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Abstract

Sharp generalization bound for neural networks
trained by gradient descent (GD) is of central
interest in statistical learning theory and deep
learning. In this paper, we consider nonpara-
metric regression by an over-parameterized two-
layer NN trained by GD. We show that, if the
neural network is trained by GD with early
stopping, then the trained network renders a
sharp rate of the nonparametric regression risk
of O(ε2n), which is the same rate as that for the
classical kernel regression trained by GD with
early stopping, where εn is the critical popula-
tion rate of the Neural Tangent Kernel (NTK)
associated with the network and n is the size
of the training data. It is remarked that our re-
sult does not require distributional assumptions
on the covariate as long as the covariate lies on
the unit sphere, in a strong contrast with many
existing results which rely on specific distribu-
tions such as the spherical uniform data distribu-
tion or distributions satisfying certain restrictive
conditions. As a special case of our general re-
sult, when the eigenvalues of the associated NTK
decay at a rate of λj ≍ j−

d
d−1 for j ≥ 1 which

happens under certain distributional assumption
such as the training features follow the spheri-
cal uniform distribution, we immediately obtain
the minimax optimal rate of O(n−

d
2d−1 ), which

is the major results of several existing works in
this direction. The neural network width in our
general result is lower bounded by a function of
only d and εn, and such width does not depend on
the minimum eigenvalue of the empirical NTK
matrix whose lower bound usually requires ad-
ditional assumptions on the training data. Our
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results are built upon two significant technical
results which are of independent interest. First,
uniform convergence to the NTK is established
during the training process by GD, so that we can
have a nice decomposition of the neural network
function at any step of the GD into a function in
the Reproducing Kernel Hilbert Space associated
with the NTK and an error function with a small
L∞-norm. Second, local Rademacher complex-
ity is employed to tightly bound the Rademacher
complexity of the function class comprising all
the possible neural network functions obtained
by GD. Our result formally fills the gap between
training a classical kernel regression model and
training an over-parameterized but finite-width
neural network by GD for nonparametric regres-
sion without distributional assumptions about the
spherical covariate.

1. Introduction
With the stunning success of deep learning in various areas
of machine learning (LeCun et al., 2015), generalization
analysis for neural networks is of central interest for sta-
tistical learning learning and deep learning. Considerable
efforts have been made to analyze the optimization of deep
neural networks showing that gradient descent (GD) and
stochastic gradient descent (SGD) provably achieve van-
ishing training loss (Du et al., 2019b; Allen-Zhu et al.,
2019b; Du et al., 2019a; Arora et al., 2019; Zou & Gu,
2019; Su & Yang, 2019). There are also extensive efforts
devoted to generalization analysis of deep neural networks
(DNNs) with algorithmic guarantees, that is, the general-
ization bounds for neural networks trained by gradient de-
scent or its variants. It has been shown that with sufficient
over-parameterization, that is, with enough number of neu-
rons in hidden layers, the training dynamics of deep neural
networks (DNNs) can be approximated by that of a kernel
method with the kernel induced by the neural network ar-
chitecture, termed the Neural Tangent Kernel (NTK), while
other studies such as (Yang & Hu, 2021) show that infinite-
width neural networks can still learn features. The key idea
of NTK based generalization analysis is that, for highly
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over-parameterized networks, the network weights almost
remain around their random initialization. As a result, one
can use the first-order Taylor expansion around initializa-
tion to approximate the neural network functions and ana-
lyze their generalization capability (Cao & Gu, 2019; Arora
et al., 2019; Ghorbani et al., 2021).

Many existing works in generalization analysis of neural
networks focus on clean data, but it is a central problem
in statistical learning that how neural networks can obtain
sharp convergence rates for the risk of nonparametric re-
gression where the observed data are corrupted by noise.
Considerable research has been conducted in this direc-
tion which shows that various types of DNNs achieve op-
timal convergence rates for smooth (Yarotsky, 2017; Bauer
& Kohler, 2019; Schmidt-Hieber, 2020; Jiao et al., 2023;
Zhang & Wang, 2023) or non-smooth (Imaizumi & Fuku-
mizu, 2019) target functions for nonparametric regression.
However, most of these works do not have algorithmic
guarantees, that is, the DNNs in these works are con-
structed specially to achieve optimal rates with no guar-
antees that an optimization algorithm, such as GD or its
variants, can obtain such constructed DNNs. To this end,
efforts have been made in the literature to study the mini-
max optimal risk rates for nonparametric regression with
over-parameterized neural networks trained by GD with
either early stopping (Li et al., 2024) or ℓ2-regularization
(Hu et al., 2021; Suh et al., 2022). However, most existing
works either require spherical uniform data distribution on
the unit sphere (Hu et al., 2021; Suh et al., 2022) or certain
restrictive conditions on the data distribution.

It remains an interesting and important question for the
statistical learning and theoretical deep learning literature
that if an over-parameterized neural network trained by
GD can achieve sharp risk rates for nonparametric regres-
sion with milder assumptions or restrictions on the distri-
bution of the covariate, so that theoretical guarantees can
be obtained for data in more practical scenarios. In this
paper, we give a confirmative answer to this question. We
present sharp risk rate for nonparametric regression with an
over-parameterized two-layer NN trained by GD with early
stopping, which is distribution-free in spherical covariate.
Throughout this paper, distribution-free in spherical covari-
ate means that there are no distributional assumptions about
the covariate as long as the covariate lies on the unit sphere.
Furthermore, our results give confirmative answers to cer-
tain open questions or address particular concerns in the
literature of training over-parameterized neural networks
by GD with early stopping for nonparametric regression
with minimax optimal rates, such as the characterization
of the stopping time in the early-stopping mechanism, the
lower bound for the network width, and the constant learn-
ing rate used in GD. Benefiting from our analysis which is
distribution-free in spherical covariate, our answers to these

open questions or concerns do not require distributional as-
sumptions about spherical covariate. Section 3 summarizes
our main results with their significance and comparison to
existing works.

