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ABSTRACT

Natural language processing (NLP) models often replicate or amplify social bias
from training data, raising concerns about fairness. At the same time, their black-
box nature makes it difficult for users to recognize biased predictions and for de-
velopers to effectively mitigate them. While some studies suggest that input-based
explanations can help detect and mitigate bias, others question their reliability in
ensuring fairness. Existing research on explainability in fair NLP has been pre-
dominantly qualitative, with limited large-scale quantitative analysis. In this work,
we conduct the first systematic study of the relationship between explainability
and fairness in hate speech detection, focusing on both encoder- and decoder-only
models. We examine three key dimensions: (1) identifying biased predictions, (2)
selecting fair models, and (3) mitigating bias during model training. Our findings
show that input-based explanations can effectively detect biased predictions and
serve as useful supervision for reducing bias during training, but they are unreli-
able for selecting fair models among candidates.

1 INTRODUCTION

Language models (LMs) pre-trained on large-scale natural language datasets have shown great ca-
pacities in various NLP tasks (Wang et al., 2018; Gao et al., 2023). However, previous studies have
shown that they can replicate and amplify stereotypes and social bias present in their training data
and demonstrate biased behaviors (Sheng et al., 2021; Gupta et al., 2024; Gallegos et al., 2024).
Such behaviors risk the underrepresentation of marginalized groups and the unfair allocation of
resources, raising serious concerns in critical applications (Blodgett et al., 2020).

Meanwhile, current NLP models are mostly based on black-box neural networks. Despite their
strong capacities, the complex architecture and large number of parameters of these models make it
hard for humans to understand their behaviors (Bommasani et al., 2021). To understand neural NLP
models, different types of explanations have been devised, such as input-based explanations (Yin
& Neubig, 2022; Deiseroth et al., 2023; Madsen et al., 2024; Wang et al., 2025b), natural language
explanations (Ramnath et al., 2024; Wang et al., 2025a), and concept-based explanations (Yu et al.,
2024; Raman et al., 2024). Among these, input-based explanations, often referred to as rationales,
indicate the contribution of each token to models’ predictions, and thus provide the most direct
insights into models’ behaviors (Arras et al., 2019; Atanasova et al., 2022; Lyu et al., 2024).

Explainability has long been deemed critical to improving fairness. Researchers believe that if the
use of sensitive features is evidenced by model explanations, then they can easily detect biased
predictions and impose fairness constraints by guiding models to avoid such faulty reasoning (Meng
et al., 2022; Sogancioglu et al., 2023). However, recent studies have challenged this assumption,
suggesting that the relationship between explainability and fairness is complex and that explanations
may not always reliably detect or mitigate bias (Dimanov et al., 2020; Slack et al., 2020; Pruthi et al.,
2020). Unfortunately, to the best of our knowledge, current studies are mostly limited to qualitative
analysis on a small set of explanation methods (Balkir et al., 2022; Deck et al., 2024). Our work takes
a step toward bridging explainability and fairness by providing the first comprehensive quantitative
analysis in the context of hate speech detection, a task where both fairness and explainability are
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particularly critical. Specifically, we address the following three research questions to investigate
the role of explainability in promoting fairness within the task of hate speech detection:

• RQ1: Can input-based explanations be used to identify biased predictions?
• RQ2: Can input-based explanations be used to automatically select fair models?
• RQ3: Can input-based explanations be used to mitigate bias during model training?

Our experiments demonstrate that input-based explanations can effectively detect biased predictions
(RQ1), are less reliable for automatic fair model selection (RQ2), and can help reduce bias during
model training (RQ3). Furthermore, our analyses indicate that explanation-based bias detection
remains robust even when models are trained to reduce reliance on sensitive features, and that these
explanations outperform LLM judgments in identifying bias.

2 RELATED WORK

Bias in NLP The presence of social bias and stereotypes has significantly shaped human language
and LMs trained on it (Blodgett et al., 2020; Sheng et al., 2021). As a result, these models often
exhibit biased behaviors (Gallegos et al., 2024), such as stereotypical geographical relations in the
embedding space (Bolukbasi et al., 2016; May et al., 2019) and stereotypical associations between
social groups and certain concepts in the model outputs (Fang et al., 2024; Wan & Chang, 2025).
More critically, disparities in model predictions and performance across social groups (Zhao et al.,
2018; Sheng et al., 2019) can significantly compromise user experiences of marginalized groups and
risk amplifying bias against them, therefore drawing great concerns in critical use cases.

Input-based Model Explanations Input-based explanations in NLP models aim to attribute
model predictions to each input token (Lyu et al., 2024). They can be broadly categorized based
on how they generate explanations: gradient-based (Simonyan et al., 2014; Kindermans et al., 2016;
Sundararajan et al., 2017; Enguehard, 2023), propagation-based (Bach et al., 2015; Shrikumar et al.,
2017; Ferrando et al., 2022; Modarressi et al., 2022; 2023), perturbation-based (Li et al., 2016;
Ribeiro et al., 2016; Lundberg & Lee, 2017; Deiseroth et al., 2023), and attention-based meth-
ods (Bahdanau et al., 2015; Abnar & Zuidema, 2020). While most prior work has focused on
encoder-only models, recent studies have also explored explaining the behaviors of generative mod-
els (Yin & Neubig, 2022; Ferrando et al., 2022; Enouen et al., 2024; Cohen-Wang et al., 2024).

Bridging Explainability and Fairness Explainability is often considered essential for achieving
fairness in machine learning systems (Balkir et al., 2022; Deck et al., 2024). One line of research
investigates model bias by analyzing explanations (Prabhakaran et al., 2019; Jeyaraj & Delany, 2024;
Sogancioglu et al., 2023). For instance, Muntasir & Noor (2025) shows that a biased model relied
on gendered words as key features in its predictions, as revealed by LIME explanations. Similarly,
Stevens et al. (2020) demonstrates that biased models often place high importance on gender and
race features when examined with SHAP explanations. Extending this line of evidence, Meng et al.
(2022) finds that features with higher importance scores are associated with larger disparities in
model performance on a synthetic medical dataset using deep learning models.

Another line of research focuses on mitigating bias with explanations (Dimanov et al., 2020;
Kennedy et al., 2020; Rao et al., 2023; Liu et al., 2024). For example, Hickey et al. (2020) im-
proves fairness by reducing reliance on sensitive features during training with SHAP explanations.
Bhargava et al. (2020) and González-Silot et al. (2025) first identify predictive sensitive features
using LIME and SHAP, respectively, and then remove them prior to model training. In a related
approach, Grabowicz et al. (2022) traces unfairness metrics back to input features and adjusts them
to mitigate bias.

However, recent research has challenged the assumption that input-based explanations can be reli-
ably used to detect and mitigate bias. First, current explanation methods may be unfaithful, meaning
that they may not always reflect the true decision-making process of models (Kindermans et al.,
2016; Jain & Wallace, 2019; Ye et al., 2025). This makes it difficult to reliably detect the use of
sensitive features in predictions. Second, efforts to reduce the influence of sensitive features can
lead to unintended consequences, sometimes degrading both task performance and fairness of mod-
els (Dimanov et al., 2020). Finally, models can be deliberately trained to assign lower importance
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Figure 1: Workflow diagram illustrating the processes used to address each research question. Sen-
sitive tokens are shown in blue boxes, and the intensity of the green shading reflects each word’s
contribution to the model’s prediction.

to sensitive features, thereby masking biased predictions when explanations are inspected (Dimanov
et al., 2020; Slack et al., 2020; Pruthi et al., 2020).

Despite growing interest in this topic, most existing work remains qualitative or restricted to limited
setups (Balkir et al., 2022; Deck et al., 2024). To the best of our knowledge, this is the first study to
quantitatively and comprehensively examine the relationship between explainability and fairness in
NLP models. We focus on hate speech detection as a particularly critical application. Prior research
has shown that biased NLP models often rely on demographic information such as race and gender,
leading to inferior performance on marginalized groups in this task (Sap et al., 2019; Mathew et al.,
2021). Detecting and mitigating such biased behaviors are therefore essential to ensuring equitable
opportunities for all social groups to voice their perspectives on social media. Our definitions of
hate speech and social bias, along with an overview of fairness and explainability research in hate
speech detection, are provided in Appendix A, which also further motivates our focus on input-based
explanations.

3 EXPERIMENTAL SETUP

Notations Let an input text x consist of tokens t1, t2, . . . , tn. The task of hate speech detection
is to predict a binary label ŷ ∈ {toxic, non-toxic}. A classifier outputs the probability of class c as
fc(x), where f is implemented by a neural model.

In the context of social bias, we assume that a bias type (e.g., race) involves a set of social groups G
(e.g., black,white, ...). A subset of tokens tg1 , tg2 , . . . , tgm in x denotes the sensitive feature g ∈ G
of the speaker or target. We refer to these tokens as sensitive tokens. By replacing the sensitive
tokens of group g with those of another group g′, we obtain a counterfactual version of x that refers
to g′, denoted as x(g′).

An input-based explanation assigns an attribution score to each token in x for class c: ac1, a
c
2, . . . , a

c
n,

indicating their contribution to the prediction of class c. Following Dimanov et al. (2020), we com-
pute attribution scores on the sensitive tokens, acg1 , a

c
g2 , . . . , a

c
gm , which we refer to as the sensitive

token reliance scores. To handle cases where multiple sensitive tokens appear in the same sentence,
we take the maximum absolute attribution value as the reliance score for that example1:

sensitive token reliance(x, c) = acj∗ ,where j∗ = argmax
j∈{g1,...,gm}

∣∣acj∣∣
1We have experimented with normalizing feature importance scores but found that using raw scores yielded

the best results. We also evaluated sum and average aggregation methods beyond taking the max absolute value
and observed similar outcomes.
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Datasets and Vocabulary We use two hate speech detection datasets: Civil Comments (Borkan
et al., 2019) and Jigsaw (cjadams et al., 2019). To ensure coverage, we focus on three bias
types and their associated groups: race (black/white), gender (female/male), and religion (Chris-
tian/Muslim/Jewish). We include examples containing identity-marking terms but exclude those
with derogatory or slur-based references, as the latter can reasonably serve as direct evidence for
toxic predictions. The sensitive token vocabulary is derived from Caliskan et al. (2017) and Wang
& Demberg (2024). Further details on dataset pre-processing are provided in Appendix G.

