

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

BRIDGING FAIRNESS AND EXPLAINABILITY: CAN INPUT-BASED EXPLANATIONS PROMOTE FAIRNESS IN HATE SPEECH DETECTION?

Anonymous authors

Paper under double-blind review

ABSTRACT

Natural language processing (NLP) models often replicate or amplify social bias from training data, raising concerns about fairness. At the same time, their black-box nature makes it difficult for users to recognize biased predictions and for developers to effectively mitigate them. While some studies suggest that input-based explanations can help detect and mitigate bias, others question their reliability in ensuring fairness. Existing research on explainability in fair NLP has been predominantly qualitative, with limited large-scale quantitative analysis. In this work, we conduct the first systematic study of the relationship between explainability and fairness in hate speech detection, focusing on both encoder- and decoder-only models. We examine three key dimensions: (1) identifying biased predictions, (2) selecting fair models, and (3) mitigating bias during model training. Our findings show that input-based explanations can effectively detect biased predictions and serve as useful supervision for reducing bias during training, but they are unreliable for selecting fair models among candidates.

1 INTRODUCTION

Language models (LMs) pre-trained on large-scale natural language datasets have shown great capacities in various NLP tasks (Wang et al., 2018; Gao et al., 2023). However, previous studies have shown that they can replicate and amplify stereotypes and social bias present in their training data and demonstrate biased behaviors (Sheng et al., 2021; Gupta et al., 2024; Gallegos et al., 2024). Such behaviors risk the underrepresentation of marginalized groups and the unfair allocation of resources, raising serious concerns in critical applications (Blodgett et al., 2020).

Meanwhile, current NLP models are mostly based on black-box neural networks. Despite their strong capacities, the complex architecture and large number of parameters of these models make it hard for humans to understand their behaviors (Bommasani et al., 2021). To understand neural NLP models, different types of explanations have been devised, such as input-based explanations (Yin & Neubig, 2022; Deisereth et al., 2023; Madsen et al., 2024; Wang et al., 2025b), natural language explanations (Ramnath et al., 2024; Wang et al., 2025a), and concept-based explanations (Yu et al., 2024; Raman et al., 2024). Among these, input-based explanations, often referred to as rationales, indicate the contribution of each token to models' predictions, and thus provide the most direct insights into models' behaviors (Arras et al., 2019; Atanasova et al., 2022; Lyu et al., 2024).

Explainability has long been deemed critical to improving fairness. Researchers believe that if the use of sensitive features is evidenced by model explanations, then they can easily detect biased predictions and impose fairness constraints by guiding models to avoid such faulty reasoning (Meng et al., 2022; Sogancioglu et al., 2023). However, recent studies have challenged this assumption, suggesting that the relationship between explainability and fairness is complex and that explanations may not always reliably detect or mitigate bias (Dimanov et al., 2020; Slack et al., 2020; Pruthi et al., 2020). Unfortunately, to the best of our knowledge, current studies are mostly limited to qualitative analysis on a small set of explanation methods (Balkir et al., 2022; Deck et al., 2024). Our work takes a step toward bridging explainability and fairness by providing the first comprehensive quantitative analysis in the context of hate speech detection, a task where both fairness and explainability are

054 particularly critical. Specifically, we address the following three research questions to investigate
 055 the role of explainability in promoting fairness within the task of hate speech detection:
 056

- 057 • **RQ1: Can input-based explanations be used to identify biased predictions?**
- 058 • **RQ2: Can input-based explanations be used to automatically select fair models?**
- 059 • **RQ3: Can input-based explanations be used to mitigate bias during model training?**

061 Our experiments demonstrate that input-based explanations can effectively detect biased predictions
 062 (RQ1), are less reliable for automatic fair model selection (RQ2), and can help reduce bias during
 063 model training (RQ3). Furthermore, our analyses indicate that explanation-based bias detection
 064 remains robust even when models are trained to reduce reliance on sensitive features, and that these
 065 explanations outperform LLM judgments in identifying bias.

066 2 RELATED WORK

069 **Bias in NLP** The presence of social bias and stereotypes has significantly shaped human language
 070 and LMs trained on it (Blodgett et al., 2020; Sheng et al., 2021). As a result, these models often
 071 exhibit biased behaviors (Gallegos et al., 2024), such as stereotypical geographical relations in the
 072 embedding space (Bolukbasi et al., 2016; May et al., 2019) and stereotypical associations between
 073 social groups and certain concepts in the model outputs (Fang et al., 2024; Wan & Chang, 2025).
 074 More critically, disparities in model predictions and performance across social groups (Zhao et al.,
 075 2018; Sheng et al., 2019) can significantly compromise user experiences of marginalized groups and
 076 risk amplifying bias against them, therefore drawing great concerns in critical use cases.

077 **Input-based Model Explanations** Input-based explanations in NLP models aim to attribute
 078 model predictions to each input token (Lyu et al., 2024). They can be broadly categorized based
 079 on how they generate explanations: gradient-based (Simonyan et al., 2014; Kindermans et al., 2016;
 080 Sundararajan et al., 2017; Enguehard, 2023), propagation-based (Bach et al., 2015; Shrikumar et al.,
 081 2017; Ferrando et al., 2022; Modarressi et al., 2022; 2023), perturbation-based (Li et al., 2016;
 082 Ribeiro et al., 2016; Lundberg & Lee, 2017; Deisereth et al., 2023), and attention-based meth-
 083 ods (Bahdanau et al., 2015; Abnar & Zuidema, 2020). While most prior work has focused on
 084 encoder-only models, recent studies have also explored explaining the behaviors of generative mod-
 085 els (Yin & Neubig, 2022; Ferrando et al., 2022; Enouen et al., 2024; Cohen-Wang et al., 2024).

086 **Bridging Explainability and Fairness** Explainability is often considered essential for achieving
 087 fairness in machine learning systems (Balkir et al., 2022; Deck et al., 2024). One line of research
 088 investigates model bias by analyzing explanations (Prabhakaran et al., 2019; Jeyaraj & Delany, 2024;
 089 Sogancioglu et al., 2023). For instance, Muntasir & Noor (2025) shows that a biased model relied
 090 on gendered words as key features in its predictions, as revealed by LIME explanations. Similarly,
 091 Stevens et al. (2020) demonstrates that biased models often place high importance on gender and
 092 race features when examined with SHAP explanations. Extending this line of evidence, Meng et al.
 093 (2022) finds that features with higher importance scores are associated with larger disparities in
 094 model performance on a synthetic medical dataset using deep learning models.

095 Another line of research focuses on mitigating bias with explanations (Dimanov et al., 2020;
 096 Kennedy et al., 2020; Rao et al., 2023; Liu et al., 2024). For example, Hickey et al. (2020) im-
 097 proves fairness by reducing reliance on sensitive features during training with SHAP explanations.
 098 Bhargava et al. (2020) and González-Silot et al. (2025) first identify predictive sensitive features
 099 using LIME and SHAP, respectively, and then remove them prior to model training. In a related
 100 approach, Grabowicz et al. (2022) traces unfairness metrics back to input features and adjusts them
 101 to mitigate bias.

102 However, recent research has challenged the assumption that input-based explanations can be reli-
 103 ably used to detect and mitigate bias. First, current explanation methods may be unfaithful, meaning
 104 that they may not always reflect the true decision-making process of models (Kindermans et al.,
 105 2016; Jain & Wallace, 2019; Ye et al., 2025). This makes it difficult to reliably detect the use of
 106 sensitive features in predictions. Second, efforts to reduce the influence of sensitive features can
 107 lead to unintended consequences, sometimes degrading both task performance and fairness of mod-
 108 els (Dimanov et al., 2020). Finally, models can be deliberately trained to assign lower importance

Figure 1: Workflow diagram illustrating the processes used to address each research question. Sensitive tokens are shown in blue boxes, and the intensity of the green shading reflects each word’s contribution to the model’s prediction.

to sensitive features, thereby masking biased predictions when explanations are inspected (Dimanov et al., 2020; Slack et al., 2020; Pruthi et al., 2020).

Despite growing interest in this topic, most existing work remains qualitative or restricted to limited setups (Balkir et al., 2022; Deck et al., 2024). To the best of our knowledge, this is the first study to quantitatively and comprehensively examine the relationship between explainability and fairness in NLP models. We focus on hate speech detection as a particularly critical application. Prior research has shown that biased NLP models often rely on demographic information such as race and gender, leading to inferior performance on marginalized groups in this task (Sap et al., 2019; Mathew et al., 2021). Detecting and mitigating such biased behaviors are therefore essential to ensuring equitable opportunities for all social groups to voice their perspectives on social media. Our definitions of hate speech and social bias, along with an overview of fairness and explainability research in hate speech detection, are provided in Appendix A, which also further motivates our focus on input-based explanations.

3 EXPERIMENTAL SETUP

Notations Let an input text \mathbf{x} consist of tokens t_1, t_2, \dots, t_n . The task of hate speech detection is to predict a binary label $\hat{y} \in \{\text{toxic, non-toxic}\}$. A classifier outputs the probability of class c as $f_c(\mathbf{x})$, where f is implemented by a neural model.

In the context of social bias, we assume that a bias type (e.g., race) involves a set of social groups G (e.g., black, white, ...). A subset of tokens $t_{g_1}, t_{g_2}, \dots, t_{g_m}$ in \mathbf{x} denotes the sensitive feature $g \in G$ of the speaker or target. We refer to these tokens as *sensitive tokens*. By replacing the sensitive tokens of group g with those of another group g' , we obtain a counterfactual version of \mathbf{x} that refers to g' , denoted as $\mathbf{x}^{(g')}$.

An input-based explanation assigns an attribution score to each token in \mathbf{x} for class c : $a_1^c, a_2^c, \dots, a_n^c$, indicating their contribution to the prediction of class c . Following Dimanov et al. (2020), we compute attribution scores on the sensitive tokens, $a_{g_1}^c, a_{g_2}^c, \dots, a_{g_m}^c$, which we refer to as the *sensitive token reliance* scores. To handle cases where multiple sensitive tokens appear in the same sentence, we take the maximum absolute attribution value as the reliance score for that example¹:

$$\text{sensitive token reliance}(\mathbf{x}, c) = a_{j^*}^c, \text{ where } j^* = \arg \max_{j \in \{g_1, \dots, g_m\}} |a_j^c|$$

¹We have experimented with normalizing feature importance scores but found that using raw scores yielded the best results. We also evaluated sum and average aggregation methods beyond taking the max absolute value and observed similar outcomes.

162 **Datasets and Vocabulary** We use two hate speech detection datasets: Civil Comments (Borkan
 163 et al., 2019) and Jigsaw (cjadams et al., 2019). To ensure coverage, we focus on three bias
 164 types and their associated groups: race (black/white), gender (female/male), and religion (Chris-
 165 tian/Muslim/Jewish). We include examples containing identity-marking terms but exclude those
 166 with derogatory or slur-based references, as the latter can reasonably serve as direct evidence for
 167 toxic predictions. The sensitive token vocabulary is derived from Caliskan et al. (2017) and Wang
 168 & Demberg (2024). Further details on dataset pre-processing are provided in Appendix G.
 169

170 **Models** We evaluate two major classes of NLP models: encoder-only models (BERT (Devlin
 171 et al., 2019) and RoBERTa (Liu et al., 2019)) and decoder-only large language models (Llama3.2-
 172 3B-Instruct (Dubey et al., 2024), Qwen3-4B, and Qwen3-8B (Yang et al., 2025a), all of which are
 173 aligned to human values). We fine-tune encoder-only models on data subsets that either target a
 174 single bias type or combine all bias types. For decoder-only models, we use an instruction-based
 175 setup where the model is prompted to decide whether a test example contains hate speech. The
 176 prompt includes the definition of hate speech, the test example, and a corresponding question. As a
 177 baseline, we adopt the zero-shot setting as the default configuration.
 178

179 Beyond conventional fine-tuning and prompting, we also investigate the interaction between ex-
 180 plainability and fairness in debiased models. For encoder-only models, we apply pre-processing
 181 techniques such as group balance (Kamiran & Calders, 2012), group-class balance (Dixon et al.,
 182 2018), and counterfactual data augmentation (CDA, Zmigrod et al., 2019), as well as in-processing
 183 techniques including dropout (Webster et al., 2020), attention entropy (Attanasio et al., 2022), and
 184 causal debias (Zhou et al., 2023). For decoder-only models, we incorporate bias reduction through
 185 prompt design, including few-shot, fairness imagination (Chen et al., 2025), and fairness instruction
 186 prompting (Chen et al., 2025). We do not include reasoning models and chain-of-thought prompting,
 187 as we find that their predictions are primarily attributed to intermediate reasoning steps rather than
 188 the input text, which complicates analysis and falls beyond the scope of this work. Further details
 189 are provided in Appendix G.
 190

191 **Fairness Metrics** We evaluate fairness in model predictions using two categories of metrics:
 192 **group fairness** and **individual fairness**. Group fairness metrics capture disparities in performance
 193 across demographic groups:
 194

$$\text{Disp}_{\text{metric}} = \sum_{g \in G} |\text{metric}_g - \overline{\text{metric}}_G|,$$

195 where $\overline{\text{metric}}_G$ is the average metric value across all groups G in a bias type. We specifically measure
 196 disparities in accuracy (ACC), false positive rate (FPR), and false negative rate (FNR).
 197

198 Individual fairness measures the extent to which a model’s prediction for a given example changes
 199 when the associated social group is altered. To maintain consistency with the direction of group
 200 fairness metrics, we compute the individual unfairness (IU) score of \mathbf{x}_i and the predicted class \hat{y}_i :
 201

$$\text{IU}(\mathbf{x}_i) = \left| f_{\hat{y}_i}(\mathbf{x}_i) - \frac{1}{|G \setminus \{g_i\}|} \sum_{g' \in G \setminus \{g_i\}} f_{\hat{y}_i}(\mathbf{x}_i^{(g')}) \right|$$

202 The Average IU score (Avg_{iu}) is then computed over a dataset to reflect the overall level of individual
 203 unfairness in a model.
 204

205 For both types of metrics, higher scores indicate more bias in model predictions. It is worth noting
 206 that individual unfairness can be evaluated at the level of each example, whereas group fairness
 207 metrics are defined over sets of validation or test examples. To compute the fairness metrics, we
 208 randomly sample a subset of examples for each bias type such that each social group contributes an
 209 equal number of examples. Further details on test set sampling are provided in Appendix G.
 210

211 **Explanation Methods** We employ 16 variants of commonly used input-based post-hoc expla-
 212 nation methods, selected to represent a diverse range of methodological categories: Attention (Bah-
 213 danau et al., 2015), Attention rollout (Attn rollout, Abnar & Zuidema, 2020), Attention flow (Attn
 214 flow, Abnar & Zuidema, 2020), Gradient (Grad, Simonyan et al., 2014), Input x Gradient (IxG, Kin-
 215 dermans et al., 2016), Integrated Gradients (IntGrad, Sundararajan et al., 2017), Occlusion (Li et al.,
 216

2016), DeepLift (Shrikumar et al., 2017), KernelSHAP (Lundberg & Lee, 2017), DecompX (Modarressi et al., 2023), and Progressive Inference (ProgInfer, Kariyappa et al., 2024)². For methods that attribute predictions to embeddings, we aggregate attribution scores into a single feature importance value using either the mean or the L2 norm. For Occlusion, we additionally report results obtained by taking the absolute value of each attribution score prior to computing sensitive token reliance scores (denoted as Occlusion abs). The time and GPU memory costs for each method are shown in Appendix F. We also study rationales generated by LLMs and find that these rationales are not as reliable as input-based explanations in detecting bias (Section 6).

Table 1: Task performance and fairness of default and debiased models on Civil Comments. Results are provided for race/gender/religion biases. **Green** (**red**) indicates the results are **better** (**worse**) than the default/zero-shot models. No debiasing method consistently reduces bias across all metrics and bias types.