We organize this paper as follows. We first introduce the
necessary notations in the remainder of this section. We
then introduce in Section 2 the problem setup for nonpara-
metric regression. Our main results are summarized in Sec-
tion 3 and detailed in Section 5. The training algorithm for
the over-parameterized two-layer neural network is intro-
duced in Section 4. The roadmap of proofs, the summary of
the technical approaches and the novel results in the proofs,
and the novel proof strategy of this work are presented in
Section 6. The detailed proofs are deferred to Section A-
Section C of the appendix, and Section D of the appendix
presents the simulation results.

Notations. We use bold letters for matrices and vectors,
and regular lower letter for scalars throughout this paper.
The bold letter with a single superscript indicates the corre-
sponding column of a matrix, e.g., A(i) is the i-th column
of matrix A, and the bold letter with subscripts indicates
the corresponding rows or elements of a matrix or a vec-
tor. We put an arrow on top of a letter with subscript if
it denotes a vector, e.g.,

⇀
x i denotes the i-th training fea-

ture. ∥·∥F and ∥·∥p denote the Frobenius norm and the
vector ℓp-norm or the matrix p-norm. [m : n] denotes
all the natural numbers between m and n inclusively, and
[1 : n] is also written as [n]. Var [·] denotes the vari-
ance of a random variable. In is a n × n identity ma-
trix. 1I{E} is an indicator function which takes the value
of 1 if event E happens, or 0 otherwise. The complement
of a set A is denoted by Ac, and |A| is the cardinality of
the set A. vec (·) denotes the vectorization of a matrix
or a set of vectors, and tr (·) is the trace of a matrix. We
denote the unit sphere in d-dimensional Euclidean space
by Sd−1 := {x : x ∈ Rd, ∥x∥2 = 1}. Let L2(Sd−1, µ)
denote the space of square-integrable functions on Sd−1

with probability measure µ, and the inner product ⟨·, ·⟩µ
and ∥·∥2µ are defined as ⟨f, g⟩L2 :=

∫
Sd−1 f(x)g(x)dµ(x)

and ∥f∥2L2 :=
∫
Sd−1 f

2(x)dµ(x) < ∞. B (x; r) is the
Euclidean closed ball centered at x with radius r. Given
a function g : Sd−1 → R, its L∞-norm is denoted by
∥g∥∞ := supx∈Sd−1 |g(x)|. L∞ is the function class
whose elements almost surely have bounded L∞-norm.
⟨·, ·⟩H and ∥·∥H denote the inner product and the norm in
the Hilbert space H. a = O(b) or a ≲ b indicates that
there exists a constant c > 0 such that a ≤ cb. Õ in-
dicates there are specific requirements in the constants of
the O notation. a = o(b) and a = w(b) indicate that
lim |a/b| = 0 and lim |a/b| = ∞, respectively. a ≍ b
or a = Θ(b) denotes that there exists constants c1, c2 > 0
such that c1b ≤ a ≤ c2b. Throughout this paper we let the
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input space be X = Sd−1, and Unif (X ) denotes the uni-
form distribution on X . The constants defined throughout
this paper may change from line to line. For a Reproducing
Kernel Hilbert Space H, H(µ0) denotes the ball centered
at the origin with radius µ0 in H. We use EP [·] to denote
the expectation with respect to the distribution P .

2. Problem Setup
We introduce the problem setups for nonparametric regres-
sion in this section.

2.1. Two-Layer Neural Network

We are given the training data
{
(
⇀
x i, yi)

}n
i=1

where each

data point is a tuple of feature vector
⇀
x i ∈ X and its re-

sponse yi ∈ R. Throughout this paper we assume that no
two training features coincide, that is,

⇀
x i ̸=

⇀
xj for all

i, j ∈ [n] and i ̸= j. We denote the training feature vec-

tors by S =
{
⇀
x i

}n
i=1

, and denote by Pn the empirical
distribution over S. All the responses are stacked as a vec-
tor y = [y1, . . . , yn]

⊤ ∈ Rn. The response yi is given
by yi = f∗(

⇀
x i) + wi for i ∈ [n], where {wi}ni=1 are

i.i.d. sub-Gaussian random noise with mean 0 and vari-
ance proxy σ2

0 , that is, E [exp(λwi)] ≤ exp(λ2σ2
0/2) for

any λ ∈ R. f∗ is the target function to be detailed later.
We define y := [y1, . . . , yn], w := [w1, . . . , wn]

⊤, and use

f∗(S) :=
[
f∗(

⇀
x1), . . . , f

∗(
⇀
xn)

]⊤
to denote the clean tar-

get labels. The feature vectors in S are drawn i.i.d. accord-
ing to an underlying unknown continuous data distribution
P with µ being the probability measure for P . We consider
a two-layer NN (NN) in this paper whose mapping function
is

f(W,x) =
1√
m

m∑
r=1

arσ

(
⇀
wr

⊤
x

)
, (1)

where x ∈ X is the input, σ(·) = max {·, 0} is the ReLU

activation function, W =
{
⇀
wr

}m
r=1

with
⇀
wr ∈ Rd for

r ∈ [m] denotes the weighting vectors in the first layer and
m is the number of neurons. a = [a1, . . . , am] ∈ Rm
denotes the weights of the second layer. Throughout this
paper we also write W as WS so as to indicate that the
weighting vectors in W are trained on the training features
S.