Models We evaluate two major classes of NLP models: encoder-only models (BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019)) and decoder-only large language models (Llama3.2-
3B-Instruct (Dubey et al., 2024), Qwen3-4B, and Qwen3-8B (Yang et al., 2025a), all of which are
aligned to human values). We fine-tune encoder-only models on data subsets that either target a
single bias type or combine all bias types. For decoder-only models, we use an instruction-based
setup where the model is prompted to decide whether a test example contains hate speech. The
prompt includes the definition of hate speech, the test example, and a corresponding question. As a
baseline, we adopt the zero-shot setting as the default configuration.

Beyond conventional fine-tuning and prompting, we also investigate the interaction between ex-
plainability and fairness in debiased models. For encoder-only models, we apply pre-processing
techniques such as group balance (Kamiran & Calders, 2012), group-class balance (Dixon et al.,
2018), and counterfactual data augmentation (CDA, Zmigrod et al., 2019), as well as in-processing
techniques including dropout (Webster et al., 2020), attention entropy (Attanasio et al., 2022), and
causal debias (Zhou et al., 2023). For decoder-only models, we incorporate bias reduction through
prompt design, including few-shot, fairness imagination (Chen et al., 2025), and fairness instruction
prompting (Chen et al., 2025). We do not include reasoning models and chain-of-thought prompting,
as we find that their predictions are primarily attributed to intermediate reasoning steps rather than
the input text, which complicates analysis and falls beyond the scope of this work. Further details
are provided in Appendix G.

Fairness Metrics We evaluate fairness in model predictions using two categories of metrics:
group fairness and individual fairness. Group fairness metrics capture disparities in performance
across demographic groups:

Dispmetric =
∑
g∈G

|metricg − metricG|,

where metricG is the average metric value across all groups G in a bias type. We specifically measure
disparities in accuracy (ACC), false positive rate (FPR), and false negative rate (FNR).

Individual fairness measures the extent to which a model’s prediction for a given example changes
when the associated social group is altered. To maintain consistency with the direction of group
fairness metrics, we compute the individual unfairness (IU) score of xi and the predicted class ŷi:

IU(xi) = |fŷi
(xi)−

1

|G\{gi}|
∑

g′∈G\{gi}

fŷi
(x

(g′)
i )|

The Average IU score (Avgiu) is then computed over a dataset to reflect the overall level of individual
unfairness in a model.

For both types of metrics, higher scores indicate more bias in model predictions. It is worth noting
that individual unfairness can be evaluated at the level of each example, whereas group fairness
metrics are defined over sets of validation or test examples. To compute the fairness metrics, we
randomly sample a subset of examples for each bias type such that each social group contributes an
equal number of examples. Further details on test set sampling are provided in Appendix G.

Explanation Methods We employ 16 variants of commonly used input-based post-hoc explana-
tion methods, selected to represent a diverse range of methodological categories: Attention (Bah-
danau et al., 2015), Attention rollout (Attn rollout, Abnar & Zuidema, 2020), Attention flow (Attn
flow, Abnar & Zuidema, 2020), Gradient (Grad, Simonyan et al., 2014), Input x Gradient (IxG, Kin-
dermans et al., 2016), Integrated Gradients (IntGrad, Sundararajan et al., 2017), Occlusion (Li et al.,
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2016), DeepLift (Shrikumar et al., 2017), KernelSHAP (Lundberg & Lee, 2017), DecompX (Modar-
ressi et al., 2023), and Progressive Inference (ProgInfer, Kariyappa et al., 2024)2. For methods that
attribute predictions to embeddings, we aggregate attribution scores into a single feature importance
value using either the mean or the L2 norm. For Occlusion, we additionally report results obtained
by taking the absolute value of each attribution score prior to computing sensitive token reliance
scores (denoted as Occlusion abs). The time and GPU memory costs for each method are shown in
Appendix F. We also study rationales generated by LLMs and find that these rationales are not as
reliable as input-based explanations in detecting bias (Section 6).

Table 1: Task performance and fairness of default and debiased models on Civil Comments. Results
are provided for race/gender/religion biases. Green (red) indicates the results are better (worse)
than the default/zero-shot models. No debiasing method consistently reduces bias across all metrics
and bias types.

Model Method Accuracy (↑) Dispacc(↓) Dispfpr(↓) Dispfnr(↓) Avgiu(↓)

BERT

Default 78.38/88.05/85.93 2.05/3.30/18.07 0.50/0.03/5.77 10.04/11.98/30.9 3.17/0.66/1.27
Group balance 79.25/87.25/86.83 3.10/2.80/13.53 0.25/1.73/11.53 10.46/5.38/30.31 3.79/0.42/2.01
Group-class balancing 78.00/87.02/85.77 1.80/2.75/14.73 2.42/0.99/3.09 10.63/7.26/33.14 4.43/0.98/0.71
CDA 76.83/86.70/84.83 2.35/3.60/14.13 5.88/2.00/5.67 18.45/7.57/24.12 0.50/0.50/0.90
Dropout 78.53/88.20/85.03 2.25/2.10/15.67 0.78/1.46/5.93 10.82/3.50/27.16 3.43/0.52/1.51
Attention entropy 79.15/87.67/84.93 2.60/2.05/15.07 0.99/0.10/4.99 11.71/7.11/26.52 2.95/0.67/1.58
Causal debias 78.80/86.17/86.40 0.00/2.65/16.40 3.90/0.46/8.82 7.98/10.67/30.46 3.83/0.48/2.10

Qwen3-4B

Zero-shot 69.55/79.75/77.50 0.60/0.00/17.40 7.13/1.40/21.07 13.25/3.71/5.17 2.55/2.41/3.32
Few-shot 70.15/80.73/79.53 1.80/0.65/18.93 10.02/2.50/19.31 11.89/9.15/5.57 3.18/3.34/3.76
Fairness imagination 71.23/80.40/80.83 0.85/1.00/18.27 4.03/2.11/10.51 11.62/9.21/4.28 2.98/3.16/2.20
Fairness instruction 70.40/79.77/80.47 0.60/1.35/19.33 4.30/0.39/4.67 11.11/5.24/5.08 2.02/1.83/1.71

4 QUANTITATIVE ANALYSES OF FAIRNESS AND EXPLAINABILITY

To comprehensively understand the relationship between explainability and fairness in NLP mod-
els, we examine three ways in which model explanations can be applied to promote fairness. The
subsequent sections detail the experimental setups for each application and report the corresponding
results. The workflow for our research questions is shown in Figure 1. For brevity, we report results
on Civil Comments using BERT trained on single bias types and Qwen3-4B. Results for additional
models and the Jigsaw dataset are presented in Appendix H to L.

4.1 MODEL PERFORMANCE AND FAIRNESS

As a prerequisite, we first summarize the performance and fairness of the evaluated models. The
results in Table 1 show that no single debiasing method consistently improves all fairness metrics.
For BERT and Qwen3-4B, CDA and fairness instruction achieve the largest reductions in individual
unfairness, yet they may simultaneously amplify biases on other metrics. Other debiasing methods
show a similar pattern: they reduce bias for a specific metric or bias type, but the improvement does
not generalize across different setups. These limitations underscore the importance of leveraging ex-
planations for bias detection and mitigation. We find similar results for other models and for Jigsaw,
which we provide in Appendix H along with a discussion on model performance and fairness.

4.2 RQ1: EXPLANATIONS FOR BIAS DETECTION

Our first research question asks whether explanations can be used to detect biased predictions. We
address the question through three steps: (1) obtain model predictions and compute individual un-
fairness scores; (2) generate input-based explanations for the predictions; and (3) compute sensitive
token reliance scores and evaluate their Pearson correlation with individual unfairness, which we
refer to as fairness correlation. A higher fairness correlation indicates that the explanation method
is more effective in identifying predictions with high individual unfairness. To ensure robustness,

2We apply DecompX only to encoder-only models and Progressive Inference only to decoder-only models,
following the setups of the original papers.
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we compute the fairness correlation separately for each prediction class–group pair and report the
average absolute score as the final result for each explanation method.

We present results for default and debiased models where individual unfairness remains high after
debiasing, as bias detection is particularly critical in these cases. Specifically, we report results for
models with the highest average Avgiu scores across bias types, namely default, group balance, and
causal debias for BERT, and zero-shot, few-shot, and fairness imagination prompting for Qwen3-4B.
Results for religion as well as other models and the Jigsaw dataset are provided in Appendix I.
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Figure 2: Fairness correlation results for each explanation method. Occlusion- and L2-based expla-
nations are effective for bias detection across different bias types and models.

Results Figure 2 shows that the best-performing explanation methods, such as Grad L2, IxG L2,
DeepLift L2, Occlusion, and Occlusion abs, generally achieve high fairness correlations across dif-
ferent models and bias types, indicating a strong ability to detect biased predictions. Besides, their
fairness correlations are mostly statistically significant (p < α = 0.05) in all, or in all but one, class-
group categories, which confirms their reliability. Among these methods, Occlusion and Occlusion
abs perform best with BERT models, whereas the L2-based methods Grad L2, IxG L2, and DeepLift
L2 are most effective with Qwen3-4B.

When comparing different variants of the same explanation family, mean-based approaches perform
considerably worse than their L2-based counterparts, and also underperform compared to undirected
attention-based methods. We attribute this limitation to their dependence on accurately determining
the direction of each token’s contribution, a challenge that attention- and L2-based explanations do
not face. Our analysis in Appendix J further shows that the effectiveness of explanation-based bias
detection is not determined by explanation faithfulness, underscoring the need for careful evaluation
when selecting methods for bias identification.

Takeaway: Input-based explanation methods, particularly Occlusion- and L2-based ones, are ef-
fective for identifying biased predictions at inference time.

4.3 RQ2: EXPLANATIONS FOR MODEL SELECTION

Given that explanations can detect biased predictions (RQ1), we next investigate whether they can
also be used to select fair models among candidates. Prior work has demonstrated that input-
based explanations on validation examples can help humans identify spurious correlations in mod-
els (Lertvittayakumjorn & Toni, 2021; Pezeshkpour et al., 2022). Extending this idea, we examine
whether explanations can be leveraged for automatic fair model selection, thereby removing the
need for human intervention.