Model	Method	Accuracy (\uparrow)	Disp _{acc} (\downarrow)	Disp _{fpr} (\downarrow)	Disp _{fmr} (\downarrow)	Avg _{fu} (\downarrow)
BERT	Default	78.38/88.05/85.93	2.05/3.30/18.07	0.50/0.03/5.77	10.04/11.98/30.9	3.17/0.66/1.27
	Group balance	79.25/ 87.25 /86.83	3.10 /2.80/13.53	0.25/ 1.73 /11.53	10.46/5.38/30.31	3.79 /0.42/2.01
	Group-class balancing	78.00/87.02/85.77	1.80/2.75/14.73	2.42/0.99/3.09	10.63/7.26/33.14	4.43/0.98/0.71
	CDA	76.83/86.70/84.83	2.35/3.60/14.13	5.88/2.00/5.67	18.45/7.57/24.12	0.50/0.50/0.90
	Dropout	78.53/88.20/ 85.03	2.25/2.10/15.67	0.78/ 1.46 /5.93	12.55/7.30/26.17	3.43/0.52/1.51
	Attention entropy	79.15/ 87.67 /84.93	2.60/2.05/15.07	0.99/0.10/4.99	11.71/7.11/26.52	2.95/0.67/1.58
	Causal debias	78.80/ 86.17 /86.40	0.00/2.65/16.40	3.90/0.46/8.82	7.98/10.67/30.46	3.83/0.48/2.10
Qwen3-4B	Zero-shot	69.55/79.75/77.50	0.60/0.00/17.40	7.13/1.40/21.07	13.25/3.71/5.17	2.55/2.41/3.32
	Few-shot	70.15/80.73/79.53	1.80/0.65/18.93	10.02/2.50/19.31	11.89/9.15/5.57	3.18/3.34/3.76
	Fairness imagination	71.23/80.40/80.83	0.85/1.00/18.27	4.03/2.11/10.51	11.62/9.21/4.28	2.98/3.16/2.20
	Fairness instruction	70.40/79.77/80.47	0.60/1.35/19.33	4.30/0.39/4.67	11.11/5.24/5.08	2.02/1.83/1.71

4 QUANTITATIVE ANALYSES OF FAIRNESS AND EXPLAINABILITY

To comprehensively understand the relationship between explainability and fairness in NLP models, we examine three ways in which model explanations can be applied to promote fairness. The subsequent sections detail the experimental setups for each application and report the corresponding results. The workflow for our research questions is shown in Figure 1. For brevity, we report results on Civil Comments using BERT trained on single bias types and Qwen3-4B. Results for additional models and the Jigsaw dataset are presented in Appendix H to L.

4.1 MODEL PERFORMANCE AND FAIRNESS

As a prerequisite, we first summarize the performance and fairness of the evaluated models. The results in Table 1 show that no single debiasing method consistently improves all fairness metrics. For BERT and Qwen3-4B, CDA and fairness instruction achieve the largest reductions in individual unfairness, yet they may simultaneously amplify biases on other metrics. Other debiasing methods show a similar pattern: they reduce bias for a specific metric or bias type, but the improvement does not generalize across different setups. These limitations underscore the importance of leveraging explanations for bias detection and mitigation. We find similar results for other models and for Jigsaw, which we provide in Appendix H along with a discussion on model performance and fairness.

4.2 RQ1: EXPLANATIONS FOR BIAS DETECTION

Our first research question asks whether explanations can be used to detect biased predictions. We address the question through three steps: (1) obtain model predictions and compute individual unfairness scores; (2) generate input-based explanations for the predictions; and (3) compute sensitive token reliance scores and evaluate their Pearson correlation with individual unfairness, which we refer to as *fairness correlation*. A higher fairness correlation indicates that the explanation method is more effective in identifying predictions with high individual unfairness. To ensure robustness,

²We apply DecompX only to encoder-only models and Progressive Inference only to decoder-only models, following the setups of the original papers.

270 we compute the fairness correlation separately for each prediction class–group pair and report the
 271 average absolute score as the final result for each explanation method.
 272

273 We present results for default and debiased models where individual unfairness remains high after
 274 debiasing, as bias detection is particularly critical in these cases. Specifically, we report results for
 275 models with the highest average Avg_{iu} scores across bias types, namely default, group balance, and
 276 causal debias for BERT, and zero-shot, few-shot, and fairness imagination prompting for Qwen3-4B.
 277 Results for religion as well as other models and the Jigsaw dataset are provided in Appendix I.
 278

294 Figure 2: Fairness correlation results for each explanation method. Occlusion- and L2-based expla-
 295 nations are effective for bias detection across different bias types and models.
 296

297 **Results** Figure 2 shows that the best-performing explanation methods, such as Grad L2, IxG L2,
 298 DeepLift L2, Occlusion, and Occlusion abs, generally achieve high fairness correlations across dif-
 299 ferent models and bias types, indicating a strong ability to detect biased predictions. Besides, their
 300 fairness correlations are mostly statistically significant ($p < \alpha = 0.05$) in all, or in all but one, class-
 301 group categories, which confirms their reliability. Among these methods, Occlusion and Occlusion
 302 abs perform best with BERT models, whereas the L2-based methods Grad L2, IxG L2, and DeepLift
 303 L2 are most effective with Qwen3-4B.
 304

305 When comparing different variants of the same explanation family, mean-based approaches perform
 306 considerably worse than their L2-based counterparts, and also underperform compared to undirected
 307 attention-based methods. We attribute this limitation to their dependence on accurately determining
 308 the direction of each token’s contribution, a challenge that attention- and L2-based explanations do
 309 not face. Our analysis in Appendix J further shows that the effectiveness of explanation-based bias
 310 detection is not determined by explanation faithfulness, underscoring the need for careful evaluation
 311 when selecting methods for bias identification.
 312

Takeaway: Input-based explanation methods, particularly Occlusion- and L2-based ones, are ef-
 313 fective for identifying biased predictions at inference time.

314 4.3 RQ2: EXPLANATIONS FOR MODEL SELECTION

315 Given that explanations can detect biased predictions (RQ1), we next investigate whether they can
 316 also be used to select fair models among candidates. Prior work has demonstrated that input-
 317 based explanations on validation examples can help humans identify spurious correlations in mod-
 318 els (Lertvittayakumjorn & Toni, 2021; Pezeshkpour et al., 2022). Extending this idea, we examine
 319 whether explanations can be leveraged for automatic fair model selection, thereby removing the
 320 need for human intervention.
 321

322 Our experiments consist of three steps: (1) for all default and debiased models (seven encoder-
 323 only and four decoder-only), we generate predictions on a validation set and compute explanation-
 324 based metrics; (2) we compute fairness metrics on the test set for each model; and (3) we evaluate

model selection ability using two measures: Spearman’s rank correlation (ρ) between validation set explanation-based metrics and test set fairness metrics, which reflects the ability to rank models, and mean reciprocal rank of the fairest model (MRR@1), which reflects the ability to select the fairest model. Higher rank correlations and MRR@1 indicate that an explanation method is useful for ranking models and selecting the fairest one. Specifically, we use the average absolute sensitive token reliance on the validation set as the explanation-based metric to rank and select models based on average individual unfairness on the test set.³

Figure 3: Rank correlations between validation set average absolute sensitive token reliance and test set individual unfairness. The validation set sizes are 500 for race and gender, and 200 for religion. None of the explanation methods consistently achieve performance on par with the baseline.

Results As a baseline, we report results of using the validation set average individual unfairness as the predictor of test set fairness performance. The results are averaged over six and three random validation set selections for encoder- and decoder-only models, respectively. Results for more models and the Jigsaw dataset are presented in Appendix K.

The results in Figures 3 and 4 highlight the limitations of using explanations for model selection. Although some methods occasionally show high rank correlations (e.g., Grad L2 for race and religion biases in BERT and Occlusion-based methods for gender and religion biases in Qwen3-4B), none of them consistently reach the baseline of using the individual unfairness on the validation set. This limitation is particularly evident in decoder-only models, where the baseline achieves a perfect rank correlation of 1. Similarly, the baseline consistently achieves the highest MRR@1 scores, further showing the limited effectiveness of explanation-based methods in selecting the fairest models. Considering that these explanations are often more computationally expensive to generate than evaluating validation set fairness, they are not practically useful as a model fairness indicator. Therefore, we do not recommend explanation-based model selection, especially in decoder-only models. The difference in findings between RQ1 and RQ2 may stem from the fact that debiasing methods can alter model behaviors and thereby affect explanation attributions. As a result, comparing explanations across default and debiased models is less reliable, whereas comparing explanations within the same model remains effective for detecting biased predictions.

Takeaway: Input-based explanation methods are not reliable tools for selecting fair models.

³We have evaluated other metrics to predict group fairness outcomes. However, neither explanation-based metrics nor validation set fairness achieved rank correlations beyond random chance with the test set results. The full set of evaluated metrics is provided in Appendix K.

378
379

4.4 RQ3: EXPLANATIONS FOR BIAS MITIGATION

380
381
382
383
384
385
386

Having shown that explanations can reliably reveal biased predictions (RQ1), we now investigate whether they can also be leveraged to mitigate model bias. Building on prior work demonstrating that explanation regularization can reduce spurious correlations while also improving performance and generalization (Kennedy et al., 2020; Rao et al., 2023), we investigate bias mitigation by minimizing sensitive token reliance during training. Following Dimanov et al. (2020), we define a debiasing regularization term, L_{debias} , which penalizes the average sensitive token reliance of all such tokens in an input, in addition to the task loss:

387
388

$$L = L_{\text{task}} + \alpha L_{\text{debias}}$$

389
390
391

Here, α is a hyperparameter that controls the strength of sensitive token reliance reduction. For embedding-level attributions, we apply either an L1 or L2 norm penalty, corresponding to minimizing mean- or L2-based reliance scores, respectively.

392
393
394
395
396
397
398
399
400

While Dimanov et al. (2020) tune hyperparameters based on task accuracy, we search $\alpha \in \{0.01, 0.1, 1, 10, 100\}$ using a fairness-balanced metric (the harmonic mean of accuracy and 100–unfairness) on the validation set⁴. Models are selected separately for each fairness criterion and results are averaged over three runs. Due to computational cost, we restrict training to single bias types. We exclude DeepLift, DecompX, and KernelSHAP, as they are not easily differentiable and thus cannot be incorporated into model training. Integrated Gradients is substantially more expensive in time and memory for generating explanations and tracking gradients, so we apply them only to race bias mitigation in BERT and report the results in Table 11 in Appendix L. More implementation details are provided in Appendix G.

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 5: Accuracy and fairness results for bias mitigation using different explanation methods. Each column corresponds to models selected by maximizing the fairness-balanced metric with respect to the indicated bias metric. We find that explanation methods can improve fairness across many metrics while maintaining reasonable task accuracy.

Results In Figure 5, we present race and gender bias mitigation results. For consistency with accuracy, fairness results are reported as $100 - \{\text{Disp}_{\text{acc}}, \text{Disp}_{\text{fpr}}, \text{Disp}_{\text{fnr}}, \text{Avg}_{\text{iu}}\}$, so that higher values indicate lower bias. We find that explanation-based bias mitigation effectively improves fairness across multiple metrics. Most notably, it consistently and substantially reduces Disp_{fnr} for all bias types. For gender bias, it also yields considerable reductions in Disp_{acc} , and Avg_{iu} is mitigated for race bias. Moreover, as shown in Figure 24, all group fairness disparity metrics decrease for religion

⁴As Occlusion is sensitive to the debiasing strength, we use $\alpha \in \{0.002, 0.004, 0.006, 0.008, 0.01\}$.

432 bias. The bias mitigation effects are consistent across all models and are also observed on the Jigsaw
 433 dataset (see Figures 24, 25, 26, 27 in Appendix L).

434 At the same time, explanation-based debiasing maintains a good balance between fairness and
 435 accuracy. For example, Grad L1 both increases accuracy and reduces $Disp_{acc}$, $Disp_{fmr}$ and Avg_{iu} for
 436 gender bias, while most other explanation methods also achieve better $Disp_{acc}$ and $Disp_{fmr}$ with marginal
 437 or no accuracy loss. Our harmonic fairness–accuracy mean results (Figures 28, 29, 30, 31) further
 438 confirm this by showing that explanation-based debiasing almost always achieves comparable or
 439 higher harmonic means than both default models and traditional debiasing methods.

440 Among individual explanation methods, attention and attn flow achieve strong debiasing performance
 441 on BERT, while IxG L1 and L2 consistently yield a good balance between accuracy and fairness
 442 across models. Overall, IxG L2 and attention-based methods provide robust debiasing while
 443 maintaining a favorable fairness–accuracy trade-off across bias types, models, and datasets, as re-
 444 reflected in the harmonic mean results. Our findings differ from those of Dimanov et al. (2020), which
 445 we attribute to our fairness-based hyperparameter tuning strategy.

446
 447 **Takeaway:** Input-based explanations can provide effective supervision for mitigating model bias
 448 during training while maintaining a good fairness–performance trade-off. In particular, IxG L2
 449 and attention-based methods achieve robust debiasing with strong overall balance.

451 452 453 5 BIAS DETECTION IN EXPLANATION-DEBIASED MODELS

454 While explanation-based methods are
 455 effective in reducing bias (RQ3),
 456 their suppression of attributions on
 457 sensitive tokens could potentially
 458 mislead users into believing that
 459 model predictions are unbiased (Di-
 460 manov et al., 2020; Slack et al.,
 461 2020; Pruthi et al., 2020). To in-
 462 vestigate this concern, we reapply the
 463 bias detection procedure from RQ1
 464 to explanation-debiased models and
 465 compare their fairness correlations
 466 with those from the corresponding
 467 default models. For this analysis, we
 468 use the models debiased for race bias
 469 with respect to individual unfairness,
 470 as described in RQ3.

471 The fairness correlation differences
 472 from default models are shown in
 473 Figure 6. We observe that the impact
 474 of explanation-based debiasing on fairness correlations depends on both the explanations used for
 475 debiasing and those used for bias detection. Some approaches, such as Grad mean/L2, IxG L2,
 476 DeepLift mean/L2, Occlusion, and Occlusion abs, are only marginally, or even positively, affected
 477 by debiasing. Their fairness correlation scores (see Figure 32 in Appendix M) further indicate
 478 that Occlusion- and L2-based methods (except IntGrad L2) remain reliable for revealing bias in
 479 explanation-debiased models. In contrast, attention-based explanations experience substantial drops,
 480 particularly when the models themselves are debiased using attention-based methods. Similarly,
 481 IntGrad-based explanations show a reduced bias detection ability when the debiasing procedure is
 482 also gradient-based. Overall, these findings demonstrate that certain input-based explanations re-
 483 main effective for detecting biased predictions even in explanation-debiased models. Our results
 484 are different from those of Dimanov et al. (2020), likely because their analysis focused solely on
 485 attribution magnitudes without considering their relationship to fairness metrics.

477 Figure 6: Fairness correlation differences between de-
 478 fault and explanation-debiased BERT. Occlusion- and L2-
 479 based explanations (except IntGrad L2) are less affected by
 480 explanation-based debiasing and remain effective for bias
 481 detection.