2.2. Kernel and Kernel Regression for Nonparametric
Regression

We define the kernel function

K(u,v) :=
⟨u,v⟩
2π

(π − arccos ⟨u,v⟩) , ∀ u,v ∈ X ,
(2)

which is in fact the NTK associated with the two-layer NN
(1) when only the first layer is trained, and K is a positive-
definite (PD) kernel. Let the gram matrix of K over the
training data S be K ∈ Rn×n,Kij = K(

⇀
x i,

⇀
xj) for

i, j ∈ [n], and Kn := K/n is the empirical NTK ma-
trix. Let the eigendecomposition of Kn be Kn = UΣU⊤

where U is a n × n orthogonal matrix, and Σ is a di-

agonal matrix with its diagonal elements
{
λ̂i

}n
i=1

be-
ing eigenvalues of Kn and sorted in a non-increasing or-
der. It is proved in existing works, such as (Du et al.,
2019b), that Kn is non-singular, and it can be verified
that λ̂1 ∈ (0, 1/2). Let HK be the Reproducing Ker-
nel Hilbert Space (RKHS) associated with K. Because
K is continuous on the compact set X × X , the inte-
gral operator TK : L2(X , µ) → L2(X , µ), (TKf) (x) :=∫
X K(x,x′)f(x′)dµ(x′) is a positive, self-adjoint, and

compact operator on L2(X , µ). By the spectral theo-
rem, there is a countable orthonormal basis {ej}j≥1 ⊆
L2(X , µ) and {λj}j≥1 with 1

2 ≥ λ1 ≥ λ2 ≥ . . . > 0
such that ej is the eigenfunction of TK with λj being the
corresponding eigenvalue. That is, TKej = λjej , j ≥ 1.
Let {µℓ}ℓ≥1 be the distinct eigenvalues associated with
TK , and let mℓ be the be the sum of multiplicity of the
eigenvalue {µℓ′}ℓℓ′=1. That is, mℓ′ − mℓ′−1 is the mul-
tiplicity of µℓ′ . It is well known that

{
vj =

√
λjej

}
j ≥1

is an orthonormal basis of HK . For a positive con-
stant µ0, we define HK(µ0) := {f ∈ HK : ∥f∥H ≤ µ0}
as the closed ball in HK centered at 0 with radius µ0.
We note that HK(µ0) is also specified by HK(µ0) ={
f ∈ L2(X , µ) : f =

∑∞
j=1 βjej ,

∑∞
j=1 β

2
j /λj ≤ µ2

0

}
.

The Task of Nonparametric Regression. With f∗ ∈
HK(µ0), the task of the analysis for nonparametric re-
gression is to find an estimator f̂ from the training data{
(
⇀
x i, yi)

}n
i=1

so that the risk EP
[(
f̂ − f∗

)2]
can con-

verge to 0 with a fast rate. In this work, we aim to establish
a sharp rate of the risk where the over-parameterized neural
network (1) trained by GD with early stopping serves as the
estimator f̂ .

Sharp rate of the risk of nonparametric regression us-
ing classical kernel regression. The statistical learning lit-
erature has established rich results in the sharp convergence
rates for the risk of nonparametric kernel regression (Stone,
1985; Yang & Barron, 1999; Raskutti et al., 2014; Yuan
& Zhou, 2016), with one representative result in (Raskutti
et al., 2014) about kernel regression trained by GD with
early stopping. Let εn be the critical population rate of the
PD kernel K, which is also referred to as the critical ra-
dius (Wainwright, 2019) of K. (Raskutti et al., 2014, The-
orem 2) shows the following sharp bound for the nonpara-
metric regression risk of a kernel regression model trained
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by GD with early stopping when f∗ ∈ HK(µ0). That is,
with probability at least 1−Θ

(
exp(−Θ(nε2n)

)
,

EP
[(
fT̂ − f

∗)2] ≲ ε2n, (3)

where T̂ is the stopping time whose formal definition is
deferred to Section 5.1, and fT̂ is the kernel regressor at
the T̂ -th step of GD for the optimization problem of ker-
nel regression. The risk bound (3) is rather sharp, since
it is minimax optimal in several popular learning setups,
such as the setup where the eigenvalues {λi}i≥1 exhibit a
certain polynomial decay. Such risk bound (3) also holds
for a general PD kernel rather than the NTK (2), and the
risk bound (3) is also minimax optimal when the PD kernel
is low rank. It is also remarked that the risk bound (3) is
distribution-free in the bounded covariate, that is, there are
no distributional assumptions about the covariate when it is
in a bounded input space. Interested readers are referred to
(Raskutti et al., 2014) for more details.

The main result of this paper is that the over-parameterized
two-layer NN (1) trained by GD with early stopping
achieves the same order of risk rate as that in (3) with ar-
bitrary continuous distribution of the spherical covariate,
which are summarized in the next section.

3. Summary of Main Results.
Our main results are summarized in this section. Through-
out this paper, we consider fixed dimension d ≥ 4.

First, Theorem 5.1 in Section 5.2 shows that the neural net-
work (1) trained by GD with early stopping using Algo-
rithm 1 enjoys a sharp rate of the nonparametric regression
risk, O

(
ε2n
)
, which is the same as that for the classical

kernel regression in (3). Such rate of nonparametric re-
gression risk in Theorem 5.1 is distribution-free in spher-
ical covariate, and it immediately leads to minimax opti-
mal rates for certain special cases. For example, when the
eigenvalues of the integral operator associated with K has
a particular polynomial eigenvalue decay rate (EDR), that
is, λj ≍ j−

d
d−1 for j ≥ 1, then in this case ε2n ≍ n−

d
2d−1

according to (Raskutti et al., 2014, Corollary 3), and The-
orem 5.1 renders the rate of the nonparametric regression
risk of O(n−

d
2d−1 ) which is minimax optimal for this spe-

cial case (Stone, 1985; Yang & Barron, 1999; Yuan &
Zhou, 2016). We refer to such EDR the polynomial EDR in
the sequel. It is shown in (Bietti & Mairal, 2019; Bietti &
Bach, 2021; Li et al., 2024) that the polynomial EDR holds
for our NTK in (2) if P = Unif (X ), or P satisfies the dis-
tributional assumption for (Li et al., 2024, Proposition 13)
in Table 1.

