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ABSTRACT

Natural language processing (NLP) models often replicate or amplify social bias
from training data, raising concerns about fairness. At the same time, their black-
box nature makes it difficult for users to recognize biased predictions and for de-
velopers to effectively mitigate them. While some studies suggest that input-based
explanations can help detect and mitigate bias, others question their reliability in
ensuring fairness. Existing research on explainability in fair NLP has been pre-
dominantly qualitative, with limited large-scale quantitative analysis. In this work,
we conduct the first systematic study of the relationship between explainability
and fairness in hate speech detection, focusing on both encoder- and decoder-only
models. We examine three key dimensions: (1) identifying biased predictions, (2)
selecting fair models, and (3) mitigating bias during model training. Our findings
show that input-based explanations can effectively detect biased predictions and
serve as useful supervision for reducing bias during training, but they are unreli-
able for selecting fair models among candidates.

1 INTRODUCTION

Language models (LMs) pre-trained on large-scale natural language datasets have shown great ca-
pacities in various NLP tasks (Wang et al., 2018 Gao et al.,[2023)). However, previous studies have
shown that they can replicate and amplify stereotypes and social bias present in their training data
and demonstrate biased behaviors (Sheng et al., 2021; |Gupta et al.l 2024; |Gallegos et al., |2024)).
Such behaviors risk the underrepresentation of marginalized groups and the unfair allocation of
resources, raising serious concerns in critical applications (Blodgett et al.| [2020).

Meanwhile, current NLP models are mostly based on black-box neural networks. Despite their
strong capacities, the complex architecture and large number of parameters of these models make it
hard for humans to understand their behaviors (Bommasani et al.,[2021)). To understand neural NLP
models, different types of explanations have been devised, such as input-based explanations (Yin
& Neubig 2022; Deiseroth et al., 2023} |Madsen et al.| 2024; (Wang et al., 2025b), natural language
explanations (Ramnath et al.| 2024} [Wang et al.| 2025a)), and concept-based explanations (Yu et al.,
2024} Raman et al.| [2024). Among these, input-based explanations, often referred to as rationales,
indicate the contribution of each token to models’ predictions, and thus provide the most direct
insights into models’ behaviors (Arras et al.,[2019; |Atanasova et al., 2022} |Lyu et al., [2024).

Explainability has long been deemed critical to improving fairness. Researchers believe that if the
use of sensitive features is evidenced by model explanations, then they can easily detect biased
predictions and impose fairness constraints by guiding models to avoid such faulty reasoning (Meng
et al.; 2022; Sogancioglu et al.l [2023). However, recent studies have challenged this assumption,
suggesting that the relationship between explainability and fairness is complex and that explanations
may not always reliably detect or mitigate bias (Dimanov et al.,2020; Slack et al.,[2020; |Pruthi et al.,
2020). Unfortunately, to the best of our knowledge, current studies are mostly limited to qualitative
analysis on a small set of explanation methods (Balkir et al., 2022} Deck et al., 2024)). Our work takes
a step toward bridging explainability and fairness by providing the first comprehensive quantitative
analysis in the context of hate speech detection, a task where both fairness and explainability are
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particularly critical. Specifically, we address the following three research questions to investigate
the role of explainability in promoting fairness within the task of hate speech detection:

* RQ1: Can input-based explanations be used to identify biased predictions?
* RQ2: Can input-based explanations be used to automatically select fair models?

* RQ3: Can input-based explanations be used to mitigate bias during model training?

Our results show that input-based explanations can effectively detect biased predictions and help
reduce bias during model training, but they are less reliable for automatic fair model selection.
Furthermore, our analyses indicate that explanation-based bias detection remains robust even when
models are trained to reduce reliance on sensitive features, and that these explanations outperform
LLM judgments in identifying bias.

2 RELATED WORK

Bias in NLP The presence of social bias and stereotypes has significantly shaped human language
and LMs trained on it (Blodgett et al.l [2020; [Sheng et al., [2021)). As a result, these models often
exhibit biased behaviors (Gallegos et al., [2024), such as stereotypical geographical relations in the
embedding space (Bolukbasi et al.,|2016; May et al.| [2019) and stereotypical associations between
social groups and certain concepts in the model outputs (Fang et al.| |2024; [Wan & Changl [2025).
More critically, disparities in model predictions and performance across social groups (Zhao et al.,
2018;|Sheng et al., 2019) can significantly compromise user experiences of marginalized groups and
risk amplifying bias against them, therefore drawing great concerns in critical use cases.

Input-based Model Explanations Input-based explanations in NLP models aim to attribute
model predictions to each input token (Lyu et al} 2024). They can be broadly categorized based
on how they generate explanations: gradient-based (Simonyan et al.,2014; Kindermans et al., 2016;
Sundararajan et al.,|2017}; [Enguehard, [2023)), propagation-based (Bach et al., 2015; |Shrikumar et al.,
2017 [Ferrando et al., [2022; [Modarressi et al., 2022; [2023)), perturbation-based (Li et al.| 2016
Ribeiro et al., 2016; [Lundberg & Leel [2017} Deiseroth et al., |2023)), and attention-based meth-
ods (Bahdanau et al., 2015 |Abnar & Zuidema, 2020). While most prior work has focused on
encoder-only models, recent studies have also explored explaining the behaviors of generative mod-
els (Yin & Neubig, |2022; [Ferrando et al., 2022; [Enouen et al., [2024; |Cohen-Wang et al., [2024)).

Bridging Explainability and Fairness Explainability is often considered essential for achieving
fairness in machine learning systems (Balkir et al., 2022; |Deck et al., [2024)). One line of research
investigates model bias by analyzing explanations (Prabhakaran et al.|2019; Jeyaraj & Delany}[2024;
Sogancioglu et al., [2023)). For instance, [Muntasir & Noor (2025) shows that a biased model relied
on gendered words as key features in its predictions, as revealed by LIME explanations. Similarly,
Stevens et al.[ (2020) demonstrates that biased models often place high importance on gender and
race features when examined with SHAP explanations. Extending this line of evidence, Meng et al.
(2022) finds that features with higher importance scores are associated with larger disparities in
model performance on a synthetic medical dataset using deep learning models.

Another line of research focuses on mitigating bias with explanations (Dimanov et al., 2020;
Kennedy et al, 2020; [Rao et al., 2023)). For example, |Hickey et al.| (2020) improves fairness by
reducing reliance on sensitive features during training with SHAP explanations. [Bhargava et al.
(2020) and Gonzalez-Silot et al.| (20235) first identify predictive sensitive features using LIME and
SHAP, respectively, and then remove them prior to model training. In a related approach, Grabowicz,
et al.| (2022) traces unfairness metrics back to input features and adjusts them to mitigate bias.

However, recent research has challenged the assumption that input-based explanations can be reli-
ably used to detect and mitigate bias. First, current explanation methods may be unfaithful, meaning
that they may not always reflect the true decision-making process of models (Kindermans et al.,
20165 Jain & Wallace, [2019; | Ye et al., 2025). This makes it difficult to reliably detect the use of sen-
sitive features in predictions. Second, efforts to reduce the influence of sensitive features can lead
to unintended consequences, sometimes degrading both model performance and fairness (Dimanov
et al.,2020). Finally, models can be deliberately trained to assign lower importance to sensitive fea-
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tures, thereby masking biased predictions when explanations are inspected (Dimanov et al., 2020;
Slack et al., [2020; [Pruthi et al., [2020).