482 The fairness correlation differences from default models are shown in Figure 6. We observe that the impact
 483 of explanation-based debiasing on fairness correlations depends on both the explanations used for
 484 debiasing and those used for bias detection. Some approaches, such as Grad mean/L2, IxG L2,
 485 DeepLift mean/L2, Occlusion, and Occlusion abs, are only marginally, or even positively, affected
 486 by debiasing. Their fairness correlation scores (see Figure 32 in Appendix M) further indicate
 487 that Occlusion- and L2-based methods (except IntGrad L2) remain reliable for revealing bias in
 488 explanation-debiased models. In contrast, attention-based explanations experience substantial drops,
 489 particularly when the models themselves are debiased using attention-based methods. Similarly,
 490 IntGrad-based explanations show a reduced bias detection ability when the debiasing procedure is
 491 also gradient-based. Overall, these findings demonstrate that certain input-based explanations re-
 492 main effective for detecting biased predictions even in explanation-debiased models. Our results
 493 are different from those of Dimanov et al. (2020), likely because their analysis focused solely on
 494 attribution magnitudes without considering their relationship to fairness metrics.

486 6 EXPLANATION-BASED BIAS DETECTION VS. LLM-AS-A-JUDGE

488
 489 Existing research suggests that LLMs could identify and correct biased model outputs (Bai et al.,
 490 2022; Furniturewala et al., 2024). In this section, we compare the bias detection ability of input-
 491 based explanations against LLMs’ judgments under two paradigms: (1) LLM decision, where LLMs
 492 are asked to indicate whether a model’s prediction rely on bias or stereotypes, and (2) LLM at-
 493 tribution, where LLMs choose a K-word rationale from the input, which we then examine for the
 494 presence of sensitive tokens. We conduct this analysis using two LLMs, Qwen3-4B and GPT-OSS-
 495 120B, on predictions made by Qwen3-4B on the race subset of Civil Comments (see Appendix G
 496 for the prompts used).

497 Table 2 shows the results of LLM-as-a-judge for bias detection. Under the LLM decision setup,
 498 Qwen3-4B is extremely conservative: it flags only 86 out of 4000 predictions as biased, and all of
 499 them correspond to toxic predictions. Moreover, the predictions labeled as biased by the model ex-
 500 hibit lower average individual unfairness than those labeled as non-biased, indicating poor precision
 501 as well. Under LLM attribution, Qwen3-4B performs slightly better: predictions whose rationales
 502 contain sensitive tokens show higher average individual unfairness than those without. However,
 503 this still falls short of a simple input-based explanation baseline that flags the top 50% of predictions
 504 ranked by absolute Grad L2 reliance scores (Grad L2 Binary). The larger GPT-OSS-120B exhibits
 505 improved bias detection ability in the LLM decision setting, but its performance under LLM attribu-
 506 tion remains comparable to Qwen3-4B and still substantially worse than input-based explanations.
 507 Overall, we conclude that input-based explanations are more reliable than LLM-as-a-judge for bias
 508 detection. This finding aligns with the observations of Yang et al. (2025b), who also report that
 509 LLM-as-a-judge is unreliable for bias detection.

510 Table 2: Results of LLM-as-a-judge for bias detection using Qwen3-4B and GPT-OSS-120B.
 511 Predictions come from Qwen3-4B on race-related Civil Comments examples. ”Biased/Unbiased”
 512 denotes whether an example is judged as biased or unbiased by the LLM through LLM decision
 513 or LLM attribution. If the judgments are reliable, Avg_{iu} should be higher for biased examples
 514 than unbiased ones. For LLM decision with Qwen3-4B, fairness correlation cannot be computed
 515 because the model labels no non-toxic predictions as biased. Input-based explanations reveal bias
 516 more reliably than LLM-as-a-judge.

517 LLM	Method	# Biased/Unbiased	Avg _{iu} (Biased/Unbiased)	Fairness Correlation
519 Qwen3-4B	LLM decision	86/3914	0.065/2.59	-
	LLM attribution (K=5)	2063/1904	3.55/1.49	0.104
	LLM attribution (K=10)	2176/1474	2.93/1.56	0.070
521 GPT-OSS-120B	LLM decision	399/3601	4.42/2.35	0.051
	LLM attribution (K=5)	2153/1843	3.33/1.65	0.092
	LLM attribution (K=10)	2729/1238	2.88/1.74	0.063
523 —	Grad L2 Binary	2000/2000	5.02/0.09	0.194

524 525 526 7 CONCLUSION

527 In this work, we present the first comprehensive study linking input-based explanations and fairness
 528 in hate speech detection. Our experiments show that (1) input-based explanations can effectively
 529 identify biased predictions, (2) they are not reliable for selecting fair models, and (3) they can serve
 530 as effective supervision signals during training, mitigating bias while preserving a strong balance
 531 between fairness and task performance. We further provide practical recommendations on which
 532 explanation methods are best suited for bias detection and bias mitigation. Finally, our analyses
 533 demonstrate that explanation-based bias detection remains effective in explanation-debiased models,
 534 and they outperforms LLM-as-a-judge in identifying biased predictions⁵.

535
 536 ⁵Limitations and future directions are discussed in Appendix B. We also demonstrate that our findings gen-
 537 eralize to alternative setups (Appendix C), that explanations can assist human fairness auditing (Appendix D),
 538 and that hybrid debiasing methods show promising preliminary results (Appendix E).

540

8 ETHICS STATEMENT

541
 542 This work investigates explainability and fairness in hate speech detection. Despite the diverse
 543 experimental setups explored and the additional generalization tests in Appendix C, the findings
 544 are still constrained by the specific configurations considered here. As such, the results may not
 545 fully generalize across demographic groups, domains, or tasks, and they may remain vulnerable to
 546 adversarial manipulation. We further caution that explanation methods and debiasing techniques
 547 cannot fully eliminate residual harms, and that LLM-generated bias judgments are unreliable for
 548 bias detection. We hope that our study will contribute to the development of NLP systems that are
 549 more transparent, reliable, and fair.

550
 551

9 REPRODUCIBILITY STATEMENT

552
 553 We include full implementation details in the main text and appendix, covering data pre-processing
 554 details, model architectures, training procedures, and hyperparameters. We have submitted our code
 555 and configuration files as supplementary material to facilitate reproduction during the review pro-
 556 cess. Upon acceptance, we will open-source our code and scripts for data pre-processing and exper-
 557 iments.

558
 559

REFERENCES

560
 561 Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Dan Ju-
 562 rafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th An-
 563 nual Meeting of the Association for Computational Linguistics*, pp. 4190–4197, Online, July
 564 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.385. URL
<https://aclanthology.org/2020.acl-main.385/>.

565
 566 Leila Arras, Ahmed Osman, Klaus-Robert Müller, and Wojciech Samek. Evaluating recurrent neural
 567 network explanations. In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and Dieuwke Hup-
 568 kes (eds.), *Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
 569 Neural Networks for NLP*, pp. 113–126, Florence, Italy, August 2019. Association for Compu-
 570 tational Linguistics. doi: 10.18653/v1/W19-4813. URL <https://aclanthology.org/W19-4813/>.

571
 572 Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle Augenstein. Diagnostics-
 573 guided explanation generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 574 volume 36, pp. 10445–10453, 2022.

575
 576 Giuseppe Attanasio, Debora Nozza, Dirk Hovy, and Elena Baralis. Entropy-based attention reg-
 577 ularization frees unintended bias mitigation from lists. In Smaranda Muresan, Preslav Nakov,
 578 and Aline Villavicencio (eds.), *Findings of the Association for Computational Linguistics: ACL
 579 2022*, pp. 1105–1119, Dublin, Ireland, May 2022. Association for Computational Linguis-
 580 tics. doi: 10.18653/v1/2022.findings-acl.88. URL <https://aclanthology.org/2022.findings-acl.88/>.

581
 582 Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
 583 and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
 584 relevance propagation. *PLoS one*, 10(7):e0130140, 2015.

585
 586 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
 587 learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), *3rd International
 588 Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
 589 ference Track Proceedings*, 2015. URL <http://arxiv.org/abs/1409.0473>.

590
 591 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
 592 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
 593 son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
 594 Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
 595 Kamile Lukosiute, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemí Mer-
 596 cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna

594 Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
 595 erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
 596 Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI:
 597 harmlessness from AI feedback. *CoRR*, abs/2212.08073, 2022. doi: 10.48550/ARXIV.2212.
 598 08073. URL <https://doi.org/10.48550/arXiv.2212.08073>.

599 Esma Balkir, Svetlana Kiritchenko, Isar Nejadgholi, and Kathleen Fraser. Challenges in applying
 600 explainability methods to improve the fairness of NLP models. In Apurv Verma, Yada Pruk-
 601 sachatkun, Kai-Wei Chang, Aram Galstyan, Jwala Dhamala, and Yang Trista Cao (eds.), *Pro-
 602 ceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)*,
 603 pp. 80–92, Seattle, U.S.A., July 2022. Association for Computational Linguistics. doi: 10.18653/
 604 v1/2022.trustnlp-1.8. URL <https://aclanthology.org/2022.trustnlp-1.8/>.

605 Vaishnavi Bhargava, Miguel Couceiro, and Amedeo Napoli. Limeout: An ensemble approach to
 606 improve process fairness. In *Joint European conference on machine learning and knowledge
 607 discovery in databases*, pp. 475–491. Springer, 2020.

608 Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. Language (technology) is
 609 power: A critical survey of “bias” in NLP. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and
 610 Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Compu-
 611 tational Linguistics*, pp. 5454–5476, Online, July 2020. Association for Computational Linguis-
 612 tics. doi: 10.18653/v1/2020.acl-main.485. URL [https://aclanthology.org/2020.acl-main.485/](https://aclanthology.org/2020.acl-main.485).

613 Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
 614 to computer programmer as woman is to homemaker? debiasing word embeddings. *Advances in
 615 neural information processing systems*, 29, 2016.

616 Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx,
 617 Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
 618 Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
 619 Creel, Jared Quincy Davis, Dorotya Demszky, Chris Donahue, Moussa Doumbouya, Esin Dur-
 620 mus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale,
 621 Lauren E. Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
 622 Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
 623 Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
 624 ing, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Ku-
 625 ditipudi, and et al. On the opportunities and risks of foundation models. *CoRR*, abs/2108.07258,
 626 2021. URL <https://arxiv.org/abs/2108.07258>.

627 Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
 628 metrics for measuring unintended bias with real data for text classification. In *Companion pro-
 629 ceedings of the 2019 world wide web conference*, pp. 491–500, 2019.

630 Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. Semantics derived automatically from
 631 language corpora contain human-like biases. *Science*, 356(6334):183–186, 2017.

632 Yuen Chen, Vethavikashini Chithrra Raghuram, Justus Mattern, Rada Mihalcea, and Zhiqing Jin.
 633 Causally testing gender bias in LLMs: A case study on occupational bias. In Luis Chiruzzo,
 634 Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics:
 635 NAACL 2025*, pp. 4984–5004, Albuquerque, New Mexico, April 2025. Association for Compu-
 636 tational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.281. URL
 637 <https://aclanthology.org/2025.findings-naacl.281/>.

638 cjadams, Daniel Borkan, inversion, Jeffrey Sorensen, Lucas Dixon, Lucy Vasserman, and nithum.
 639 Jigsaw unintended bias in toxicity classification. <https://kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification>, 2019. Kaggle.

640 Benjamin Cohen-Wang, Harshay Shah, Kristian Georgiev, and Aleksander Madry. Con-
 641 textcite: Attributing model generation to context. In A. Globerson, L. Mackey, D. Bel-
 642 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 643 formation Processing Systems*, volume 37, pp. 95764–95807. Curran Associates, Inc.,

648 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/adbe136219b64db96a9941e4249a857-Paper-Conference.pdf.

649

650

651 Aida Mostafazadeh Davani, Ali Omrani, Brendan Kennedy, Mohammad Atari, Xiang Ren, and
652 Morteza Dehghani. Fair hate speech detection through evaluation of social group counterfactuals.
653 *CoRR*, abs/2010.12779, 2020. URL <https://arxiv.org/abs/2010.12779>.

654

655 Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech de-
656 tection and the problem of offensive language. *Proceedings of the International AAAI Conference*
657 *on Web and Social Media*, 11(1):512–515, May 2017. doi: 10.1609/icwsm.v1i1.14955. URL
658 <https://ojs.aaai.org/index.php/ICWSM/article/view/14955>.

659

660 Luca Deck, Jakob Schoeffer, Maria De-Arteaga, and Niklas Kühl. A critical survey on fairness
661 benefits of explainable ai. In *Proceedings of the 2024 ACM Conference on Fairness, Account-
662 ability, and Transparency*, FAccT ’24, pp. 1579–1595, New York, NY, USA, 2024. Associa-
663 tion for Computing Machinery. ISBN 9798400704505. doi: 10.1145/3630106.3658990. URL
664 <https://doi.org/10.1145/3630106.3658990>.

665

666 Björn Deiseroth, Mayukh Deb, Samuel Weinbach, Manuel Brack, Patrick Schramowski,
667 and Kristian Kersting. Atman: Understanding transformer predictions through
668 memory efficient attention manipulation. In A. Oh, T. Naumann, A. Globerson,
669 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Pro-
670 cessing Systems*, volume 36, pp. 63437–63460. Curran Associates, Inc., 2023. URL
671 https://proceedings.neurips.cc/paper_files/paper/2023/file/c83bc020a020cdeb966ed10804619664-Paper-Conference.pdf.

672

673 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
674 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
675 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
676 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
677 and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
678 putational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423>.

679

680 Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher,
681 and Byron C. Wallace. ERASER: A benchmark to evaluate rationalized NLP models. In Dan
682 Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual
683 Meeting of the Association for Computational Linguistics*, pp. 4443–4458, Online, July 2020.
684 Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.408. URL <https://aclanthology.org/2020.acl-main.408>.

685

686 Botty Dimanov, Umang Bhatt, Mateja Jamnik, and Adrian Weller. You shouldn’t trust me: Learning
687 models which conceal unfairness from multiple explanation methods. In *ECAI 2020*, pp. 2473–
688 2480. IOS Press, 2020.

689

690 Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Measuring and mit-
691 igating unintended bias in text classification. In *Proceedings of the 2018 AAAI/ACM Confer-
692 ence on AI, Ethics, and Society*, AIES ’18, pp. 67–73, New York, NY, USA, 2018. Associa-
693 tion for Computing Machinery. ISBN 9781450360128. doi: 10.1145/3278721.3278729. URL
694 <https://doi.org/10.1145/3278721.3278729>.

695

696 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
697 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
698 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
699 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
700 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
701 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael

702 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
 703 son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
 704 revar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
 705 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vraneš, Jason Park, Jay Ma-
 706 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
 707 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
 708 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Al-
 709 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
 710 llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
 711 <https://doi.org/10.48550/arXiv.2407.21783>.

712 Joseph Enguehard. Sequential integrated gradients: a simple but effective method for explaining
 713 language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of*
 714 *the Association for Computational Linguistics: ACL 2023*, pp. 7555–7565, Toronto, Canada, July
 715 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.477. URL
 716 <https://aclanthology.org/2023.findings-acl.477/>.

717 James Enouen, Hootan Nakhost, Sayna Ebrahimi, Sercan Arik, Yan Liu, and Tomas Pfister.
 718 TextGenSHAP: Scalable post-hoc explanations in text generation with long documents. In Lun-
 719 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Compu-*
 720 *tational Linguistics: ACL 2024*, pp. 13984–14011, Bangkok, Thailand, August 2024. Associa-
 721 *tion for Computational Linguistics*. doi: 10.18653/v1/2024.findings-acl.832. URL <https://aclanthology.org/2024.findings-acl.832/>.

722 Xiao Fang, Shangkun Che, Minjia Mao, Hongzhe Zhang, Ming Zhao, and Xiaohang Zhao. Bias
 723 of ai-generated content: an examination of news produced by large language models. *Scientific*
 724 *Reports*, 14(1):5224, 2024.

725 Javier Ferrando, Gerard I. Gállego, and Marta R. Costa-jussà. Measuring the mixing of contextual
 726 information in the transformer. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
 727 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp.
 728 8698–8714, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
 729 Linguistics. doi: 10.18653/v1/2022.emnlp-main.595. URL <https://aclanthology.org/2022.emnlp-main.595/>.

730 Paula Fortuna and Sérgio Nunes. A survey on automatic detection of hate speech in text. *ACM*
 731 *Comput. Surv.*, 51(4), July 2018. ISSN 0360-0300. doi: 10.1145/3232676. URL <https://doi.org/10.1145/3232676>.

732 Shaz Furniturewala, Surgan Jandial, Abhinav Java, Pragyan Banerjee, Simra Shahid, Sumit Bha-
 733 tia, and Kokil Jaidka. “thinking” fair and slow: On the efficacy of structured prompts for
 734 debiasing language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 735 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*,
 736 pp. 213–227, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 737 tics. doi: 10.18653/v1/2024.emnlp-main.13. URL <https://aclanthology.org/2024.emnlp-main.13/>.

738 Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Der-
 739 noncourt, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. Bias and fairness in large lan-
 740 guage models: A survey. *Computational Linguistics*, 50(3):1097–1179, September 2024. doi:
 741 10.1162/coli_a_00524. URL <https://aclanthology.org/2024.cl-3.8/>.

742 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 743 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 744 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
 745 tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
 746 for few-shot language model evaluation, 12 2023. URL <https://zenodo.org/records/10256836>.

747 Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly, Ed H. Chi, and Alex Beutel. Counter-
 748 factual fairness in text classification through robustness. In *Proceedings of the 2019 AAAI/ACM*

756 *Conference on AI, Ethics, and Society*, AIES '19, pp. 219–226, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450363242. doi: 10.1145/3306618.3317950. URL <https://doi.org/10.1145/3306618.3317950>.

757

758

759

760 Santiago González-Silot, Andrés Montoro-Montarroso, Eugenio Martínez Cámaras, and Juan Gómez-Romero. Enhancing disinformation detection with explainable AI and named entity replacement. *CoRR*, abs/2502.04863, 2025. doi: 10.48550/ARXIV.2502.04863. URL <https://doi.org/10.48550/arXiv.2502.04863>.

761

762

763

764 Przemyslaw A. Grabowicz, Nicholas Perello, and Aarshee Mishra. Marrying fairness and explainability in supervised learning. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, FAccT '22, pp. 1905–1916, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393522. doi: 10.1145/3531146.3533236. URL <https://doi.org/10.1145/3531146.3533236>.

765

766

767

768

769 Vipul Gupta, Pranav Narayanan Venkit, Hugo Laurençon, Shomir Wilson, and Rebecca J. Passonneau. CALM : A multi-task benchmark for comprehensive assessment of language model bias. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=RLFca3arx7>.

770

771

772

773

774 James M Hickey, Pietro G Di Stefano, and Vlasios Vasileiou. Fairness by explicability and adversarial shap learning. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp. 174–190. Springer, 2020.

775

776

777 Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 4198–4205, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.386. URL <https://aclanthology.org/2020.acl-main.386/>.

778

779

780

781

782

783 Sarthak Jain and Byron C. Wallace. Attention is not Explanation. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 3543–3556, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1357. URL <https://aclanthology.org/N19-1357/>.

784

785

786

787

788

789 Manuela Jeyaraj and Sarah Delany. An explainable approach to understanding gender stereotype text. In Agnieszka Faleńska, Christine Basta, Marta Costa-jussà, Seraphina Goldfarb-Tarrant, and Debora Nozza (eds.), *Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)*, pp. 45–59, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.gebnlp-1.4. URL <https://aclanthology.org/2024.gebnlp-1.4/>.

790

791

792

793

794

795 Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrimination. *Knowledge and information systems*, 33(1):1–33, 2012.

796

797

798 Sanjay Kariyappa, Freddy Lecue, Saumitra Mishra, Christopher Pond, Daniele Magazzeni, and Manuela Veloso. Progressive inference: Explaining decoder-only sequence classification models using intermediate predictions. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 23238–23255. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/kariyappa24a.html>.

799

800

801

802

803

804

805 Brendan Kennedy, Xisen Jin, Aida Mostafazadeh Davani, Morteza Dehghani, and Xiang Ren. Contextualizing hate speech classifiers with post-hoc explanation. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 5435–5442, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.483. URL <https://aclanthology.org/2020.acl-main.483/>.

810 Jiyun Kim, Byounghan Lee, and Kyung-Ah Sohn. Why is it hate speech? masked rationale pre-
 811 prediction for explainable hate speech detection. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem
 812 Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Do-
 813 natelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun
 814 Hahn, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.),
 815 *Proceedings of the 29th International Conference on Computational Linguistics*, pp. 6644–6655,
 816 Gyeongju, Republic of Korea, October 2022. International Committee on Computational Linguis-
 817 tics. URL <https://aclanthology.org/2022.coling-1.577/>.

818 Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, and Sven Dähne. Investigating the
 819 influence of noise and distractors on the interpretation of neural networks. *CoRR*, abs/1611.07270,
 820 2016. URL <http://arxiv.org/abs/1611.07270>.

821 Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam Gershman, and Finale
 822 Doshi-Velez. An evaluation of the human-interpretability of explanation. *CoRR*, abs/1902.00006,
 823 2019. URL <http://arxiv.org/abs/1902.00006>.

824 Piyawat Lertvittayakumjorn and Francesca Toni. Explanation-based human debugging of NLP mod-
 825 els: A survey. *Transactions of the Association for Computational Linguistics*, 9:1508–1528, 2021.
 826 doi: 10.1162/tacl_a_00440. URL <https://aclanthology.org/2021.tacl-1.90/>.

827 Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through representation
 828 erasure. *CoRR*, abs/1612.08220, 2016. URL <http://arxiv.org/abs/1612.08220>.

829 Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen, Daoguang Zan, Min-Yen Kan, and Tsung-Yi Ho.
 830 The devil is in the neurons: Interpreting and mitigating social biases in pre-trained language
 831 models. *CoRR*, abs/2406.10130, 2024. doi: 10.48550/ARXIV.2406.10130. URL <https://doi.org/10.48550/arXiv.2406.10130>.

832 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 833 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
 834 approach. *CoRR*, abs/1907.11692, 2019. URL <http://arxiv.org/abs/1907.11692>.

835 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
 836 I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
 837 nett (eds.), *Advances in Neural Information Processing Systems*, volume 30, pp. 1–10. Cur-
 838 ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

839 Qing Lyu, Marianna Apidianaki, and Chris Callison-Burch. Towards faithful model explanation
 840 in NLP: A survey. *Computational Linguistics*, 50(2):657–723, June 2024. doi: 10.1162/coli_a-
 841 00511. URL <https://aclanthology.org/2024.cl-2.6/>.

842 Andreas Madsen, Sarath Chandar, and Siva Reddy. Are self-explanations from large language mod-
 843 els faithful? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the As-
 844 sociation for Computational Linguistics: ACL 2024*, pp. 295–337, Bangkok, Thailand, August
 845 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.19. URL
 846 <https://aclanthology.org/2024.findings-acl.19/>.

847 Mamta Mamta, Rishikant Chigrupaatii, and Asif Ekbal. BiasWipe: Mitigating unintended bias
 848 in text classifiers through model interpretability. In Yaser Al-Onaizan, Mohit Bansal, and
 849 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natu-
 850 ral Language Processing*, pp. 21059–21070, Miami, Florida, USA, November 2024. Associa-
 851 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1172. URL <https://aclanthology.org/2024.emnlp-main.1172/>.

852 Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh
 853 Mukherjee. Hateexplain: A benchmark dataset for explainable hate speech detection. *Proceedings
 854 of the AAAI Conference on Artificial Intelligence*, 35(17):14867–14875, May 2021. doi: 10.
 855 1609/aaai.v35i17.17745. URL <https://ojs.aaai.org/index.php/AAAI/article/view/17745>.

864 Chandler May, Alex Wang, Shikha Bordia, Samuel Bowman, and Rachel Rudinger. On measuring
 865 social biases in sentence encoders. In *Proceedings of the 2019 Conference of the North Ameri-*
 866 *can Chapter of the Association for Computational Linguistics: Human Language Technologies,*
 867 *Volume 1 (Long and Short Papers)*, pp. 622–628, 2019.

868 Chuizheng Meng, Loc Trinh, Nan Xu, James Enouen, and Yan Liu. Interpretability and fairness
 869 evaluation of deep learning models on mimic-iv dataset. *Scientific Reports*, 12(1):7166, 2022.

870 Ali Modarressi, Mohsen Fayyaz, Yadollah Yaghoobzadeh, and Mohammad Taher Pilehvar.
 871 GlobEnc: Quantifying global token attribution by incorporating the whole encoder layer in trans-
 872 formers. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),
 873 *Proceedings of the 2022 Conference of the North American Chapter of the Association for Com-*
 874 *putational Linguistics: Human Language Technologies*, pp. 258–271, Seattle, United States, July
 875 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.nacl-main.19. URL
 876 <https://aclanthology.org/2022.nacl-main.19/>.

877 Ali Modarressi, Mohsen Fayyaz, Ehsan Aghazadeh, Yadollah Yaghoobzadeh, and Moham-
 878 mad Taher Pilehvar. DecompX: Explaining transformers decisions by propagating token de-
 879 composition. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings*
 880 *of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 881 *Papers)*, pp. 2649–2664, Toronto, Canada, July 2023. Association for Computational Linguis-
 882 *tics*. doi: 10.18653/v1/2023.acl-long.149. URL <https://aclanthology.org/2023.acl-long.149/>.

883 Fahim Muntasir and Jannatun Noor. Explainable ai discloses gender bias in sexism detection algo-
 884 rithm. In *Proceedings of the 11th International Conference on Networking, Systems, and Secu-*
 885 *rity*, NSysS '24, pp. 120–127, New York, NY, USA, 2025. Association for Computing Machin-
 886 *ery*. ISBN 9798400711589. doi: 10.1145/3704522.3704524. URL <https://doi.org/10.1145/3704522.3704524>.

887 Ayushi Nirmal, Amrita Bhattacharjee, Paras Sheth, and Huan Liu. Towards interpretable hate speech
 888 detection using large language model-extracted rationales. In Yi-Ling Chung, Zeerak Talat, Deb-
 889 ora Nozza, Flor Miriam Plaza-del Arco, Paul Röttger, Aida Mostafazadeh Davani, and Agostina
 890 Calabrese (eds.), *Proceedings of the 8th Workshop on Online Abuse and Harms (WOAH 2024)*, pp.
 891 223–233, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.
 892 18653/v1/2024.woah-1.17. URL <https://aclanthology.org/2024.woah-1.17/>.

893 Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. Abusive lan-
 894 guage detection in online user content. In *Proceedings of the 25th International Conference*
 895 *on World Wide Web*, WWW '16, pp. 145–153, Republic and Canton of Geneva, CHE, 2016.
 896 International World Wide Web Conferences Steering Committee. ISBN 9781450341431. doi:
 897 10.1145/2872427.2883062. URL <https://doi.org/10.1145/2872427.2883062>.

898 Ji Ho Park, Jamin Shin, and Pascale Fung. Reducing gender bias in abusive language detection.
 899 In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of*
 900 *the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2799–2804,
 901 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 902 10.18653/v1/D18-1302. URL <https://aclanthology.org/D18-1302/>.

903 Pouya Pezeshkpour, Sarthak Jain, Sameer Singh, and Byron Wallace. Combining feature and in-
 904 stance attribution to detect artifacts. In Smaranda Muresan, Preslav Nakov, and Aline Villavicen-
 905 cio (eds.), *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 1934–1946,
 906 Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 907 findings-acl.153. URL <https://aclanthology.org/2022.findings-acl.153/>.

908 Vinodkumar Prabhakaran, Ben Hutchinson, and Margaret Mitchell. Perturbation sensitivity anal-
 909 ysis to detect unintended model biases. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiao-
 910 jun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-*
 911 *guage Processing and the 9th International Joint Conference on Natural Language Processing*
 912 *(EMNLP-IJCNLP)*, pp. 5740–5745, Hong Kong, China, November 2019. Association for Com-
 913 *putational Linguistics*. doi: 10.18653/v1/D19-1578. URL <https://aclanthology.org/D19-1578/>.

918 Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C. Lipton. Learning
919 to deceive with attention-based explanations. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and
920 Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Compu-
921 tational Linguistics*, pp. 4782–4793, Online, July 2020. Association for Computational Linguis-
922 tics. doi: 10.18653/v1/2020.acl-main.432. URL [https://aclanthology.org/2020.
923 acl-main.432/](https://aclanthology.org/2020.acl-main.432/).

924 Naveen Janaki Raman, Mateo Espinosa Zarlenga, and Mateja Jamnik. Understanding inter-
925 concept relationships in concept-based models. In Ruslan Salakhutdinov, Zico Kolter, Kather-
926 ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Pro-
927 ceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
928 ceedings of Machine Learning Research*, pp. 42009–42025. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/raman24a.html>.

930 Sahana Ramnath, Brihi Joshi, Skyler Hallinan, Ximing Lu, Liunian Harold Li, Aaron Chan, Jack
931 Hessel, Yejin Choi, and Xiang Ren. Tailoring self-rationalizers with multi-reward distillation.
932 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=t8e00CizJV>.

933 Sukrut Rao, Moritz Böhle, Amin Parchami-Araghi, and Bernt Schiele. Studying how to efficiently
934 and effectively guide models with explanations. In *Proceedings of the IEEE/CVF International
935 Conference on Computer Vision*, pp. 1922–1933, 2023.

936 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
937 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference
938 on knowledge discovery and data mining*, pp. 1135–1144, 2016.

939 Sarthak Roy, Ashish Harshvardhan, Animesh Mukherjee, and Punyajoy Saha. Probing LLMs
940 for hate speech detection: strengths and vulnerabilities. In Houda Bouamor, Juan Pino,
941 and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP
942 2023*, pp. 6116–6128, Singapore, December 2023. Association for Computational Linguistics.
943 doi: 10.18653/v1/2023.findings-emnlp.407. URL [https://aclanthology.org/2023.
944 findings-emnlp.407/](https://aclanthology.org/2023.findings-emnlp.407/).

945 Punyajoy Saha, Divyanshu Sheth, Kushal Kedia, Binny Mathew, and Animesh Mukherjee.
946 Rationale-guided few-shot classification to detect abusive language. In *ECAI*, pp. 2041–2048,
947 2023. URL <https://doi.org/10.3233/FAIA230497>.

948 Nihar Sahoo, Himanshu Gupta, and Pushpak Bhattacharyya. Detecting unintended social bias in
949 toxic language datasets. In Antske Fokkens and Vivek Srikumar (eds.), *Proceedings of the
950 26th Conference on Computational Natural Language Learning (CoNLL)*, pp. 132–143, Abu
951 Dhabi, United Arab Emirates (Hybrid), December 2022. Association for Computational Lin-
952 guistics. doi: 10.18653/v1/2022.conll-1.10. URL [https://aclanthology.org/2022.
953 conll-1.10/](https://aclanthology.org/2022.conll-1.10/).

954 Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. The risk of racial bias in
955 hate speech detection. In Anna Korhonen, David Traum, and Lluís Márquez (eds.), *Proceedings
956 of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 1668–1678, Flo-
957 rence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1163.
958 URL <https://aclanthology.org/P19-1163/>.

959 Johannes Schäfer, Ulrich Heid, and Roman Klinger. Hierarchical adversarial correction to mitigate
960 identity term bias in toxicity detection. In Orphée De Clercq, Valentin Barriere, Jeremy Barnes,
961 Roman Klinger, João Sedoc, and Shabnam Tafreshi (eds.), *Proceedings of the 14th Workshop
962 on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis*, pp. 35–51,
963 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
964 2024.wassa-1.4. URL <https://aclanthology.org/2024.wassa-1.4/>.

965 Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. The woman worked as
966 a babysitter: On biases in language generation. In Kentaro Inui, Jing Jiang, Vincent Ng, and
967 Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
968 guage Processing and the 9th International Joint Conference on Natural Language Processing*

972 (EMNLP-IJCNLP), pp. 3407–3412, Hong Kong, China, November 2019. Association for Com-
 973 putational Linguistics. doi: 10.18653/v1/D19-1339. URL <https://aclanthology.org/D19-1339/>.

974

975 Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. Societal biases in language gen-
 976 eration: Progress and challenges. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli
 977 (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguis-
 978 tics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
 979 Long Papers)*, pp. 4275–4293, Online, August 2021. Association for Computational Linguis-
 980 tics. doi: 10.18653/v1/2021.acl-long.330. URL <https://aclanthology.org/2021.acl-long.330/>.

981

982

983 Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
 984 propagating activation differences. In *International conference on machine learning*, pp. 3145–
 985 3153. PMIR, 2017.

986

987 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 988 Visualising image classification models and saliency maps. In Yoshua Bengio and Yann Le-
 989 Cun (eds.), *2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
 990 Canada, April 14-16, 2014, Workshop Track Proceedings*, 2014. URL <http://arxiv.org/abs/1312.6034>.

991

992 Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling lime
 993 and shap: Adversarial attacks on post hoc explanation methods. In *Proceedings of the AAAI/ACM
 994 Conference on AI, Ethics, and Society*, AIES '20, pp. 180–186, New York, NY, USA, 2020.
 995 Association for Computing Machinery. ISBN 9781450371100. doi: 10.1145/3375627.3375830.
 996 URL <https://doi.org/10.1145/3375627.3375830>.

997

998 Gizem Sogancioglu, Heysem Kaya, and Albert Ali Salah. Using explainability for bias mitigation:
 999 A case study for fair recruitment assessment. In *Proceedings of the 25th International Conference
 1000 on Multimodal Interaction*, ICMI '23, pp. 631–639, New York, NY, USA, 2023. Association for
 1001 Computing Machinery. ISBN 9798400700552. doi: 10.1145/3577190.3614170. URL <https://doi.org/10.1145/3577190.3614170>.

1002

1003 Alexander Stevens, Peter Deruyck, Ziboud Van Veldhoven, and Jan Vanthienen. Explainability and
 1004 fairness in machine learning: Improve fair end-to-end lending for kiva. In *2020 IEEE Symposium
 1005 Series on Computational Intelligence (SSCI)*, pp. 1241–1248, 2020. doi: 10.1109/SSCI47803.
 1006 2020.9308371.

1007

1008 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Doina
 1009 Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine
 1010 Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 3319–3328. PMLR, 06–
 1011 11 Aug 2017. URL <https://proceedings.mlr.press/v70/sundararajan17a.html>.

1012

1013 Yixin Wan and Kai-Wei Chang. White men lead, black women help? benchmarking and mitigating
 1014 language agency social biases in LLMs. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
 1015 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 1016 for Computational Linguistics (Volume 1: Long Papers)*, pp. 9082–9108, Vienna, Austria, July
 1017 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
 1018 2025.acl-long.445. URL <https://aclanthology.org/2025.acl-long.445/>.

1019

1020 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
 1021 A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
 1022 Grzegorz Chrupał a, and Afra Alishahi (eds.), *Proceedings of the 2018 EMNLP Workshop Black-
 1023 boxNLP: Analyzing and Interpreting Neural Networks for NLP*, pp. 353–355, Brussels, Belgium,
 1024 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
 1025 <https://aclanthology.org/W18-5446/>.

1026

1027 Qianli Wang, Tatiana Anikina, Nils Feldhus, Simon Ostermann, Sebastian Möller, and Vera Schmitt.
 1028 Cross-refine: Improving natural language explanation generation by learning in tandem. In Owen
 1029 Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven

1026 Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguis-*
 1027 *tics*, pp. 1150–1167, Abu Dhabi, UAE, January 2025a. Association for Computational Linguis-
 1028 *tics*. URL <https://aclanthology.org/2025.coling-main.77/>.

1029

1030 Xinru Wang and Ming Yin. Are explanations helpful? a comparative study of the effects of
 1031 explanations in ai-assisted decision-making. In *Proceedings of the 26th International Confer-*
 1032 *ence on Intelligent User Interfaces*, IUI ’21, pp. 318–328, New York, NY, USA, 2021. Associa-
 1033 *tion for Computing Machinery*. ISBN 9781450380171. doi: 10.1145/3397481.3450650. URL
 1034 <https://doi.org/10.1145/3397481.3450650>.

1035 Yifan Wang and Vera Demberg. A parameter-efficient multi-objective approach to mitigate stereo-
 1036 typical bias in language models. In Agnieszka Faleńska, Christine Basta, Marta Costa-jussà,
 1037 Seraphina Goldfarb-Tarrant, and Debora Nozza (eds.), *Proceedings of the 5th Workshop on*
 1038 *Gender Bias in Natural Language Processing (GeBNLP)*, pp. 1–19, Bangkok, Thailand, Au-
 1039 *gust 2024*. Association for Computational Linguistics. doi: 10.18653/v1/2024.gebnlp-1.1. URL
 1040 <https://aclanthology.org/2024.gebnlp-1.1/>.

1041 Yifan Wang, Sukrut Rao, Ji-Ung Lee, Mayank Jobanputra, and Vera Demberg. B-cos LM: efficiently
 1042 transforming pre-trained language models for improved explainability. *CoRR*, abs/2502.12992,
 1043 2025b. doi: 10.48550/ARXIV.2502.12992. URL <https://doi.org/10.48550/arXiv.2502.12992>.

1044

1045 Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel, Emily Pitler, Ellie Pavlick, Jilin Chen,
 1046 and Slav Petrov. Measuring and reducing gendered correlations in pre-trained models. *CoRR*,
 1047 abs/2010.06032, 2020. URL <https://arxiv.org/abs/2010.06032>.

1048

1049 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 1050 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
 1051 Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
 1052 Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
 1053 Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
 1054 Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
 1055 Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yingger Zhang,
 1056 Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
 1057 Qwen3 technical report. *CoRR*, abs/2505.09388, 2025a. doi: 10.48550/ARXIV.2505.09388.
 1058 URL <https://doi.org/10.48550/arXiv.2505.09388>.

1059

1060 Xinyi Yang, Runzhe Zhan, Derek F. Wong, Shu Yang, Junchao Wu, and Lidia S. Chao. Rethinking
 1061 prompt-based debiasing in large language models. *CoRR*, abs/2503.09219, 2025b. doi: 10.48550/
 1062 ARXIV.2503.09219. URL <https://doi.org/10.48550/arXiv.2503.09219>.

1063 Mengyu Ye, Tatsuki Kurabayashi, Goro Kobayashi, and Jun Suzuki. Can input attributions ex-
 1064 plain inductive reasoning in in-context learning? In Wanxiang Che, Joyce Nabende, Ekaterina
 1065 Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational*
 1066 *Linguistics: ACL 2025*, pp. 21199–21225, Vienna, Austria, July 2025. Association for Compu-
 1067 *tational Linguistics*. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1092. URL
 1068 <https://aclanthology.org/2025.findings-acl.1092/>.

1069

1070 Kayo Yin and Graham Neubig. Interpreting language models with contrastive explanations. In
 1071 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference*
 1072 *on Empirical Methods in Natural Language Processing*, pp. 184–198, Abu Dhabi, United Arab
 1073 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 1074 emnlp-main.14. URL <https://aclanthology.org/2022.emnlp-main.14/>.

1075

1076 Xuemin Yu, Fahim Dalvi, Nadir Durrani, Marzia Nouri, and Hassan Sajjad. Latent concept-based
 1077 explanation of NLP models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 1078 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 1079 12435–12459, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 1079 *tics*. doi: 10.18653/v1/2024.emnlp-main.692. URL <https://aclanthology.org/2024.emnlp-main.692/>.

1080 Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in
 1081 coreference resolution: Evaluation and debiasing methods. In *Proceedings of the 2018 Con-*
 1082 *ference of the North American Chapter of the Association for Computational Linguistics: Hu-*
 1083 *man Language Technologies, Volume 2 (Short Papers)*, pp. 15–20, New Orleans, Louisiana,
 1084 June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2003. URL
 1085 <https://aclanthology.org/N18-2003>.

1086 Fan Zhou, Yuzhou Mao, Liu Yu, Yi Yang, and Ting Zhong. Causal-debias: Unifying debiasing
 1087 in pretrained language models and fine-tuning via causal invariant learning. In Anna Rogers,
 1088 Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the*
 1089 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4227–4241, Toronto,
 1090 Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
 1091 232. URL <https://aclanthology.org/2023.acl-long.232/>.

1092 Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and Ryan Cotterell. Counterfactual data augmen-
 1093 tation for mitigating gender stereotypes in languages with rich morphology. In Anna Korhonen,
 1094 David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Associa-*
 1095 *tion for Computational Linguistics*, pp. 1651–1661, Florence, Italy, July 2019. Association for
 1096 Computational Linguistics. doi: 10.18653/v1/P19-1161. URL <https://aclanthology.org/P19-1161/>.

1097

1100 A FAIRNESS AND EXPLAINABILITY IN HATE SPEECH DETECTION

1103 To better motivate our focus on fairness and explainability in the hate speech detection task, we
 1104 provide additional background in this section. We begin by clarifying our definitions of hate speech
 1105 and social bias, then review relevant work on fairness and explainability in hate speech detection.
 1106 Finally, we explain why our study specifically focuses on input-based explanations.

1107 **Hate Speech** We follow (Fortuna & Nunes, 2018) in defining hate speech as a specific form of
 1108 abusive or toxic language that targets and attacks protected or identifiable social groups. Under
 1109 this view, hate speech is a subset of abusive language. This definition is consistent with widely
 1110 adopted formulations in prior work on hate speech detection (e.g., Nobata et al., 2016; Davidson
 1111 et al., 2017). Because our study focuses on fairness and, in particular, analyzes model behavior on
 1112 examples involving specific social groups (race, gender, religion), this standard definition of hate
 1113 speech aligns well with the scope and goals of our work. We still use the toxic vs. non-toxic labels
 1114 following the terminology used in the Civil Comments (Borkan et al., 2019) and Jigsaw (cjadams
 1115 et al., 2019) datasets. Although these datasets include multiple subtypes of abusive content, they
 1116 group them under the broader notion of toxicity.

1117 **Social Bias** Following the conceptualization of (Blodgett et al., 2020), we define social bias as
 1118 the presence of stereotypical associations between social groups and certain attributes, as well as
 1119 disparities in how these groups are treated as a result. Such biases can lead to both representational
 1120 harms (e.g., demeaning or misrepresenting targeted groups) and allocational harms (e.g., unfair
 1121 distribution of opportunities or resources). Given the potential for NLP systems to reproduce or
 1122 amplify these harms, and their growing influence in everyday life, it is essential to detect and mitigate
 1123 social bias in these models.

1125 **Social Bias in Hate Speech Detection** Social bias has been widely documented in hate speech
 1126 detection systems. Dixon et al. (2018) showed that training data often contain uneven distributions
 1127 of identity terms and stereotypical associations, which in turn propagates bias into downstream
 1128 models. Subsequent studies revealed multiple dimensions of such disparities: Sap et al. (2019)
 1129 demonstrated systematic dialectal prejudice against African-American English (AAE), while Park
 1130 et al. (2018) reported significant performance gaps across gendered identities. Garg et al. (2019)
 1131 further found that models frequently assign different toxicity labels to otherwise identical content
 1132 when only the referenced social group is varied. Sahoo et al. (2022) expanded the scope of this
 1133 line of study by curating the ToxicBias dataset and examining bias across a broader set of social
 categories. More recently, Roy et al. (2023) found that LLMs exhibit similar bias in hate speech

1134 detection. Together, these studies underscore the persistence and multifaceted nature of social bias
 1135 in hate speech detection.

1136 To address such biases, a rich line of work has proposed mitigation techniques at different stages
 1137 of the modeling pipeline. Pre-processing methods include debiasing word embeddings to reduce
 1138 spurious associations between identity terms and toxicity (Park et al., 2018), re-sampling or re-
 1139 weighting examples to obtain more balanced label distributions across identity groups (Dixon et al.,
 1140 2018), and counterfactual data augmentation (Park et al., 2018; Garg et al., 2019). In-processing
 1141 approaches mostly modify the training objective, for instance by adding fairness-aware regularizers
 1142 that penalize correlations between identity terms and toxic predictions (Garg et al., 2019; Davani
 1143 et al., 2020; Attanasio et al., 2022; Schäfer et al., 2024). Post-processing methods adjust model
 1144 outputs without retraining: threshold adjustment per group has been used to trade off subgroup false
 1145 positive and false negative rates and reduce disparities (Dixon et al., 2018), while Mamta et al.
 1146 (2024) identify neurons associated with biased behavior and prune or edit them to improve fairness.

1147 Despite substantial progress on identifying and mitigating social bias in hate speech detection, rela-
 1148 tively little work has systematically explored whether model explanations can be leveraged to detect
 1149 or reduce such biases.

1150 **Explainability in Hate Speech Detection** In parallel, there is a growing line of work on input-
 1151 based explanations for hate speech detection. HateXplain (Mathew et al., 2021) introduces a bench-
 1152 mark with human-annotated rationales and shows that models trained with rationale supervision
 1153 improve both interpretability and reduce unintended bias towards target communities. Building on
 1154 this, Kim et al. (2022) and Saha et al. (2023) train models to jointly predict human rationales and
 1155 toxicity labels, leading to more robust and explainable hate speech detection systems. More recent
 1156 work further leverages LLM-generated rationales to supervise hate speech classifiers, achieving im-
 1157 proved performance and interpretability (Nirmal et al., 2024).

1158 However, while existing efforts focus primarily on improving hate speech detection performance,
 1159 relatively little work examines whether and how input-based explanations can be systematically
 1160 leveraged to improve fairness in hate speech detection models. Since fairness and explainability
 1161 have both been extensively studied in this task, hate speech detection serves as an ideal setting for a
 1162 thorough empirical examination of how these two dimensions interact in NLP models.

1163 **Input-Based Explanations** We focus on input-based explanations because they offer the most
 1164 direct view into which parts of the input influence a model’s prediction (Wang & Yin, 2021), and
 1165 they have long been regarded as central tools for fairness auditing in ML (Balkir et al., 2022; Deck
 1166 et al., 2024). Their methodological diversity also makes them an ideal testbed for our study, en-
 1167 abling a comprehensive examination of whether and how explanations can improve fairness (Lyu
 1168 et al., 2024). In addition, both automated and human-centric metrics for evaluating explanation
 1169 properties (e.g., faithfulness, interpretability) are well established (DeYoung et al., 2020; Jacovi &
 1170 Goldberg, 2020; Lage et al., 2019). This allows us to analyze how these properties relate to an ex-
 1171 planation method’s (in)effectiveness in fairness-related tasks. Finally, input-based explanations are
 1172 often mandated by laws, such as the EU Artificial Intelligence Act, making it practically important
 1173 to understand how their use interacts with fairness considerations.

1176 B LIMITATIONS AND FUTURE WORK

1177 Our study has several limitations that we acknowledge and aim to address in future work.

1178 First, as the first quantitative investigation of this topic, our study focuses solely on hate speech
 1179 detection and uses a limited set of experimental setups. Although the results are consistent across
 1180 these setups and preliminary experiments (Appendix C) suggest good generalization across tasks,
 1181 models and sensitive token vocabulary, broader validation is still needed. Future work could extend
 1182 this evaluation to additional domains and high-stakes applications.

1183 Second, several findings are derived under the specific experimental setups used in this work. For
 1184 instance, in RQ2, we conclude that the proposed attribution-based metrics are not reliable fair-
 1185 ness indicators. However, it remains possible that other metrics could be effective. Similarly, our
 1186 fairness-balanced metric in RQ3 may not be the optimal validation strategy in all settings. As it is

1188 infeasible to exhaustively enumerate and evaluate all potential configurations, we believe our
 1189 conclusions nonetheless offer valuable guidance and highlight important methodological considerations
 1190 for the community.

1191 Third, our work focuses on evaluating standalone explanation-based strategies for improving fair-
 1192 ness. Ensembles of multiple explanation methods, or hybrid approaches that combine explanation
 1193 techniques with established debiasing methods, may yield better outcomes. Additionally, incorpo-
 1194 rating human oversight may further enhance the effectiveness and robustness of explanation-based
 1195 fairness auditing. Our preliminary experiments show promising results in using hybrid debiasing
 1196 techniques E, and demonstrates the possibility for human fairness auditing based on explanations D.
 1197 Based on that, we believe that a systematic investigation of such hybrid or human-in-the-loop ap-
 1198 proaches represents an interesting avenue for future work.

1199 Fourth, we do not identify any explanation method that consistently outperforms others across all
 1200 research questions, which prevents us from offering a single recommendation. We therefore en-
 1201 courage future researchers to choose explanation methods that align with their specific tasks and
 1202 constraints. Future work could further investigate why certain methods are better suited to particular
 1203 settings and, ideally, develop practical guidelines for selecting effective methods without requiring
 1204 extensive empirical comparisons.

1205 Finally, although we consider both group and individual fairness, this work provides a more in-depth
 1206 analysis of individual fairness (in RQ1 and RQ2), driven by the conceptual alignment between input-
 1207 based explanations and individual fairness notions. We encourage future work to more thoroughly
 1208 examine how explanation methods relate to group fairness.

1210 C GENERALIZATION OF FINDINGS

1212 To demonstrate the generalizability of our findings, we present results under additional setups that
 1213 vary in task, model alignment type, and sensitive token vocabulary. We observe similar results across
 1214 these setups, suggesting that our findings generalize well beyond the main study conditions.

1216 **Task** We evaluated explanation-based bias detection (RQ1) on an additional task, namely senti-
 1217 ment analysis, using the Twitter Sentiment dataset⁶. Specifically, we selected 1000 gender-related
 1218 examples (500 referencing males and 500 referencing females) and ran explanation-based bias de-
 1219 tection on them. In Figure 7 we report the results on Llama3.2-3B-Instruct and Qwen3-4B models.

1220 In Figure 7, we observe patterns in the sentiment analysis task that are similar to those in our
 1221 main study: certain explanation methods (e.g., occlusion-based and L2-based approaches) can still
 1222 achieve high fairness correlation scores. This suggests that our findings could extend beyond the
 1223 hate speech detection task.

1225 **Model Alignment Type** We extended our experiments to additional LLMs with different align-
 1226 ment methods. Specifically, we evaluated explanation-based bias detection (RQ1) on two differently
 1227 aligned LLMs: Llama3.2-3B (pre-trained only, non-instruct, used with few-shot prompting) and
 1228 Qwen2.5-3B-Instruct (instruction-tuned only). Neither model is aligned to human values, which
 1229 differs from the models used in our main study. The results are computed for race bias on Civil
 1230 Comments and shown in Figure 8.

1231 We observe that certain explanation methods, such as Occlusion, consistently achieve high fairness
 1232 correlations. This suggests that our findings generalize across LLMs with different alignment set-
 1233 tings.

1235 **Sensitive Token Vocabulary** In practice, it is often unrealistic to exhaustively enumerate all vo-
 1236 cabulary items that may encode sensitive attributes. To assess the applicability of our findings under
 1237 such conditions, we analyze how varying the coverage of sensitive tokens affects bias detection
 1238 and mitigation. Specifically, we focus on gender bias and use a small subset of gendered pronouns
 1239 (“he/his/him” and “she/her”) as sensitive tokens, while computing fairness metrics with the full
 1240 gender-related vocabulary (222 words per gender). This setup simulates real-world scenarios where
 1241 the sensitive vocabulary cannot be fully enumerated.

⁶https://huggingface.co/datasets/shukdevdatta123/twitter_sentiment_preprocessed

Figure 7: Fairness correlation results for race bias on Twitter Sentiment with Llama3.2-3B-Instruct and Qwen3-4B. Higher values indicate that the method is more effective and reliable in detecting biased predictions at inference time.

Figure 8: Fairness correlation results for race bias on Civil Comments with Llama3.2-3B and Qwen2.5-3B-Instruct. Both models are differently aligned from models in our main experiments. Higher values indicate that the method is more effective and reliable in detecting biased predictions at inference time.

As shown in Figures 9 and 10, reduced vocabulary coverage has minimal impact on explanation-based bias detection and mitigation performance. This result is reassuring, suggesting that explanation methods remain effective in more complex, realistic settings where exhaustive sensitive token coverage is infeasible.

D EXPLANATIONS FOR HUMAN FAIRNESS AUDITING

In addition to evaluating input-based explanations as automatic bias detectors, we also examine their ability to support human auditing of biased model predictions. To this end, we conducted a small-scale human study following the experimental protocol described below.

1314 Figure 9: Fairness correlation results when using a reduced sensitive token vocabulary for reliance
1315 computation. Results are reported for gender bias on the Civil Comments dataset. Fairness metrics
1316 are still computed using the full vocabulary. The reduced vocabulary size has only a marginal effect
1317 on fairness correlations.

1336 Figure 10: Fairness and accuracy results for gender bias mitigation with a reduced sensitive token
1337 vocabulary. Each column corresponds to models selected by maximizing the fairness–balance metric
1338 with respect to the indicated bias metric. Using an incomplete vocabulary yields slightly worse
1339 debiasing performance than using the complete vocabulary, while preserving task performance more
1340 effectively. Overall, the impact of reduced vocabulary coverage is minimal.

1341
1342
1343 We randomly sample 48 correctly predicted examples related to race bias from Civil Comments
1344 (4*6=24 from BERT and 24 from Qwen3-4B, balanced across all group–class categories). We
1345 evaluate six explanation methods: three directed methods (Occlusion, IxG mean, KernelSHAP) and
1346 three undirected methods (Occlusion abs, IxG L2, Attention), chosen to cover diverse explanation
1347 families and performance characteristics observed in RQ1.

1348 For each example, annotators first read the input text and provide their own toxicity prediction.
1349 They are then shown either the three directed explanations or the three undirected explanations for
that example. For each explanation, annotators give two ratings on a 1–5 scale: one assessing its

1350 interpretability, and another evaluating how much the model’s prediction appears to rely on race-
 1351 related bias or stereotypes, based on the information conveyed by the explanation.

1352 After annotation, we collect annotators’ perceived bias ratings and measure their correlation with the
 1353 ground-truth individual unfairness scores. Higher fairness correlation indicates greater effectiveness
 1354 of an explanation method for human fairness auditing.

1355
 1356
 1357 Table 3: Fairness correlation of explanation methods for human fairness auditing and their inter-
 1358 pretability. Best scores in each explanation type are marked in **bold**. Higher fairness correlation
 1359 scores indicate that explanations can better assist humans to detect bias.

	Undirected			Directed	
	Attention	IxG L2	Occlusion abs	KernelSHAP	IxG mean
Fairness correlation	0.402	0.123	0.433	0.254	-0.078
Interpretability	2.256	3.179	2.920	2.518	2.439

1360
 1361
 1362
 1363 Table 4: Fairness correlation of explanation methods for human fairness auditing under different
 1364 conditions. Higher fairness correlation scores indicate that explanations can better assist humans to
 1365 detect bias. **Green** (**red**) indicates the results are **better** (**worse**) than the baseline (all examples).

	Undirected			Directed	
	Attention	IxG L2	Occlusion abs	KernelSHAP	IxG mean
All examples	0.402	0.123	0.433	0.254	-0.078
Correct predictions Only	0.572	0.202	0.602	0.217	0.029
Toxic examples only	0.637	0.118	0.374	0.231	0.134
High interpretability (score ≥ 3)	0.138	0.227	0.288	0.154	-0.043

1366
 1367 Table 3 shows that certain explanation methods, such as Attention, Occlusion, and Occlusion abs,
 1368 achieve high fairness correlations, suggesting that they can effectively assist humans in detecting
 1369 bias. Across explanation types, undirected explanations appear more helpful. For example, Occlu-
 1370 sion and Occlusion abs produce the same attribution patterns that differ only in directional encoding,
 1371 yet participants were better able to identify bias using the undirected variant (Occlusion abs). Fur-
 1372 thermore, while some methods support both human and automatic bias detection consistently (e.g.,
 1373 Attention and Occlusion abs), others, such as IxG L2, show substantial gaps in performance. This
 1374 highlights a potential discrepancy between how humans interpret explanations and how our auto-
 1375 matic pipeline evaluates them.

1376
 1377 We also observe that high interpretability alone does not guarantee better support for human fair-
 1378 ness auditing: methods with strong interpretability scores (e.g., IxG L2) still fail to effectively help
 1379 humans detect bias. Finally, 4 out of 6 annotators reported that undirected explanations helped them
 1380 detect bias more effectively, noting that they introduce less noise and make annotation easier.

1381
 1382 Table 4 further analyzes explanation-assisted human fairness auditing under different conditions. For
 1383 correctly predicted examples, explanations generally provide stronger support for bias detection.
 1384 However, the effects of label type and explanation interpretability appear more nuanced and vary
 1385 across methods. Overall, these results suggest that explanation-assisted human fairness auditing is a
 1386 promising and interesting direction for future work and warrants further investigation.

1387 E HYBRID BIAS MITIGATION TECHNIQUES

1388
 1389 we conducted preliminary experiments that combine several pre-processing techniques (group bal-
 1390 ance, group-class balance, and CDA) with an effective explanation-based debiasing method (IxG
 1391 L1/L2). The resulting individual fairness outcomes, along with comparisons to traditional and
 1392 explanation-only methods, are presented in Table 5.

1393
 1394 We observe that the hybrid method achieves better bias mitigation effects than using each debiasing
 1395 method alone, with consistent improvements for both race and gender bias. Based on this, we believe
 1396 exploring hybrid methods for more effective bias mitigation could be a promising future direction.

1404
 1405 Table 5: Each cell shows the Avg_{iu} score after applying a combination of pre-processing and
 1406 explanation-based debiasing methods. Lower values indicate reduced bias. Values in parentheses
 1407 denote the change relative to using only the corresponding traditional/explanation-based method,
 1408 where **negative values** indicate improved debiasing. We observe that hybrid approaches consistently
 1409 achieve stronger bias mitigation than either method used in isolation.

Race			
	Group balance	Group-class balance	CDA
IxG L1	0.012 (-4.492/-1.461)	0.000 (-3.048/-1.473)	0.001 (-0.547/-1.473)
IxG L2	2.162 (-2.342/-0.598)	2.110 (-0.938/-0.650)	0.210 (-0.338/-2.550)
Gender			
	Group balance	Group-class balance	CDA
IxG L1	0.005 (-0.594/-0.548)	0.001 (-0.836/-0.552)	0.001 (-0.488/-0.551)
IxG L2	0.308 (-0.291/-0.331)	0.546 (-0.292/-0.093)	0.368 (-0.122/-0.271)

F EXPLANATION EFFICIENCY

1421
 1422 Table 6 reports the time and GPU memory costs for each explanation method. Most post-hoc ex-
 1423 planation methods are lightweight when applied to BERT, whereas IntGrad, Occlusion, and Ker-
 1424 nelSHAP require substantially more time and computational resources when generating expla-
 1425 nations for LLMs.

1426
 1427 Table 6: Computational costs per example for generating explanations across 200 instances on
 1428 BERT and Qwen3-4B. Results are computed on the race subset of the Civil Comments dataset
 1429 using a batch size of 1 and are averaged over three runs. All methods are run on a single 80-GB
 1430 H100 GPU, except Integrated Gradients, which uses two H100 GPUs with gradient checkpointing
 1431 to reduce memory usage. Because explanation methods within the same family incur similar
 1432 computational costs, we report each family only once.

Method	BERT		Qwen3-4B			
	Time (s/example)	Memory (GB)	Method	Time (s/example)	Memory (GB)	
Attention	0.027	0.529	Attention	0.112	16.598	
Grad	0.026	0.603	Grad	0.237	19.631	
IxG	0.025	0.603	IxG	0.236	19.631	
IntGrad	0.064	7.010	IntGrad	1.784	101.694	
DeepLift	0.027	0.748	DeepLift	0.323	23.530	
Occlusion	0.330	0.508	Occlusion	4.204	15.639	
KernelSHAP	0.138	0.508	KernelSHAP	1.374	20.013	
DecompX	0.074	7.222	ProgInfer	0.068	15.810	

G DETAILS ON EXPERIMENTAL SETUPS

1443
 1444 Table 7: Splits for the Civil Comments and Jigsaw datasets used in this work. The instances are
 1445 sampled randomly from the original dataset.

Split	Civil Comments			Jigsaw		
	race	gender	religion	race	gender	religion
Test	2,000	2,000	1,000	400	800	200
Training	8,000	8,000	6,300	8,000	8,000	6,300

1454 **Datasets and Models** Table 7 shows the dataset statistics for the Civil Comments⁷ and Jigsaw⁸
 1455 datasets, respectively. When constructing subsets for each social group, we include only examples

⁷https://huggingface.co/datasets/lighteval/civil_comments_helm

⁸https://huggingface.co/datasets/google/jigsaw_unintended_bias

1458 that contain words from the corresponding group’s vocabulary and exclude those containing words
 1459 from other groups. Additionally, we remove examples that include insulting references to social
 1460 groups.

1461 For encoder-only models, we either train separate models for each bias type or a single model on the
 1462 combined set of all bias types. The latter are marked as (all) in the results. Models are trained for 5
 1463 epochs with a batch size of 8, a learning rate of 2×10^{-5} , and 10% warm-up steps. We implement
 1464 debiasing methods of encoder-only models ourselves. Debiased models are trained on the same
 1465 number of examples for comparability, therefore we do not sample more examples from external
 1466 datasets for causal debias. All experiments are carried out using a maximum of 4x NVIDIA H100
 1467 GPUs.

1468 We use the base version of BERT and RoBERTa models for our encoder-only experiments, and for
 1469 decoder-only experiments, we adopt the instruct versions of the models from HuggingFace.
 1470

1471 **Prompts** We employ the following prompt for zero-shot and few-shot prompting with decoder-
 1472 only models.
 1473

1474 Task: Determine whether the following sentence contains any toxic
 1475 content. Toxicity includes insults, threats, hate speech, or any
 1476 language that is likely to offend or harm others.

1477 ([EXAMPLES])
 1478 (Now, please analyze the following sentence and provide your
 1479 answer. Answer only Yes or No.)
 1480

1481 Sentence: [TEST EXAMPLE]
 1482

1483 Question: Does this sentence contain toxicity?
 1484

1485 Answer (Yes or No) :

1487 We use one toxic and one non-toxic example for each social group associated with a bias type
 1488 to construct the corresponding few-shot prompt. For fairness imagination, we prepend the task
 1489 instruction with:

1490 Imagine a world with no bias regarding [BIAS TYPE].
 1491

1492 For fairness instruction, we add:

1494 In the following, do not rely on stereotypes or biases regarding
 1495 [BIAS TYPE] to make predictions.

1496 **Input-Based Explanation Methods** We implement Attention, Attention Rollout, Attention Flow,
 1497 and Progressive Inference ourselves, and use the official codebase from the DecompX paper for its
 1498 implementation. For other explanation methods, we generate them using the Captum API⁹ Single-
 1500 pass Progressive Inference is used for simplicity.

1501 **Explanation-Based Bias Mitigation** We reimplement all explanation methods used in RQ3 to
 1502 enable gradient tracking during training and ensure consistency with the explanations provided by
 1503 the Captum API. For Occlusion, we simplify computation by penalizing the probability difference
 1504 between the original input and the input with all sensitive tokens masked.
 1505

1506 **LLM decision and LLM attribution** To elicit bias judgments from LLMs, we append the fol-
 1507 lowing instructions to their predictions.

1508 **LLM decision:**

1510 Do not re-answer the task. Instead, reflect only on your previous
 1511

⁹<https://captum.ai/api/>

1512 answer.
 1513

1514 Question: Was your previous answer influenced by stereotypes or
 1515 biases related to [BIAS TYPE]?

1516
 1517 Answer (Yes or No):

1518 **LLM attribution:**

1520 Now select exactly [NUM_TOKENS] words from the input sentence that
 1521 most influenced your decision. List the words separated by commas.
 1522 Please begin directly with the selected word.

1523
 1524 Selected words:

1525
 1526 **H MODEL PERFORMANCE AND FAIRNESS RESULTS**
 1527

1529 Table 8: Task performance and fairness of default and debiased models on the Civil Comments
 1530 dataset. Results are provided for race/gender/religion biases. **Green** (**red**) indicates the results
 1531 are **better** (**worse**) than the default/zero-shot models. **All** indicates the model is trained on data
 1532 containing all bias types.

Model	Method	Accuracy (\uparrow)	Disp _{acc} (\downarrow)	Disp _{fpr} (\downarrow)	Disp _{fmr} (\downarrow)	Avg _{iu} (\downarrow)
BERT	Default	78.38/88.05/85.93	2.05/3.30/18.07	0.50/0.03/5.77	10.04/11.98/30.90	3.17/0.66/1.27
	Group balance	79.25/87.25/86.83	3.10/2.80/13.53	0.25/1.73/11.53	10.46/5.38/30.31	3.79/0.42/2.01
	Group-class balance	78.00/87.02/85.77	1.80/2.75/14.73	2.42/0.99/3.09	10.63/7.26/33.14	4.43/0.98/0.71
	CDA	76.83/86.70/84.83	2.35/3.60/14.13	5.88/2.00/5.67	18.45/7.57/24.12	0.50/0.50/0.90
	Dropout	78.53/88.20/85.03	2.25/2.10/15.67	0.78/1.46/5.93	10.82/3.50/27.16	3.43/0.52/1.51
	Attention entropy	79.15/87.67/84.93	2.60/2.05/15.07	0.99/0.10/4.99	11.71/7.11/26.52	2.95/0.67/1.58
	Causal debias	78.80/86.17/86.40	0.00/2.65/16.40	3.90/0.46/8.82	7.98/10.67/30.46	3.83/0.48/2.10
BERT (all)	Default	78.30/88.20/87.43	2.00/3.20/13.47	0.02/1.11/6.24	8.44/8.58/23.53	3.99/0.96/1.76
	Group balance	79.05/88.85/87.47	3.50/2.80/13.67	1.72/0.31/6.92	8.83/11.08/23.91	4.13/1.17/2.15
	Group-class balance	78.17/88.25/86.90	1.95/1.70/14.60	1.35/0.51/8.52	9.33/4.66/33.13	4.83/0.93/1.37
	CDA	78.08/87.70/86.83	2.65/2.70/14.33	6.38/1.05/4.70	20.35/6.92/30.23	0.60/0.46/0.71
	Dropout	78.08/87.60/87.67	2.45/3.10/13.47	0.30/1.05/5.53	9.99/8.39/33.12	3.60/0.89/1.59
	Attention entropy	78.35/87.90/87.77	2.10/2.30/11.67	1.28/0.10/6.55	5.92/8.01/36.15	4.98/0.96/2.10
	Causal debias	79.40/88.75/87.70	2.20/2.60/12.60	2.51/0.70/6.70	13.13/7.44/31.28	3.54/0.80/2.12
RoBERTa	Default	78.50/88.33/85.23	2.80/2.05/17.07	2.84/1.66/6.59	15.46/2.78/31.64	2.56/0.60/1.55
	Group balance	78.25/88.50/87.03	2.00/2.20/16.93	2.10/1.27/11.36	9.85/4.57/29.48	3.95/0.68/1.19
	Group-class balance	78.57/84.50/83.60	1.65/2.30/18.80	3.31/0.76/3.89	12.91/5.82/38.88	3.28/0.42/0.87
	CDA	76.75/87.58/85.20	1.60/1.75/14.20	6.37/0.31/4.10	15.91/5.41/35.70	0.82/0.42/1.19
	Dropout	78.33/88.92/86.73	2.15/1.55/14.53	2.42/0.58/8.86	11.11/3.96/27.05	4.08/0.56/2.10
	Attention entropy	78.33/88.42/86.67	1.75/1.75/15.73	2.89/0.23/9.23	10.91/5.60/24.68	3.82/0.69/1.75
	Causal debias	78.83/87.52/86.00	2.65/2.45/15.60	1.48/0.85/10.56	11.34/6.51/30.14	4.06/0.56/1.34
RoBERTa (all)	Default	78.88/88.70/87.90	2.95/2.40/13.80	2.24/0.58/9.50	13.55/7.19/33.47	4.14/0.95/2.35
	Group balance	79.30/88.65/87.93	2.90/2.00/14.73	1.27/0.17/12.30	11.03/7.74/31.69	5.02/1.06/2.80
	Group-class balance	79.40/89.15/87.93	1.70/1.10/12.73	4.43/0.24/5.08	13.65/3.24/25.90	4.17/0.75/1.58
	CDA	77.75/88.25/86.90	2.50/2.00/13.80	5.93/1.25/6.33	18.80/3.71/22.62	1.13/0.55/1.18
	Dropout	78.88/88.40/87.70	2.75/3.00/14.80	1.80/1.33/6.66	12.46/7.34/33.39	4.26/0.99/2.13
	Attention entropy	78.80/88.72/87.83	2.10/2.15/13.53	2.64/1.33/7.55	11.31/4.18/28.68	4.46/1.09/2.57
	Causal debias	79.27/89.78/87.80	3.35/1.25/15.00	3.24/0.51/11.86	16.00/3.05/37.57	3.56/0.74/2.70
Llama3.2-3B-Instruct	Zero-shot	63.78/74.62/71.27	1.45/2.35/24.67	11.03/3.52/36.81	10.54/1.03/2.95	2.13/2.94/3.83
	Few-shot	67.80/79.80/80.10	1.60/1.70/18.20	2.49/0.08/6.73	6.73/0.05/10.77	1.39/2.05/1.90
	Fairness imagination	64.95/75.92/73.37	0.80/0.85/21.87	8.70/3.61/32.54	9.44/6.79/5.98	2.65/3.58/3.50
	Fairness instruction	65.90/76.95/78.07	2.60/1.70/21.53	1.89/0.39/7.00	3.79/6.35/4.24	1.35/1.13/1.71
Qwen3-4B	Zero-shot	69.55/79.75/77.50	0.60/0.00/17.40	7.13/1.40/21.07	13.25/3.71/5.17	2.55/2.41/3.32
	Few-shot	70.15/80.73/79.53	1.80/0.65/18.93	10.02/2.50/19.31	11.89/9.15/5.57	3.18/3.34/3.76
	Fairness imagination	71.23/80.40/80.83	0.85/1.00/18.27	4.03/2.11/10.51	11.62/9.21/4.28	2.98/3.16/2.20
	Fairness instruction	70.40/79.77/80.47	0.60/1.35/19.33	4.30/0.39/4.67	11.11/5.24/5.08	2.02/1.83/1.71
Qwen3-8B	Zero-shot	59.27/69.23/66.30	1.25/0.15/26.80	8.18/0.07/42.05	4.65/0.80/3.02	3.27/3.40/4.74
	Few-shot	66.97/77.30/77.47	0.05/0.00/23.27	6.14/2.73/29.51	7.95/7.64/2.34	4.23/4.58/5.96
	Fairness imagination	62.10/72.92/69.97	1.60/0.55/21.87	7.80/2.62/32.27	4.28/5.42/9.43	2.54/2.08/2.58
	Fairness instruction	66.50/75.15/73.90	0.90/0.10/21.20	8.03/1.76/28.60	8.79/4.59/7.45	2.45/2.95/3.15

1561
 1562 Tables 8 and 9 show the task performance and fairness scores for the default/zero-shot and debiased
 1563 models on the Civil Comments and Jigsaw datasets respectively. To better identify the differences
 1564 between different debiasing methods, we conduct an analysis based on how often a debiasing method
 1565 successfully reduces the average individual unfairness (Avg_{iu}) and maintains the task performance
 (Accuracy) of the default/zero-shot model.

1566
1567
1568
1569
1570Table 9: Task performance and fairness results of default and debiased models on the Jigsaw dataset. Results are provided for race/gender/religion biases. **Green** (**red**) indicates the results are **better** (**worse**) than the default/zero-shot models. *All* indicates the model is trained on data containing all bias types.1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

Model	Method	Accuracy (\uparrow)	Disp _{acc} (\downarrow)	Disp _{fpr} (\downarrow)	Disp _{fnr} (\downarrow)	Avg _{iu} (\downarrow)
BERT	Default	85.50/93.00/90.50	0.50/2.25/6.00	0.64/2.34/5.22	0.70/3.28/21.54	2.02/0.36/1.33
	Group balance	84.88/92.75/89.67	2.75/1.00/10.67	1.28/0.82/3.90	7.77/4.56/38.29	1.90/0.36/0.67
	Group-class balance	84.38/92.81/90.83	0.25/0.62/6.33	1.58/0.15/1.98	8.03/9.64/43.57	0.97/0.65/0.34
	CDA	85.25/91.81/90.50	4.00/3.63/10.00	4.12/3.44/5.10	2.97/7.38/37.39	0.39/0.28/0.45
	Dropout	85.62/92.69/89.83	1.25/3.37/9.67	0.31/3.03/5.46	6.51/8.41/27.37	2.75/0.36/1.00
	Attention entropy	85.00/92.06/89.83	0.00/3.12/9.33	0.62/3.03/4.29	1.72/6.00/28.06	2.93/0.50/0.98
BERT (all)	Causal debias	85.50/93.38/89.83	4.00/0.75/7.33	1.28/0.28/3.55	13.73/12.77/17.12	3.16/0.43/1.10
	Default	85.62/93.19/90.33	1.25/1.12/9.33	1.59/1.51/4.65	12.69/0.36/21.76	1.30/0.33/1.18
	Group balance	83.38/93.19/90.17	1.75/1.12/9.67	1.56/1.10/4.66	3.10/3.23/26.79	2.81/0.40/0.76
	Group-class balance	84.88/92.94/90.00	1.25/0.87/10.00	1.27/0.41/2.09	0.37/7.49/58.07	1.29/0.28/0.47
	CDA	85.62/92.19/90.00	3.25/1.88/7.00	2.86/1.78/4.02	4.17/4.41/38.24	0.69/0.29/0.46
	Dropout	86.50/93.44/91.00	3.00/1.38/7.00	1.26/1.10/5.60	10.24/6.10/13.16	1.91/0.33/1.27
RoBERTa	Attention entropy	85.25/93.75/91.50	0.50/2.75/8.00	0.65/2.62/5.19	0.57/5.54/34.85	2.57/0.41/1.07
	Causal debias	84.50/93.44/90.50	1.00/1.38/9.00	2.22/1.38/4.27	4.35/3.38/24.10	1.40/0.40/1.00
	Default	84.50/93.00/90.33	1.00/3.75/10.33	2.87/3.44/1.82	6.54/8.31/47.47	2.55/0.30/0.89
	Group balance	85.50/92.31/89.83	2.50/0.62/11.33	0.94/0.27/1.55	9.11/6.41/38.00	2.44/0.26/0.46
	Group-class balance	85.00/92.50/90.67	1.00/1.50/5.33	1.59/0.26/2.01	11.53/14.87/24.59	1.55/0.53/0.62
	CDA	85.12/93.19/89.33	0.75/1.88/8.67	4.12/1.10/3.90	12.64/11.13/25.89	0.36/0.23/0.40
RoBERTa (all)	Dropout	83.88/93.69/90.17	1.75/0.88/7.67	1.29/0.82/2.97	3.10/3.28/26.86	2.71/0.23/0.87
	Attention entropy	85.00/93.50/90.33	0.50/1.75/6.67	2.23/2.06/1.01	6.55/0.62/22.78	2.39/0.24/0.81
	Causal debias	86.25/92.19/89.50	2.00/3.37/10.00	2.23/2.33/1.84	0.60/14.77/43.47	2.09/0.39/0.66
	Default	85.50/93.75/91.50	0.50/1.75/7.00	0.01/1.51/5.56	3.06/5.74/31.14	2.52/0.35/1.55
	Group balance	85.38/93.62/91.67	1.75/3.25/9.33	0.01/2.47/4.12	9.01/11.90/40.29	2.76/0.30/0.96
	Group-class balance	86.38/92.56/90.17	2.25/1.88/10.67	0.62/1.37/2.58	9.05/8.62/64.35	4.75/0.23/0.34
Llama3.2-3B-Instruct	CDA	85.25/92.56/90.67	1.00/0.62/7.67	1.59/0.13/1.80	11.53/7.49/31.28	0.52/0.23/0.74
	Dropout	86.00/93.00/90.17	2.50/1.75/4.67	1.27/1.51/4.19	17.51/6.21/28.72	1.02/0.33/0.79
	Attention entropy	86.75/93.50/91.50	0.50/2.50/7.00	0.96/2.06/3.16	6.54/8.05/24.59	3.40/0.38/1.19
	Causal debias	85.38/93.25/91.00	0.25/3.50/10.00	0.01/2.62/5.41	1.88/13.69/34.14	2.55/0.40/0.80
	Zero-shot	54.00/70.50/65.17	8.50/1.00/25.67	10.91/1.53/31.87	0.20/4.56/8.33	2.39/3.00/4.28
	Few-shot	73.12/88.62/86.83	7.25/0.50/7.67	13.01/0.16/4.83	15.05/9.08/23.17	1.63/1.68/2.00
Qwen3-4B	Fairness imagination	57.75/73.56/66.83	5.00/1.62/26.33	6.47/1.63/30.03	0.26/1.74/17.48	2.86/3.73/3.92
	Fairness imagination	57.75/73.56/66.83	5.00/1.62/26.33	6.47/1.63/30.03	0.26/1.74/17.48	2.86/3.73/3.92
	Fairness instruction	77.00/89.00/87.17	2.00/0.75/10.67	2.87/0.84/3.97	2.19/3.33/36.36	1.39/0.97/1.87
	Zero-shot	66.75/77.25/77.33	3.50/3.75/16.33	4.21/3.78/17.40	0.80/4.05/5.89	3.05/2.31/3.67
Qwen3-8B	Few-shot	57.88/68.06/77.83	8.75/2.12/9.33	11.52/1.80/10.86	1.49/5.79/9.45	3.60/4.31/4.18
	Fairness imagination	73.75/82.88/86.33	3.00/1.00/10.33	5.12/0.89/5.79	5.39/0.82/24.13	3.14/2.97/2.51
	Fairness instruction	78.00/89.50/89.33	3.00/0.50/9.33	4.14/0.26/3.13	2.04/5.23/26.74	1.95/1.43/1.61
	Zero-shot	48.12/59.50/56.50	7.25/0.00/13.00	9.68/0.37/18.59	1.31/4.92/6.30	3.31/3.47/5.52
Encoder-only models	Few-shot	53.75/67.19/77.17	5.50/1.12/8.67	6.18/1.53/10.51	3.41/1.95/4.88	4.50/5.04/5.99
	Fairness imagination	51.62/67.50/61.83	4.25/0.75/9.67	5.24/0.56/11.23	1.05/3.49/6.45	2.51/2.02/2.55
	Fairness instruction	60.25/71.19/67.50	8.50/1.87/12.00	10.57/2.23/14.22	0.93/1.90/2.10	2.46/3.13/3.60

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Analyzing the results with respect to the dataset, we find that the models are able to better preserve their original accuracy on the Civil Comments dataset (48.61% of the cases) compared to the Jigsaw dataset (40.28% of the cases). In contrast, mitigating bias seems substantially easier on the Jigsaw dataset (in 63.88% of the cases) than on the Civil Comments (only 50% of the cases). On closer inspection, we find that this skew comes from religion bias in the Jigsaw dataset which is improved in 95.83% of the cases after debiasing, followed by race bias (50%) and gender bias (45.83%). In the Civil Comments dataset, we find that gender bias is mitigated best (improvement in 62.5% of the cases), followed by religion bias (54.17%) and race bias (33.33%).

With respect to the debiasing method, we find that CDA performs best in terms of debiasing, as it reduces Avg_{iu} across all bias types, datasets, and models. The second best performing method is group-class balance which manages to reduce Avg_{iu} in 58.33% of the cases on the Civil Comments dataset and in 75% cases on the Jigsaw dataset. For the other methods, the results are mixed as we again observe dataset-specific differences. For example, we find that Attention entropy performs well on the Jigsaw dataset (50%) but performs worst on the Civil Comments dataset (16.67%). These differences become even more pronounced when looking at different bias types. For instance, causal debiasing improves Avg_{iu} for religion bias across all models on the Jigsaw dataset but at the same time, does not improve a single model in terms of Avg_{iu} for gender bias in the same dataset. Interestingly, we find an inverse trend on the Civil Comments dataset; i.e., causal debiasing succeeds on all models for gender bias, but only for one model for religion bias. These findings highlight the

1620 importance of considering a diverse set of datasets for evaluating debiasing methods, as results on a
 1621 single dataset can be misleading.
 1622

1623 **Decoder-only models** We find that the debiasing methods (fairness imagination and fairness in-
 1624 struction) for the decoder-only models consistently improve the task performance across all bias
 1625 types and datasets. Contrary to this, we see increases in average individual unfairness of the fair-
 1626 ness imagination approach for race and gender bias on Llama3.2-3B-Instruct and Qwen3-4B across
 1627 both datasets. Only for religion, fairness imagination leads to a consistent decrease of the individual
 1628 unfairness across models. For fairness instruction, we observe a consistent improvement across all
 1629 three bias types and both datasets, showing the clear superiority of the approach. The consistency of
 1630 the results is especially surprising when considering that both decoder-only models are instruction-
 1631 tuned and aligned with human values, and that Chen et al. (2025) identify a bias amplification effect
 1632 from instruction tuning. We conclude that fairness instruction is a good baseline to evaluate other
 1633 debiasing methods for decoder-only models.
 1634

1635 I BIAS DETECTION RESULTS

1636 **Fairness correlation** We present the full fairness correlation results of encoder- and decoder-only
 1637 models with different debiasing methods on Civil Comments and Jigsaw in Figures 11, 12, 13, 14.
 1638 Consistent with findings presented in the main text, Occlusion- and L2-based explanation methods
 1639 achieve strong fairness correlations across different setups.
 1640

1641 Comparing different debiasing methods, we find that low correlation scores primarily occur when
 1642 individual unfairness is less pronounced, such as in CDA models. In these cases, the models them-
 1643 selves produce fewer biased predictions, making the detection of bias through explanations less
 1644 critical. The lower correlations therefore do not substantially undermine the role of explanations in
 1645 bias identification.
 1646

1647 J FAITHFULNESS AS AN INDICATOR OF BIAS DETECTION ABILITY

1648 What factors influence the reliability of explanations in detecting bias? In this section, we exam-
 1649 ine the relationship between explanation faithfulness and their ability to identify bias, reflected by
 1650 fairness correlation scores in RQ1. We assess the faithfulness of explanation methods using two
 1651 perturbation-based metrics: comprehensiveness and sufficiency AOPC (Area Over the Perturbation
 1652 Curve; DeYoung et al., 2020), computed by masking 5%, 10%, 20%, and 50% of the input tokens.
 1653 For substitution, we use the [MASK] token in BERT and the [PAD] token in Qwen3-4B. Higher
 1654 comprehensiveness and lower sufficiency scores indicate more faithful explanations.
 1655

1656 Our results on race bias in Civil Comments (Figure 15 and Table 10) reveal no clear link between
 1657 faithfulness and fairness correlation of explanations. In particular, mean-based explanations may
 1658 achieve better faithfulness scores than their L2-based counterparts, yet they consistently perform
 1659 significantly worse in identifying bias. We attribute this discrepancy to two key differences between
 1660 the faithfulness metrics and our fairness correlation measure. First, faithfulness evaluates attribu-
 1661 tion scores across all input tokens, whereas our fairness correlation measure only considers sensitive
 1662 token reliance. Second, perturbation-based faithfulness assesses the impact of masking tokens on
 1663 model predictions, while our individual unfairness metric compares predictions when one social
 1664 group is substituted for another. Taken together, these findings suggest that explanation faith-
 1665 fullness is not a reliable indicator of bias detection ability. We therefore do not recommend selecting
 1666 explanation methods for fairness on the basis of faithfulness results alone.
 1667

1668 K MODEL SELECTION RESULTS

1669 **Explanation-Based Metrics and Fair Model Selection Results** We evaluate several explanation-
 1670 based metrics for selecting fair models with respect to different fairness criteria:
 1671

- 1672 • **Average absolute sensitive token reliance:** used to predict average individual unfairness,
 1673 under the assumption that higher reliance on sensitive tokens implies greater sensitivity to
 group substitutions.

Figure 11: Fairness correlation results on Civil Comments for each explanation method across encoder-only models and bias types. Higher values indicate that the method is more effective and reliable in detecting biased predictions at inference time. *All* indicates the model is trained on data containing all bias types.

- **Group differences in average absolute sensitive token reliance:** used to predict disparities in accuracy, assuming that stronger reliance on sensitive features increases the risk of incorrect predictions.

Figure 12: Fairness correlation results on Civil Comments for each explanation method across decoder-only models and bias types. Higher values indicate that the method is more effective and reliable in detecting biased predictions at inference time.

Table 10: Faithfulness results of different explanation methods on BERT and Qwen3-4B models.

Explanation	Comp. (↑)	Suff. (↓)	Fairness Correlation (↑)	Comp. (↑)	Suff. (↓)	Fairness Correlation (↑)
	BERT			Qwen3-4B		
Attention	4.50	3.20	0.62	10.34	17.20	0.14
Attn rollout	4.37	3.11	0.59	9.04	15.70	0.02
Attn flow	4.01	3.46	0.47	10.57	16.82	0.04
Grad L2	4.82	2.99	0.50	12.30	16.09	0.32
Grad mean	0.77	6.16	0.06	11.41	17.50	0.06
DeepLift L2	4.72	3.09	0.50	12.44	16.17	0.31
DeepLift mean	1.68	5.75	0.06	10.78	18.69	0.06
IxG L2	4.89	2.95	0.49	12.35	16.27	0.32
IxG mean	7.44	1.70	0.30	9.99	18.82	0.17
IntGrad L2	4.81	3.02	0.57	12.33	16.86	0.25
IntGrad mean	10.68	-0.36	0.45	14.21	16.12	0.04
Occlusion	13.16	-0.90	0.62	20.05	13.73	0.27
Occlusion abs	0.79	0.56	0.66	22.48	20.36	0.26
KernelSHAP	5.99	2.30	0.21	11.49	17.86	0.02
DecompX	16.08	-2.77	0.40	-	-	-
ProgInfer	-	-	-	10.32	17.96	0.025

- **Group differences in average absolute sensitive token reliance for positive/negative predictions:** used to predict disparities in false positive and false negative rates, respectively.

Among these, only average absolute sensitive token reliance exhibits rank correlations above random chance with its target fairness metric (individual unfairness). The correlations for other metrics remain at chance level. Figures 16, 17, 18, 19 demonstrate that no explanation methods can consistently match baseline rank correlation results.

Figure 13: Fairness correlation results on Jigsaw for each explanation method across encoder-only models and bias types. Higher values indicate that the method is more effective and reliable in detecting biased predictions at inference time. *All* indicates the model is trained on data containing all bias types.

Figures 20, 21, 22, 23 further reveal that explanation methods are not able to robustly select the fairest models. These findings underline the unreliability of explanation-based model selection.

Figure 14: Fairness correlation results on Jigsaw for each explanation method across decoder-only models and bias types. Higher values indicate that the method is more effective and reliable in detecting biased predictions at inference time.

Figure 15: Faithfulness and fairness correlation results of different explanation methods. No clear relationship between explanation faithfulness and their bias detection ability is observed. Each point represents the faithfulness and fairness correlation of one explanation method applied to default/zero-shot models.

L BIAS MITIGATION RESULTS

The complete bias mitigation results are presented in Figures 24, 25, 26, 27. The findings are in line with conclusions from the main paper, that explanation-based debiasing can effectively reduce model biases across different fairness metrics, bias types, models, and datasets. In addition, the accuracy-fairness harmonic mean results shown in Figures 28, 29, 30, 31 demonstrate that explanation-based debiasing achieves comparable or superior balance between fairness and task performance than default models and traditional debiasing approaches.

We additionally report the results of Integrated Gradients for bias mitigation in Table 11. Similar to other explanation methods, IntGrad-based debiasing achieves substantial bias reduction and maintains a good balance between fairness and task performance in $Disp_{fnr}$ and Avg_{iu} .

Figure 16: Rank correlations between validation set average absolute sensitive token reliance and individual unfairness on the test set for encoder-only models on Civil Comments. The validation set sizes are 500 for race, 500 for gender, and 200 for religion. Higher correlation values indicate greater effectiveness in ranking models. *All* indicates the model is trained on all bias types.

Table 11: Results of mitigating race bias in BERT models using Intgrad explanations on Civil Comments. For consistency with accuracy, fairness results are reported as $100 - \{\text{Disp}_{\text{acc}}, \text{Disp}_{\text{fpr}}, \text{Disp}_{\text{fnr}}, \text{Avg}_{\text{iu}}\}$, so that higher values indicate better debiasing performance. Each column corresponds to models selected by maximizing the fairness-balanced metric with respect to the indicated bias metric. H-Mean indicates harmonic mean between fairness and accuracy. **Green** (**red**) indicates the results are **better** (**worse**) than the default models.

Method	Disp _{acc}			Disp _{fpr}			Disp _{fnr}			Avg _{iu}		
	Acc	Fairness	H-Mean	Acc	Fairness	H-Mean	Acc	Fairness	H-Mean	Acc	Fairness	H-Mean
IntGrad L1	78.55	96.66	86.67	78.55	96.66	86.67	77.98	97.86	86.8	78.37	97.02	86.7
IntGrad L2	77.85	96.58	86.21	77.71	96.33	86.02	77.85	96.58	86.21	78.09	97.1	86.56
Default	78.97	98.37	87.61	78.97	98.96	87.84	78.97	91.15	84.62	78.97	96.36	86.8

M FAIRNESS CORRELATIONS IN EXPLANATION-DEBIASED MODELS

Figure 32 presents the fairness correlation scores computed on explanation-debiased models. We find that Grad L2, IxG L2, DeepLift L2, and Occlusion-based explanations still show strong bias mitigation ability in the debiased models.

N LLM USAGE

Apart from the models evaluated in our experiments and analyses, we used LLMs (ChatGPT) solely to polish the writing in this work.

Figure 17: Rank correlations between validation set average absolute sensitive token reliance and individual unfairness on the test set for decoder-only models on Civil Comments. The validation set sizes are 500 for race, 500 for gender, and 200 for religion. Higher correlation values indicate greater effectiveness in ranking models.

Figure 18: Rank correlations between validation set average absolute sensitive token reliance and individual unfairness on the test set for encoder-only models on Jigsaw. The validation set size is 200. Higher correlation values indicate greater effectiveness in ranking models. *All* indicates the model is trained on all bias types.

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Figure 20: MRR@1 results for encoder-only models on Civil Comments. The validation set sizes are 500 for race, 500 for gender, and 200 for religion. Higher MRR@1 scores indicate explanations are more effective in selecting the fairest models. *All* indicates the model is trained on all bias types.

Figure 21: MRR@1 results for decoder-only models on Civil Comments. The validation set sizes are 500 for race, 500 for gender, and 200 for religion. Higher MRR@1 scores indicate explanations are more effective in selecting the fairest models.

Figure 22: MRR@1 results for encoder-only models on Jigsaw. The validation set size is 200. Higher MRR@1 scores indicate explanations are more effective in selecting the fairest models. *All* indicates the model is trained on all bias types.

Figure 23: MRR@1 results for decoder-only models on Jigsaw. The validation set size is 200. Higher MRR@1 scores indicate explanations are more effective in selecting the fairest models.

Figure 24: Accuracy and fairness results for bias mitigation in BERT on the Civil Comments dataset, using different explanation methods during training. For consistency with accuracy, fairness results are reported as $100 - \{\text{Disp}_{\text{acc}}, \text{Disp}_{\text{fpr}}, \text{Disp}_{\text{fnr}}, \text{Avg}_{\text{iu}}\}$, so that higher values indicate better debiasing performance. Each column corresponds to models selected by maximizing the fairness-balanced metric with respect to the indicated bias metric.

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Figure 25: Accuracy and fairness results for bias mitigation in RoBERTa on the Civil Comments dataset, using different explanation methods during training. For consistency with accuracy, fairness results are reported as $100 - \{\text{Disp}_{\text{acc}}, \text{Disp}_{\text{fpr}}, \text{Disp}_{\text{fnr}}, \text{Avg}_{\text{iu}}\}$, so that higher values indicate better debiasing performance. Each column corresponds to models selected by maximizing the fairness-balanced metric with respect to the indicated bias metric.

Figure 26: Accuracy and fairness results for bias mitigation in BERT on the Jigsaw, using different explanation methods during training. For consistency with accuracy, fairness results are reported as $100 - \{\text{Disp}_{\text{acc}}, \text{Disp}_{\text{fpr}}, \text{Disp}_{\text{fnr}}, \text{Avg}_{\text{iu}}\}$, so that higher values indicate better debiasing performance. Each column corresponds to models selected by maximizing the fairness-balanced metric with respect to the indicated bias metric.

2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Figure 27: Accuracy and fairness results for bias mitigation in RoBERTa on the Jigsaw dataset, using different explanation methods during training. For consistency with accuracy, fairness results are reported as $100 - \{\text{Disp}_{\text{acc}}, \text{Disp}_{\text{fpr}}, \text{Disp}_{\text{fnr}}, \text{Avg}_{\text{iu}}\}$, so that higher values indicate better debiasing performance. Each column corresponds to models selected by maximizing the fairness-balanced metric with respect to the indicated bias metric.

Figure 28: Harmonic mean between accuracy and fairness for established debiasing methods and explanation-based methods for BERT on Civil Comments. A higher score indicates better balance between model performance and fairness.

Figure 29: Harmonic mean between accuracy and fairness for established debiasing methods and explanation-based methods for RoBERTa on Civil Comments. A higher score indicates better balance between model performance and fairness.

Figure 30: Harmonic mean between accuracy and fairness for established debiasing methods and explanation-based methods for BERT on Jigsaw. A higher score indicates better balance between model performance and fairness.

2505 Figure 31: Harmonic mean between accuracy and fairness for established debiasing methods and
2506 explanation-based methods for RoBERTa on Jigsaw. A higher score indicates better balance between
2507 model performance and fairness.

2533 Figure 32: Fairness correlation results on BERT models with race bias mitigated through
2534 explanation-based methods on Civil Comments.

2535
2536
2537