We remark that such a minimax optimal rateO(n−
d

2d−1 ) is
derived from Theorem 5.1 under the special case of polyno-
mial EDR, and this minimax optimal rate is also the major

result of a series of existing works in nonparametric regres-
sion by training over-parameterized neural networks (Hu
et al., 2021; Suh et al., 2022; Li et al., 2024) when the tar-
get function f∗ belongs to HK̃ , the RKHS associated with
the NTK K̃ of the network in each particular existing work.
We note that K̃ is the NTK of the network considered in a
particular existing work which may not be the same as our
NTK in (2). We also note that one needs to set s = 1
in (Li et al., 2024, Proposition 13) so that f∗ ∈ HK̃ , and
in this case the risk rate for nonparametric regression in (Li
et al., 2024, Proposition 13) is O(n−

d
2d−1 ). To the best of

our knowledge, Theorem 5.1 presents the first sharp risk
rate for nonparametric regression which is distribution-free
in spherical covariate, which is closer to practical scenar-
ios. In contrast, the minimax rates in (Hu et al., 2021; Suh
et al., 2022) require spherical uniform data distribution on
X . The recent work (Ko & Huo, 2024) also requires certain
distributional assumptions for the results about regression
convergence rates which does not have algorithmic guar-
antees. Although the minimax rate in another recent work
(Li et al., 2024) does not need the spherical uniform dis-
tribution, it still requires a restrictive condition on the data
distributions detailed in Table 1, and such condition is met
by sub-Gaussian distributions. It is under this condition
that (Li et al., 2024) derives the polynomial EDR. Table 1
compares our work to existing works for nonparametric re-
gression with a common setup, that is, f∗ ∈ HK̃ and the
responses {yi}ni=1 are corrupted by i.i.d. Gaussian noise.
We further note that although the result in (Kuzborskij &
Szepesvári, 2021, Theorem 2) does not require distribu-
tional assumptions about the covariate, its risk rate under
this common setup is not minimax optimal due to the term
σ2
0 in the risk bound. Furthermore, the other termO(n

−2
2+d )

in its risk bound suffers from the curse of dimension with
a slow rate to 0 for high-dimensional data. We also note
that (Kuzborskij & Szepesvári, 2021, Theorem 1) shows
the minimax optimal rate of O(n−

2
2+d ), however, this rate

is derived for the noiseless case where the responses are not
corrupted by noise.

Second, our results provide confirmative answers to several
outstanding open questions or address particular concerns
in the existing literature about training over-parameterized
neural networks for nonparametric regression by GD with
early stopping and sharp risk rates, which are detailed be-
low.

Stopping time in the early-stopping mechanism. An
open question raised in (Kuzborskij & Szepesvári, 2021;
Hu et al., 2021) is how to characterize the stopping time
in the early-stopping mechanism when training the over-
parameterized network by GD. Let T̂ be the stopping time,
(Li et al., 2024, Proposition 13) shows that the stopping
time should satisfy T̂ ≍ n

d
2d−1 under the distributional as-
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Table 1: Comparison between our result and the existing works on the risk rates and assumptions for nonparametric
regression by training over-parameterized neural networks with algorithmic guarantees, and the listed results here are
under a common and popular setup that f∗ ∈ HK̃ and the responses {yi}ni=1 are corrupted by i.i.d. Gaussian noise with
zero mean and variance σ2

0 .

Existing Works and Our Result Distributional Assumptions Eigenvalue Decay Rate (EDR) Rate of Nonparametric Regression Risk
(Kuzborskij & Szepesvári, 2021, Theorem 2) No – Not minimax optimal, σ2

0 +O(n
−2
2+d )

(Hu et al., 2021, Theorem 5.2),
(Suh et al., 2022, Theorem 3.11) P is Unif (X ) λj ≍ j−

d
d−1 minimax optimal, O(n

−d
2d−1 )

(Li et al., 2024, Proposition 13)

P satisfies
a restrictive condition:

the density p(x) for x ∈ Rd satisfies
p(x) ≲ (1 + ∥x∥22)−(d+2)/2.

λj ≍ j−
d

d−1 minimax optimal, O(n
−d

2d−1 )

Our Result (Theorem 5.1)
No distributional assumption about P

as long as X = Sd−1 No requirement for EDR

O
(
ε2n
)
, which leads to the minimax

optimal rate O(n
−d

2d−1 ) claimed in
(Hu et al., 2021; Suh et al., 2022)

and (Li et al., 2024)
as special cases.

sumption in Table 1. In contrast, Theorem 5.1 provides
a characterization of T̂ showing that T̂ ≍ ε−2

n , which is
distribution-free in spherical covariate. Theorem 5.1 fur-
ther suggests that for each neural network function ft ob-
tained at the t-th step of GD with t ≍ ε−2

n , the sharp risk
rate of O

(
ε2n
)

is obtained.

Lower bound for the network width m. Our main re-
sult, Theorem 5.1, requires that the network width m,
which is the number of neurons in the first layer of the
network, satisfies m ≳ d

8
3 /ε

80
3
n . Such lower bound for

m solely depends on d and εn. Under the polynomial
EDR, Corollary 5.2, which is a direct consequence of Theo-
rem 5.1, shows thatm should satisfym ≳ n

80α
3(2α+1) d

8
3 with

α = d/(2(d−1)) (see (11)) so that GD with early stopping
leads to the minimax rate of O(n−

d
2d−1 ). We remark that

this is the first time that the lower bound for the network
width m is specified only in terms of n and d under the
polynomial EDR with a minimax optimal risk rate for non-
parametric regression, which can be easily estimated from
the training data. In contrast, under the same polynomial
EDR, all the existing works (Hu et al., 2021; Suh et al.,
2022; Li et al., 2024) require m ≳ poly(n, 1/λ̂n). The
problem here is that one needs additional assumptions on
the training data (Bartlett et al., 2021; Nguyen et al., 2021)
to find the lower bound for λ̂n, which is the minimal eigen-
value of the empirical NTK matrix Kn, to further estimate
the lower bound for m using the training data.

Corollary 5.2 also gives a competitive and smaller lower
bound for the network width m than some existing works
which give explicit orders of the lower bound for m. For
example, under the assumption of uniform spherical dis-
tribution, (Suh et al., 2022, Theorem 3.11) requires that
m/ log3m ≳ L20n24 where L is the number of layers
of the DNN used in that work, and m/ log3m ≳ 220n24

even with L = 2 for the two-layer network (1) used in our
work. Furthermore, the proof of (Li et al., 2024, Propo-

sition 13) suggests that m ≳ n24(logm)12. Both lower
bounds for m in (Suh et al., 2022, Theorem 3.11) and (Li
et al., 2024, Proposition 13) are much larger than our lower
bound for m, n

80α
3(2α+1) d

8
3 , when n → ∞ and d is fixed,

which is the setup considered in (Li et al., 2024). It is
worthwhile to mention that (Suh et al., 2022; Li et al., 2024)
use DNNs with multiple layers for nonparametric regres-
sion. As shown in Table 1, through our careful analysis, a
shallow two-layer NN (1) exhibits the same minimax risk
rate as its deeper counterpart under the same assumptions
with much smaller network width. This observation fur-
ther support the claim in (Bietti & Bach, 2021) that a shal-
low over-parameterized neural networks with ReLU acti-
vations exhibit the same approximation properties as its
deeper counterpart, in our nonparametric regression setup.

Training the network with learning rate η = Θ(1). It
is also worthwhile to mention that our main result, Theo-
rem 5.1, suggests that a constant learning rate η = Θ(1)
can be used for GD when training the two-layer NN (1),
which could lead to better empirical optimization perfor-
mance in practice. Some existing works in fact require an
infinitesimal η. For example, (Li et al., 2024, Proposition
13) is obtained by gradient flow where η → 0 instead of the
practical GD. Furthermore, (Hu et al., 2021, Theorem 5.2)
requires the learning rates for both the squared loss and the
ℓ2-regularization term to have the order of o(n−

3d−1
2d−1 )→ 0

as n → ∞. We note that (Nitanda & Suzuki, 2021) also
employs constant learning rate in SGD to train neural net-
works.

More discussion about this work and the relevant lit-
erature. We herein provide more discussion about the
results of this work and comparison to the existing relevant
works with sharp rates for nonparametric regression. While
this paper establishes sharp rate which is distribution-free
in spherical covariate, such rate still depends on bounded
input space (X = Sd−1) and the condition that the target
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function f∗ ∈ HK(µ0). Some other existing works con-
sider target function f∗ not belonging to the RKHS ball
centered at the origin with constant or low radius, such as
(Haas et al., 2023; Bordelon et al., 2024). However, the tar-
get functions in (Haas et al., 2023; Bordelon et al., 2024)
escape the finite norm or low-norm regime of RKHS at the
cost of either restriction condition on the density function
of the covariate distribution or the training process. In par-
ticular, (Haas et al., 2023, Theorem G.5) requires the con-
dition for bounded density function (in its condition (D3)
) of the distribution P , which is not required by our result.
Moreover, the training process of the model in (Bordelon
et al., 2024) requires information about the target function
(in its Eq. (4)) and certain distribution P which admits cer-
tain polynomial EDR, that is, λj ≍ j−α with α > 1, which
happens under certain restrictive conditions on P .

We also note that in this work, only the first layer of
an over-parameterized two-layer neural network is trained,
while the weights of the second layer are randomly ini-
tialized and then fixed in the training process. In existing
works such as (Hu et al., 2021; Suh et al., 2022; Allen-
Zhu et al., 2019a), all the layers of a deep neural networks
with more than two layers are trained by GD or its vari-
ants. However, this work shows that only training the first
layer still leads to sharp rate for nonparametric regression,
which supports the claim in (Bietti & Bach, 2021) that
a shallow over-parameterized neural networks with ReLU
activations exhibit the same approximation properties as its
deeper counterpart.

4. Training by Gradient Descent and
Preconditioned Gradient Descent

In the training process of our network (1), only W is op-
timized with a randomly initialized to ±1 and then fixed.
The following quadratic loss function is minimized during
the training process:

L(W) :=
1

2n

n∑
i=1

(
f(W,

⇀
x i)− yi

)2
. (4)

In the (t + 1)-th step of GD with t ≥ 0, the weights of
the neural network, WS, are updated by one-step of GD
through

vec (WS(t+ 1))− vec (WS(t)) = −
η

n
ZS(t)(ŷ(t)− y),

(5)

where yi = yi, ŷ(t) ∈ Rn with [ŷ(t)]i = f(W(t),
⇀
x i).

The notations with the subscripts S indicate the de-
pendence on the training features S. We also denote
f(W(t), ·) as ft(·) as the neural network function with
weighting vectors W(t) obtained after the t-th step of GD.

We define ZS(t) ∈ Rmd×n which is computed by

[ZS(t)][(r−1)d+1:rd]i =
1√
m
1I{⇀

wr(t)⊤
⇀
x i≥0

}⇀x iar (6)

for all i ∈ [n] and r ∈ [m]. where [ZS(t)][(r−1)d+1:rd]i ∈

Algorithm 1 Training the Two-Layer NN by GD

1: W(T )← Training-by-GD(T,W(0))
2: input: T,W(0)
3: for t = 1, . . . , T do
4: Perform the t-th step of GD by (5)
5: end for
6: return W(T )

Rd is a vector with elements in the i-th column of ZS(t)
with indices in [(r − 1)d + 1 : rd]. We employ the fol-
lowing particular symmetric random initialization so that
ŷ(0) = 0, which has been used in existing works such as
(Chizat et al., 2019; Zhang et al., 2020). In our two-layer

NN, m is even,
{
⇀
w2r′(0)

}m/2
r′=1

and {a2r′}m/2r′=1 are initial-

ized randomly and independently according to
⇀
w2r′(0) ∼

N (0, κ2Id), a2r′ ∼ unif ({−1, 1}) ,∀r′ ∈ [m/2], where
N (µ,Σ) denotes a Gaussian distribution with mean µ and
covariance Σ, unif ({−1, 1}) denotes a uniform distribu-
tion over {1,−1}, 0 < κ ≤ 1 controls the magnitude of
initialization, and κ ≍ 1. We set

⇀
w2r′−1(0) =

⇀
w2r′(0)

and a2r′−1 = −a2r for all r′ ∈ [m/2]. It then can be
verified that ŷ(0) = 0. Once randomly initialized, a is
fixed during the training. We use W(0) to denote the set
of all the random weighting vectors at initialization, that

is, W(0) =
{
⇀
wr(0)

}m
r=1

. We run Algorithm 1 to train
the two-layer NN by GD for T steps. Early stopping is
enforced in Algorithm 1 through a bounded T via T ≤ T̂ .

5. Main Results
We present the definition of kernel complexity in this sec-
tion, and then introduce the main results for nonparametric
regression of this paper.

5.1. Kernel Complexity

The local kernel complexity has been studied by (Bartlett
et al., 2005; Koltchinskii, 2006; Mendelson, 2002). For the
PD kernel K, we define the empirical kernel complexity
R̂K and the population kernel complexity RK as

R̂K(ε) :=

√√√√ 1

n

n∑
i=1

min
{
λ̂i, ε2

}
,

RK(ε) :=

√√√√ 1

n

∞∑
i=1

min {λi, ε2}. (7)
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It can be verified that both σ0RK(ε) and σ0R̂K(ε) are sub-
root functions (Bartlett et al., 2005) in terms of ε2. The
formal definition of sub-root functions is deferred to Defi-
nition A.2 in the appendix. For a given noise with variance
proxy σ2

0 , the critical empirical radius ε̂n > 0 is the small-
est positive solution to the inequality R̂K(ε) ≤ ε2/σ0,
where ε̂2n is the also the fixed point of σ0R̂K(ε) as a func-
tion of ε2: σ0R̂K(ε̂n) = ε̂2n. Similarly, the critical popu-
lation rate εn is defined to be the smallest positive solution
to the inequality RK(ε) ≤ ε2/σ0, where ε2n is the fixed
point of σ0R̂K(ε) as a function of ε2: σ0RK(εn) = ε2n. In
this paper we consider the case that nε2n →∞ as n→∞,
which is also used in standard analysis of nonparametric re-
gression with minimax rates by kernel regression (Raskutti
et al., 2014).

Let ηt := ηt for all t ≥ 0, we then define the stopping time
T̂ as

T̂ := min
{
t : R̂K(

√
1/ηt) > (σ0ηt)

−1
}
− 1. (8)

The stopping time in fact limit the number of steps T in for
Algorithm 1 as to be shown in Section 5.2, which in turn
enforces the early stopping mechanism.

5.2. Results

Theorem 5.1. Let cT , ct ∈ (0, 1] be arbitrary positive con-
stants, and cT T̂ ≤ T ≤ T̂ . Suppose f∗ ∈ HK(µ0), and m
satisfies

m ≳ d
8
3 /ε

80
3
n , (9)

and the neural network f(W(t), ·) is trained by GD using
Algorithm 1 with the learning rate η ∈ [1, 2) and T ≤ T̂ .
Then for every t ∈ [ctT : T ], with probability at least 1 −
exp (−Θ(n))− 7 exp

(
−Θ(nε2n)

)
− 2/n over the random

noise w, the random training features S and the random
initialization W(0), the stopping time satisfies T̂ ≍ ε−2

n ,
and f(W(t), ·) = ft satisfies

EP
[
(ft − f∗)2

]
≲ ε2n. (10)

Significance of Theorem 5.1 and comparison to existing
works. To the best of our knowledge, Theorem 5.1 is the
first theoretical result which proves that over-parameterized
neural network trained by gradient descent with early stop-
ping achieves sharp rate of O(ε2n), without distributional
assumption on the covariate as long as the input space X is
Sd−1. More discussions about the significance with com-
parison to existing works are detailed in Section 3.

When the polynomial EDR holds, we can apply Theo-
rem 5.1 to obtain the following corollary.

Corollary 5.2 (Applying Theorem 5.1 to the special case
of polynomial EDR). Suppose λj ≍ j−2α for j ≥ 1 and

α > 1/2. Let cT , ct ∈ (0, 1] be positive constants, and
cT T̂ ≤ T ≤ T̂ . Suppose m satisfies

m ≳ n
80α

3(2α+1) d
8
3 , (11)

and the neural network f(W(t), ·) is trained by GD using
Algorithm 1 with the learning rate η ∈ [1, 2) and T ≤ T̂ .
Then for every t ∈ [ctT : T ], with probability at least 1 −
exp (−Θ(n))− 7 exp

(
−Θ(nε2n)

)
− 2/n over the random

noise w, the random training features S and the random
initialization W(0), the stopping time satisfies T̂ ≍ n

d
2d−1 ,

EP
[
(ft − f∗)2

]
≲

(
1

n

) 2α
2α+1

. (12)

The significance of Corollary 5.2 is also detailed in Sec-
tion 3. Section D of the appendix shows the simulation
results with the empirical early stopping time and the theo-
retically predicted early stopping time, 1/ε̂2n ≍ nd/(2d−1),
for a neural network trained by Algoirthm 1.