Despite growing interest in this topic, most existing work remains qualitative or restricted to limited
setups (Balkir et al.,|2022; Deck et al., 2024). To the best of our knowledge, this is the first study to
quantitatively and comprehensively examine the relationship between explainability and fairness in
NLP models. We focus on hate speech detection as a particularly critical application. Prior research
has shown that biased NLP models often rely on demographic information such as race and gender,
leading to inferior performance on marginalized groups in this task (Sap et al.,[2019; Mathew et al.,
2021). Detecting and mitigating such biased behaviors are therefore essential to ensuring equitable
opportunities for all social groups to voice their perspectives on social media.

3 EXPERIMENTAL SETUP

Notations Let an input text x consist of tokens ¢1, ¢, ...,,. The task of hate speech detection
is to predict a binary label §j € {toxic, non-toxic}. A classifier outputs the probability of class ¢ as
fe(x), where f is implemented by a neural model.

In the context of social bias, we assume that a bias type (e.g., race) involves a set of social groups G
(e.g., black, white, ...). A subset of tokens t,,t4,,...,t,, inx denotes the sensitive feature g € G
of the speaker or target. We refer to these tokens as sensitive tokens. By replacing the sensitive
tokens of group g with those of another group ¢’, we obtain a counterfactual version of x that refers
to ¢/, denoted as x(9").

An input-based explanation assigns an attribution score to each token in x for class c: af, as, ..., a5,
indicating their contribution to the prediction of class c. The attribution scores on the sensitive
tokens, ag, ,ag,,...,ay ., are referred to as sensitive token reliance scores. If multiple sensitive
tokens occur in a sentence, we take the score with the maximum absolute value as the reliance score

for that example{']

sensitive token reliance(x, ¢) = aj., where j* = argmax ‘a?
j€{g1,--,gm}

Datasets and Vocabulary We use two hate speech detection datasets: Civil Comments (Borkan
et al., 2019) and Jigsaw (cjadams et al., [2019). To ensure coverage, we focus on three bias types
and their associated groups: race (black / white), gender (female / male), and religion (Christian /
Muslim / Jewish). We include examples containing identity-marking terms but exclude those with
derogatory or slur-based references, as the latter can reasonably serve as direct evidence for toxic
predictions. The sensitive token vocabulary is derived from |Caliskan et al.| (2017) and [Wang &
Demberg| (2024). Further details on dataset pre-processing are provided in Appendix [A]

Models We evaluate two types of commonly used NLP models: encoder-only models (BERT (De-
vlin et al| 2019) and RoBERTa (Liu et al.l 2019)) and decoder-only large language models
(Llama3.2-3B-Instruct (Dubey et al., [2024) and Qwen3-4B (Yang et al. [2025)). We fine-tune
encoder-only models on data subsets that either target a single bias type or combine all bias types.
For decoder-only models, we use an instruction-based setup where the model is prompted to decide
whether a test example contains hate speech. The prompt includes the definition of hate speech, the
test example, and a corresponding question. As a baseline, we adopt the zero-shot setting as the
default configuration.

Beyond conventional fine-tuning and prompting, we also investigate the interaction between ex-
plainability and fairness in debiased models. For encoder-only models, we apply pre-processing
techniques such as group balance (Kamiran & Calders, 2012), group-class balance (Dixon et al.,
2018)), and counterfactual data augmentation (CDA, |Zmigrod et al., 2019), as well as in-processing
techniques including dropout (Webster et al.| [2020)), attention entropy (Attanasio et al., [2022)), and
causal debias (Zhou et al.,[2023). For decoder-only models, we incorporate bias reduction through
prompt design, including few-shot, fairness imagination (Chen et al.| |2025), and fairness instruction
prompting (Chen et al.,|2025)). Further details are provided in Appendix

"We have also experimented with normalizing feature importance scores but found that using raw scores
yielded the best results.
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Fairness Metrics We evaluate fairness in model predictions using two categories of metrics:
group fairness and individual fairness. Group fairness metrics capture disparities in performance
across demographic groups:

Disp,erric = E |metric, — metricg|,
geG

where metricg is the average metric value across all groups G in a bias type. We specifically measure
disparities in accuracy (ACC), false positive rate (FPR), and false negative rate (FNR).

Individual fairness measures the extent to which a model’s prediction for a given example changes
when the associated social group is altered. To maintain consistency with the direction of group
fairness metrics, we compute the individual unfairness (IU) score of x; and the predicted class ¥;:

1 !’
T Z fa, (ng ))‘
TEAN S v

The Average IU score (Avg;,) is then computed over a dataset to reflect the overall level of individual
unfairness in a model.

IU(x;) = | f5,(x:)

For both types of metrics, higher scores indicate more bias in model predictions. It is worth noting
that individual unfairness can be evaluated at the level of each example, whereas group fairness
metrics are defined over sets of validation or test examples. To compute the fairness metrics, we
randomly sample a subset of examples for each bias type such that each social group contributes an
equal number of examples. Further details on test set sampling are provided in Appendix [A]

Explanation Methods We employ 14 variants of commonly used input-based post-hoc expla-
nation methods, covering diverse methodological categories: Attention (Bahdanau et al., |2015)),
Attention rollout (Attn rollout, |Abnar & Zuidemal 2020), Attention flow (Attn flow, |Abnar &
Zuidema, 2020), Gradient (Grad, |Simonyan et al., |2014)), Input x Gradient (IxG, |Kindermans
et al.,|2016), Integrated Gradients (IntGrad, |Sundararajan et al., [2017)), Occlusion (L1 et al.,|2016),
DeepLift (Shrikumar et al.l 2017), and KernelSHAP (Lundberg & Leel 2017). For methods that
attribute predictions to embeddings, we aggregate attribution scores into a single feature importance
value using either the mean or the L2 norm. For Occlusion, we additionally report results obtained
by taking the absolute value of each attribution score prior to computing sensitive token reliance
scores (denoted as Occlusion abs). We also study rationales generated by LL.Ms and find that these
rationales are not as reliable as input-based explanations in detecting bias (Section [6).

Table 1: Task performance and fairness of default and debiased models on Civil Comments. Results
are provided for race / gender / religion biases. Green (red) indicates the results are better (worse)
than the default / zero-shot models. No debiasing method consistently reduces bias across all
metrics and bias types.

Model ~ Method Accuracy (1) Disp,..(}) Dispg, (1) Dispy,. () Avg, (1)
Default 78.38/88.05/85.93  2.05/3.30/18.07  0.50/0.03/5.77  10.04/11.98/30.9  3.17/0.66/1.27
Group balance 79.25/87.25/86.83  3.10/2.80/13.53  0.25/1.73/11.53  10.46/5.38/30.31  3.79/0.42/2.01
Group-class balancing ~ 78.00/87.02/85.77  1.80/2.75/14.73  2.42/0.99/3.09  10.63/7.26/33.14  4.43/0.98/0.71
BERT CDA 76.83/86.70/84.83  2.35/3.60/14.13  5.88/2.00/5.67  18.45/7.57/24.12  0.50/0.50/0.90
Dropout 78.53/88.20/85.03  2.25/2.10/15.67 0.78/1.46/5.93 10.82/3.50/27.16  3.43/0.52/1.51
Attention entropy 79.15/87.67/84.93  2.60/2.05/15.07  0.99/0.10/4.99  11.71/7.11/26.52  2.95/0.67/1.58
Causal debias 78.80/86.17/86.40  0.00/2.65/16.40  3.90/0.46/8.82  7.98/10.67/30.46  3.83/0.48/2.10
Zero-shot 69.55/79.75/77.50  0.60/0.00/17.40  7.13/1.40/21.07  13.25/3.71/5.17  2.55/2.41/3.32
Quen3  Few-shot 63.00/76.40/74.30  1.90/1.60/20.80  10.17/4.77/26.67  8.04/7.21/8.22  3.30/4.03/4.60

Fairness imagination

Fairness instruction

71.23/80.40/80.83
70.40/79.77/80.47

0.85/1.00/18.27
0.60/1.35/19.33

4.03/2.11/10.51
4.30/0.39/4.67

11.62/9.21/4.28
11.11/5.24/5.08

2.98/3.16/2.20
2.02/1.83/1.71

4  QUANTITATIVE ANALYSES OF FAIRNESS AND EXPLAINABILITY

To comprehensively understand the relationship between explainability and fairness in NLP mod-
els, we examine three ways in which model explanations can be applied to promote fairness. The
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subsequent sections detail the experimental setups for each application and report the corresponding
results. For brevity, we report results on Civil Comments using BERT trained on single bias types
and Qwen3. Results for additional models and the Jigsaw dataset are presented in Appendix [B|to[E]

4.1 MODEL PERFORMANCE AND FAIRNESS

As a prerequisite, we first summarize the performance and fairness of the evaluated models. The
results in Table [I|show that no single debiasing method consistently improves all fairness metrics.
For BERT and Qwen3, CDA and fairness instruction achieve the largest reductions in individual
unfairness, yet they may simultaneously amplify biases on other metrics. Other debiasing methods
show a similar pattern: they reduce bias for a specific metric or bias type, but the improvement does
not generalize across different setups. These limitations underscore the importance of leveraging ex-
planations for bias detection and mitigation. We find similar results for other models and for Jigsaw,
which we provide in Appendix |B|along with a discussion on model performance and fairness.

4.2 RQI1: EXPLANATIONS FOR BIAS DETECTION

Our first research question asks whether explanations can be used to detect biased predictions. We
address the question through three steps: (1) obtain model predictions and compute individual un-
fairness scores; (2) generate input-based explanations for the predictions; and (3) compute sensitive
token reliance scores and evaluate their Pearson correlation with individual unfairness, which we
refer to as fairness correlation. A higher fairness correlation indicates that the explanation method
is more effective in identifying predictions with high individual unfairness. To ensure robustness,
we compute the fairness correlation separately for each prediction class—group pair and report the
average absolute score as the final result for each explanation method.

We present results for default and debiased models where individual unfairness remains high after
debiasing, as bias detection is particularly critical in these cases. Specifically, we report results for
models with the highest average Avg;, scores across bias types, namely default, group balance, and
causal debias for BERT, and zero-shot, few-shot, and fairness imagination prompting for Qwen3.
Results for religion as well as other models and the Jigsaw dataset are provided in Appendix [C]
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Figure 1: Fairness correlation results for each explanation method. Occlusion- and L2-based expla-
nations are effective for bias detection across different bias types and models.

Results Figure|l|shows that the best-performing explanation methods, such as Grad L2, IxG L2,
DeepLift L2, Occlusion, and Occlusion abs, generally achieve high fairness correlations across dif-
ferent models and bias types, indicating a strong ability to detect biased predictions. Besides, their
fairness correlations are mostly statistically significant (p < o = 0.05) in all, or in all but one, class-
group categories, which confirms their reliability. Among these methods, Occlusion and Occlusion
abs perform best with BERT models, whereas the L2-based methods Grad L2, IxG L2, and DeepLift
L2 are most effective with Qwen3.
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When comparing different variants of the same explanation family, mean-based approaches perform
considerably worse than their L2-based counterparts, and also underperform compared to undirected
attention-based methods. We attribute this limitation to their dependence on accurately determining
the direction of each token’s contribution, a challenge that attention- and L2-based explanations do
not face. Our analysis in Appendix |G| further shows that the effectiveness of explanation-based bias
detection is not determined by explanation faithfulness, underscoring the need for careful evaluation
when selecting methods for bias identification.

Takeaway: Input-based explanation methods, particularly Occlusion- and L.2-based ones, are ef-
fective for identifying biased predictions at inference time.

4.3 RQ2: EXPLANATIONS FOR MODEL SELECTION

Given that explanations can detect biased predictions (RQ1), we next investigate whether they can
also be used to select fair models among candidates. Prior work has demonstrated that input-
based explanations on validation examples can help humans identify spurious correlations in mod-
els (Lertvittayakumjorn & Toni} 2021} |Pezeshkpour et al., 2022). Extending this idea, we examine
whether explanations can be leveraged for automatic fair model selection, thereby removing the
need for human intervention.

Our experiments consist of three steps: (1) for all default and debiased models (seven encoder-only
and four decoder-only), we generate predictions on a validation set and compute explanation-based
metrics; (2) we compute fairness metrics on the test set for each model; and (3) we evaluate
model selection ability using two measures: Spearman’s rank correlation (p) between validation set
explanation-based metrics and test set fairness metrics, which reflects the ability to rank models, and
mean reciprocal rank of the fairest model (MRR @ 1), which reflects the ability to select the fairest
model. Higher correlations and MRR @1 indicate that an explanation method is useful for ranking
models and selecting the fairest one. Specifically, we use the average absolute sensitive token
reliance on the validation set as the explanation-based metric to rank and select models based on
average individual unfairness on the test setE] As a baseline, we report results of using the validation
set average individual unfairness as the predictor of test set fairness performance. The results are
averaged over six and three random validation set selections for encoder- and decoder-only models,
respectively. Results for more models and the Jigsaw dataset are presented in Appendix D}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, --=- Val fairness
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Occlusion abs

KernelSHAP
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>
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Figure 2: Rank correlations between validation set average absolute sensitive token reliance and test
set individual unfairness. The validation set sizes are 500 for race and gender, and 200 for religion.
None of the explanation methods consistently achieve performance on par with the baseline.

Results The results in Figures [2| and [3| highlight the limitations of using explanations for
model selection.  Although some methods occasionally show high rank correlations (e.g.,
Grad L2 for race and religion biases in BERT and Occlusion-based methods for gen-
der and religion biases in Qwen3), none of them consistently reach the baseline of us-

>We have evaluated other metrics to predict group fairness outcomes. However, neither explanation-based
metrics nor validation set fairness achieved rank correlations beyond random chance with the test set results.
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ing the individual unfairness on the validation set.

This limitation is particularly evi-

dent in decoder-only models, where the baseline achieves a perfect rank correlation of 1.

Their ability to select the fairest models is even
weaker, as indicated by lower MRR@1 scores
compared to both the baseline and random rank-
ing. Considering that these explanations are often
more computationally expensive to generate than
evaluating validation set fairness, they are not
practically useful as a model fairness indicator.
Therefore, we do not recommend explanation-
based model selection, especially in decoder-only
models. The difference in findings between RQ1
and RQ2 may stem from the fact that debiasing
methods can alter model behaviors and thereby
affect explanation attributions. As a result, com-
paring explanations across default and debiased
models is less reliable, whereas comparing expla-
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Figure 3: Average MRR@1 across bias types.
Explanation methods perform worse than the
baseline in identifying the fairest models.

nations within the same model remains effective
for detecting biased predictions.

Takeaway: Input-based explanation methods are not reliable tools for selecting fair models.

4.4 RQ3: EXPLANATIONS FOR BIAS MITIGATION

Having shown that explanations can reliably reveal biased predictions (RQ1), we now investigate
whether they can also be leveraged to mitigate model bias. Building on prior work demonstrating
that explanation regularization can reduce spurious correlations while also improving performance
and generalization (Kennedy et al., 2020} Rao et al.,[2023), we investigate bias mitigation by min-
imizing sensitive token reliance during training. Following Dimanov et al.| (2020), we define a
debiasing regularization term, Lgepias, Which penalizes the average sensitive token reliance of all
such tokens in an input, in addition to the task loss:

L = Lask + @Lgebias

Here, « is a hyperparameter that controls the strength of sensitive token reliance reduction. For
embedding-level attributions, we apply either an L1 or L2 norm penalty, corresponding to minimiz-
ing mean- or L2-based reliance scores, respectively.

While Dimanov et al| (2020) tune hyperparameters based on task accuracy, we search o €
{0.01,0.1,1,10, 100} using a fairness-balanced metric (the harmonic mean of accuracy and 100-un-
fairness) on the validation set. Models are selected separately for each fairness criterion. Due to
computational cost, we restrict training to single bias types. We exclude DeepLift and KernelSHAP,
as they are not easily differentiable and thus cannot be incorporated into model training, and IntGrad,
due to its substantial time and memory costs of generating explanations and tracking gradients. Re-
sults are averaged over three runs. More implementation details are provided in Appendix [A]

Results In Figure 4] we present race and gender bias mitigation results. For consistency with
accuracy, fairness results are reported as 100—{Disp,., Dispg,,, Dispy,,, Avg;, }, so that higher values
indicate lower bias. We find that explanation-based bias mitigation effectively improves fairness
across multiple metrics. Most notably, it consistently and substantially reduces Dispy,. for all bias
types. For gender bias, it also yields considerable reductions in Disp, ., and Avg;, is mitigated for
race bias. Moreover, as shown in Figure[T8] all group fairness disparity metrics decrease for religion
bias. The bias mitigation effects are consistent across all models and are also observed on the Jigsaw

dataset (see Figures in Appendix [E).

At the same time, explanation-based debiasing maintains a good balance between fairness and accu-
racy. For example, Grad L1 both increases accuracy and reduces Disp, ., Dispy,,, and Avg;, for gen-
der bias, while most other explanation methods also achieve better Disp, . and Dispy, . with marginal
or no accuracy loss. Our harmonic fairness—accuracy mean results (Figures 22] 23] [24] [25)) further
confirm this by showing that explanation-based debiasing almost always achieves comparable or
higher harmonic means than both default models and traditional debiasing methods.
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Figure 4: Accuracy and fairness results for bias mitigation using different explanation methods.
Each column corresponds to models selected by maximizing the fairness-balanced metric with re-
spect to the indicated bias metric. We find that explanation methods can improve fairness across
many metrics while maintaining reasonable task accuracy.

Among individual explanation methods, attention and attn flow achieve strong debiasing perfor-
mance on BERT, whereas Occlusion performs best on RoOBERTa, though often at the cost of a larger
drop in model accuracy. Overall, IxG L2 and attention-based methods provide robust debiasing
while maintaining a favorable fairness—accuracy trade-off across bias types, models, and datasets,
as reflected in the harmonic mean results. Our findings differ from those of [Dimanov et al| (2020,
which we attribute to our fairness-based hyperparameter tuning strategy.

Takeaway: Input-based explanations can provide effective supervision for mitigating model bias
during training while maintaining a good fairness—performance trade-off. In particular, IxG L2
and attention-based methods achieve robust debiasing with strong overall balance.

5 BIAS DETECTION IN EXPLANATION-DEBIASED MODELS

While explanation-based methods are effective in reducing bias (RQ3), their suppression of attribu-
tions on sensitive tokens could potentially mislead users into believing that model predictions are
unbiased (Dimanov et all, 2020} [STack et al.} [2020; [Pruthi et al.,[2020). To investigate this concern,
we reapply the bias detection procedure from RQ1 to explanation-debiased models and compare
their fairness correlations with those from the corresponding default models. For this analysis, we
use the models debiased for race bias with respect to individual unfairness, as described in RQ3.

The fairness correlation differences from default models are shown in Figure 5] We observe that
the impact of explanation-based debiasing on fairness correlations depends on both the explana-
tions used for debiasing and those used for bias detection. Some approaches, such as Grad mean
/ L2, IxG L2, DeepLift mean / L2, Occlusion, and Occlusion abs, are only marginally, or even
positively, affected by debiasing. Their fairness correlation scores (see Figure 26| in Appendix [F)
further indicate that Occlusion- and L2-based methods (except IntGrad L2) remain reliable for re-
vealing bias in explanation-debiased models. In contrast, attention-based explanations experience
substantial drops, particularly when the models themselves are debiased using attention-based meth-
ods. Similarly, IntGrad-based explanations show a reduced bias detection ability when the debiasing
procedure is also gradient-based. Overall, these findings demonstrate that certain input-based expla-
nations remain effective for detecting biased predictions even in explanation-debiased models. Our
results are different from those of [Dimanov et al.|(2020), likely because their analysis focused solely
on attribution magnitudes without considering their relationship to fairness metrics.
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6 EXPLANATION-BASED BIAS DETECTION VS. LLM-AS-A-JUDGE

Existing research suggests that LLMs could identify and correct bias in their own out-
puts (Bai et al| [2022; |Furniturewala et al. [2024). In this section, we compare the
bias detection ability of input-based explanations against LLMs’ own judgments under two
paradigms: (1) self-reflection, where LLMs are asked to indicate whether their own pre-
dictions rely on bias or stereotypes, and (2) self-attribution, where LLMs choose a K-
word rationale from the input, which we then examine for the presence of sensitive tokens.
We conduct this analysis using o
Qwen3 on the same subset for race Attentionﬁ 014 0.057 012 0038 005 0044 025 012 0085 012 03 I

blas as ln the maln experlments (See Attn flow - -0.24 -0.22 -0.17 0.14 -0.011 -0.16 -0.007 -0.13 -0.067 0.079 -0.004 -0.19 -0.15 -0.091 o4

AppendIX@for the prompts used). Attn rolloutﬁﬁﬂ 025 017 025 0.18 0.016 0.087 0.27 0.12 -0.052 -0.1 -0.063 .-

Grad L1--0.24 -0.23 -0.16 0.13 0.15 -0.13 0.15 -0.051 0.028 0.098 0.14 -0.17 -0.077

Table 2] shows that self-reflection is
highly conservative in flagging bias:
only 86 out of 4,000 predictions are
labeled as biased, all of which cor-

-0.0
Grad L2--0.18 -0.2 -0.18 -0.005 0.072 -0.12 0.07 0.011 0.045 0.032 0.092 -0.27 -0.13

Debiasing Method (RQ3)

IXG L1--0.26 -0.26 -0.19 0.09 -0.033 -0.1 -0.036 0.032 0.039 0.12 0.078 -0.29 -0.057

respond to tOXiC predictions‘ The IXG L2 --0.23 -0.28 -0.19 0.068 0.04 -0.18 0.048 -0.001 0.024 0.26 0.05 -0.21 -0.099 | o4
complete absence of non-toxic cases occtusion JIRRRRR IR BB . .. K000 055 01052 o022 [RRORN o057 l
and the ext.remely lqw coverage make St PO F DS F DS D -0s
self-reflection unreliable as a bias de- S T S EE

. X N AN v 2 £ & e
tection method due to low recall. v ¢ F&TE T F

Explanation Method (RQ1)

Furthermore, predictions marked as
biased by the model actually show
lower average individual unfairness Figure 5: Fairness correlation differences between de-
than those marked non-biased, indi- fault and explanation-debiased BERT. Occlusion- and L2-
cating poor precision as well. based explanations (except IntGrad L2) are less affected by

explanation-based debiasing and remain effective for bias

In contrast, LLMs’ self-attributions  getection.

are less conservative, producing bi-

ased / unbiased judgments across both demographic groups and toxicity classes. However, while
biased cases identified by rationales show higher average individual unfairness than unbiased ones,
they still perform worse than a simple baseline that flags the top 50% of predictions ranked by
absolute Grad L2 reliance scores (Grad L2 Binary). Therefore, we conclude that input-based expla-
nations are more reliable than LLM-as-a-Judge for bias detection.

Table 2: Qwen3 results for detecting bias in its own predictions. “Biased / Unbiased” denotes
whether an example is judged as biased or unbiased by the LLM through self-reflection or self-
attribution. If the judgments are reliable, Avg;, should be higher for biased examples than unbiased
ones. For self-reflection, fairness correlation cannot be computed because the model labels no non-
toxic predictions as biased. Input-based explanations reveal bias more reliably than LLM judgments.

# Biased / Unbiased ~ Avg;, (Biased / Unbiased) Fairness Correlation

Self-reflection 86/3914 0.065/2.59 -

Self-attribution (K=5) 2063 / 1904 3.55/1.49 0.104
Self-attribution (K=10) 2176 / 1474 2.93/1.56 0.070
Grad L2 Binary 2000 /2000 5.02/0.09 0.194

7 CONCLUSION

In this work, we present the first comprehensive study linking input-based explanations and fairness
in hate speech detection. Our experiments show that (1) input-based explanations can effectively
identify biased predictions, (2) they are not reliable for selecting fair models, and (3) they can serve
as effective supervision signals during training, mitigating bias while preserving a strong balance
between fairness and task performance. We further provide practical recommendations on which
explanation methods are best suited for bias detection and bias mitigation. Finally, our analyses
demonstrate that explanation-based bias detection remains effective in explanation-debiased models,
and they outperforms LL.M-as-a-Judge in identifying biased predictions.
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8 ETHICS STATEMENT

This work investigates explainability and fairness in hate speech detection. Despite the diverse ex-
perimental setups considered, our findings remain limited by the coverage of tasks, models, datasets,
fairness metrics, and identity terms; as such, results may not generalize across groups or domains
and could be susceptible to adversarial attacks. We further caution that explanation methods and
debiasing techniques cannot fully eliminate residual harms, and that LLM-generated bias judgments
are unreliable for bias detection. We hope that our study will contribute to the development of NLP
systems that are more transparent, reliable, and fair.

9 REPRODUCIBILITY STATEMENT

We include full implementation details in the main text and appendix, covering data pre-processing
details, model architectures, training procedures, and hyperparameters. We have submitted our code
and configuration files as supplementary material to facilitate reproduction during the review pro-
cess. Upon acceptance, we will open-source our code and scripts for data pre-processing and exper-
1mments.
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A DETAILS ON EXPERIMENTAL SETUPS

Table 3: Splits for the Civil Comments and Jigsaw datasets used in this work. The instances are
sampled randomly from the original dataset.

Split Civil Comments Jigsaw

race gender religion race gender religion
Test 2,000 2,000 1,000 400 800 200
Training 8,000 8,000 6,300 8,000 8,000 6,300

Datasets and Models Table [3] shows the dataset statistics for the Civil Comments| and Jigsaw{]
datasets, respectively. When constructing subsets for each social group, we include only examples
that contain words from the corresponding group’s vocabulary and exclude those containing words
from other groups. Additionally, we remove examples that include insulting references to social
groups.

For encoder-only models, we either train separate models for each bias type or a single model on the
combined set of all bias types. The latter are marked as (all) in the results. Models are trained for 5
epochs with a batch size of 8, a learning rate of 2 x 1075, and 10% warm-up steps. We implement
debiasing methods of encoder-only models ourselves. Debiased models are trained on the same
number of examples for comparability, therefore we do not sample more examples from external
datasets for causal debias. All experiments are carried out using a maximum of 4x NVIDIA H100
GPUs.

We use the base version of BERT and RoBERTa models for our encoder-only experiments, and for
decoder-only experiments, we adopt the instruct versions of the models from HuggingFace.

3https://huggingface.co/datasets/lighteval/civil_comments_helm
*https://huggingface.co/datasets/google/jigsaw _unintended_bias
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Prompts We employ the following prompt for zero-shot and few-shot prompting with decoder-
only models.

Task: Determine whether the following sentence contains any toxic
content. Toxicity includes insults, threats, hate speech, or any
language that is likely to offend or harm others.

([EXAMPLES])
Sentence: [TEST EXAMPLE]
Question: Does this sentence contain toxicity?

Answer (Yes or No):

We use one toxic and one non-toxic example for each social group associated with a bias type
to construct the corresponding few-shot prompt. For fairness imagination, we prepend the task
instruction with:

Imagine a world with no bias regarding [BIAS TYPE].
For fairness instruction, we add:

In the following, do not rely on stereotypes or biases regarding
[BIAS TYPE] to make predictions.

Input-Based Explanation Methods We use the Captum AP]E] to generate explanations, except
for Attention, Attn Rollout, and Attn Flow, which we implement ourselves.

Explanation-Based Bias Mitigation We reimplement all explanation methods used in RQ3 to
enable gradient tracking during training and ensure consistency with the explanations provided by
the Captum API. For Occlusion, we simplify computation by penalizing the probability difference
between the original input and the input with all sensitive tokens masked.

Self-Reflection and Self-Attribution To elicit bias judgments from LLMs, we append the follow-
ing instructions to their predictions.

Self-reflection:

Do not re—answer the task. Instead, reflect only on your previous
answer.

Question: Was your previous answer influenced by stereotypes or
biases related to [BIAS TYPE]?

Answer (Yes or No):
Self-attribution:

Now select exactly [NUM_TOKENS] words from the input sentence that
most influenced your decision. List the words separated by commas.
Please begin directly with the selected word.

Selected words:

B MODEL PERFORMANCE AND FAIRNESS RESULTS

Tables[]and[5]show the task performance and fairness scores for the default / zero-shot and debiased
models on the Civil Comments and Jigsaw datasets respectively. To better identify the differences

>https://captum.ai/api/
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Table 4: Task performance and fairness of default and debiased models on the Civil Comments
dataset. Results are provided for race / gender / religion biases. Green (red) indicates the results
are better (worse) than the default / zero-shot models. All indicates the model is trained on data

containing all bias types.

Model  Method Accuracy () Dispy (1) Dispy, (1) Dispy (1) Ave, (1)
Default 78.30/88.20/87.43  2.00/3.20/13.47 0.02/1.11/6.24 8.44/8.58/23.53  3.99/0.96/1.76
Group balance 79.05/88.85/87.47  3.50/2.80/13.67 1.72/0.31/6.92 8.83/11.08/23.91 4.13/1.17/2.15
BERT Group-class balance ~ 78.17/88.25/86.90  1.95/1.70/14.60 1.35/0.51/8.52 9.33/4.66/33.13  4.83/0.93/1.37
(all) CDA 78.08/87.70/86.83  2.65/2.70/14.33 6.38/1.05/4.70 20.35/6.92/30.23  0.60/0.46/0.71
Dropout 78.08/87.60/87.67 2.45/3.10/13.47 0.30/1.05/5.53 9.99/8.39/33.12  3.60/0.89/1.59
Attention entropy 78.35/87.90/87.77  2.10/2.30/11.67 1.28/0.10/6.55 5.92/8.01/36.15  4.98/0.96/2.10
Causal debias 79.40/88.75/87.70  2.20/2.60/12.60 2.51/0.70/6.70 13.13/7.44/31.28 3.54/0.80/2.12
Default 78.50/88.33/85.23  2.80/2.05/17.07 2.84/1.66/6.59 15.46/2.78/31.64  2.56/0.60/1.55
Group balance 78.25/88.50/87.03  2.00/2.20/16.93  2.10/1.27/11.36 9.85/4.57/29.48  3.95/0.68/1.19
Group-class balance ~ 78.57/84.50/83.60  1.65/2.30/18.80 3.31/0.76/3.89 12.91/5.82/38.88  3.28/0.42/0.87
RoBERTa CDA 76.75/87.58/85.20  1.60/1.75/14.20 6.37/0.31/4.10 15.91/5.41/35.70  0.82/0.42/1.19
Dropout 78.33/88.92/86.73  2.15/1.55/14.53 2.42/0.58/8.86 11.11/3.96/27.05 4.08/0.56/2.10
Attention entropy 78.33/88.42/86.67 1.75/1.75/15.73 2.89/0.23/9.23 10.91/5.60/24.68  3.82/0.69/1.75
Causal debias 78.83/87.52/86.00  2.65/2.45/15.60 1.48/0.85/10.56 11.34/6.51/30.14  4.06/0.56/1.34
Default 78.88/88.70/87.90  2.95/2.40/13.80 2.24/0.58/9.50 13.55/7.19/33.47 4.14/0.95/2.35
Group balance 79.30/88.65/87.93  2.90/2.00/14.73 1.27/0.17/12.30 11.03/7.74/31.69  5.02/1.06/2.80
RoBERTa Group-class balance ~ 79.40/89.15/87.93  1.70/1.10/12.73 4.43/0.24/5.08 13.65/3.24/25.90  4.17/0.75/1.58
(all) CDA 77.75/88.25/86.90  2.50/2.00/13.80 5.93/1.25/6.33 18.80/3.71/22.62  1.13/0.55/1.18
Dropout 78.88/88.40/87.70  2.75/3.00/14.80 1.80/1.33/6.66 12.46/7.34/33.39  4.26/0.99/2.13
Attention entropy 78.80/88.72/87.83  2.10/2.15/13.53 2.64/1.33/7.55 11.31/4.18/28.68  4.46/1.09/2.57
Causal debias 79.27/89.78/87.80  3.35/1.25/15.00  3.24/0.51/11.86 16.00/3.05/37.57  3.56/0.74/2.70
Zero-shot 63.78/74.62/71.27 1.45/2.35/24.67 11.03/3.52/36.81 10.54/1.03/2.95  2.13/2.94/3.83
Llama3.2 Few-shot 46.45/28.55/42.23  1.20/0.90/21.27  3.87/1.82/30.69 0.80/0.19/1.66 0.11/0.13/0.33
: Fairness imagination ~ 64.95/75.92/73.37  0.80/0.85/21.87 8.70/3.61/32.54 9.44/6.79/5.98 2.65/3.58/3.50
Fairness instruction 65.90/76.95/78.07 2.60/1.70/21.53 1.89/0.39/7.00 3.79/6.35/4.24 1.35/1.13/1.71

between different debiasing methods, we conduct an analysis based on how often a debiasing method
successfully reduces the average individual unfairness (Avg;,) and maintains the task performance
(Accuracy) of the default / zero-shot model.

Encoder-only models Analyzing the results with respect to the dataset, we find that the models
are able to better preserve their original accuracy on the Civil Comments dataset (48.61% of the
cases) compared to the Jigsaw dataset (40.28% of the cases). In contrast, mitigating bias seems
substantially easier on the Jigsaw dataset (in 63.88% of the cases) than on the Civil Comments
(only 50% of the cases). On closer inspection, we find that this skew comes from religion bias
in the Jigsaw dataset which is improved in 95.83% of the cases after debiasing, followed by race
bias (50%) and gender bias (45.83%). In the Civil Comments dataset, we find that gender bias is
mitigated best (improvement in 62.5% of the cases), followed by religion bias (54.17%) and race
bias (33.33%).

With respect to the debiasing method, we find that CDA performs best in terms of debiasing, as it
reduces Avg;, across all bias types, datasets, and models. The second best performing method is
group-class balance which manages to reduce Avg;, in 58.33% of the cases on the Civil Comments
dataset and in 75% cases on the Jigsaw dataset. For the other methods, the results are mixed as we
again observe dataset-specific differences. For example, we find that Attention entropy performs
well on the Jigsaw dataset (50%) but performs worst on the Civil Comments dataset (16.67%).
These differences become even more pronounced when looking at different bias types. For instance,
causal debiasing improves Avg; for religion bias across all models on the Jigsaw dataset but at the
same time, does not improve a single model in terms of Avg;, for gender bias in the same dataset.
Interestingly, we find an inverse trend on the Civil Comments dataset; i.e., causal debiasing succeeds
on all models for gender bias, but only for one model for religion bias. These findings highlight the
importance of considering a diverse set of datasets for evaluating debiasing methods, as results on a
single dataset can be misleading.

Decoder-only models We find that the debiasing methods (fairness imagination and fairness in-
struction) for the decoder-only models consistently improve the task performance across all bias
types and datasets. Contrary to this, we see increases in average individual unfairness of the fair-
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Table 5: Task performance and fairness results of default and debiased models on the Jigsaw

dataset. Results are provided for race / gender / religion biases
are better (worse) than the default / zero-shot models. All indi

. Green (red) indicates the results
cates the model is trained on data

containing all bias types.

Model Method Accuracy (1) Disp,..(4) Dispy,(4) Dispy,(4) Avg, (1)
Default 85.50/93.00/90.50  0.50/2.25/6.00 0.64/2.34/5.22 0.70/3.28/21.54  2.02/0.36/1.33
Group balance 84.88/92.75/89.67  2.75/1.00/10.67 1.28/0.82/3.90 7.77/4.56/38.29 1.90/0.36/0.67
Group-class balance ~ 84.38/92.81/90.83  0.25/0.62/6.33 1.58/0.15/1.98 8.03/9.64/43.57  0.97/0.65/0.34
BERT CDA 85.25/91.81/90.50  4.00/3.63/10.00  4.12/3.44/5.10 2.97/1.38/37.39  0.39/0.28/0.45
Dropout 85.62/92.69/89.83  1.25/3.37/9.67 0.31/3.03/5.46 6.51/8.41/27.37  2.75/0.36/1.00
Attention entropy 85.00/92.06/89.83  0.00/3.12/9.33 0.62/3.03/4.29 1.72/6.00/28.06  2.93/0.50/0.98
Causal debias 85.50/93.38/89.83  4.00/0.75/7.33 1.28/0.28/3.55 13.73/12.77/17.12  3.16/0.43/1.10
Default 85.62/93.19/90.33  1.25/1.12/9.33 1.59/1.51/4.65 12.69/0.36/21.76  1.30/0.33/1.18
Group balance 83.38/93.19/90.17  1.75/1.12/9.67 1.56/1.10/4.66 3.10/3.23/26.79  2.81/0.40/0.76
BERT Group-class balance ~ 84.88/92.94/90.00  1.25/0.87/10.00 1.27/0.41/2.09 0.37/7.49/58.07 1.29/0.28/0.47
(all) CDA 85.62/92.19/90.00  3.25/1.88/7.00 2.86/1.78/4.02 4.17/4.41/38.24  0.69/0.29/0.46
Dropout 86.50/93.44/91.00  3.00/1.38/7.00 1.26/1.10/5.60 10.24/6.10/13.16  1.91/0.33/1.27
Attention entropy 85.25/93.75/91.50  0.50/2.75/8.00 0.65/2.62/5.19 0.57/5.54/34.85 2.57/0.41/1.07
Causal debias 84.50/93.44/90.50  1.00/1.38/9.00 2.22/1.38/4.27 4.35/3.38/24.10 1.40/0.40/1.00
Default 84.50/93.00/90.33  1.00/3.75/10.33  2.87/3.44/1.82 6.54/8.31/47.47  2.55/0.30/0.89
Group balance 85.50/92.31/89.83  2.50/0.62/11.33  0.94/0.27/1.55 9.11/6.41/38.00  2.44/0.26/0.46
Group-class balance  85.00/92.50/90.67  1.00/1.50/5.33 1.59/0.26/2.01 11.53/14.87/24.59  1.55/0.53/0.62
RoBERTa CDA 85.12/93.19/89.33  0.75/1.88/8.67 4.12/1.10/3.90 12.64/11.13/25.89  0.36/0.23/0.40
Dropout 83.88/93.69/90.17  1.75/0.88/7.67 1.29/0.82/2.97 3.10/3.28/26.86  2.71/0.23/0.87
Attention entropy 85.00/93.50/90.33  0.50/1.75/6.67 2.23/2.06/1.01 6.55/0.62/22.78  2.39/0.24/0.81
Causal debias 86.25/92.19/89.50  2.00/3.37/10.00  2.23/2.33/1.84 0.60/14.77/43.47  2.09/0.39/0.66
Default 85.50/93.75/91.50  0.50/1.75/7.00 0.01/1.51/5.56 3.06/5.74/31.14  2.52/0.35/1.55
Group balance 85.38/93.62/91.67  1.75/3.25/9.33 0.01/2.47/4.12 9.01/11.90/40.29  2.76/0.30/0.96
ROBERTa Group-class balance ~ 86.38/92.56/90.17  2.25/1.88/10.67  0.62/1.37/2.58 9.05/8.62/64.35  4.75/0.23/0.34
(all) CDA 85.25/92.56/90.67  1.00/0.62/7.67 1.59/0.13/1.80 11.53/7.49/31.28  0.52/0.23/0.74
Dropout 86.00/93.00/90.17  2.50/1.75/4.67 1.27/1.51/4.19 17.51/6.21/28.72  1.02/0.33/0.79
Attention entropy 86.75/93.50/91.50  0.50/2.50/7.00 0.96/2.06/3.16 6.54/8.05/24.59  3.40/0.38/1.19
Causal debias 85.38/93.25/91.00  0.25/3.50/10.00  0.01/2.62/5.41 1.88/13.69/34.14  2.55/0.40/0.80
Zero-shot 66.75/77.25/77.33  3.50/3.75/16.33  4.21/3.78/17.40 0.80/4.05/5.89 3.05/2.31/3.67
Qwen3 Few-shot 56.12/61.44/75.67  7.75/1.63/9.67  9.95/2.11/11.48 0.23/1.69/2.44 3.93/4.96/4.13
Fairness imagination ~ 73.75/82.88/86.33  3.00/1.00/10.33  5.12/0.89/5.79 5.39/0.82/24.13  3.14/2.97/2.51
Fairness instruction ~ 78.00/89.50/89.33  3.00/0.50/9.33 4.14/0.26/3.13 2.04/5.23/26.74 1.95/1.43/1.61
Zero-shot 54.00/70.50/65.17  8.50/1.00/25.67  10.91/1.53/31.87 0.20/4.56/8.33 2.39/3.00/4.28
Llama3.2 Few-shot 27.62/23.69/83.00  4.75/4.37/6.00 6.92/4.90/5.74 2.42/3.74/28.13 0.04/0.03/0.02

Fairness imagination
Fairness instruction

57.75/73.56/66.83
77.00/89.00/87.17

5.00/1.62/26.33
2.00/0.75/10.67

6.47/1.63/30.03
2.87/0.84/3.97

0.26/1.74/17.48
2.19/3.33/36.36

2.86/3.73/3.92
1.39/0.97/1.87

ness imagination approach for race and gender bias across both datasets. Only for religion, fairness
imagination leads to a decrease of the individual unfairness. For fairness instruction, we observe a
consistent improvement across all three bias types and both datasets, showing the clear superiority

of the approach. The consistency of the results is especially surj

prising when considering that both

decoder-only models are instruction-tuned, and that|Chen et al.

2025) identify a bias amplification

effect from instruction tuning. We conclude that fairness instruction is a good baseline to evaluate

other debiasing methods for decoder-only models.

C BIAS DETECTION RESULTS

Fairness correlation We present the full fairness correlation results of encoder- and decoder-
only models with different debiasing methods on Civil Comments and Jigsaw in Figureg6} [7} [8] [0
Consistent with findings presented in the main text, Occlusion- and L2-based explanation methods

achieve strong fairness correlations across different setups.

Comparing different debiasing methods, we find that low correlation scores primarily occur when
individual unfairness is less pronounced, such as in CDA models. In these cases, the models them-

selves produce fewer biased predictions, making the detection

of bias through explanations less

critical. The lower correlations therefore do not substantially undermine the role of explanations in

bias identification.
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Figure 7: Fairness correlation results on Civil Comments for each explanation method across
decoder-only models and bias types. Higher values indicate that the method is more effective and
reliable in detecting biased predictions at inference time.

D MODEL SELECTION RESULTS

Explanation-Based Metrics We evaluate several explanation-based metrics for selecting fair
models with respect to different fairness criteria:

» Average absolute sensitive token reliancee: used to predict average individual unfairness,
under the assumption that higher reliance on sensitive tokens implies greater sensitivity to
group substitutions.

* Group differences in average absolute sensitive token reliance: used to predict dispari-
ties in accuracy, assuming that stronger reliance on sensitive features increases the risk of
incorrect predictions.

* Group differences in average absolute sensitive token reliance for positive/negative
predictions: used to predict disparities in false positive and false negative rates, respec-
tively.

Among these, only average absolute sensitive token reliance exhibits rank correlations above ran-
dom chance with its target fairness metric (individual unfairness). The correlations for other metrics
remain at chance level. Figures[I0] [[T] [I2] [[3] demonstrate that no explanation methods can consis-
tently match baseline rank correlation results. Figures[T4] [13] further reveal that explanation
methods are not able to select the fairest models. These findings underline the unreliability of

explanation-based model selection.

E BIAS MITIGATION RESULTS

The complete bias mitigation results are presented in Figures[I8] [T9] [20] 21] The findings are in line
with conclusions from the main paper, that explanation-based debiasing can effectively reduce model
biases across different fairness metrics, bias types, models, and datasets. In addition, the accuracy-
fairness harmonic mean results shown in Figures 22] [23] 24] [25] demonstrate that explanation-based
debiasing achieves comparable or superior balance between fairness and task performance than de-
fault models and traditional debiasing approaches.
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Figure 9: Fairness correlation results on Jigsaw for each explanation method across decoder-only
models and bias types. Higher values indicate that the method is more effective and reliable in
detecting biased predictions at inference time.
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Figure 10: Rank correlations between validation set average absolute sensitive token reliance and
individual unfairness on the test set on Civil Comments. The validation set sizes are 500 for race,
500 for gender, and 200 for religion. Higher correlation values indicate greater effectiveness in
ranking models. A/l indicates the model is trained on all bias types.

F FAIRNESS CORRELATIONS IN EXPLANATION-DEBIASED MODELS

Figure [26] presents the fairness correlation scores computed on explanation-debiased models. We
find that Grad L2, IxG L2, DeepLift L2, and Occlusion-based explanations still show strong bias
mitigation ability in the debiased models.

G FAITHFULNESS AS AN INDICATOR OF BIAS DETECTION ABILITY

What factors influence the reliability of explanations in detecting bias? In this section, we exam-
ine the relationship between explanation faithfulness and their ability to identify bias, reflected by
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Figure 12: Rank correlations between validation set average absolute sensitive token reliance and
individual unfairness on the test set on Jigsaw. The validation set size is 200. Higher correlation
values indicate greater effectiveness in ranking models. A/l indicates the model is trained on all bias

types.

fairness correlation scores in RQ1. We assess the faithfulness of explanation methods using two
perturbation-based metrics: comprehensiveness and sufficiency AOPC (Area Over the Perturbation
Curve; [DeYoung et al 2020), computed by masking 5%, 10%, 20%, and 50% of the input to-
kens. For substitution, we use the [MASK] token in BERT and the [PAD] token in Qwen3. Higher
comprehensiveness and lower sufficiency scores indicate more faithful explanations.

Our results on race bias in Civil Comments (Figure [27) and Table [6) reveal no clear link between
faithfulness and fairness correlation of explanations. In particular, mean-based explanations may
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Figure 14: MRR @1 results on Civil Comments. The validation set sizes are 500 for race, 500 for
gender, and 200 for religion. Higher MRR@1 scores indicate explanations are more effective in
selecting the fairest models. All indicates the model is trained on all bias types.

achieve better faithfulness scores than their L2-based counterparts, yet they consistently perform
significantly worse in identifying bias. We attribute this discrepancy to two key differences between
the faithfulness metrics and our fairness correlation measure. First, faithfulness evaluates attribu-
tion scores across all input tokens, whereas our fairness correlation measure only considers sensitive
token reliance. Second, perturbation-based faithfulness assesses the impact of masking tokens on
model predictions, while our individual unfairness metric compares predictions when one social
group is substituted for another. Taken together, these findings suggest that explanation faithful-
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1504 ness is not a reliable indicator of bias detection ability. We therefore do not recommend selecting
1505 explanation methods for fairness on the basis of faithfulness results alone.
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1509 Apart from the models evaluated in our experiments and analyses, we used LLMs (ChatGPT) solely

1510 to polish the writing in this work.
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Figure 18: Accuracy and fairness results for bias mitigation in BERT on the Civil Comments dataset,
using different explanation methods during training. For consistency with accuracy, fairness results
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performance. Each column corresponds to models selected by maximizing the fairness-balanced
metric with respect to the indicated bias metric.
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Figure 19: Accuracy and fairness results for bias mitigation in RoBERTa on the Civil Comments
dataset, using different explanation methods during training. For consistency with accuracy, fairness
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debiasing performance. Each column corresponds to models selected by maximizing the fairness-
balanced metric with respect to the indicated bias metric.
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Figure 20: Accuracy and fairness results for bias mitigation in BERT on the Jigsaw, using different
explanation methods during training. For consistency with accuracy, fairness results are reported as
100 — {Disp,, Dispy,,, Dispy,,, Avg;, }, so that higher values indicate better debiasing performance.
Each column corresponds to models selected by maximizing the fairness-balanced metric with re-
spect to the indicated bias metric.
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Figure 21: Accuracy and fairness results for bias mitigation in ROBERTa on the Jigsaw dataset, using
different explanation methods during training. For consistency with accuracy, fairness results are
reported as 100 — {Disp,., Dispy,,, Dispg,,, Avg;, }, so that higher values indicate better debiasing
performance. Each column corresponds to models selected by maximizing the fairness-balanced
metric with respect to the indicated bias metric.

Dispacc Disprpr Dispyn AVGiy

Attention

Race
°
)

Gmup -class balance
D,

Dropout
Attention entropy
Causal debias,

Attention
Attn rollout

Attn flow

Grad L1

Grad L2

IXG L1

G L2

Occlusion

up balance

Gmup class balance
CDA

Gender

Dropout
Attention entropy
Causal debias

Attention
Attn rollout

Attn flow

Grad L1

Grad L2

IXG L1

1XG L2

Occlusion

oup balance

Gmup lass balance
DA

Religion

Dropout
Attention entropy
Causal debias,

Fy
3
&

70 75 80 8 90 95 100 60 65 70 75 80 85 90 95 100 60 65 70 75 80 8 90 95 100 60 65 70 75 80 85 90 95 100

---- Default wm Traditional debiasing Explanation-based

Figure 22: Harmonic mean between accuracy and fairness for established debiasing methods and
explanation-based methods for BERT on Civil Comments. A higher score indicates better balance
between model performance and fairness.
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Figure 23: Harmonic mean between accuracy and fairness for established debiasing methods and
explanation-based methods for ROBERTa on Civil Comments. A higher score indicates better bal-
ance between model performance and fairness.
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explanation-based methods for BERT on Jigsaw. A higher score indicates better balance between
model performance and fairness.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Attention
Attn rollout

Grad L1
Grad L2
IXG L1
1XG L2
Occlusion

Group balance
Group-class balance
CDA

Race

Dropout
Attention entropy
Causal debias,

Disprpr
—

Attention
Attn rollout

Grad L2
G L1

IXG L2

Occlusion

Group balance
Group-class balance
CDA

Gender

Dropout
Attention entropy
Causal debias,

Attention
Attn rollout

Grad L1

Grad L2

IXG L1

1XG L2

Occlusion

Group balance

Group-class balance
[

Religion

Attention entropy
Causal debias

1 r— 1 1
60 65 70 75 80 85

©
s

1 1
95 100 60 65 70

---- Default === Traditional debiasing

75 80 85 90 95 100 60

" Explanation-based

65 70 75 80 85

90

r— 1
95 100 60 65 70 75 80 85 90 95 100

Figure 25: Harmonic mean between accuracy and fairness for established debiasing methods and
explanation-based methods for ROBERTa on Jigsaw. A higher score indicates better balance between
model performance and fairness.
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Figure 26: Fairness correlation results on BERT models with race bias mitigated through

explanation-based methods on Civil Comments.
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Figure 27: Faithfulness and fairness correlation results of different explanation methods. No clear
relationship between explanation faithfulness and their bias detection ability is observed. Each point
represents the faithfulness and fairness correlation of one explanation method applied to default /

zero-shot models.
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Table 6: Faithfulness results of different explanation methods on BERT and Qwen3 models.

Explanation Comp. (1) Suff. (J) Fairness Correlation (1) Comp. () Suff. (J) Fairness Correlation ()
BERT Qwen3

Attention 4.50 3.20 61.70 10.34 17.20 14.17
Attn rollout 4.37 3.11 58.60 9.04 15.70 1.86
Attn flow 4.01 3.46 46.73 10.57 16.82 4.38
Grad L2 4.82 2.99 49.57 12.30 16.09 31.80
Grad mean 0.77 6.16 6.37 1141 17.50 6.40
DeepLift L2 4.72 3.09 50.18 12.44 16.17 31.08
DeepLift mean 1.68 5.75 6.04 10.78 18.69 6.11
IxG L2 4.89 2.95 48.99 12.35 16.27 31.53
IxG mean 7.44 1.70 29.69 9.99 18.82 17.07
IntGrad L2 4.81 3.02 56.60 12.33 16.86 24.52
IntGrad mean 10.68 -0.36 45.31 14.21 16.12 4.46
Occlusion 13.16 -0.90 62.14 20.05 13.73 26.98
Occlusion abs 0.79 0.56 65.77 22.48 20.36 26.41
KernelSHAP 5.99 2.30 20.99 11.49 17.86 1.86
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