Our experiments consist of three steps: (1) for all default and debiased models (seven encoder-
only and four decoder-only), we generate predictions on a validation set and compute explanation-
based metrics; (2) we compute fairness metrics on the test set for each model; and (3) we evaluate
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model selection ability using two measures: Spearman’s rank correlation (ρ) between validation set
explanation-based metrics and test set fairness metrics, which reflects the ability to rank models,
and mean reciprocal rank of the fairest model (MRR@1), which reflects the ability to select the
fairest model. Higher rank correlations and MRR@1 indicate that an explanation method is useful
for ranking models and selecting the fairest one. Specifically, we use the average absolute sensitive
token reliance on the validation set as the explanation-based metric to rank and select models based
on average individual unfairness on the test set.3
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Figure 3: Rank correlations between validation set average absolute sensitive token reliance and test
set individual unfairness. The validation set sizes are 500 for race and gender, and 200 for religion.
None of the explanation methods consistently achieve performance on par with the baseline.
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Figure 4: Average MRR@1 across bias types.
Explanation methods perform worse than the
baseline in identifying the fairest models.

Results As a baseline, we report results of
using the validation set average individual
unfairness as the predictor of test set fairness
performance. The results are averaged over six
and three random validation set selections for
encoder- and decoder-only models, respectively.
Results for more models and the Jigsaw dataset
are presented in Appendix K.

The results in Figures 3 and 4 highlight the limi-
tations of using explanations for model selection.
Although some methods occasionally show high
rank correlations (e.g., Grad L2 for race and reli-
gion biases in BERT and Occlusion-based meth-
ods for gender and religion biases in Qwen3-4B),
none of them consistently reach the baseline of using the individual unfairness on the validation set.
This limitation is particularly evident in decoder-only models, where the baseline achieves a perfect
rank correlation of 1. Similarly, the baseline consistently achieves the highest MRR@1 scores, fur-
ther showing the limited effectiveness of explanation-based methods in selecting the fairest models.
Considering that these explanations are often more computationally expensive to generate than eval-
uating validation set fairness, they are not practically useful as a model fairness indicator. Therefore,
we do not recommend explanation-based model selection, especially in decoder-only models. The
difference in findings between RQ1 and RQ2 may stem from the fact that debiasing methods can
alter model behaviors and thereby affect explanation attributions. As a result, comparing explana-
tions across default and debiased models is less reliable, whereas comparing explanations within the
same model remains effective for detecting biased predictions.

Takeaway: Input-based explanation methods are not reliable tools for selecting fair models.

3We have evaluated other metrics to predict group fairness outcomes. However, neither explanation-based
metrics nor validation set fairness achieved rank correlations beyond random chance with the test set results.
The full set of evaluated metrics is provided in Appendix K.
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4.4 RQ3: EXPLANATIONS FOR BIAS MITIGATION

Having shown that explanations can reliably reveal biased predictions (RQ1), we now investigate
whether they can also be leveraged to mitigate model bias. Building on prior work demonstrating
that explanation regularization can reduce spurious correlations while also improving performance
and generalization (Kennedy et al., 2020; Rao et al., 2023), we investigate bias mitigation by min-
imizing sensitive token reliance during training. Following Dimanov et al. (2020), we define a
debiasing regularization term, Ldebias, which penalizes the average sensitive token reliance of all
such tokens in an input, in addition to the task loss:

L = Ltask + αLdebias

Here, α is a hyperparameter that controls the strength of sensitive token reliance reduction. For
embedding-level attributions, we apply either an L1 or L2 norm penalty, corresponding to minimiz-
ing mean- or L2-based reliance scores, respectively.

While Dimanov et al. (2020) tune hyperparameters based on task accuracy, we search α ∈
{0.01, 0.1, 1, 10, 100} using a fairness-balanced metric (the harmonic mean of accuracy and 100–un-
fairness) on the validation set4. Models are selected separately for each fairness criterion and results
are averaged over three runs. Due to computational cost, we restrict training to single bias types. We
exclude DeepLift, DecompX, and KernelSHAP, as they are not easily differentiable and thus cannot
be incorporated into model training. Integrated Gradients is substantially more expensive in time
and memory for generating explanations and tracking gradients, sp we apply them only to race bias
mitigation in BERT and report the results in Table 11 in Appendix L. More implementation details
are provided in Appendix G.
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Figure 5: Accuracy and fairness results for bias mitigation using different explanation methods.
Each column corresponds to models selected by maximizing the fairness-balanced metric with re-
spect to the indicated bias metric. We find that explanation methods can improve fairness across
many metrics while maintaining reasonable task accuracy.

Results In Figure 5, we present race and gender bias mitigation results. For consistency with
accuracy, fairness results are reported as 100−{Dispacc,Dispfpr,Dispfnr,Avgiu}, so that higher values
indicate lower bias. We find that explanation-based bias mitigation effectively improves fairness
across multiple metrics. Most notably, it consistently and substantially reduces Dispfnr for all bias
types. For gender bias, it also yields considerable reductions in Dispacc, and Avgiu is mitigated for
race bias. Moreover, as shown in Figure 24, all group fairness disparity metrics decrease for religion

4As Occlusion is sensitive to the debiasing strength, we use α ∈ {0.002, 0.004, 0.006, 0.008, 0.01}.
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bias. The bias mitigation effects are consistent across all models and are also observed on the Jigsaw
dataset (see Figures 24, 25, 26, 27 in Appendix L).

At the same time, explanation-based debiasing maintains a good balance between fairness and accu-
racy. For example, Grad L1 both increases accuracy and reduces Dispacc, Dispfnr, and Avgiu for gen-
der bias, while most other explanation methods also achieve better Dispacc and Dispfnr with marginal
or no accuracy loss. Our harmonic fairness–accuracy mean results (Figures 28, 29, 30, 31) further
confirm this by showing that explanation-based debiasing almost always achieves comparable or
higher harmonic means than both default models and traditional debiasing methods.

Among individual explanation methods, attention and attn flow achieve strong debiasing perfor-
mance on BERT, while IxG L1 and L2 consistently yield a good balance between accuracy and fair-
ness across models. Overall, IxG L2 and attention-based methods provide robust debiasing while
maintaining a favorable fairness–accuracy trade-off across bias types, models, and datasets, as re-
flected in the harmonic mean results. Our findings differ from those of Dimanov et al. (2020), which
we attribute to our fairness-based hyperparameter tuning strategy.

Takeaway: Input-based explanations can provide effective supervision for mitigating model bias
during training while maintaining a good fairness–performance trade-off. In particular, IxG L2
and attention-based methods achieve robust debiasing with strong overall balance.

5 BIAS DETECTION IN EXPLANATION-DEBIASED MODELS
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Figure 6: Fairness correlation differences between de-
fault and explanation-debiased BERT. Occlusion- and L2-
based explanations (except IntGrad L2) are less affected by
explanation-based debiasing and remain effective for bias
detection.

While explanation-based methods are
effective in reducing bias (RQ3),
their suppression of attributions on
sensitive tokens could potentially
mislead users into believing that
model predictions are unbiased (Di-
manov et al., 2020; Slack et al.,
2020; Pruthi et al., 2020). To inves-
tigate this concern, we reapply the
bias detection procedure from RQ1
to explanation-debiased models and
compare their fairness correlations
with those from the corresponding
default models. For this analysis, we
use the models debiased for race bias
with respect to individual unfairness,
as described in RQ3.

The fairness correlation differences
from default models are shown in
Figure 6. We observe that the impact
of explanation-based debiasing on fairness correlations depends on both the explanations used for
debiasing and those used for bias detection. Some approaches, such as Grad mean/L2, IxG L2,
DeepLift mean/L2, Occlusion, and Occlusion abs, are only marginally, or even positively, affected
by debiasing. Their fairness correlation scores (see Figure 32 in Appendix M) further indicate
that Occlusion- and L2-based methods (except IntGrad L2) remain reliable for revealing bias in
explanation-debiased models. In contrast, attention-based explanations experience substantial drops,
particularly when the models themselves are debiased using attention-based methods. Similarly,
IntGrad-based explanations show a reduced bias detection ability when the debiasing procedure is
also gradient-based. Overall, these findings demonstrate that certain input-based explanations re-
main effective for detecting biased predictions even in explanation-debiased models. Our results
are different from those of Dimanov et al. (2020), likely because their analysis focused solely on
attribution magnitudes without considering their relationship to fairness metrics.
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6 EXPLANATION-BASED BIAS DETECTION VS. LLM-AS-A-JUDGE

Existing research suggests that LLMs could identify and correct biased model outputs (Bai et al.,
2022; Furniturewala et al., 2024). In this section, we compare the bias detection ability of input-
based explanations against LLMs’ judgments under two paradigms: (1) LLM decision, where LLMs
are asked to indicate whether a model’s prediction rely on bias or stereotypes, and (2) LLM attri-
bution, where LLMs choose a K-word rationale from the input, which we then examine for the
presence of sensitive tokens. We conduct this analysis using two LLMs, Qwen3-4B and GPT-OSS-
120B, on predictions made by Qwen3-4B on the race subset of Civil Comments (see Appendix G
for the prompts used).

Table 2 shows the results of LLM-as-a-judge for bias detection. Under the LLM decision setup,
Qwen3-4B is extremely conservative: it flags only 86 out of 4000 predictions as biased, and all of
them correspond to toxic predictions. Moreover, the predictions labeled as biased by the model ex-
hibit lower average individual unfairness than those labeled as non-biased, indicating poor precision
as well. Under LLM attribution, Qwen3-4B performs slightly better: predictions whose rationales
contain sensitive tokens show higher average individual unfairness than those without. However,
this still falls short of a simple input-based explanation baseline that flags the top 50% of predictions
ranked by absolute Grad L2 reliance scores (Grad L2 Binary). The larger GPT-OSS-120B exhibits
improved bias detection ability in the LLM decision setting, but its performance under LLM attribu-
tion remains comparable to Qwen3-4B and still substantially worse than input-based explanations.
Overall, we conclude that input-based explanations are more reliable than LLM-as-a-judge for bias
detection. This finding aligns with the observations of Yang et al. (2025b), who also report that
LLM-as-a-judge is unreliable for bias detection.

Table 2: Results of LLM-as-a-judge for bias detection using Qwen3-4B and GPT-OSS-120B.
Predictions come from Qwen3-4B on race-related Civil Comments examples. ”Biased/Unbiased”
denotes whether an example is judged as biased or unbiased by the LLM through LLM decision
or LLM attribution. If the judgments are reliable, Avgiu should be higher for biased examples
than unbiased ones. For LLM decision with Qwen3-4B, fairness correlation cannot be computed
because the model labels no non-toxic predictions as biased. Input-based explanations reveal bias
more reliably than LLM-as-a-judge.

LLM Method # Biased/Unbiased Avgiu (Biased/Unbiased) Fairness Correlation

Qwen3-4B
LLM decision 86/3914 0.065/2.59 -
LLM attribution (K=5) 2063/1904 3.55/1.49 0.104
LLM attribution (K=10) 2176/1474 2.93/1.56 0.070

GPT-OSS-120B
LLM decision 399/3601 4.42/2.35 0.051
LLM attribution (K=5) 2153/1843 3.33/1.65 0.092
LLM attribution (K=10) 2729/1238 2.88/1.74 0.063

— Grad L2 Binary 2000/2000 5.02/0.09 0.194

7 CONCLUSION

In this work, we present the first comprehensive study linking input-based explanations and fairness
in hate speech detection. Our experiments show that (1) input-based explanations can effectively
identify biased predictions, (2) they are not reliable for selecting fair models, and (3) they can serve
as effective supervision signals during training, mitigating bias while preserving a strong balance
between fairness and task performance. We further provide practical recommendations on which
explanation methods are best suited for bias detection and bias mitigation. Finally, our analyses
demonstrate that explanation-based bias detection remains effective in explanation-debiased models,
and they outperforms LLM-as-a-judge in identifying biased predictions5.

5Limitations and future directions are discussed in Appendix B. We also demonstrate that our findings gen-
eralize to alternative setups (Appendix C), that explanations can assist human fairness auditing (Appendix D),
and that hybrid debiasing methods show promising preliminary results (Appendix E).
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8 ETHICS STATEMENT

This work investigates explainability and fairness in hate speech detection. Despite the diverse
experimental setups explored and the additional generalization tests in Appendix C, the findings
are still constrained by the specific configurations considered here. As such, the results may not
fully generalize across demographic groups, domains, or tasks, and they may remain vulnerable to
adversarial manipulation. We further caution that explanation methods and debiasing techniques
cannot fully eliminate residual harms, and that LLM-generated bias judgments are unreliable for
bias detection. We hope that our study will contribute to the development of NLP systems that are
more transparent, reliable, and fair.

9 REPRODUCIBILITY STATEMENT

We include full implementation details in the main text and appendix, covering data pre-processing
details, model architectures, training procedures, and hyperparameters. We have submitted our code
and configuration files as supplementary material to facilitate reproduction during the review pro-
cess. Upon acceptance, we will open-source our code and scripts for data pre-processing and exper-
iments.
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A FAIRNESS AND EXPLAINABILITY IN HATE SPEECH DETECTION

To better motivate our focus on fairness and explainability in the hate speech detection task, we
provide additional background in this section. We begin by clarifying our definitions of hate speech
and social bias, then review relevant work on fairness and explainability in hate speech detection.
Finally, we explain why our study specifically focuses on input-based explanations.

Hate Speech We follow (Fortuna & Nunes, 2018) in defining hate speech as a specific form of
abusive or toxic language that targets and attacks protected or identifiable social groups. Under
this view, hate speech is a subset of abusive language. This definition is consistent with widely
adopted formulations in prior work on hate speech detection (e.g., Nobata et al., 2016; Davidson
et al., 2017). Because our study focuses on fairness and, in particular, analyzes model behavior on
examples involving specific social groups (race, gender, religion), this standard definition of hate
speech aligns well with the scope and goals of our work. We still use the toxic vs. non-toxic labels
following the terminology used in the Civil Comments (Borkan et al., 2019) and Jigsaw (cjadams
et al., 2019) datasets. Although these datasets include multiple subtypes of abusive content, they
group them under the broader notion of toxicity.

Social Bias Following the conceptualization of (Blodgett et al., 2020), we define social bias as
the presence of stereotypical associations between social groups and certain attributes, as well as
disparities in how these groups are treated as a result. Such biases can lead to both representational
harms (e.g., demeaning or misrepresenting targeted groups) and allocational harms (e.g., unfair
distribution of opportunities or resources). Given the potential for NLP systems to reproduce or
amplify these harms, and their growing influence in everyday life, it is essential to detect and mitigate
social bias in these models.

Social Bias in Hate Speech Detection Social bias has been widely documented in hate speech
detection systems. Dixon et al. (2018) showed that training data often contain uneven distributions
of identity terms and stereotypical associations, which in turn propagates bias into downstream
models. Subsequent studies revealed multiple dimensions of such disparities: Sap et al. (2019)
demonstrated systematic dialectal prejudice against African-American English (AAE), while Park
et al. (2018) reported significant performance gaps across gendered identities. Garg et al. (2019)
further found that models frequently assign different toxicity labels to otherwise identical content
when only the referenced social group is varied. Sahoo et al. (2022) expanded the scope of this
line of study by curating the ToxicBias dataset and examining bias across a broader set of social
categories. More recently, Roy et al. (2023) found that LLMs exhibit similar bias in hate speech
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detection. Together, these studies underscore the persistence and multifaceted nature of social bias
in hate speech detection.

To address such biases, a rich line of work has proposed mitigation techniques at different stages
of the modeling pipeline. Pre-processing methods include debiasing word embeddings to reduce
spurious associations between identity terms and toxicity (Park et al., 2018), re-sampling or re-
weighting examples to obtain more balanced label distributions across identity groups (Dixon et al.,
2018), and counterfactual data augmentation (Park et al., 2018; Garg et al., 2019). In-processing
approaches mostly modify the training objective, for instance by adding fairness-aware regularizers
that penalize correlations between identity terms and toxic predictions (Garg et al., 2019; Davani
et al., 2020; Attanasio et al., 2022; Schäfer et al., 2024). Post-processing methods adjust model
outputs without retraining: threshold adjustment per group has been used to trade off subgroup false
positive and false negative rates and reduce disparities (Dixon et al., 2018), while Mamta et al.
(2024) identify neurons associated with biased behavior and prune or edit them to improve fairness.

Despite substantial progress on identifying and mitigating social bias in hate speech detection, rela-
tively little work has systematically explored whether model explanations can be leveraged to detect
or reduce such biases.

Explainability in Hate Speech Detection In parallel, there is a growing line of work on input-
based explanations for hate speech detection. HateXplain (Mathew et al., 2021) introduces a bench-
mark with human-annotated rationales and shows that models trained with rationale supervision
improve both interpretability and reduce unintended bias towards target communities. Building on
this, Kim et al. (2022) and Saha et al. (2023) train models to jointly predict human rationales and
toxicity labels, leading to more robust and explainable hate speech detection systems. More recent
work further leverages LLM-generated rationales to supervise hate speech classifiers, achieving im-
proved performance and interpretability (Nirmal et al., 2024).

However, while existing efforts focus primarily on improving hate speech detection performance,
relatively little work examines whether and how input-based explanations can be systematically
leveraged to improve fairness in hate speech detection models. Since fairness and explainability
have both been extensively studied in this task, hate speech detection serves as an ideal setting for a
thorough empirical examination of how these two dimensions interact in NLP models.

Input-Based Explanations We focus on input-based explanations because they offer the most
direct view into which parts of the input influence a model’s prediction (Wang & Yin, 2021), and
they have long been regarded as central tools for fairness auditing in ML (Balkir et al., 2022; Deck
et al., 2024). Their methodological diversity also makes them an ideal testbed for our study, en-
abling a comprehensive examination of whether and how explanations can improve fairness (Lyu
et al., 2024). In addition, both automated and human-centric metrics for evaluating explanation
properties (e.g., faithfulness, interpretability) are well established (DeYoung et al., 2020; Jacovi &
Goldberg, 2020; Lage et al., 2019). This allows us to analyze how these properties relate to an ex-
planation method’s (in)effectiveness in fairness-related tasks. Finally, input-based explanations are
often mandated by laws, such as the EU Artificial Intelligence Act, making it practically important
to understand how their use interacts with fairness considerations.

B LIMITATIONS AND FUTURE WORK

Our study has several limitations that we acknowledge and aim to address in future work.

First, as the first quantitative investigation of this topic, our study focuses solely on hate speech
detection and uses a limited set of experimental setups. Although the results are consistent across
these setups and preliminary experiments (Appendix C) suggest good generalization across tasks,
models and sensitive token vocabulary, broader validation is still needed. Future work could extend
this evaluation to additional domains and high-stakes applications.

Second, several findings are derived under the specific experimental setups used in this work. For
instance, in RQ2, we conclude that the proposed attribution-based metrics are not reliable fair-
ness indicators. However, it remains possible that other metrics could be effective. Similarly, our
fairness-balanced metric in RQ3 may not be the optimal validation strategy in all settings. As it is
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infeasible to exhaustively enumerate and evaluate all potential configurations, we believe our con-
clusions nonetheless offer valuable guidance and highlight important methodological considerations
for the community.

Third, our work focuses on evaluating standalone explanation-based strategies for improving fair-
ness. Ensembles of multiple explanation methods, or hybrid approaches that combine explanation
techniques with established debiasing methods, may yield better outcomes. Additionally, incorpo-
rating human oversight may further enhance the effectiveness and robustness of explanation-based
fairness auditing. Our preliminary experiments show promising results in using hybrid debiasing
techniques E, and demonstrates the possibility for human fairness auditing based on explanations D.
Based on that, we believe that a systematic investigation of such hybrid or human-in-the-loop ap-
proaches represents an interesting avenue for future work.

Fourth, we do not identify any explanation method that consistently outperforms others across all
research questions, which prevents us from offering a single recommendation. We therefore en-
courage future researchers to choose explanation methods that align with their specific tasks and
constraints. Future work could further investigate why certain methods are better suited to particular
settings and, ideally, develop practical guidelines for selecting effective methods without requiring
extensive empirical comparisons.

Finally, although we consider both group and individual fairness, this work provides a more in-depth
analysis of individual fairness (in RQ1 and RQ2), driven by the conceptual alignment between input-
based explanations and individual fairness notions. We encourage future work to more thoroughly
examine how explanation methods relate to group fairness.

C GENERALIZATION OF FINDINGS

To demonstrate the generalizability of our findings, we present results under additional setups that
vary in task, model alignment type, and sensitive token vocabulary. We observe similar results across
these setups, suggesting that our findings generalize well beyond the main study conditions.

Task We evaluated explanation-based bias detection (RQ1) on an additional task, namely senti-
ment analysis, using the Twitter Sentiment dataset6. Specifically, we selected 1000 gender-related
examples (500 referencing males and 500 referencing females) and ran explanation-based bias de-
tection on them. In Figure 7 we report the results on Llama3.2-3B-Instruct and Qwen3-4B models.

In Figure 7, we observe patterns in the sentiment analysis task that are similar to those in our
main study: certain explanation methods (e.g., occlusion-based and L2-based approaches) can still
achieve high fairness correlation scores. This suggests that our findings could extend beyond the
hate speech detection task.

Model Alignment Type We extended our experiments to additional LLMs with different align-
ment methods. Specifically, we evaluated explanation-based bias detection (RQ1) on two differently
aligned LLMs: Llama3.2-3B (pre-trained only, non-instruct, used with few-shot prompting) and
Qwen2.5-3B-Instruct (instruction-tuned only). Neither model is aligned to human values, which
differs from the models used in our main study. The results are computed for race bias on Civil
Comments and shown in Figure 8.

We observe that certain explanation methods, such as Occlusion, consistently achieve high fairness
correlations. This suggests that our findings generalize across LLMs with different alignment set-
tings.

Sensitive Token Vocabulary In practice, it is often unrealistic to exhaustively enumerate all vo-
cabulary items that may encode sensitive attributes. To assess the applicability of our findings under
such conditions, we analyze how varying the coverage of sensitive tokens affects bias detection
and mitigation. Specifically, we focus on gender bias and use a small subset of gendered pronouns
(“he/his/him” and “she/her”) as sensitive tokens, while computing fairness metrics with the full
gender-related vocabulary (222 words per gender). This setup simulates real-world scenarios where
the sensitive vocabulary cannot be fully enumerated.

6https://huggingface.co/datasets/shukdevdatta123/twitter sentiment preprocessed
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Figure 7: Fairness correlation results for race bias on Twitter Sentiment with Llama3.2-3B-Instruct
and Qwen3-4B. Higher values indicate that the method is more effective and reliable in detecting
biased predictions at inference time.
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Figure 8: Fairness correlation results for race bias on Civil Comments with Llama3.2-3B and
Qwen2.5-3B-Instruct. Both models are differently aligned from models in our main experiments.
Higher values indicate that the method is more effective and reliable in detecting biased predictions
at inference time.

As shown in Figures 9 and 10, reduced vocabulary coverage has minimal impact on explanation-
based bias detection and mitigation performance. This result is reassuring, suggesting that explana-
tion methods remain effective in more complex, realistic settings where exhaustive sensitive token
coverage is infeasible.

D EXPLANATIONS FOR HUMAN FAIRNESS AUDITING

In addition to evaluating input-based explanations as automatic bias detectors, we also examine
their ability to support human auditing of biased model predictions. To this end, we conducted a
small-scale human study following the experimental protocol described below.
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Figure 9: Fairness correlation results when using a reduced sensitive token vocabulary for reliance
computation. Results are reported for gender bias on the Civil Comments dataset. Fairness metrics
are still computed using the full vocabulary. The reduced vocabulary size has only a marginal effect
on fairness correlations.
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Figure 10: Fairness and accuracy results for gender bias mitigation with a reduced sensitive token
vocabulary. Each column corresponds to models selected by maximizing the fairness–balance metric
with respect to the indicated bias metric. Using an incomplete vocabulary yields slightly worse
debiasing performance than using the complete vocabulary, while preserving task performance more
effectively. Overall, the impact of reduced vocabulary coverage is minimal.

We randomly sample 48 correctly predicted examples related to race bias from Civil Comments
(4*6=24 from BERT and 24 from Qwen3-4B, balanced across all group–class categories). We
evaluate six explanation methods: three directed methods (Occlusion, IxG mean, KernelSHAP) and
three undirected methods (Occlusion abs, IxG L2, Attention), chosen to cover diverse explanation
families and performance characteristics observed in RQ1.

For each example, annotators first read the input text and provide their own toxicity prediction.
They are then shown either the three directed explanations or the three undirected explanations for
that example. For each explanation, annotators give two ratings on a 1–5 scale: one assessing its
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interpretability, and another evaluating how much the model’s prediction appears to rely on race-
related bias or stereotypes, based on the information conveyed by the explanation.

After annotation, we collect annotators’ perceived bias ratings and measure their correlation with the
ground-truth individual unfairness scores. Higher fairness correlation indicates greater effectiveness
of an explanation method for human fairness auditing.

Table 3: Fairness correlation of explanation methods for human fairness auditing and their inter-
pretability. Best scores in each explanation type are marked in bold. Higher fairness correlation
scores indicate that explanations can better assist humans to detect bias.

Undirected Directed
Attention IxG L2 Occlusion abs KernelSHAP IxG mean Occlusion

Fairness correlation 0.402 0.123 0.433 0.254 -0.078 0.342
Interpretability 2.256 3.179 2.920 2.518 2.439 2.780

Table 4: Fairness correlation of explanation methods for human fairness auditing under different
conditions. Higher fairness correlation scores indicate that explanations can better assist humans to
detect bias. Green (red) indicates the results are better (worse) than the baseline (all examples).

Undirected Directed
Attention IxG L2 Occlusion abs KernelSHAP IxG mean Occlusion

All examples 0.402 0.123 0.433 0.254 -0.078 0.342
Correct predictions Only 0.572 0.202 0.602 0.217 0.029 0.451
Toxic examples only 0.637 0.118 0.374 0.231 0.134 0.315
High interpretability (score ≥ 3) 0.138 0.227 0.288 0.154 -0.043 0.404

Table 3 shows that certain explanation methods, such as Attention, Occlusion, and Occlusion abs,
achieve high fairness correlations, suggesting that they can effectively assist humans in detecting
bias. Across explanation types, undirected explanations appear more helpful. For example, Occlu-
sion and Occlusion abs produce the same attribution patterns that differ only in directional encoding,
yet participants were better able to identify bias using the undirected variant (Occlusion abs). Fur-
thermore, while some methods support both human and automatic bias detection consistently (e.g.,
Attention and Occlusion abs), others, such as IxG L2, show substantial gaps in performance. This
highlights a potential discrepancy between how humans interpret explanations and how our auto-
matic pipeline evaluates them.

We also observe that high interpretability alone does not guarantee better support for human fair-
ness auditing: methods with strong interpretability scores (e.g., IxG L2) still fail to effectively help
humans detect bias. Finally, 4 out of 6 annotators reported that undirected explanations helped them
detect bias more effectively, noting that they introduce less noise and make annotation easier.

Table 4 further analyzes explanation-assisted human fairness auditing under different conditions. For
correctly predicted examples, explanations generally provide stronger support for bias detection.
However, the effects of label type and explanation interpretability appear more nuanced and vary
across methods. Overall, these results suggest that explanation-assisted human fairness auditing is a
promising and interesting direction for future work and warrants further investigation.

E HYBRID BIAS MITIGATION TECHNIQUES

we conducted preliminary experiments that combine several pre-processing techniques (group bal-
ance, group–class balance, and CDA) with an effective explanation-based debiasing method (IxG
L1/L2). The resulting individual fairness outcomes, along with comparisons to traditional and
explanation-only methods, are presented in Table 5.

We observe that the hybrid method achieves better bias mitigation effects than using each debiasing
method alone, with consistent improvements for both race and gender bias. Based on this, we believe
exploring hybrid methods for more effective bias mitigation could be a promising future direction.
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Table 5: Each cell shows the Avgiu score after applying a combination of pre-processing and
explanation-based debiasing methods. Lower values indicate reduced bias. Values in parentheses
denote the change relative to using only the corresponding traditional/explanation-based method,
where negative values indicate improved debiasing. We observe that hybrid approaches consistently
achieve stronger bias mitigation than either method used in isolation.

Race

Group balance Group-class balance CDA
IxG L1 0.012 (-4.492/-1.461) 0.000 (-3.048/-1.473) 0.001 (-0.547/-1.473)
IxG L2 2.162 (-2.342/-0.598) 2.110 (-0.938/-0.650) 0.210 (-0.338/-2.550)

Gender

Group balance Group-class balance CDA
IxG L1 0.005 (-0.594/-0.548) 0.001 (-0.836/-0.552) 0.001 (-0.488/-0.551)
IxG L2 0.308 (-0.291/-0.331) 0.546 (-0.292/-0.093) 0.368 (-0.122/-0.271)

F EXPLANATION EFFICIENCY

Table 6 reports the time and GPU memory costs for each explanation method. Most post-hoc ex-
planation methods are lightweight when applied to BERT, whereas IntGrad, Occlusion, and Ker-
nelSHAP require substantially more time and computational resources when generating explana-
tions for LLMs.

Table 6: Computational costs per example for generating explanations across 200 instances on
BERT and Qwen3-4B. Results are computed on the race subset of the Civil Comments dataset
using a batch size of 1 and are averaged over three runs. All methods are run on a single 80-GB
H100 GPU, except Integrated Gradients, which uses two H100 GPUs with gradient checkpointing
to reduce memory usage. Because explanation methods within the same family incur similar
computational costs, we report each family only once.

BERT Qwen3-4B
Method Time (s/example) Memory (GB) Method Time (s/example) Memory (GB)
Attention 0.027 0.529 Attention 0.112 16.598
Grad 0.026 0.603 Grad 0.237 19.631
IxG 0.025 0.603 IxG 0.236 19.631
IntGrad 0.064 7.010 IntGrad 1.784 101.694
DeepLift 0.027 0.748 DeepLift 0.323 23.530
Occlusion 0.330 0.508 Occlusion 4.204 15.639
KernelSHAP 0.138 0.508 KernelSHAP 1.374 20.013
DecompX 0.074 7.222 ProgInfer 0.068 15.810

G DETAILS ON EXPERIMENTAL SETUPS

Table 7: Splits for the Civil Comments and Jigsaw datasets used in this work. The instances are
sampled randomly from the original dataset.

Split Civil Comments Jigsaw
race gender religion race gender religion

Test 2,000 2,000 1,000 400 800 200
Training 8,000 8,000 6,300 8,000 8,000 6,300

Datasets and Models Table 7 shows the dataset statistics for the Civil Comments7 and Jigsaw8

datasets, respectively. When constructing subsets for each social group, we include only examples
7https://huggingface.co/datasets/lighteval/civil comments helm
8https://huggingface.co/datasets/google/jigsaw unintended bias
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that contain words from the corresponding group’s vocabulary and exclude those containing words
from other groups. Additionally, we remove examples that include insulting references to social
groups.

For encoder-only models, we either train separate models for each bias type or a single model on the
combined set of all bias types. The latter are marked as (all) in the results. Models are trained for 5
epochs with a batch size of 8, a learning rate of 2× 10−5, and 10% warm-up steps. We implement
debiasing methods of encoder-only models ourselves. Debiased models are trained on the same
number of examples for comparability, therefore we do not sample more examples from external
datasets for causal debias. All experiments are carried out using a maximum of 4x NVIDIA H100
GPUs.

We use the base version of BERT and RoBERTa models for our encoder-only experiments, and for
decoder-only experiments, we adopt the instruct versions of the models from HuggingFace.

Prompts We employ the following prompt for zero-shot and few-shot prompting with decoder-
only models.

Task: Determine whether the following sentence contains any toxic
content. Toxicity includes insults, threats, hate speech, or any
language that is likely to offend or harm others.

([EXAMPLES])
(Now, please analyze the following sentence and provide your
answer. Answer only Yes or No.)

Sentence: [TEST EXAMPLE]

Question: Does this sentence contain toxicity?

Answer (Yes or No):

We use one toxic and one non-toxic example for each social group associated with a bias type
to construct the corresponding few-shot prompt. For fairness imagination, we prepend the task
instruction with:

Imagine a world with no bias regarding [BIAS TYPE].

For fairness instruction, we add:

In the following, do not rely on stereotypes or biases regarding
[BIAS TYPE] to make predictions.

Input-Based Explanation Methods We implement Attention, Attention Rollout, Attention Flow,
and Progressive Inference ourselves, and use the official codebase from the DecompX paper for its
implementation. For other explanation methods, we generate them using the Captum API9 Single-
pass Progressive Inference is used for simplicity.

Explanation-Based Bias Mitigation We reimplement all explanation methods used in RQ3 to
enable gradient tracking during training and ensure consistency with the explanations provided by
the Captum API. For Occlusion, we simplify computation by penalizing the probability difference
between the original input and the input with all sensitive tokens masked.

LLM decision and LLM attribution To elicit bias judgments from LLMs, we append the fol-
lowing instructions to their predictions.

LLM decision:

Do not re-answer the task. Instead, reflect only on your previous

9https://captum.ai/api/
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answer.

Question: Was your previous answer influenced by stereotypes or
biases related to [BIAS TYPE]?

Answer (Yes or No):

LLM attribution:

Now select exactly [NUM_TOKENS] words from the input sentence that
most influenced your decision. List the words separated by commas.
Please begin directly with the selected word.

Selected words:

H MODEL PERFORMANCE AND FAIRNESS RESULTS

Table 8: Task performance and fairness of default and debiased models on the Civil Comments
dataset. Results are provided for race/gender/religion biases. Green (red) indicates the results
are better (worse) than the default/zero-shot models. All indicates the model is trained on data
containing all bias types.

Model Method Accuracy (↑) Dispacc(↓) Dispfpr(↓) Dispfnr(↓) Avgiu(↓)

BERT

Default 78.38/88.05/85.93 2.05/3.30/18.07 0.50/0.03/5.77 10.04/11.98/30.90 3.17/0.66/1.27
Group balance 79.25/87.25/86.83 3.10/2.80/13.53 0.25/1.73/11.53 10.46/5.38/30.31 3.79/0.42/2.01
Group-class balance 78.00/87.02/85.77 1.80/2.75/14.73 2.42/0.99/3.09 10.63/7.26/33.14 4.43/0.98/0.71
CDA 76.83/86.70/84.83 2.35/3.60/14.13 5.88/2.00/5.67 18.45/7.57/24.12 0.50/0.50/0.90
Dropout 78.53/88.20/85.03 2.25/2.10/15.67 0.78/1.46/5.93 10.82/3.50/27.16 3.43/0.52/1.51
Attention entropy 79.15/87.67/84.93 2.60/2.05/15.07 0.99/0.10/4.99 11.71/7.11/26.52 2.95/0.67/1.58
Causal debias 78.80/86.17/86.40 0.00/2.65/16.40 3.90/0.46/8.82 7.98/10.67/30.46 3.83/0.48/2.10

BERT
(all)

Default 78.30/88.20/87.43 2.00/3.20/13.47 0.02/1.11/6.24 8.44/8.58/23.53 3.99/0.96/1.76
Group balance 79.05/88.85/87.47 3.50/2.80/13.67 1.72/0.31/6.92 8.83/11.08/23.91 4.13/1.17/2.15
Group-class balance 78.17/88.25/86.90 1.95/1.70/14.60 1.35/0.51/8.52 9.33/4.66/33.13 4.83/0.93/1.37
CDA 78.08/87.70/86.83 2.65/2.70/14.33 6.38/1.05/4.70 20.35/6.92/30.23 0.60/0.46/0.71
Dropout 78.08/87.60/87.67 2.45/3.10/13.47 0.30/1.05/5.53 9.99/8.39/33.12 3.60/0.89/1.59
Attention entropy 78.35/87.90/87.77 2.10/2.30/11.67 1.28/0.10/6.55 5.92/8.01/36.15 4.98/0.96/2.10
Causal debias 79.40/88.75/87.70 2.20/2.60/12.60 2.51/0.70/6.70 13.13/7.44/31.28 3.54/0.80/2.12

RoBERTa

Default 78.50/88.33/85.23 2.80/2.05/17.07 2.84/1.66/6.59 15.46/2.78/31.64 2.56/0.60/1.55
Group balance 78.25/88.50/87.03 2.00/2.20/16.93 2.10/1.27/11.36 9.85/4.57/29.48 3.95/0.68/1.19
Group-class balance 78.57/84.50/83.60 1.65/2.30/18.80 3.31/0.76/3.89 12.91/5.82/38.88 3.28/0.42/0.87
CDA 76.75/87.58/85.20 1.60/1.75/14.20 6.37/0.31/4.10 15.91/5.41/35.70 0.82/0.42/1.19
Dropout 78.33/88.92/86.73 2.15/1.55/14.53 2.42/0.58/8.86 11.11/3.96/27.05 4.08/0.56/2.10
Attention entropy 78.33/88.42/86.67 1.75/1.75/15.73 2.89/0.23/9.23 10.91/5.60/24.68 3.82/0.69/1.75
Causal debias 78.83/87.52/86.00 2.65/2.45/15.60 1.48/0.85/10.56 11.34/6.51/30.14 4.06/0.56/1.34

RoBERTa
(all)

Default 78.88/88.70/87.90 2.95/2.40/13.80 2.24/0.58/9.50 13.55/7.19/33.47 4.14/0.95/2.35
Group balance 79.30/88.65/87.93 2.90/2.00/14.73 1.27/0.17/12.30 11.03/7.74/31.69 5.02/1.06/2.80
Group-class balance 79.40/89.15/87.93 1.70/1.10/12.73 4.43/0.24/5.08 13.65/3.24/25.90 4.17/0.75/1.58
CDA 77.75/88.25/86.90 2.50/2.00/13.80 5.93/1.25/6.33 18.80/3.71/22.62 1.13/0.55/1.18
Dropout 78.88/88.40/87.70 2.75/3.00/14.80 1.80/1.33/6.66 12.46/7.34/33.39 4.26/0.99/2.13
Attention entropy 78.80/88.72/87.83 2.10/2.15/13.53 2.64/1.33/7.55 11.31/4.18/28.68 4.46/1.09/2.57
Causal debias 79.27/89.78/87.80 3.35/1.25/15.00 3.24/0.51/11.86 16.00/3.05/37.57 3.56/0.74/2.70

Llama3.2-3B-Instruct

Zero-shot 63.78/74.62/71.27 1.45/2.35/24.67 11.03/3.52/36.81 10.54/1.03/2.95 2.13/2.94/3.83
Few-shot 67.80/79.80/80.10 1.60/1.70/18.20 2.49/0.08/6.73 6.73/6.05/10.77 1.39/2.05/1.90
Fairness imagination 64.95/75.92/73.37 0.80/0.85/21.87 8.70/3.61/32.54 9.44/6.79/5.98 2.65/3.58/3.50
Fairness instruction 65.90/76.95/78.07 2.60/1.70/21.53 1.89/0.39/7.00 3.79/6.35/4.24 1.35/1.13/1.71

Qwen3-4B

Zero-shot 69.55/79.75/77.50 0.60/0.00/17.40 7.13/1.40/21.07 13.25/3.71/5.17 2.55/2.41/3.32
Few-shot 70.15/80.73/79.53 1.80/0.65/18.93 10.02/2.50/19.31 11.89/9.15/5.57 3.18/3.34/3.76
Fairness imagination 71.23/80.40/80.83 0.85/1.00/18.27 4.03/2.11/10.51 11.62/9.21/4.28 2.98/3.16/2.20
Fairness instruction 70.40/79.77/80.47 0.60/1.35/19.33 4.30/0.39/4.67 11.11/5.24/5.08 2.02/1.83/1.71

Qwen3-8B

Zero-shot 59.27/69.23/66.30 1.25/0.15/26.80 8.18/0.07/42.05 4.65/0.80/3.02 3.27/3.40/4.74
Few-shot 66.97/77.30/77.47 0.05/0.00/23.27 6.14/2.73/29.51 7.95/7.64/2.34 4.23/4.58/5.96
Fairness imagination 62.10/72.92/69.97 1.60/0.55/21.87 7.80/2.62/32.27 4.28/5.42/9.43 2.54/2.08/2.58
Fairness instruction 66.50/75.15/73.90 0.90/0.10/21.20 8.03/1.76/28.60 8.79/4.59/7.45 2.45/2.95/3.15

Tables 8 and 9 show the task performance and fairness scores for the default/zero-shot and debiased
models on the Civil Comments and Jigsaw datasets respectively. To better identify the differences
between different debiasing methods, we conduct an analysis based on how often a debiasing method
successfully reduces the average individual unfairness (Avgiu) and maintains the task performance
(Accuracy) of the default/zero-shot model.
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Table 9: Task performance and fairness results of default and debiased models on the Jigsaw dataset.
Results are provided for race/gender/religion biases. Green (red) indicates the results are better
(worse) than the default/zero-shot models. All indicates the model is trained on data containing all
bias types.

Model Method Accuracy (↑) Dispacc(↓) Dispfpr(↓) Dispfnr(↓) Avgiu(↓)

BERT

Default 85.50/93.00/90.50 0.50/2.25/6.00 0.64/2.34/5.22 0.70/3.28/21.54 2.02/0.36/1.33
Group balance 84.88/92.75/89.67 2.75/1.00/10.67 1.28/0.82/3.90 7.77/4.56/38.29 1.90/0.36/0.67
Group-class balance 84.38/92.81/90.83 0.25/0.62/6.33 1.58/0.15/1.98 8.03/9.64/43.57 0.97/0.65/0.34
CDA 85.25/91.81/90.50 4.00/3.63/10.00 4.12/3.44/5.10 2.97/7.38/37.39 0.39/0.28/0.45
Dropout 85.62/92.69/89.83 1.25/3.37/9.67 0.31/3.03/5.46 6.51/8.41/27.37 2.75/0.36/1.00
Attention entropy 85.00/92.06/89.83 0.00/3.12/9.33 0.62/3.03/4.29 1.72/6.00/28.06 2.93/0.50/0.98
Causal debias 85.50/93.38/89.83 4.00/0.75/7.33 1.28/0.28/3.55 13.73/12.77/17.12 3.16/0.43/1.10

BERT
(all)

Default 85.62/93.19/90.33 1.25/1.12/9.33 1.59/1.51/4.65 12.69/0.36/21.76 1.30/0.33/1.18
Group balance 83.38/93.19/90.17 1.75/1.12/9.67 1.56/1.10/4.66 3.10/3.23/26.79 2.81/0.40/0.76
Group-class balance 84.88/92.94/90.00 1.25/0.87/10.00 1.27/0.41/2.09 0.37/7.49/58.07 1.29/0.28/0.47
CDA 85.62/92.19/90.00 3.25/1.88/7.00 2.86/1.78/4.02 4.17/4.41/38.24 0.69/0.29/0.46
Dropout 86.50/93.44/91.00 3.00/1.38/7.00 1.26/1.10/5.60 10.24/6.10/13.16 1.91/0.33/1.27
Attention entropy 85.25/93.75/91.50 0.50/2.75/8.00 0.65/2.62/5.19 0.57/5.54/34.85 2.57/0.41/1.07
Causal debias 84.50/93.44/90.50 1.00/1.38/9.00 2.22/1.38/4.27 4.35/3.38/24.10 1.40/0.40/1.00

RoBERTa

Default 84.50/93.00/90.33 1.00/3.75/10.33 2.87/3.44/1.82 6.54/8.31/47.47 2.55/0.30/0.89
Group balance 85.50/92.31/89.83 2.50/0.62/11.33 0.94/0.27/1.55 9.11/6.41/38.00 2.44/0.26/0.46
Group-class balance 85.00/92.50/90.67 1.00/1.50/5.33 1.59/0.26/2.01 11.53/14.87/24.59 1.55/0.53/0.62
CDA 85.12/93.19/89.33 0.75/1.88/8.67 4.12/1.10/3.90 12.64/11.13/25.89 0.36/0.23/0.40
Dropout 83.88/93.69/90.17 1.75/0.88/7.67 1.29/0.82/2.97 3.10/3.28/26.86 2.71/0.23/0.87
Attention entropy 85.00/93.50/90.33 0.50/1.75/6.67 2.23/2.06/1.01 6.55/0.62/22.78 2.39/0.24/0.81
Causal debias 86.25/92.19/89.50 2.00/3.37/10.00 2.23/2.33/1.84 0.60/14.77/43.47 2.09/0.39/0.66

RoBERTa
(all)

Default 85.50/93.75/91.50 0.50/1.75/7.00 0.01/1.51/5.56 3.06/5.74/31.14 2.52/0.35/1.55
Group balance 85.38/93.62/91.67 1.75/3.25/9.33 0.01/2.47/4.12 9.01/11.90/40.29 2.76/0.30/0.96
Group-class balance 86.38/92.56/90.17 2.25/1.88/10.67 0.62/1.37/2.58 9.05/8.62/64.35 4.75/0.23/0.34
CDA 85.25/92.56/90.67 1.00/0.62/7.67 1.59/0.13/1.80 11.53/7.49/31.28 0.52/0.23/0.74
Dropout 86.00/93.00/90.17 2.50/1.75/4.67 1.27/1.51/4.19 17.51/6.21/28.72 1.02/0.33/0.79
Attention entropy 86.75/93.50/91.50 0.50/2.50/7.00 0.96/2.06/3.16 6.54/8.05/24.59 3.40/0.38/1.19
Causal debias 85.38/93.25/91.00 0.25/3.50/10.00 0.01/2.62/5.41 1.88/13.69/34.14 2.55/0.40/0.80

Llama3.2-3B-Instruct

Zero-shot 54.00/70.50/65.17 8.50/1.00/25.67 10.91/1.53/31.87 0.20/4.56/8.33 2.39/3.00/4.28
Few-shot 73.12/88.62/86.83 7.25/0.50/7.67 13.01/0.16/4.83 15.05/9.08/23.17 1.63/1.68/2.00
Fairness imagination 57.75/73.56/66.83 5.00/1.62/26.33 6.47/1.63/30.03 0.26/1.74/17.48 2.86/3.73/3.92
Fairness imagination 57.75/73.56/66.83 5.00/1.62/26.33 6.47/1.63/30.03 0.26/1.74/17.48 2.86/3.73/3.92
Fairness instruction 77.00/89.00/87.17 2.00/0.75/10.67 2.87/0.84/3.97 2.19/3.33/36.36 1.39/0.97/1.87

Qwen3-4B

Zero-shot 66.75/77.25/77.33 3.50/3.75/16.33 4.21/3.78/17.40 0.80/4.05/5.89 3.05/2.31/3.67
Few-shot 57.88/68.06/77.83 8.75/2.12/9.33 11.52/1.80/10.86 1.49/5.79/9.45 3.60/4.31/4.18
Fairness imagination 73.75/82.88/86.33 3.00/1.00/10.33 5.12/0.89/5.79 5.39/0.82/24.13 3.14/2.97/2.51
Fairness instruction 78.00/89.50/89.33 3.00/0.50/9.33 4.14/0.26/3.13 2.04/5.23/26.74 1.95/1.43/1.61

Qwen3-8B

Zero-shot 48.12/59.50/56.50 7.25/0.00/13.00 9.68/0.37/18.59 1.31/4.92/6.30 3.31/3.47/5.52
Few-shot 53.75/67.19/77.17 5.50/1.12/8.67 6.18/1.53/10.51 3.41/1.95/4.88 4.50/5.04/5.99
Fairness imagination 51.62/67.50/61.83 4.25/0.75/9.67 5.24/0.56/11.23 1.05/3.49/6.45 2.51/2.02/2.55
Fairness instruction 60.25/71.19/67.50 8.50/1.87/12.00 10.57/2.23/14.22 0.93/1.90/2.10 2.46/3.13/3.60

Encoder-only models Analyzing the results with respect to the dataset, we find that the models
are able to better preserve their original accuracy on the Civil Comments dataset (48.61% of the
cases) compared to the Jigsaw dataset (40.28% of the cases). In contrast, mitigating bias seems
substantially easier on the Jigsaw dataset (in 63.88% of the cases) than on the Civil Comments
(only 50% of the cases). On closer inspection, we find that this skew comes from religion bias
in the Jigsaw dataset which is improved in 95.83% of the cases after debiasing, followed by race
bias (50%) and gender bias (45.83%). In the Civil Comments dataset, we find that gender bias is
mitigated best (improvement in 62.5% of the cases), followed by religion bias (54.17%) and race
bias (33.33%).

With respect to the debiasing method, we find that CDA performs best in terms of debiasing, as it
reduces Avgiu across all bias types, datasets, and models. The second best performing method is
group-class balance which manages to reduce Avgiu in 58.33% of the cases on the Civil Comments
dataset and in 75% cases on the Jigsaw dataset. For the other methods, the results are mixed as we
again observe dataset-specific differences. For example, we find that Attention entropy performs
well on the Jigsaw dataset (50%) but performs worst on the Civil Comments dataset (16.67%).
These differences become even more pronounced when looking at different bias types. For instance,
causal debiasing improves Avgiu for religion bias across all models on the Jigsaw dataset but at the
same time, does not improve a single model in terms of Avgiu for gender bias in the same dataset.
Interestingly, we find an inverse trend on the Civil Comments dataset; i.e., causal debiasing succeeds
on all models for gender bias, but only for one model for religion bias. These findings highlight the
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importance of considering a diverse set of datasets for evaluating debiasing methods, as results on a
single dataset can be misleading.

Decoder-only models We find that the debiasing methods (fairness imagination and fairness in-
struction) for the decoder-only models consistently improve the task performance across all bias
types and datasets. Contrary to this, we see increases in average individual unfairness of the fair-
ness imagination approach for race and gender bias on Llama3.2-3B-Instruct and Qwen3-4B across
both datasets. Only for religion, fairness imagination leads to a consistent decrease of the individual
unfairness across models. For fairness instruction, we observe a consistent improvement across all
three bias types and both datasets, showing the clear superiority of the approach. The consistency of
the results is especially surprising when considering that both decoder-only models are instruction-
tuned and aligned with human values, and that Chen et al. (2025) identify a bias amplification effect
from instruction tuning. We conclude that fairness instruction is a good baseline to evaluate other
debiasing methods for decoder-only models.

I BIAS DETECTION RESULTS

Fairness correlation We present the full fairness correlation results of encoder- and decoder-only
models with different debiasing methods on Civil Comments and Jigsaw in Figures11, 12, 13, 14.
Consistent with findings presented in the main text, Occlusion- and L2-based explanation methods
achieve strong fairness correlations across different setups.

Comparing different debiasing methods, we find that low correlation scores primarily occur when
individual unfairness is less pronounced, such as in CDA models. In these cases, the models them-
selves produce fewer biased predictions, making the detection of bias through explanations less
critical. The lower correlations therefore do not substantially undermine the role of explanations in
bias identification.

J FAITHFULNESS AS AN INDICATOR OF BIAS DETECTION ABILITY

What factors influence the reliability of explanations in detecting bias? In this section, we exam-
ine the relationship between explanation faithfulness and their ability to identify bias, reflected by
fairness correlation scores in RQ1. We assess the faithfulness of explanation methods using two
perturbation-based metrics: comprehensiveness and sufficiency AOPC (Area Over the Perturbation
Curve; DeYoung et al., 2020), computed by masking 5%, 10%, 20%, and 50% of the input tokens.
For substitution, we use the [MASK] token in BERT and the [PAD] token in Qwen3-4B. Higher
comprehensiveness and lower sufficiency scores indicate more faithful explanations.

Our results on race bias in Civil Comments (Figure 15 and Table 10) reveal no clear link between
faithfulness and fairness correlation of explanations. In particular, mean-based explanations may
achieve better faithfulness scores than their L2-based counterparts, yet they consistently perform
significantly worse in identifying bias. We attribute this discrepancy to two key differences between
the faithfulness metrics and our fairness correlation measure. First, faithfulness evaluates attribu-
tion scores across all input tokens, whereas our fairness correlation measure only considers sensitive
token reliance. Second, perturbation-based faithfulness assesses the impact of masking tokens on
model predictions, while our individual unfairness metric compares predictions when one social
group is substituted for another. Taken together, these findings suggest that explanation faithful-
ness is not a reliable indicator of bias detection ability. We therefore do not recommend selecting
explanation methods for fairness on the basis of faithfulness results alone.

K MODEL SELECTION RESULTS

Explanation-Based Metrics and Fair Model Selection Results We evaluate several explanation-
based metrics for selecting fair models with respect to different fairness criteria:

• Average absolute sensitive token reliance: used to predict average individual unfairness,
under the assumption that higher reliance on sensitive tokens implies greater sensitivity to
group substitutions.
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Figure 11: Fairness correlation results on Civil Comments for each explanation method across
encoder-only models and bias types. Higher values indicate that the method is more effective and
reliable in detecting biased predictions at inference time. All indicates the model is trained on data
containing all bias types.

• Group differences in average absolute sensitive token reliance: used to predict dispari-
ties in accuracy, assuming that stronger reliance on sensitive features increases the risk of
incorrect predictions.
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Figure 12: Fairness correlation results on Civil Comments for each explanation method across
decoder-only models and bias types. Higher values indicate that the method is more effective and
reliable in detecting biased predictions at inference time.

Table 10: Faithfulness results of different explanation methods on BERT and Qwen3-4B models.

Explanation Comp. (↑) Suff. (↓) Fairness Correlation (↑) Comp. (↑) Suff. (↓) Fairness Correlation (↑)

BERT Qwen3-4B

Attention 4.50 3.20 0.62 10.34 17.20 0.14
Attn rollout 4.37 3.11 0.59 9.04 15.70 0.02
Attn flow 4.01 3.46 0.47 10.57 16.82 0.04
Grad L2 4.82 2.99 0.50 12.30 16.09 0.32
Grad mean 0.77 6.16 0.06 11.41 17.50 0.06
DeepLift L2 4.72 3.09 0.50 12.44 16.17 0.31
DeepLift mean 1.68 5.75 0.06 10.78 18.69 0.06
IxG L2 4.89 2.95 0.49 12.35 16.27 0.32
IxG mean 7.44 1.70 0.30 9.99 18.82 0.17
IntGrad L2 4.81 3.02 0.57 12.33 16.86 0.25
IntGrad mean 10.68 -0.36 0.45 14.21 16.12 0.04
Occlusion 13.16 -0.90 0.62 20.05 13.73 0.27
Occlusion abs 0.79 0.56 0.66 22.48 20.36 0.26
KernelSHAP 5.99 2.30 0.21 11.49 17.86 0.02
DecompX 16.08 -2.77 0.40 - - -
ProgInfer - - - 10.32 17.96 0.025

• Group differences in average absolute sensitive token reliance for positive/negative
predictions: used to predict disparities in false positive and false negative rates, respec-
tively.

Among these, only average absolute sensitive token reliance exhibits rank correlations above ran-
dom chance with its target fairness metric (individual unfairness). The correlations for other metrics
remain at chance level. Figures 16, 17, 18, 19 demonstrate that no explanation methods can consis-
tently match baseline rank correlation results.
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Figure 13: Fairness correlation results on Jigsaw for each explanation method across encoder-only
models and bias types. Higher values indicate that the method is more effective and reliable in
detecting biased predictions at inference time. All indicates the model is trained on data containing
all bias types.

Figures 20, 21, 22, 23 further reveal that explanation methods are not able to robustly select the
fairest models. These findings underline the unreliability of explanation-based model selection.
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Figure 14: Fairness correlation results on Jigsaw for each explanation method across decoder-only
models and bias types. Higher values indicate that the method is more effective and reliable in
detecting biased predictions at inference time.
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Figure 15: Faithfulness and fairness correlation results of different explanation methods. No clear
relationship between explanation faithfulness and their bias detection ability is observed. Each
point represents the faithfulness and fairness correlation of one explanation method applied to
default/zero-shot models.

L BIAS MITIGATION RESULTS

The complete bias mitigation results are presented in Figures 24, 25, 26, 27. The findings are in line
with conclusions from the main paper, that explanation-based debiasing can effectively reduce model
biases across different fairness metrics, bias types, models, and datasets. In addition, the accuracy-
fairness harmonic mean results shown in Figures 28, 29, 30, 31 demonstrate that explanation-based
debiasing achieves comparable or superior balance between fairness and task performance than de-
fault models and traditional debiasing approaches.

We additionally report the results of Integrated Gradients for bias mitigation in Table 11. Simi-
lar to other explanation methods, IntGrad-based debiasing achieves substantial bias reduction and
maintains a good balance between fairness and task performance in Dispfnr and Avgiu.
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Figure 16: Rank correlations between validation set average absolute sensitive token reliance and
individual unfairness on the test set for encoder-only models on Civil Comments. The validation
set sizes are 500 for race, 500 for gender, and 200 for religion. Higher correlation values indicate
greater effectiveness in ranking models. All indicates the model is trained on all bias types.

Table 11: Results of mitigating race bias in BERT models using Intgrad explanations
on Civil Comments. For consistency with accuracy, fairness results are reported as
100 − {Dispacc,Dispfpr,Dispfnr,Avgiu}, so that higher values indicate better debiasing perfor-
mance. Each column corresponds to models selected by maximizing the fairness-balanced metric
with respect to the indicated bias metric. H-Mean indicates harmonic mean between fairness and
accuracy. Green (red) indicates the results are better (worse) than the default models.

Method Dispacc Dispfpr Dispfnr Avgiu
Acc Fairness H-Mean Acc Fairness H-Mean Acc Fairness H-Mean Acc Fairness H-Mean

IntGrad L1 78.55 96.66 86.67 78.55 96.66 86.67 77.98 97.86 86.8 78.37 97.02 86.7
IntGrad L2 77.85 96.58 86.21 77.71 96.33 86.02 77.85 96.58 86.21 78.09 97.1 86.56

Default 78.97 98.37 87.61 78.97 98.96 87.84 78.97 91.15 84.62 78.97 96.36 86.8

M FAIRNESS CORRELATIONS IN EXPLANATION-DEBIASED MODELS

Figure 32 presents the fairness correlation scores computed on explanation-debiased models. We
find that Grad L2, IxG L2, DeepLift L2, and Occlusion-based explanations still show strong bias
mitigation ability in the debiased models.

N LLM USAGE

Apart from the models evaluated in our experiments and analyses, we used LLMs (ChatGPT) solely
to polish the writing in this work.
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Figure 17: Rank correlations between validation set average absolute sensitive token reliance and
individual unfairness on the test set for decoder-only models on Civil Comments. The validation
set sizes are 500 for race, 500 for gender, and 200 for religion. Higher correlation values indicate
greater effectiveness in ranking models.
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Figure 18: Rank correlations between validation set average absolute sensitive token reliance and
individual unfairness on the test set for encoder-only models on Jigsaw. The validation set size is
200. Higher correlation values indicate greater effectiveness in ranking models. All indicates the
model is trained on all bias types.
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Figure 19: Rank correlations between validation set average absolute sensitive token reliance and
individual unfairness on the test set for decoder-only models on Jigsaw. The validation set size is
200. Higher correlation values indicate greater effectiveness in ranking models.
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Figure 20: MRR@1 results for encoder-only models on Civil Comments. The validation set sizes
are 500 for race, 500 for gender, and 200 for religion. Higher MRR@1 scores indicate explanations
are more effective in selecting the fairest models. All indicates the model is trained on all bias types.
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Figure 21: MRR@1 results for decoder-only models on Civil Comments. The validation set sizes
are 500 for race, 500 for gender, and 200 for religion. Higher MRR@1 scores indicate explanations
are more effective in selecting the fairest models.
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Figure 22: MRR@1 results for encoder-only models on Jigsaw. The validation set size is 200.
Higher MRR@1 scores indicate explanations are more effective in selecting the fairest models. All
indicates the model is trained on all bias types.
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Figure 23: MRR@1 results for decoder-only models on Jigsaw. The validation set size is 200.
Higher MRR@1 scores indicate explanations are more effective in selecting the fairest models.
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Figure 24: Accuracy and fairness results for bias mitigation in BERT on the Civil Comments dataset,
using different explanation methods during training. For consistency with accuracy, fairness results
are reported as 100−{Dispacc,Dispfpr,Dispfnr,Avgiu}, so that higher values indicate better debiasing
performance. Each column corresponds to models selected by maximizing the fairness-balanced
metric with respect to the indicated bias metric.
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Figure 25: Accuracy and fairness results for bias mitigation in RoBERTa on the Civil Comments
dataset, using different explanation methods during training. For consistency with accuracy, fairness
results are reported as 100 − {Dispacc,Dispfpr,Dispfnr,Avgiu}, so that higher values indicate better
debiasing performance. Each column corresponds to models selected by maximizing the fairness-
balanced metric with respect to the indicated bias metric.
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Figure 26: Accuracy and fairness results for bias mitigation in BERT on the Jigsaw, using different
explanation methods during training. For consistency with accuracy, fairness results are reported as
100−{Dispacc,Dispfpr,Dispfnr,Avgiu}, so that higher values indicate better debiasing performance.
Each column corresponds to models selected by maximizing the fairness-balanced metric with re-
spect to the indicated bias metric.
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Figure 27: Accuracy and fairness results for bias mitigation in RoBERTa on the Jigsaw dataset, using
different explanation methods during training. For consistency with accuracy, fairness results are
reported as 100 − {Dispacc,Dispfpr,Dispfnr,Avgiu}, so that higher values indicate better debiasing
performance. Each column corresponds to models selected by maximizing the fairness-balanced
metric with respect to the indicated bias metric.
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Figure 28: Harmonic mean between accuracy and fairness for established debiasing methods and
explanation-based methods for BERT on Civil Comments. A higher score indicates better balance
between model performance and fairness.
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Figure 29: Harmonic mean between accuracy and fairness for established debiasing methods and
explanation-based methods for RoBERTa on Civil Comments. A higher score indicates better bal-
ance between model performance and fairness.
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Figure 30: Harmonic mean between accuracy and fairness for established debiasing methods and
explanation-based methods for BERT on Jigsaw. A higher score indicates better balance between
model performance and fairness.
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Figure 31: Harmonic mean between accuracy and fairness for established debiasing methods and
explanation-based methods for RoBERTa on Jigsaw. A higher score indicates better balance between
model performance and fairness.
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Figure 32: Fairness correlation results on BERT models with race bias mitigated through
explanation-based methods on Civil Comments.
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