6. Roadmap of Proofs
We present the roadmap of our theoretical results which
lead to the main result, Theorem 5.1 in Section 5. We first
present in the next subsection our results about the uniform
convergence to the NTK (2) and more, which are crucial in
the analysis of training dynamics by GD.

6.1. Uniform Convergence to the NTK and More

We define functions

h(w,x,y) := x⊤y1I{w⊤x≥0}1I{w⊤y≥0},

ĥ(W,x,y) :=
1

m

m∑
r=1

h(
⇀
wr,x,y), (13)

vR(w,x) := 1I{|w⊤x|≤R}, v̂R(W,x) :=
1

m

m∑
r=1

vR(
⇀
wr,x).

(14)

Then we have the following theorem stating the uniform
convergence of ĥ(W(0), ·, ·) to K(·, ·) and uniform con-
vergence of v̂R(W(0),x) to 2R√

2πκ
for a positive num-

ber R ≲ ηT/
√
m. While existing works such as (Li

et al., 2024) also has uniform convergence results for over-
parameterized neural network, our result does not depend
on the Hölder continuity of the NTK.
Theorem 6.1. The following results hold with η ≲ 1,m ≳

max
{
n2/d, T

8
5

}
, and m/ log

8
5 m ≥ d.

(1) With probability at least 1− 1/n over the random ini-

tialization W(0) =
{
⇀
wr(0)

}m
r=1

,

sup
x∈X ,
y∈X

∣∣∣K(x,y)− ĥ(W(0),x,y)
∣∣∣ ≤ C1(m/2, d, 1/n)

7
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≲

√
d logm

m
. (15)

(2) With probability at least 1− 1/n over the random ini-

tialization W(0) =
{
⇀
wr(0)

}m
r=1

,

sup
x∈X
|v̂R(W(0),x)| ≤ 2R√

2πκ
+ C2(m/2, d, 1/n)

≲
√
dm− 3

16T
1
2 , (16)

where C1(m/2, d, 1/n), C2(m/2, d, 1/n) are two positive
numbers depending on (m, d, n), with their formal defini-
tions deferred to (39) and (42) in Section C.2 of the ap-
pendix.

Proof. This theorem follows from Theorem C.1
and Theorem C.2 in Section C.2 of the appendix.
Note that ĥ(W,x,y) = 1

m

∑m
r=1 h(

⇀
wr,x,y) =

1
m/2

∑m/2
r=1 h(

⇀
w2r(0),x,y), then part (1) directly follows

from Theorem C.1. Similarly, part (2) directly follows
from Theorem C.2.

6.2. Roadmap of Proofs

Because our main result, Theorem 5.1, is proved by The-
orem C.10 and Theorem C.11 deferred to Section C.2, we
illustrate in Figure 1, deferred to the appendix, the roadmap
containing the intermediate theoretical results which lead
to our main result, Theorem 5.1.

Summary of the technical approaches and novel results
in the proofs. Theorem C.8 is the first novel result in the
proofs of this work, showing that with high probability, the
neural network function f(W(t), ·) at step t of GD can
be decomposed into two functions by f(W(t), ·) = ft =
h + e, where h ∈ HK is a function in the RKHS associ-
ated with K with bounded HK-norm. The error function
e has a small L∞-norm, that is, ∥e∥∞ ≤ w with w being
a small number controlled by the network width m, that
is, larger m leads to smaller w. Theorem C.10 is the sec-
ond novel result in the proofs, where we derive sharp and
novel bound for the nonparametric regression risk of the
neural network function f(W(t), ·) in Theorem C.10, that
is, EP

[
(ft − f∗)2

]
−2EPn

[
(ft − f∗)2

]
≲ ε2n+w. To the

best of our knowledge, Theorem C.10 is among the first in
the literature to employ local Rademacher complexity so as
to obtain sharp rate for the risk of nonparametric regression
which is distribution-free in spherical covariate, and local
Rademacher complexity is employed to tightly bound the
Rademacher complexity of the function class comprising
all the possible neural network functions obtained by GD.

Novel proof strategy of this work. We remark that the
proof strategy of our main result, Theorem 5.1, is signifi-

cantly novel and different from the existing works in train-
ing over-parameterized neural networks for nonparametric
regression with minimax rates (Hu et al., 2021; Suh et al.,
2022; Li et al., 2024). In particular, the common proof
strategy in these works uses the decomposition ft − f∗ =

(ft − f̂ (NTK)
t ) + (f̂ (NTK)

t − f∗) and then show that both∥∥∥ft − f̂ (NTK)
t

∥∥∥
L2

and
∥∥∥f̂ (NTK)
t − f∗

∥∥∥
L2

are bounded by cer-

tain minimax optimal rate, where f̂ (NTK)
t is the kernel re-

gressor obtained by either kernel ridge regression (Hu et al.,
2021; Suh et al., 2022) or GD with early stopping (Li et al.,
2024). The remark after Theorem C.8 details a formulation
of f̂ (NTK)

t .
∥∥∥f̂ (NTK)
t − f∗

∥∥∥
L2

is bounded by the minimax
optimal rate under certain distributional assumptions in the
covariate, and this is one reason for the distributional as-
sumptions about the covariate in existing works such as (Hu
et al., 2021; Suh et al., 2022; Li et al., 2024). In a strong
contrast, our analysis does not rely on such decomposition
of ft− f∗. Instead of approximating ft by f̂ (NTK)

t , we have
a new decomposition of ft by ft = ht + et where ft is
approximated by ht with et being the approximation error.
As suggested by the remark after Theorem C.8, we have
ht = f̂ (NTK)

t + ê2(·, t) so that ft = f̂ (NTK)
t + ê2(·, t) + et.

Our analysis only requires the network width m to be suit-
ably large so that the HK-norm of ê2(·, t) is bounded by a
positive constant and ∥et∥∞ ≤ w, while the common proof
strategy in(Hu et al., 2021; Suh et al., 2022; Li et al., 2024)
needsm to be sufficiently large so that both ∥ê2(·, t)∥∞ and
∥et∥∞ are bounded by an infinitesimal number (a minimax

optimal rate such as O(n−
d

2d−1 ) and then
∥∥∥ft − f̂ (NTK)

t

∥∥∥
L2

is bounded by such minimax optimal rate. Detailed in Sec-
tion 3, such novel proof strategy leads to our sharp analysis,
rendering a smaller lower bound for m in our main result
compared to some existing works.

7. Conclusion
In this paper, we show that an over-parameterized two-layer
neural network trained by gradient descent (GD) with early
stopping renders a sharp rate of the nonparametric regres-
sion risk with the order of Θ(ε2n) with εn being the critical
population rate or the critical radius of the NTK, which is
distribution-free in spherical covariate. We compare our re-
sults to the current state-of-the-art with a detailed roadmap
of our technical approaches and results in our proofs.
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We present the basic mathematical results required in our proofs in Section A, then present proofs in the subsequent
sections.

A. Mathematical Tools
We introduce the basic definitions and mathematical results as the basic tools for the subsequent results in the next sections
of this appendix.
Definition A.1. Let {σi}ni=1 be n i.i.d. random variables such that Pr[σi = 1] = Pr[σi = −1] = 1

2 . The Rademacher
complexity of a function class F is defined as

R(F) = E{
⇀
x i

}n

i=1
,{σi}n

i=1

[
sup
f∈F

1

n

n∑
i=1

σif(
⇀
x i)

]
. (17)

The empirical Rademacher complexity is defined as

R̂(F) = E{σi}n
i=1

[
sup
f∈F

1

n

n∑
i=1

σif(
⇀
x i)

]
, (18)

For simplicity of notations, Rademacher complexity and empirical Rademacher complexity are also denoted by

E
[
supf∈F

1
n

n∑
i=1

σif(
⇀
x i)

]
and Eσ

[
supf∈F

1
n

n∑
i=1

σif(
⇀
x i)

]
, respectively.

For data
{
⇀
x
}n
i=1

and a function class F , we define the notation RnF by RnF := supf∈F
1
n

n∑
i=1

σif(
⇀
x i).

Theorem A.1 ((Bartlett et al., 2005, Theorem 2.1)). Let X , P be a probability space,
{
⇀
x i

}n
i=1

be independent random

variables distributed according to P . Let F be a class of functions that map X into [a, b]. Assume that there is some r > 0

such that for every f ∈ F ,Var
[
f(
⇀
x i)
]
≤ r. Then, for every x > 0, with probability at least 1− e−x,

sup
f∈F

(
EP [f(x)]− Ex∼Pn [f(x)]

)
≤ inf
α>0

(
2(1 + α)E{

⇀
x i

}n

i=1
,{σi}n

i=1

[RnF ] +
√

2rx

n
+ (b− a)

(
1

3
+

1

α

)
x

n

)
, (19)

and with probability at least 1− 2e−x,

sup
f∈F

(
EP [f(x)]− Ex∼Pn

[f(x)]
)
≤ inf
α∈(0,1)

(
2(1 + α)

1− α
E{σi}n

i=1
[RnF ] +

√
2rx

n
+ (b− a)

(
1

3
+

1

α
+

1 + α

2α(1− α)

)
x

n

)
.

(20)

Pn is the empirical distribution over
{
⇀
x i

}n
i=1

with Ex∼Pn [f(x)] = 1
n

n∑
i=1

f(
⇀
x i). Moreover, the same results hold for

supf∈F
(
Ex∼Pn

[f(x)]− EP [f(x)]
)
.

In addition, we have the contraction property for Rademacher complexity, which is due to Ledoux and Talagrand (Ledoux,
1991).

Theorem A.2. Let ϕ be a contraction,that is, |ϕ(x)− ϕ(y)| ≤ µ |x− y| for µ > 0. Then, for every function class F ,

E{σi}n
i=1

[Rnϕ ◦ F ] ≤ µE{σi}n
i=1

[RnF ] , (21)

where ϕ ◦ F is the function class defined by ϕ ◦ F = {ϕ ◦ f : f ∈ F}.
Definition A.2 (Sub-root function,(Bartlett et al., 2005, Definition 3.1)). A function ψ : [0,∞)→ [0,∞) is sub-root if it is
nonnegative, nondecreasing and if ψ(r)√

r
is nonincreasing for r > 0.

Theorem A.3 ((Bartlett et al., 2005, Theorem 3.3)). Let F be a class of functions with ranges in [a, b] and assume that
there are some functional T : F → R+ and some constant B̄ such that for every f ∈ F , Var [f ] ≤ T (f) ≤ B̄P (f).

12
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Let ψ be a sub-root function and let r∗ be the fixed point of ψ. Assume that ψ satisfies, for any r ≥ r∗, ψ(r) ≥
B̄R({f ∈ F : T (f) ≤ r}). Fix x > 0, then for any K0 > 1, with probability at least 1− e−x,

∀f ∈ F , EP [f ] ≤ K0

K0 − 1
EPn

[f ] +
704K0

B̄
r∗ +

x
(
11(b− a) + 26B̄K0

)
n

.

Also, with probability at least 1− e−x,

∀f ∈ F , EPn [f ] ≤ K0 + 1

K0
EP [f ] +

704K0

B̄
r∗ +

x
(
11(b− a) + 26B̄K0

)
n

.

Proposition A.4. Let F be a class of functions with ranges in [0, b] for some positive constant b. Let ψ be a sub-root
function such that for all r ≥ 0, R({f ∈ F : EP [f(x)] ≤ r}) ