning (Kicki et al., 2024). However,
despite their advantages, ERL methods often suffer from low update efficiency. Nearly all ERL
approaches to date remain constrained to an on-policy training paradigm, limiting their ability to
exploit more efficient off-policy update rules, where an action-value function, or critic, is explic-
itly learned to guide policy updates and action selection. The primary challenge is that prominent
off-policy methods, such as SAC (Haarnoja et al., 2018a), rely on temporal difference (TD) error
(Sutton, 1988) to update the critic, which implicitly assumes that actions are selected based on each
perceived state, rather than a sequence of actions predicted at the start of the episode, as in ERL ap-
proaches. In this paper, we address this limitation by predicting the N-step return (Sutton & Barto,
2018) for a sequence of actions using a Transformer architecture, enabling the learning of sequence
values within an off-policy framework.

Transfomer in RL. Over the past few years, the Transformer architecture (Vaswani, 2017) has
emerged as one of the most powerful models for sequence data. It has been been integrated into RL
across various domains, capitalizing on their strengths in sequence pattern recognition from static
datasets and functioning as a memory-based architecture, which aids in task understanding and credit
assignment. Applications of Transformers in RL include offline RL (Chebotar et al., 2023; Yamagata
et al., 2023; Wu et al., 2024), offline-to-online fine-tuning (Zheng et al., 2022; Ma & Li, 2024; Zhang
et al., 2023), handling partially observable states (Parisotto et al., 2020; Ni et al., 2024; Lu et al.,
2024), and model-based RL (Lin et al., 2023). However, the use of Transformers within a model-free
online RL framework, specifically for sequence action prediction and evaluation, remains largely
unexplored (Yuan et al., 2024). This is noteworthy, as similar techniques, such as action chunking
(Bharadhwaj et al., 2024), have already proven successful in other domains like imitation learning.

In this paper, we propose Transformer-based Off-Policy ERL (TOP-ERL), which leverages the
Transformer as a critic to predict the value of action sequences. Given a trajectory from ERL, we
split it into smaller segments and input them into the Transformer for value prediction. We adapt
off-policy update rules for action sequences, using the N-step TD error for critic updates. The
policy then selects action sequences based on the preferences of the Transformer critic, similar to
SAC. Compared to existing ERL and SRL methods, we show that TOP-ERL improves both policy
quality and sample efficiency, outperforming them in several simulated robot manipulation tasks.
Our contributions are: (a) A novel off-policy RL method that integrates the Transformer as a critic
for action sequences in a model-free, online RL framework. (b) The use of N-step return as the
learning objective for the Transformer critic. (c) Comprehensive evaluation on simulated robotic
manipulation tasks, demonstrating superior performance against baselines. (d) Analysis of different
critic update rules, design choices, and the impact of segment length on model performance.

2 PRELIMINARIES

2.1 OFF-POLICY REINFORCEMENT LEARNING

Markov decision process (MDP). RL learns policies that maximize cumulative rewards in a given
environment, modeled as an MDP. Formally, we consider an MDP defined by a tuple (S,A, P, r, γ),
where both state S and action spaces A are continuous. Here, P (s′|s, a) denotes the state transition
probability, r(s, a) is the reward function, and γ ∈ [0, 1] is the discount factor. The goal of RL is
to find a policy π(a|s) that maximizes the expected return, which is the sum of discounted future
rewards as Gt(st, at) =

∑∞
i=0 γ

irt+i.

In off-policy RL, the agent learns a policy π(a|s) using data generated by a different behavior policy
πb(a|s). This enables off-policy methods to reuse past experiences, significantly improving sample
efficiency against on-policy methods. A common approach in off-policy RL is to use a critic, which
estimates the action-value function Qπ(s, a) and is updated using a temporal difference (TD) error

Qπ(s, a) = Eπ [Gt | st = s, at = a] , δt = rt + γQπ(st+1, at+1)−Qπ(st, at), (1)
where the TD error δt estimates the difference between the current Q-value and the target Q-value.
While the above single-step TD error is useful, it can suffer from high bias and slow convergence,
especially in environments with delayed rewards. To address this, N-step returns (Sutton, 1988) are
often used to provide a better balance between bias and variance.

The N-step return extends the single-step TD return by incorporating multiple future time-steps
into the target. Unlike bootstrapping after a single time step, the N-step return accumulates rewards

2

over N steps before using the current value estimate for bootstrapping. These estimates are typically
less biased than the 1-step return, but also contain more variance. In off-policy settings, the N-step
return typically involves importance sampling (Sutton & Barto, 2018), as the selection of the future
action path used to accumulate rewards differs from the current policy π(a|s), seen as:

G
(N)
t (st, at) =

N−1∑
i=0

 i∏
j=0

ρt+j

 γirt+i +

N−1∏
j=0

ρt+j

 γNQπ(st+N , at+N), (2)

where ρt =
π(at|st)
πb(at|st) is the importance sampling ratio, ensuring that updates remain unbiased even

when using trajectories generated by a different policy.

Despite this mathematical correction, applying N-step returns in off-policy learning can face dif-
ficulties, particularly for long sequences. The product of importance ratios can become highly
volatile, leading to either exploding or vanishing values over extended trajectories, which in turn
can cause high variance in the value estimates and destabilize the learning process. In TOP-ERL,
however, we employ N-step return for computing the target value of a sequence of actions, i. e.
G

(N)
t (st, at, at+1, ..., at+N), where N-step actions are determined in a sequence read from the re-

play buffer, rather than sampled from the policy. Therefore, the resulting formulation does not
contain the importance weights. We will further discuss the details in Sec. 3.3.

2.2 EPISODIC REINFORCEMENT LEARNING (ERL)

Episodic RL (Whitley et al., 1993; Kober & Peters, 2008) focuses on predicting an entire sequence
of actions to complete a task, optimizing the cumulative return without explicitly considering de-
tailed state transitions within the episode. Typically, ERL methods utilize a parameterized trajectory
generator, such as motion primitives (MP) (Schaal, 2006; Paraschos et al., 2013), which predicts a
trajectory parameter vector w. This vector is then mapped to a full action trajectory a(w) = [at]t=0,
where T is the trajectory length. Here, at ∈ RD denotes the action at time step t, and D represents
the dimensionality of the action space, such as the degrees of freedom (DOF) in a robotic system.
In this framework, an intelligent agent—such as a robot—executes the predicted action sequence
directly as motor commands or follows the trajectory using a tracking controller.

Although ERL predicts an entire action trajectory, it still adheres to the Markov property, where
the state transition probability depends only on the current state and action (Sutton & Barto, 2018).
Thus, while the action sequence in ERL spans multiple time steps, the underlying process remains
consistent with the MDP formalism. This approach is conceptually related to techniques such as
action repeat (Braylan et al., 2015) and temporally correlated action selection (Raffin et al., 2022;
Eberhard et al., 2022), which also incorporate temporal dependencies into action selection.

Movement Primitives (MP), as parameterized trajectory generators, play a crucial role in ERL. We
briefly highlight key MP methodologies and their mathematical foundations used in this work, with
a more detailed discussion in Appendix C. Schaal (2006) introduced Dynamic Movement Primitives
(DMPs), which incorporates a forcing term into a dynamical system to generate smooth trajectories
from a given initial condition, such as a robot’s position and velocity at a particular time1.

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (3)

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 denote the position, velocity, and acceleration of the
system at time t, respectively. Constants α and β are spring-damper parameters, with g as the goal
attractor and τ as a time constant modulating the speed of trajectory execution. The functions φi(x)
represents the basis functions for the forcing term, and the trajectory’s shape is determined by the
weight parameters wi ∈ w, for i = 1, ..., N . The trajectory [yt]t=0:T is typically computed by nu-
merically integrating the dynamical system from the start to the end. Building on the same concepts,
Li et al. (2023) proposed Probabilistic Dynamic Movement Primitives (ProDMPs), which directly
uses the closed-form solution of Eq.(3). ProDMP employs a linear basis function representation to
directly map a parameter vector w to its corresponding trajectory [yt]t=0:T :

y(t) = Φ(t)⊺w + c1y1(t) + c2y2(t). (4)
1An initial condition in mathematics refers to the value of a function or its derivatives at a starting point,

which can be specified at any time and is not necessarily at t = 0.

3

Here, the terms c1y1(t) + c2y2(t) ensure precise trajectory initialization, with the constants c1, c2
calculated based on the initial condition yb, ẏb at time tb. The term Φ(t) denotes the integral form
of the basis functions φ used in the Eq.(3). Unlike DMP, ProDMP benefits from the closed-form
solution of the dynamic system, enabling faster computation and probabilistic modeling without the
burden for numerical integration. This allows for flexible trajectory generation and precise initial
condition enforcement. In TOP-ERL, we leverage ProDMP’s fast initial condition enforcement to
compute accurate target values for the Transformer critic, thereby reducing bias in policy learning.

ERL Learning Objectives. A key distinction between ERL and step-based RL (SRL) lies in the
action space. ERL shifts the solution search from the per-step action space A to a parameterized
trajectory spaceW , predicting the trajectory parameters as π(w|s). As a result, a trajectory param-
eterized by w is treated as a single data point in W . This often leads ERL to employ black-box
optimization methods for trajectory optimization (Salimans et al., 2017). The learning objective in
ERL is often formulated using an importance sampling ratio, such as in BBRL (Otto et al., 2022)

Update using trajectory parameter: J = Eπold(w|s)

[
πnew(w|s)
πold(w|s)

Gπold(s,w)

]
, (5)

where π represents the policy parameterized by θ, typically using a neural network. The terms
new and old refer to the current policy being optimized and the policy used for data collection,
respectively. The initial state s ∈ S defines the starting configuration and objective of the task,
serving as input to the policy. The policy πθ(w|s) determines the likelihood of selecting trajectory
parameters w. The term Gπold(s,w) =

∑T
t=0 γ

trt represents the return accumulated by executing
the trajectory under an old policy, where γ is the discount factor and rt is the reward at time step t. By
leveraging parameterized trajectory generators like MPs, ERL benefits from consistent exploration,
smooth action trajectories, and improved robustness against local optima, as highlighted by Otto
et al. (2022). To further enhance learning efficiency, recent work TCE (Li et al., 2024) proposes a
hybrid update strategy that decomposes the trajectory parameter-wise update into the segment-wise
updates, incorporating per-step information into ERL’s learning objective. This approach divides
the longer action trajectory into smaller segments, calculating the return of each segment. The new
learning objective adapts Eq.(5), with the maximization of segment-wise returns as

Update using segments: J = Eπold(w|s)

[
1

K

K∑
k=1

pπnew([ak
t]t=0:L|s)

pπold([ak
t]t=0:L|s)

Gπold(sk0 , [a
k
t]t=0:L)

]
, (6)

where K and L represent the number and length of the trajectory segments, respectively, with K =
25 in the original paper and k = 1, ...,K denotes the segment index. In this expression, pπ denotes
the likelihood of reproducing the segment, calculated using the parameterized policy πθ(w|s), and
G(sk0 , [a

k
t]t=0:L) represents the return of executing the k-th action sequence segment [ak

t]t=0:L from
the segment’s starting state sk0 . It is worth noting, despite the usage of importance sampling, both
Eq. (5) and Eq. (6) still remain within the on-policy RL framework. In TOP-ERL, we employ a
similar strategy in splitting a long action trajectory into smaller segments, and use these segments
for efficient critic and policy updates, under an off-policy framework.

3 TRANSFORMER-BASED OFF-POLICY ERL

Figure 1: Trajectory genera-
tion and environment rollout.

Traditional ERL methods are constrained to on-policy settings due
to the challenges in evaluating the value of action sequences. In
this section, we present TOP-ERL, an innovative off-policy solution
for ERL, which leverages Transformer for action sequence evalua-
tion. This section is organized as follows: Section 3.1 introduces
the Gaussian policy modeling and action trajectory generation, fol-
lowed by the structure of the transformer critic in Section 3.2. We
detail the learning objectives for the critic and policy, along with
technical details, in section 3.3 and 3.4 respectively. Finally, We
summarize the other design choices in Section 3.5 and provide an
algorithm box in Algorithm1 of Appendix A..

4

3.1 TRAJECTORY GENERATION

TOP-ERL adopts a policy structure similar to previous ERL approaches, such as BBRL (Otto
et al., 2022). As shown in Fig. 1, our policy is modeled as a Gaussian distribution, πθ(w|s) =
N (w|µw,Σw), where s defines the initial observation and the task objective, and w represents the
parameters of the movement primitive (MPs). In TOP-ERL, we employ ProDMPs (Li et al., 2023) to
help correct the target computation via enforcing the initial condition of the MP, as discussed later in
Section 3.3.1. Given an initial task state s, the policy predicts the Gaussian parameters and samples
a parameter vector w∗. This vector is then passed into the movement primitive to generate the action
trajectory [at]t=0:T . The agent then executes the action trajectory in the environment until the end
of the episode. During the rollout, both the state trajectory and the reward trajectory are recorded.
These, along with the action trajectory, are subsequently stored in the replay buffer B for later use.

3.2 TRANSFORMERS AS VALUE PREDICTOR FOR ACTION SEQUENCES

An architectural overview of our Transformer critic is depicted in Fig. 2. At each iteration, we
sample a batch B of trajectories from the replay buffer and split each trajectory into K segments,
where each segment is L time steps long. An ablation on how to select the segment length L can be
found in Sec. E.5. The transformer-based critic has L+1 input tokens that are given by each action
in the segment [ak

t]t=0:L−1 and the starting state sk0 of the corresponding segment. These tokens are
first processed by corresponding state and action encoders, each modeled by a single linear layer.
Positional information is added to the processed tokens through a trainable positional encoding, with
sk0 and the first action token ak

0 sharing the same positional encoding (both at t = 0). The tokens
are subsequently fed into a decoder-only Transformer, followed by a linear output layer, producing
L + 1 output tokens. The first output represents the state value V (sk0) for the starting state, while
the remaining outputs correspond to the state-action values for the subsequent action sequence. For
example, Q(sk0 ,a

k
0 ,a

k
1 ,a

k
2) represents the value of executing the actions ak

0 ,a
k
1 ,a

k
2 sequentially

from the starting state sk0 and subsequently following policy π. A causal mask is applied in the
Transformer to ensure that actions do not attend to future steps.

3.3 N-STEP RETURNS AS THE TARGET FOR TRANSFORMER CRITIC

For each predicted state-action value Q(s0,a
k
0 , ...,a

k
N−1) we utilize the N-step return as its target.

The objective to update the parameters ϕ of the critic is the N-step squared TD error2

Critic loss: L(ϕ) = 1

L

L−1∑
N=1

Qϕ(s
k
0 ,a

k
0 , ...,a

k
N−1)︸ ︷︷ ︸

Predicted value of N actions

−G(N)(sk0 ,a
k
0 , ...,a

k
N−1)︸ ︷︷ ︸

Target using N-step return

2

+

 Vϕ(s
k
0)︸ ︷︷ ︸

Predicted state value

− Ew̃∼πθ(·|s)[Qϕtar(s
k
0 , ã

k
0 , ..., ã

k
L−1)︸ ︷︷ ︸

Target of new actions using w̃

]

2

, (7)

N-step return: G(N)(sk0 ,a
k
0 , ...,a

k
N−1) =

N−1∑
i=0

γiri︸ ︷︷ ︸
N-step rewards

+ γNVϕtar(sN).︸ ︷︷ ︸
Future return after N-step

(8)

Here, N ∈ [1, L − 1] represents the number of actions in a sub-sequence starting from sk0 . The
term Qϕtar(s

k
0 , ã

k
0 , ..., ã

k
L−1) in Eq.(7) denotes the target value of Vϕ(s

k
0) with actions ãk

0 , ..., ã
k
L−1

generated by new MP parameters w̃ sampled from the current policy, w̃ ∼ πθ(· |s). The term
Vϕtar(sN) in Eq.(8) represents the future return after N steps. Both Qϕtar and Vϕtar are predicted by
a target critic (Mnih et al., 2015), with a delayed update rate ρ = 0.005. Please note that Qϕtar and
Vϕtar are the same transformer network, with and without action tokens.

In off-policy RL literature, there are several alternatives to replace Vϕtar(sN) in Eq.(8). However,
we find that this choice alone performs well in our experiments. In other words, TOP-ERL does not

2For simplicity, we omit the expectation over buffer B and average over segment number K in Eq.(7).

5

Figure 2: Architecture overview of the Transformer critic, as described in Sec. 3.2.

necessarily rely on some common off-policy techniques, such as the clipped double-Q (Fujimoto
et al., 2018), to be stable and effective. We attribute this to the usage of the N-step returns, which
help reduce value estimation bias. In Sec. E.5, we show that our model can be further improved
using these augmentations, though at a cost of additional computation.

Unlike Eq.(2), our N-step return targets G(N)(sk0 ,a
k
0 , . . . ,a

k
N−1) in Eq.(8) do not include impor-

tance sampling as the the action sequence ak
0 , . . . ,a

k
N−1 is directly used as input tokens for the

Q-function. Hence, the actions are fixed and we do not require to compute any expectations over
the current policy’s action selection. Hence, using the fixed action sequence in Eq.(8) as input to the
Q-Function eliminates the need for importance sampling, thus avoiding the high variance typically
introduced by it in off-policy methods, as discussed in Sec. 2.1.

3.3.1 ENFORCE INITIAL CONDITION FOR NEWLY PREDICTED ACTION SEQUENCE

Figure 3: Enforce action
initial condition

When calculating the target value Qϕtar(s
k
0 , ã

k
0 , ..., ã

k
L−1) in Eq.(7), a

new parameter vector is sampled from the current policy w̃ ∼ πθ(· |s),
generating a new action trajectory [ãt]t=0:T , with [ãk

t (w̃)]t=0:L−1 as a
sub-sequence. However, this sequence is not necessarily guaranteed to
pass through the segment’s starting state sk0 , which creates a mismatch
between the state and corresponding action sequence when querying the
target in Eq.(7). To address this issue, we append the old reference po-
sition to sk0 , and then leverage the dynamic system formulation inherent
in ProDMPs by setting the initial condition of the new action sequence
to match the old reference at sk0 , as illustrated in Fig. 3. The result-
ing action sequence [ãk

t (w̃, sk0)]t=0:L−1 is therefore depending on both
the MP parameters w̃θ(s) and the initial condition sk0 . This approach
is mathematically equivalent to resetting the initial conditions of an or-
dinary differential equation (ODE), ensuring consistency between the state and action sequences.
Further mathematical details are provided in Appendix C.3.

3.4 POLICY UPDATES USING THE TRANSFORMER CRITIC

We utilize the transformer critic to guide the training of our policy, using the reparameterization trick
similar to that introduced by SAC (Haarnoja et al., 2018a). The learning objective is to maximize
the expected value of the averaged action sequence over varying lengths, defined as:

Policy Objective: J(θ) = Es∼BEw̃∼πθ(·|s)

[
1

KL

K∑
k=1

L−1∑
N=0

Qϕ(s
k
0 ,
[
ãk
t

]
t=0:N

)

]
, (9)

where [ãk
t]t=0:N = [ãk

t (w̃θ, s
k
0)]t=0:N denotes the new action sequence generated by the new MP

parameters w̃θ ∼ πθ(·|s). To ensure consistency between the initial state sk0 and the new action
sequence, we apply the same initial condition enforcement technique discussed in Section 3.3.1.
This learning objective allows the policy πθ(w|s) to be trained based on the value preferences
provided by the Transformer critic.

6

3.5 SUMMARIZE AND OTHER DESIGN CHOICES FOR STABLE LEARNING

To effectively capture a broader range of correlations in both temporal and DoF movements, we
utilize a full covariance matrix Σw in the Gaussian policy (Li et al., 2024). Since the Gaussian
policy over MP parameters is typically high-dimensional, we employ the Trust Region Projection
Layer (TRPL) (Otto et al., 2021) for stable policy updates, following the design of previous ERL
methods (Otto et al., 2022; Li et al., 2024; Celik et al., 2024). For the Transformer critic, we apply
Layer Normalization (Ba, 2016) as the sole data normalization technique, while disabling dropout,
as we found it detrimental to performance. In our experiments, we identified the segment length L
as a key hyperparameter. The best results were achieved by randomly sampling L at each update
iteration, which we attribute to the Transformer critic’s ability to attend to different time horizons,
resulting in more robust outcomes.

4 EXPERIMENTS

Our experiments are designed to address the two questions: I) Can TOP-ERL improve sample ef-
ficiency in classical ERL tasks characterized by challenging exploration problems? and II) How
does TOP-ERL perform in large-scale, general manipulation benchmarks? We compare TOP-ERL
against a set of strong baselines. For the ERL comparisons, we select BBRL and TCE as SoTA
ERL methods. For step-based RL, we use PPO (on-policy) and SAC (off-policy) as established
baselines. Additionally, we employed gSDE and PINK, two step-based RL methods that augment
with consistent exploration techniques, to test the impact of exploration strategies. To assess the
impact of using Transformer-based architectures in RL, we include GTrXL as baseline for online
RL with Transformers architecture. It is worth noting that in the original work, GTrXL was trained
using VMPO. However, since the original code was not open-sourced, we used the implementation
from Liang et al. (2018), where GTrXL is trained with PPO instead. For all ERLs, the trajectories
are generated using ProDMPs with the same hyperparameters and tracked with PD-controllers (or
P-controller for MetaWorlds); for all the SRLs, the action outputs are torque (or delta position for
MetaWorlds). An overview of the baselines can be find in Table 2, and details regarding the imple-
mentation and hyperparameters are provided in the Appendix F. Additionally, we provide further
ablation of the key design choices affecting the performance of TOP-ERL in Appendix E.5

The evaluation of TOP-ERL are structured in two phases. First, we demonstrated that TOP-ERL
significantly improve the sample efficiency over state-of-the-art ERL methods, showcasing its ability
to better handle the challenges of sparse rewards and difficult exploration scenarios (Li et al., 2024).
Next, we evaluate TOP-ERL on the Meta-World MT50 (Yu et al., 2020) benchmark, a large-scale
suite of general manipulation tasks. In this setting, TOP-ERL consistently outperform all baselines,
demonstrated TOP-ERL’s ability to generalize across a wide range of manipulation tasks. To ensure
a robust evalution, all emperical results are reported using Interquartile Mean (IQM), accompanied
by a 95% stratified bootstrap confidence interval (Agarwal et al., 2021) across 8 random seeds.

4.1 IMPROVING SAMPLE EFFICIENCY IN TASKS WITH CHALLENGING EXPLORATION

ERL methods are renowned for their superior exploration abilities, which often give them an ad-
vantage over step-based methods in environments with exploration challenges. However, ERL
algorithms are also notoriously sample inefficient, limiting their applicability in scenarios where
obtaining samples is expensive. In this evaluation, we investigate whether TOP-ERL can address
this limitation by comparing it with baselines on three challenging tasks from Li et al. (2024) and
Otto et al.: HopperJump, a sparse-reward environment where the objective is to maximize the jump
height within an episode, and two variants of a contact-rich Box Pushing task. We evaluate the
Box Pushing task under both dense and sparse reward settings. Further details about the environ-
ments and rewards can be found in Appendix E. The results of these experiments, shown in Fig. 4,
demonstrate that TOP-ERL achieved the highest final performance across all three tasks. Noteably,
in the dense-reward Box Pushing task, TOP-ERL reached an 80% success rate after just 10 million
samples, while the second-best method, TCE, only reaches 60% success after 50 million samples.
Similar results is observed in the sparse-reward Box Pushing task, where TOP-ERL reaches 70%
success rate with 14 million environment interactions, while TCE and gSDE require 50 million
samples to reach 60% success. GTrXL performs moderately in the dense-reward setting, achieving
a 50% success rate, but fails completely in the sparse-reward environment. Step-based methods

7

TOP-ERL (ours) TCE BBRL PPO GTrXL(PPO) gSDE SAC PINK

0 0.5 1 1.5 2

0.4

0.6

0.8

1

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(a) Metaworld Agg.
of 50 tasks

0 0.5 1 1.5 2 2.5 3 3.5

1.5

1.6

1.7

1.8

1.9

Environment Interactions (×106)

M
ax

Ju
m

p
H

ei
gh

t[
m

],
IQ

M

(b) Hopper Jump
Max Height

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(c) Box Pushing
Dense Reward

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Environment Interactions (×107)

Su
cc

es
s

R
at

e,
IQ

M

(d) Box Pushing
Sparse Reward

Figure 4: Task Evaluation of (a) Metaworld success rate of 50 tasks aggregation. (b) Hopper Jump
Max Height. (c) Box Pushing success rate in dense reward, and (d) sparse reward settings.

like SAC, PINK and PPO failed in both cases, underscoring the difficulty of these tasks. Among the
step-based algorithms, only gSDE achieved comparable performance in compare with ERL methods
in these three environments, which we attribute to its state-dependent exploration strategy.

4.2 CONSISTENT PERFORMANCE IN LARGE-SCALE MANIPULATION BENCHMARKS

In the previous evaluation, we demonstrated that TOP-ERL significantly improves sample efficiency
compared to state-of-the-art ERL baselines, while maintaining strong performance in tasks with
challenge exploration. In this evaluation, we focus on answering the second question: How does
TOP-ERL perform on standard manipulation benchmarks with dense rewards? We conducted ex-
periments on the Meta-World benchmark(Yu et al., 2020), reporting the aggregated success rate
across 50 tasks in the MT50 task set. To ensure a fair comparison, we followed the same evaluation
protocol described in Otto et al. (2022) and Li et al. (2024), where an episode is only considered
successful if the success criterion is met at the end of the episode, a more rigours measure than the
original setting where success at any time step counts. The results in Fig. 4a show that TOP-ERL
achieved highest asymptotic success rate (98%) after 10 million samples. TCE was able to achieve
the same success rate but required 20 million interactions. SAC also converged after 10 million
samples but with a significantly lower success rate of 85%. BBRL and other step-based methods
achieved moderate success rate but required significantly more samples.

5 CONCLUSION

This work introduced Transformer-based Off-Policy Episodic RL (TOP-ERL), a novel off-policy
ERL method that leverages Transformers for N-steps return learning. By integrating ERL with an
off-policy update scheme, TOP-ERL significantly improves the sample efficiency of ERL methods
while retaining their advantages in exploration. The use of a Transformer-based critic architecture
allows TOP-ERL to bypass the need for importance sampling in N-steps target calculation, stabi-
lizing training while enjoying the benefit of low-bias value estimation provided by N-steps return.
TOP-ERL has demonstrated superior performance compared to state-of-the-art ERL approaches and
step-based RL methods augmented with exploration mechanism across 53 challenging tasks, pro-
viding strong evidence for its broader applicability to wide range of problems. The ablation studies
(provided in Appendix E.5) reveal the reasons behind design choices and components, providing
insights into the factors contributing to the strong performance of TOP-ERL.

Limitations and Future Works. Despite all the advantages, TOP-ERL shares a limitation common
to ERL methods: it generates trajectories only at the start of each episode, making it incapable of
handling tasks involving dynamic or target changes within an episode. A promising future research
direction would be to incorporate replanning capabilities into TOP-ERL. Additionally, although
TOP-ERL uses Transformers as critic, it is not designed to address POMDPs, as the Transformer is
used for action-to-go processing in Q-function learning, rather than incorporating state sequences as
input. Merging these two paradigms and enhancing TOP-ERL with the ability to handle POMDPs
presents another avenue for future investigation.

8

REFERENCES

Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis, and Gerhard
Neumann. Model-based relative entropy stochastic search. Advances in Neural Information Pro-
cessing Systems, 28, 2015.

Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis, and Gerhard Neumann. Contextual
covariance matrix adaptation evolutionary strategies. International Joint Conferences on Artificial
Intelligence Organization (IJCAI), 2017.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Shikhar Bahl, Mustafa Mukadam, Abhinav Gupta, and Deepak Pathak. Neural dynamic policies
for end-to-end sensorimotor learning. Advances in Neural Information Processing Systems, 33:
5058–5069, 2020.

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash
Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmenta-
tions and action chunking. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4788–4795. IEEE, 2024.

Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a pow-
erful parameter for learning to play atari. In Workshops at the twenty-ninth AAAI conference on
artificial intelligence, 2015.

Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, and Gerhard Neumann. Specializing ver-
satile skill libraries using local mixture of experts. In Conference on Robot Learning, pp. 1423–
1433. PMLR, 2022.

Onur Celik, Aleksandar Taranovic, and Gerhard Neumann. Acquiring diverse skills using curricu-
lum reinforcement learning with mixture of experts. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=9ZkUFSwlUH.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you
need: Colored noise exploration in deep reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2022.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Faustino Gomez, Jürgen Schmidhuber, Risto Miikkulainen, and Melanie Mitchell. Accelerated neu-
ral evolution through cooperatively coevolved synapses. Journal of Machine Learning Research,
9(5), 2008.

Sebastian Gomez-Gonzalez, Gerhard Neumann, Bernhard Schölkopf, and Jan Peters. Using prob-
abilistic movement primitives for striking movements. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pp. 502–508. IEEE, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018a.

9

https://openreview.net/forum?id=9ZkUFSwlUH

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. The ICLR Blog Track
2023, 2022.

Christian Igel. Neuroevolution for reinforcement learning using evolution strategies. In The 2003
Congress on Evolutionary Computation, 2003. CEC’03., volume 4, pp. 2588–2595. IEEE, 2003.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural computation, 25(2):
328–373, 2013.

Piotr Kicki, Davide Tateo, Puze Liu, Jonas Günster, Jan Peters, and Krzysztof Walas. Bridging
the gap between learning-to-plan, motion primitives and safe reinforcement learning. In 8th An-
nual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=
ZdgaF8fOc0.

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances in neural
information processing systems, 21, 2008.

Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, and Gerhard Neumann. Prodmp:
A unified perspective on dynamic and probabilistic movement primitives. IEEE Robotics and
Automation Letters, 8(4):2325–2332, 2023.

Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Lioutikov, and Gerhard
Neumann. Open the black box: Step-based policy updates for temporally-correlated episodic
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=mnipav175N.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International conference on machine learning, pp. 3053–3062. PMLR, 2018.

Haoxin Lin, Yihao Sun, Jiaji Zhang, and Yang Yu. Model-based reinforcement learning with multi-
step plan value estimation. In ECAI 2023, pp. 1481–1488. IOS Press, 2023.

Chenhao Lu, Ruizhe Shi, Yuyao Liu, Kaizhe Hu, Simon Shaolei Du, and Huazhe Xu. Rethinking
transformers in solving POMDPs. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=SyY7ScNpGL.

Xiao Ma and Wu-Jun Li. Weighting online decision transformer with episodic memory for offline-
to-online reinforcement learning. In 2024 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 10793–10799. IEEE, 2024.

Guilherme Maeda, Marco Ewerton, Rudolf Lioutikov, Heni Ben Amor, Jan Peters, and Gerhard
Neumann. Learning interaction for collaborative tasks with probabilistic movement primitives.
In 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 527–534. IEEE, 2014.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. Advances in Neural Information Processing Systems, 31,
2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36, 2024.

10

https://openreview.net/forum?id=ZdgaF8fOc0
https://openreview.net/forum?id=ZdgaF8fOc0
https://openreview.net/forum?id=mnipav175N
https://openreview.net/forum?id=SyY7ScNpGL

Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
spaces. arXiv preprint arXiv:2403.19925, 2024.

Fabian Otto, Onur Celik, Dominik Roth, and Hongyi Zhou. Fancy gym. URL https://github.
com/ALRhub/fancy_gym.

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Differ-
entiable trust region layers for deep reinforcement learning. International Conference on Learning
Representations, 2021.

Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Vien Anh Ngo, and Gerhard Neumann.
Deep black-box reinforcement learning with movement primitives. In Conference on Robot
Learning, pp. 1244–1265. PMLR, 2022.

Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, and Gerhard Neumann. Mp3:
Movement primitive-based (re-) planning policy. arXiv preprint arXiv:2306.12729, 2023.

Rok Pahič, Barry Ridge, Andrej Gams, Jun Morimoto, and Aleš Ude. Training of deep neural
networks for the generation of dynamic movement primitives. Neural Networks, 2020.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Probabilistic movement
primitives. Advances in neural information processing systems, 26, 2013.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Kai Ploeger, Michael Lutter, and Jan Peters. High acceleration reinforcement learning for real-world
juggling with binary rewards. In Conference on Robot Learning, pp. 642–653. PMLR, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning.
In Conference on Robot Learning, pp. 1634–1644. PMLR, 2022.

Moritz Reuss, Ömer Erdinç Yağmurlu, Fabian Wenzel, and Rudolf Lioutikov. Multimodal diffu-
sion transformer: Learning versatile behavior from multimodal goals. In Robotics: Science and
Systems, 2024.

Leonel Rozo and Vedant Dave. Orientation probabilistic movement primitives on riemannian man-
ifolds. In Conference on Robot Learning, pp. 373–383. PMLR, 2022.

Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. State-dependent exploration for pol-
icy gradient methods. In Walter Daelemans, Bart Goethals, and Katharina Morik (eds.), Ma-
chine Learning and Knowledge Discovery in Databases, pp. 234–249, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-87481-2.

Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhuber.
Exploring parameter space in reinforcement learning. Paladyn, 1:14–24, 2010.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Stefan Schaal. Dynamic movement primitives-a framework for motor control in humans and hu-
manoid robotics. In Adaptive motion of animals and machines, pp. 261–280. Springer, 2006.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

https://github.com/ALRhub/fancy_gym
https://github.com/ALRhub/fancy_gym
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

RB Ashith Shyam, Peter Lightbody, Gautham Das, Pengcheng Liu, Sebastian Gomez-Gonzalez,
and Gerhard Neumann. Improving local trajectory optimisation using probabilistic movement
primitives. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2666–2671. IEEE, 2019.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jens Timmer and Michel Koenig. On generating power law noise. Astronomy and Astrophysics,
300:707, 1995.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Darrell Whitley, Stephen Dominic, Rajarshi Das, and Charles W Anderson. Genetic reinforcement
learning for neurocontrol problems. Machine Learning, 13:259–284, 1993.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances in
Neural Information Processing Systems, 36, 2024.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Weilin Yuan, Jiaxing Chen, Shaofei Chen, Dawei Feng, Zhenzhen Hu, Peng Li, and Weiwei Zhao.
Transformer in reinforcement learning for decision-making: a survey. Frontiers of Information
Technology & Electronic Engineering, 25(6):763–790, 2024.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

You Zhou, Jianfeng Gao, and Tamim Asfour. Learning via-point movement primitives with inter-
and extrapolation capabilities. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4301–4308. IEEE, 2019.

12

List of Content in Appendix

A. An algorithm box that summarizes the key steps of TOP-ERL.

B. A comprehensive discussion of the related works.

C. Mathematical formulations of MP methods used for trajectory generation.

D. Options for the future return used in Eq.(8).

E. Experiment settings and ablations as a complementary to Sec. 4.

F. Hyper-parameters selection and sweeping.

A ALGORITHM BOX

Algorithm 1 TOP-ERL

1: Initialize critic ϕ; target critic ϕtar ← ϕ
2: Initialize policy θ and replay buffer B
3: repeat
4: Reset environment and get initial task state s
5: Predict the policy mean µw and covariance Σw

6: Sample w∗ and generate action trajectory [a]0:T
7: Execute the action trajectory till task ends.
8: Store the visited states [s]0:T , rewards [r]0:T , and

the action [a]0:T trajectories in replay buffer B
9: for each update step do

10: From B, sample a batch of s,a, r trajectories.
11: Split them into K segments, each L time steps.
12: Compute N-step return targets as in Eq.(8)
13: Update transformer critic, using Eq.(7)
14: Update policy, using Eq.(9)
15: end for
16: Update target critic ϕtar ← (1− ρ) ϕtar + ρ ϕ
17: until converged

B RELATED WORKS

Episodic RL. The study of ERL approaches dates back to the 1990s. Early approaches employed
black-box optimization techniques to update parameters of policies, such as small MLPs (Whitley
et al., 1993; Igel, 2003; Gomez et al., 2008). Due to the substantial data requirements of black-box
algorithms and the limited computational resources available at the time, these approaches were
constrained to low-dimensional tasks like Pendulum and Cart Pole. Subsequent works (Salimans
et al., 2017; Mania et al., 2018) demonstrated that, given sufficient computational resources, ERL
methods can also achieve comparable performance to step-based RL on challenge locomotion tasks,
such as Ant and Humanoid, at the cost of more samples for convergence. Another line of research
in ERL focuses on more compact policy representations. Peters & Schaal (2008) first proposed
using movement primitives (MPs) as parameterized policies for ERL, reducing the search space
from the high-dimensional neural network parameter space to the MP weight space, which typically
ranges from 20 to 50 dimensions, resulting in less samples required for convergence. Using MPs as
policies also provides additional benefits, such as smooth trajectory generation and more consistent
exploration (Li et al., 2024). MP-based ERL approaches have demonstrated the ability to master
complex manipulation tasks such as robot baseball (Peters & Schaal, 2008) and juggling (Ploeger
et al., 2021). To further improve sample efficiency, Abdolmaleki et al. (2015) introduced a model-
based method to enable more sample-efficient black-box searching. However, these methods are
limited in handling tasks with contextual variations, e.g., changing goals. To address this limitation,

13

Abdolmaleki et al. (2017) and Celik et al. (2022) extend MP-based ERL by using linear policies
conditioned on context. Otto et al. (2022) enhanced contextual MPRL by employing neural network
policies and trust-region regularized policy update. Despite these advances, existing ERL methods
generally treat the episodic trajectory as a black box. While this approach allows them to handle
sparse and even non-Markovian rewards, ignoring the temporal structure within each episode leads
to lower sample efficiency compared to step-based methods, especially in settings with dense re-
wards. To address this issue, a most recently proposed method, Temporally-Correlated ERL (TCE)
(Li et al., 2024) introduced a more efficient update scheme that ”opens the black-box” and utilizes
sub-segment information for policy update while retaining the benefit of episodic exploration. Al-
though TCE improves the sample efficiency of contextual ERL methods, it still relies on on-policy
policy gradient updates, which are considered sample-inefficient. To the best of our knowledge,
TOP-ERL is the first off-policy ERL algorithm capable of handling contextual tasks.

Transformers in model-free RL. Inspired by the success of Transformers in domains requir-
ing sequence reasoning, the study incorporating Transformers in RL to solve tasks that require
long-horizon memory emerged. However, using standard Transformers in RL could results in
performance comparable to random policy (Parisotto et al., 2020). To address this issue, Gated
Transformer-XL(GTrXL) (Parisotto et al., 2020) augmented Transformer-XL with GRU-style gat-
ing layers between multi-head self-attention layers, stabilizing the training of deep Transformer
networks (up to 12 layers) with online RL. Another research line focuses on utilizing Transformers
to enhance offline RL, where the learning process is based on a fixed dataset collected by arbitrary
behavior policies. Decision Transformers(Chen et al., 2021) is the first of this kind, formulating the
offline RL as a sequence modeling problem. The subsequent study further extends Decision Trans-
formers with dynamic history length adjusting (Wu et al., 2024), Q-learning (Yamagata et al., 2023)
and replace the Transformer with more efficient state-space model (Ota, 2024). Online Decision
Transformer (Zheng et al., 2022) extended Decision Transformer with online fine-tuning. However,
literature on online RL with Transformers that training from scratch is still quite rare, indicating
integrating Transformers in online RL is still an open domain for exploration. Unlike the major-
ity of previous works, TOP-ERL does not target at solving POMDPs, instead focusing on using
Transformer-based critic improve the multistep TD-learning under ERL setting.

C MATHEMATICAL FORMULATIONS OF MOVEMENT PRIMITIVES.

In this section, we provide an overview of the movement primitive formulations used in this paper.
We begin with the basics of DMPs and ProMPs, followed by a detailed explanation of ProDMPs.
For clarity, we start with a single DoF system and then expand to multi-DoF systems.

C.1 DYNAMIC MOVEMENT PRIMITIVES (DMPS)

Schaal (2006); Ijspeert et al. (2013) describe a single movement as a trajectory [yt]t=0:T , which
is governed by a second-order linear dynamical system with a non-linear forcing function f . The
mathematical representation is given by

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (10)

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 denote the position, velocity, and acceleration of
the system at a specific time t, respectively. Constants α and β are spring-damper parameters, g
signifies a goal attractor, and τ is a time constant that modulates the speed of trajectory execution. To
ensure convergence towards the goal, DMPs employ a forcing function governed by an exponentially
decaying phase variable x(t) = exp(−αx/τ ; t). Here, φi(x) represents the basis functions for the
forcing term. The trajectory’s shape as it approaches the goal is determined by the weight parameters
wi ∈ w, for i = 1, ..., N . The trajectory [yt]t=0:T is typically computed by numerically integrating
the dynamical system from the start to the end point (Pahič et al., 2020; Bahl et al., 2020). However,
this numerical process is computationally intensive. For example, to compute the trajectory segment
in the end of an episode, DMP must integrate the system from the very beginning till the start of the
segment.

14

C.2 PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

Paraschos et al. (2013) introduced a framework for modeling MPs using trajectory distributions,
capturing both temporal and inter-dimensional correlations. Unlike DMPs that use a forcing term,
ProMPs directly model the intended trajectory. The probability of observing a 1-DoF trajectory
[yt]t=0:T given a specific weight vector distribution p(w) ∼ N (w|µw,Σw) is represented as a
linear basis function model:

Linear basis function: [yt]t=0:T = Φ⊺
0:Tw + ϵy, (11)

Mapping distribution: p([yt]t=0:T ; µy,Σy) = N (Φ⊺
0:Tµw, Φ⊺

0:TΣwΦ0:T + σ2
yI). (12)

Here, ϵy is zero-mean white noise with variance σ2
y . The matrix Φ0:T houses the basis functions for

each time step t. Similar to DMPs, these basis functions can be defined in terms of a phase variable
instead of time. ProMPs allows for flexible manipulation of MP trajectories through probabilistic
operators applied to p(w), such as conditioning, combination, and blending (Maeda et al., 2014;
Gomez-Gonzalez et al., 2016; Shyam et al., 2019; Rozo & Dave, 2022; Zhou et al., 2019). However,
ProMPs lack an intrinsic dynamic system, which means they cannot guarantee a smooth transition
from the robot’s initial state or between different generated trajectories.

C.3 PROBABILISTIC DYNAMIC MOVEMENT PRIMITIVES (PRODMPS)

Solving the ODE underlying DMPs Li et al. (2023) noted that the governing equation of DMPs,
as specified in Eq. (10), admits an analytical solution. This is because it is a second-order linear non-
homogeneous ODE with constant coefficients. The original ODE and its homogeneous counterpart
can be expressed in standard form as follows:

Non-homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y =

f(x)

τ2
+

αβ

τ2
g ≡ F (x, g), (13)

Homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y = 0. (14)

The solution to this ODE is essentially the position trajectory, and its time derivative yields the
velocity trajectory. These are formulated as:

y = [y2p2 − y1p1 y2q2 − y1q1]

[
w
g

]
+ c1y1 + c2y2 (15)

ẏ = [ẏ2p2 − ẏ1p1 ẏ2q2 − ẏ1q1]

[
w
g

]
+ c1ẏ1 + c2ẏ2. (16)

Here, the learnable parameters w and g which control the shape of the trajectory, are separable from
the remaining terms. Time-dependent functions y1, y2,p1, p2, q1, q2 in the remaining terms offer
the basic support to generate the trajectory. The functions y1, y2 are the complementary solutions
to the homogeneous ODE presented in equation 14, and ẏ1, ẏ2 their time derivatives respectively.
These time-dependent functions take the form as:

y1(t) = exp
(
− α

2τ
t
)
, y2(t) = t exp

(
− α

2τ
t
)
, (17)

p1(t) =
1

τ2

∫ t

0

t′ exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, p2(t) =

1

τ2

∫ t

0

exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, (18)

q1(t) =
(α

2τ
t− 1

)
exp

(α

2τ
t
)
+ 1, q2(t) =

α

2τ

[
exp

(α

2τ
t
)
− 1

]
. (19)

It’s worth noting that the p1 and p2 cannot be analytically derived due to the complex nature of the
forcing basis terms φx. As a result, they need to be computed numerically. Despite this, isolating
the learnable parameters, namely w and g, allows for the reuse of the remaining terms across all
generated trajectories. These residual terms can be more specifically identified as the position and
velocity basis functions, denoted as Φ(t) and Φ̇(t), respectively. When both w and g are included
in a concatenated vector, represented as wg , the expressions for position and velocity trajectories
can be formulated in a manner akin to that employed by ProMPs:

Position: y(t) = Φ(t)⊺wg + c1y1(t) + c2y2(t), (20)

Velocity: ẏ(t) = Φ̇(t)⊺wg + c1ẏ1(t) + c2ẏ2(t). (21)
In the main paper, for simplicity and notation convenience, we use w instead of wg to describe the
parameters and goal of ProDMPs.

15

Intial Condition Enforcement The coefficients c1 and c2 serve as solutions to the initial value
problem delineated by the Eq.(20)(21). Li et al. propose utilizing the robot’s initial state or the
replanning state, characterized by the robot’s position and velocity (yb, ẏb) to ensure a smooth com-
mencement or transition from a previously generated trajectory. Denote the values of the comple-
mentary functions and their derivatives at the condition time tb as y1b , y2b , ẏ1b and ẏ2b . Similarly,
denote the values of the position and velocity basis functions at this time as Φb and Φ̇b respectively.
Using these notations, c1 and c2 can be calculated as follows:

[
c1
c2

]
=

 ẏ2b
yb−y2b

ẏb

y1b
ẏ2b

−y2b
ẏ1b

+
y2b

Φ̇⊺
b−ẏ2b

Φ⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

y1b
ẏb−ẏ1b

yb

y1b
ẏ2b

−y2b
ẏ1b

+
ẏ1b

Φ⊺
b−y1b

Φ̇⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

 . (22)

Substituting Eq. (22) into Eq. (20) and Eq. (21), the position and velocity trajectories take the form
as

y = ξ1yb + ξ2ẏb + [ξ3Φb + ξ4Φ̇b +Φ]⊺wg, (23)

ẏ = ξ̇1yb + ξ̇2ẏb + [ξ̇3Φb + ξ̇4Φ̇b + Φ̇]⊺wg (24)

Here, ξk for k ∈ {1, 2, 3, 4} serve as intermediate terms that are derived from the complementary
functions and the initial conditions. The formations of these terms are elaborated below. To find
their derivatives ξ̇k, one can simply replace y1, y2 with their time derivatives ẏ1, ẏ2 in the equations.

ξ1(t) =
ẏ2by1 − ẏ1by2
y1b ẏ2b − y2b ẏ1b

, ξ2(t) =
y1by2 − y2by1
y1b ẏ2b − y2b ẏ1b

,

ξ3(t) =
ẏ1by2 − ẏ2by1
y1b ẏ2b − y2b ẏ1b

, ξ4(t) =
y2by1 − y1by2
y1b ẏ2b − y2b ẏ1b

.

Despite the complex form used in the initial condition enforcement, the solutions conducted above
only rely on solving several linear equations and can be easily implemented in a batch-manner and
is therefore computationally efficient, normally ≤ 1 ms.

D TARGET OPTIONS

Table 1: Options for the future return used in Eq.(8)

Option Math Description

V-target V tar
ϕ (sN) State value after N steps

Q-target Qtar
ϕ (sN ,aN , ...) Action value after N steps

Clipped Min(·, ·) Minimum of 2 target critics

Ensemble Avg.(·, ·) Mean of ≥ 2 target critics

16

E EXPERIMENT DETAILS

E.1 DETAILS OF METHODS IMPLEMENTATION

Table 2: Baseline methods categorized by type (ERL or SRL) and update rules (On- or Off-policy).

Method Category Description

BBRL (Otto et al., 2022) ERL, On Black Box Optimization style ERL, policy search in parameter space

TCE (Li et al., 2024) ERL, On Extend BBRL to use per-step info for efficient policy update

PPO (Schulman et al., 2017) SRL, On Standard on-policy method with simplified Trust Region enforcement

gSDE (Raffin et al., 2022) SRL, On Consecutive exploration noise for NN parameters of the policy

GTrXL(Parisotto et al., 2020) SRL, On Transformer-augmented SRL with multiple state as history

SAC (Haarnoja et al., 2018a) SRL, Off Standard off-policy method with entropy bonus for better exploration

PINK (Eberhard et al., 2022) SRL, Off Use temporal correlated pink noise for better exploration

PPO Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a prominent on-policy step-
based RL algorithm that refines the policy gradient objective, ensuring policy updates remain close
to the behavior policy. PPO branches into two main variants: PPO-Penalty, which incorporates a
KL-divergence term into the objective for regularization, and PPO-Clip, which employs a clipped
surrogate objective. In this study, we focus our comparisons on PPO-Clip due to its prevalent use in
the field. Our implementation of PPO is based on the implementation of Raffin et al. (2021).

SAC Soft Actor-Critic (SAC) (Haarnoja et al., 2018a;b) employs a stochastic step-based policy
in an off-policy setting and utilizes double Q-networks to mitigate the overestimation of Q-values
for stable updates. By integrating entropy regularization into the learning objective, SAC balances
between expected returns and policy entropy, preventing the policy from premature convergence.
Our implementation of SAC is based on the implementation of Raffin et al. (2021).

GTrXL Gated TransformerXL (GTrXL) (Parisotto et al., 2020) is a Transformer architecture that
design to stabilize the training of Transformers in online RL, offers an easy-to-train, simple-to-
implement but substantially more expressive architectural alternative to standard RNNs used for
RL agents in POMDPs. Our implementation of GTrXL is based on the implementation of PPO
+ GTrXL from Liang et al. (2018). We augmented the implementation with minibatch advantage
normalization and state-independent log standard deviation as suggested in Huang et al. (2022).

gSDE Generalized State Dependent Exploration (gSDE) (Raffin et al., 2022; Rückstieß et al.,
2008; Rückstiess et al., 2010) is an exploration method designed to address issues with traditional
step-based exploration techniques and aims to provide smoother and more efficient exploration in
the context of robotic reinforcement learning, reducing jerky motion patterns and potential damage
to robot motors while maintaining competitive performance in learning tasks.

To achieve this, gSDE replaces the traditional approach of independently sampling from a Gaussian
noise at each time step with a more structured exploration strategy, that samples in a state-dependent
manner. The generated samples not only depend on parameter of the Gaussian distribution µ & Σ,
but also on the activations of the policy network’s last hidden layer (s). We generate disturbances ϵt
using the equation

ϵt = θϵs, where θϵ ∼ N d (0,Σ) .

The exploration matrix θϵ is composed of vectors of length Dim(a) that were drawn from the Gaus-
sian distribution we want gSDE to follow. The vector s describes how this set of pre-computed
exploration vectors are mixed. The exploration matrix is resampled at regular intervals, as guided
by the ’sde sampling frequency’ (ssf), occurring every n-th step if n is our ssf.

gSDE is versatile, applicable as a substitute for the Gaussian Noise source in numerous on- and
off-policy algorithms. We evaluated its performance in an on-policy setting using PPO by utilizing
the reference implementation for gSDE from Raffin et al. (2022). In order for training with gSDE to

17

remain stable and reach high performance the usage of a linear schedule over the clip range had to
be used for some environments.

PINK We utilize SAC to evaluate the effectiveness of pink noise for efficient exploration. Eber-
hard et al. (2022) propose to replace the independent action noise ϵt of

at = µt + σt · ϵt

with correlated noise from particular random processes, whose power spectral density fol-
low a power law. In particular, the use of pink noise, with the exponent β = 1 in
S(f) = |F [ϵ](f)|2 ∝ f−β , should be considered (Eberhard et al., 2022).

We follow the reference implementation and sample chunks of Gaussian pink noise using the in-
verse Fast Fourier Transform method proposed by Timmer & Koenig (1995). These noise variables
are used for SAC’s exploration but the the actor and critic updates sample the independent action
distribution without pink noise. Each action dimension uses an independent noise process which
causes temporal correlation within each dimension but not across dimensions. Furthermore, we fix
the chunk size and maximum period to 10000 which avoids frequent jumps of chunk borders and
increases relative power of low frequencies.

BBRL Black-Box Reinforcement Learning (BBRL) (Otto et al., 2022; 2023) is a recent developed
episodic reinforcement learning method. By utilizing ProMPs (Paraschos et al., 2013) as the trajec-
tory generator, BBRL learns a policy that explores at the trajectory level. The method can effectively
handle sparse and non-Markovian rewards by perceiving an entire trajectory as a unified data point,
neglecting the temporal structure within sampled trajectories. However, on the other hand, BBRL
suffers from relatively low sample efficiency due to its black-box nature. Moreover, the original
BBRL employs a degenerate Gaussian policy with diagonal covariance. In this study, we extend
BBRL to learn Gaussian policy with full covariance to build a more competitive baseline. For clar-
ity, we refer to the original method as BBRL-Std and the full covariance version as BBRL-Cov. We
integrate BBRL with ProDMPs (Li et al., 2023), aiming to isolate the effects attributable to different
MP approaches.

TCE Temporally-Correlated Episodic RL (TCE) (Li et al., 2024) is an innovative ERL algorithm
that leverages step-level information in episodic policy updates, shedding light on the ’black box’
of current ERL methods while preserving smooth and consistent exploration within the parameter
space. TCE integrates the strengths of both step-based and episodic RL, offering performance on
par with recent ERL approaches, while matching the data efficiency of state-of-the-art (SoTA) step-
based RL methods.

E.2 METAWORLD

MetaWorld (Yu et al., 2020) is an open-source simulated benchmark specifically designed for meta-
reinforcement learning and multi-task learning in robotic manipulation. It features 50 distinct ma-
nipulation tasks, each presenting unique challenges that require robots to learn a wide range of skills,
such as grasping, pushing, and object placement. Unlike benchmarks that focus on narrow task dis-
tributions, MetaWorld provides a broader range of tasks, making it an ideal platform for developing
algorithms that can generalize across different behaviors.

E.3 HOPPER JUMP

Figure 5: Hopper Jump

As an addition to the main paper, we provide more details on the Hopper
Jump task. We look at both the main goal of maximizing jump height and
the secondary goal of landing on a desired position. Our method shows
quick learning and does well in achieving high jump height, consistent
with what we reported earlier. While it’s not as strong in landing accu-
racy, it still ranks high in overall performance. Both versions of BBRL
have similar results. However, they train more slowly compared to TCE,
highlighting the speed advantage of our method due to the use of inter-
mediate states for policy updates. Looking at other methods, step-based

18

ones like PPO and TRPL focus too much on landing distance and miss
out on jump height, leading to less effective policies. On the other hand, gSDE performs well but
is sensitive to the initial setup, as shown by the wide confidence ranges in the results. Lastly, SAC
and PINK shows inconsistent results in jump height, indicating the limitations of using pink noise
for exploration, especially when compared to gSDE.

E.4 BOX PUSHING

Figure 6: Box Pushing

The goal of the box-pushing task is to move a box to a specified goal
location and orientation using the 7-DoFs Franka Emika Panda (Otto
et al., 2022). To make the environment more challenging, we extend
the environment from a fixed initial box position and orientation to a
randomized initial position and orientation. The range of both initial
and target box pose varies from x ∈ [0.3, 0.6], y ∈ [−0.45, 0.45], θz ∈
[0, 2π]. Success is defined as a positional distance error of less than 5
cm and a z-axis orientation error of less than 0.5 rad. We refer to the
original paper for the observation and action spaces definition and the
reward function.

E.5 ABLATION STUDY AND DISCUSSION

Single Q-Network leads to stable and efficient training. We compare
four common design choices for targets calculation in Q-function update in Eq.(8): 1) V-Target
which uses a single V target network, 2) Q-Target, which employs single Q target network, 3)V-
Ensemble, which consists of an ensemble of predictions from two V target networks, 4) V-Clip,
which takes the minimum of two V target networks. Detailed description of these target calculation
approaches can be found in Appendix D. Fig. 7 presents the learning curves for TOP-ERL in dense-
reward (7a) and sprase-reward (7b) Box Pushing, while Table 3 presents the numerical success rate
and computation times per update. The results demonstrate that using a single V target network
yields performance comparable to approaches that rely on two target networks, with additionally
benefit of significantly reduced computation time (approximately 50% faster). We attribute the stable
performance with single target network to the use of N-step Bellman equation in target calculation,
as discussed in Sec. 3.3.

Key Components Ablation. We evaluate the impact of five key components on the performance of
TOP-ERL: trust region constraints in policy updates, enforcing the initial condition at each segment,
the presence of layer normalization, fixed vs. random segment lengths, and the inclusion of dropout
in Transformer layers. These evaluations were conducted in both dense-reward and sparse-reward
Box Pushing environments using 8 random seeds. The results, presented in Fig. 7 as dashed lines,
show performance for TOP-ERL with corresponding component been added or removed. The results
indicate that the random segment length has the most significant effect on TOP-ERL’s performance.
When using fixed 25 segments the success rate dropped from 80% to 35% in the dense-reward
setting, and from 70% to 20% in the sparse-reward setting. Layer normalization, trust region con-
straints, and enforcing initial conditions also contributed positively to the performance. Interestingly,

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

Environment Interactions (×106)

Su
cc

es
s

R
at

e,
IQ

M

(a) Box Pushing
Dense Reward

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

Environment Interactions (×106)

Su
cc

es
s

R
at

e,
IQ

M

(b) Box Pushing
Sparse Reward

V-Target
Q-Target
Ensemble
Clipped

No TR
No Init Cond.
No LN
Fixed Seg.
Dropout

Figure 7: Performance of different critic update strategies
(solid lines) and model ablations (dashed lines), using Box
pushing dense and sparse reward settings respectively.

Table 3: Quantitative performance
and update time of different critic
update strategies. With additional
computational cost, TOP-ERL can
be further enhanced.

Variant
Time Dense Sparse

critic s / iter Success, % Success, %

↓ ↑ ↑
V-Target

1 1.55 82.0±2.6 65.7±4.0(default)

Q-Target 1 2.44 86.1 ± 2.7 69.1 ± 7.5

V-Ensem. 2 2.49 83.8 ± 3.1 75.7 ± 4.4

V-Clip 2 2.49 86.0 ± 3.2 75.5 ± 3.7

19

adding even a small dropout rate (0.05 in the ablation) had negative impacts on the performance in
both tasks. We hypothesize that this effect may be attributed to the use of a relatively small replay
buffer combined with a higher buffer update ratio (0.1% in our setting), which likely mitigates the
risk of overfitting in Q-function learning, thereby diminishing the benefit of dropout.

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

Environment Interactions (×106)

Su
cc

es
s

R
at

e,
IQ

M

Random
100%.
50%.
20%
10%
5%

Figure 8: Random or Fixed
segment length

Impact of Random Segment Lengths. As showed in the
previous ablation study, random segment length played a piv-
otal role in the strong performance of TOP-ERL. To further
investigate whether this conclusion holds across different seg-
ment lengths, we evaluated the dense-reward Box Pushing task
with segment lengths varying from 5% of the episode length
to 100% (i.e., no segmentation). The results in Fig. 8 indi-
cate that when using fixed-length segmentation, TOP-ERL’s
performance varies significantly depending on the length. In
contrast, random segment lengths consistently achieve faster
convergence and higher asymptotic performance. Addition-
ally, using random segmentation offers the practical benefit of simplifying hyperparameter tuning.
Therefore, we adopt random segmentation length as the default setting for TOP-ERL. To provide
more insight into the impact of random segment lengths, we provide a visualization for action cor-
relation with different segmentation strategies in Fig. 9.

(a) No Segmentation (BBRL) (b) Random Segmentation (Ours) (c) Fixed Segmentation (TCE)

Figure 9: This figure presents predicted actions’ correlation across 4 DoF and 100 time steps, visu-
alized in a 400 × 400 correlation matrix. Each 100 × 100 square tile demonstrates the movement
correlation between two DoF during these steps. Correlation values range from -1 (negative cor-
relation, depicted in blue) to 1 (positive correlation, depicted in red), with white areas indicating
no correlation. BBRL treats the entire trajectory as a whole and does not have any segmentation;
thus, the correlation broadcasts smoothly across time steps, as shown in (a). On the contrary, TCE
uses segmentation with fixed length, constraining the correlation learning within fixed segments,
resulting in sudden correlation changes at each segment’s boundary, as presented in (c). TOP-ERL
utilizes randomly sampled segment length and positions itself between the two paradigms, being
able to learn the smooth correlation while retaining the benefits of higher sample efficiency by using
segmentation.

20

F HYPER PARAMETERS

We executed a large-scale grid search to fine-tune key hyperparameters for each baseline method.
For other hyperparameters, we relied on the values specified in their respective original papers.
Below is a list summarizing the parameters we swept through during this process.

BBRL: Policy net size, critic net size, policy learning rate, critic learning rate, samples per itera-
tion, trust region dissimilarity bounds, number of parameters per movement DoF.

TCE: Same types of hyper-parameters listed in BBRL, plus the number of segments per trajectory.
A learning rate decaying scheduler is applied to stabilize the training in the end.

PPO: Policy network size, critic network size, policy learning rate, critic learning rate, batch size,
samples per iteration.

gSDE: Same types of hyper-parameters listed in PPO, together with the state dependent explo-
ration sampling frequency (Raffin et al., 2022).

SAC: Policy network size, critic network size, policy learning rate, critic learning rate, alpha learn-
ing rate, batch size, Update-To-Data (UTD) ratio.

PINK: Same types of hyper-parameters listed in SAC.

GTrXL: Number of multi-head attention layers, number of heads, dims per head, importance-
sampling ratio clip, value function clip, grad clip, and same hyperparameters listed in PPO

TOP-ERL: Number of multi-head attention layers, number of heads, dims per head, learning
rates. The other movement primitives hyper-parameters are taken from TCE.

The detailed hyper parameters used are listed in the following tables. Unless stated otherwise, the
notation lin x refers to a linear schedule. It interpolates linearly from x to 0 during training. The
ERL methods (TCE, BBRL) take an entire trajectory as a sample where the SRL methods take one
time step as a sample. In this way, one sample in ERL is equivlent to T sample of SRL, where T is
the length of one task episode.

21

Table 4: Hyperparameters for the Meta-World experiments. Episode Length T = 500

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 16000 16000 19000 1000 4 16 16 2
GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 0.99 1 1 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.005 0.005 0.005
ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.0005 0.0005
trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 5 1000 1 50 100 15
learning rate 3e-4 1e-3 2e-4 3e-4 3e-4 3e-4 3e-4 1e-3
use critic True True True True True True True True
epochs critic 10 10 5 1000 1 50 100 50
learning rate critic 3e-4 1e-3 2e-4 3e-4 3e-4 3e-4 3e-4 5e-5
number minibatches 32 n.a. n.a n.a. n.a. n.a. n.a. n.a.
batch size n.a. 500 1024 256 512 n.a. n.a. 256
buffer size n.a. n.a. n.a. 1e6 2e6 n.a. n.a. 3000
learning starts 0 0 n.a. 10000 1e5 0 0 2
polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. 5e-3
SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.
entropy coefficient 0 0 0 auto auto 0 0 n.a.

normalized observations True True False False False True False False
normalized rewards True True 0.05 False False False False False
observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 lin 0.3 10.0 n.a. n.a. n.a. n.a. n.a.
importance ratio clip 0.2 lin 0.3 0.1 n.a. n.a. n.a. n.a. n.a.

hidden layers [128, 128] [128, 128] n.a. [256, 256] [256, 256] [128, 128] [32, 32] [128, 128]
hidden layers critic [128, 128] [128, 128] n.a. [256, 256] [256, 256] [128, 128] [32, 32] n.a.
hidden activation tanh tanh relu relu relu relu relu leaky relu
orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes
initial std 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
number of heads - - 4 - - - - 8
dims per head - - 16 - - - - 16
number of attention layers - - 4 - - - - 2
max sequence length - - 5 - - - - 1024

1Linear Schedule from 0.3 to 0.01 during the first 25% of the training. Then continued with 0.01.

22

Table 5: Hyperparameters for the Box Pushing Dense, Episode Length T = 100

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 48000 80000 8000 8 8 152 152 4
GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.
discount factor 1.0 1.0 0.99 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005
ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005
trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 5 1 1 50 20 15
learning rate 5e-5 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4
use critic True True True True True True True True
epochs critic 10 10 5 1 1 50 10 30
learning rate critic 1e-4 1e-4 2e-4 3e-4 3e-4 1e-3 3e-4 5e-5
number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
batch size n.a. 2000 1000 512 512 n.a. n.a. 512
buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. 7000
learning starts 0 0 0 1e5 1e5 0 0 8000
polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. 5e-3
SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a.
entropy coefficient 0 0.01 0 auto auto 0 0 0.

normalized observations True True False False False True False False
normalized rewards True True 0.1 False False False False False
observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 10. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 10. n.a. n.a. n.a. n.a. n.a.
importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] n.a. [256, 256] [256, 256] [128, 128] [128, 128] [256, 256]
hidden layers critic [512, 512] [256, 256] n.a. [256, 256] [256, 256] [256, 256] [256, 256] n.a.
hidden activation tanh tanh relu tanh tanh leaky relu leaky relu leaky relu
orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes
initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0
number of heads - - 4 - - - - 8
dims per head - - 16 - - - - 16
number of attention layers - - 4 - - - - 2
max sequence length - - 5 - - - - 1024

Movement Primitive (MP) type n.a. n.a. value n.a. n.a. ProDMPs ProDMPs ProDMPs
number basis functions n.a. n.a. value n.a. n.a. 8 8 8
weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3
goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3

23

Table 6: Hyperparameters for the Box Pushing Sparse, Episode Length T = 100

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 48000 80000 8000 8 8 76 76 4
GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a.
discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005
ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005
trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 5 1 1 50 20 15
learning rate 5e-4 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4
use critic True True True True True True True True
epochs critic 10 10 5 1 1 50 10 30
learning rate critic 1e-4 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 5e-5
number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
batch size n.a. 2000 1000 512 512 n.a. n.a. 512
buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. 7000
learning starts 0 0 0 1e5 1e5 0 0 400
polyak weight n.a. n.a. 0 5e-3 5e-3 n.a. n.a. 5e-3
SDE sampling frequency n.a. 4 0 n.a. n.a. n.a. n.a. n.a.
entropy coefficient 0 0.01 0 auto auto 0 0 0

normalized observations True True False False False True False False
normalized rewards True True 0.1 False False False False False
observation clip 10.0 n.a. False n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 10.0 n.a. n.a. n.a. n.a. n.a.
importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] n.a. [256, 256] [256, 256] [128, 128] [128, 128] [256, 256]
hidden layers critic [512, 512] [256, 256] n.a. [256, 256] [256, 256] [256, 256] [256, 256] n.a.
hidden activation tanh tanh relu tanh tanh leaky relu leaky relu leaky relu
orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes
initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0
number of heads - - 4 - - - - 8
dims per head - - 16 - - - - 16
number of attention layers - - 4 - - - - 2
max sequence length - - 5 - - - - 1024

MP type n.a. n.a. value n.a. n.a. ProDMPs ProDMPs ProDMPs
number basis functions n.a. n.a. value n.a. n.a. 8 8 8
weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3
goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3

24

Table 7: Hyperparameters for the Hopper Jump, Episode Length T = 250

PPO gSDE GTrXL SAC PINK TCE BBRL TOP-ERL

number samples 8000 8192 10000 1000 1 64 64 1
GAE λ 0.95 0.99 0.95 n.a. n.a. 0.95 n.a. n.a.
discount factor 1.0 0.999 1.0 0.99 0.99 1.0 1.0 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.1 n.a. 0.1
ϵΣ n.a. n.a. n.a. n.a. n.a. 0.02 n.a. 0.02
trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 n.a. 1.0

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 10 1000 1 50 100 10
learning rate 3e-4 9.5e-5 5e-4 1e-4 2e-4 1e-4 1e-4 1e-4
use critic True True True True True True True True
epochs critic 10 10 10 1000 1 50 100 20
learning rate critic 3e-4 9.5e-5 5e-4 1e-4 2e-4 1e-4 1e-4 5e-5
number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
batch size n.a. 128 1024 256 256 n.a. n.a. 256
buffer size n.a. n.a. n.a. 1e6 1e6 n.a. n.a. 1000
learning starts 0 0 0 10000 1e5 0 0 250
polyak weight n.a. n.a. n.a. 5e-3 5e-3 n.a. n.a. 5e-3
SDE sampling frequency n.a. 8 n.a. n.a. n.a. n.a. n.a. n.a.
entropy coefficient 0 0.0025 0. auto auto 0 0 0

normalized observations True False False False False True False False
normalized rewards True False False False False False False False
observation clip 10.0 n.a. False n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 10. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 lin 0.4 1. n.a. n.a. n.a. n.a. n.a.
importance ratio clip 0.2 lin 0.4 0.2 n.a. n.a. n.a. n.a. n.a.

hidden layers [32, 32] [256, 256] n.a. [256, 256] [32, 32] [128, 128] [32, 32] [128, 128]
hidden layers critic [32, 32] [256, 256] n.a [256, 256] [32, 32] [128, 128] [32, 32] n.a.
hidden activation tanh tanh relu relu relu leaky relu tanh leaky relu
orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes
initial std 1.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0
number of heads - - 4 - - - - 8
dims per head - - 16 - - - - 16
number of attention layers - - 4 - - - - 2
max sequence length - - 5 - - - - 1024

MP type n.a. n.a. value n.a. n.a. ProDMPs ProDMPs ProDMPs
number basis functions n.a. n.a. value n.a. n.a. 3 3 3
weight scale n.a. n.a. value n.a. n.a. 1 1 1
goal scale n.a. n.a. value n.a. n.a. 1 1 1

25

	introduction
	preliminaries
	Off-Policy Reinforcement Learning
	Episodic Reinforcement Learning (ERL)

	Transformer-based Off-Policy ERL
	Trajectory Generation
	Transformers as value predictor for action sequences
	N-step Returns as the target for Transformer Critic
	Enforce initial condition for newly predicted action sequence

	Policy updates using the Transformer critic
	Summarize and Other Design choices for stable learning

	experiments
	Improving Sample Efficiency in Tasks with Challenging Exploration
	Consistent Performance in large-scale Manipulation Benchmarks

	conclusion
	Algorithm Box
	related works
	Mathematical formulations of mp.
	dmp
	promp
	pdmp

	Target Options
	Experiment Details
	Details of Methods Implementation
	Metaworld
	Hopper Jump
	Box Pushing
	Ablation Study and Discussion

	Hyper Parameters

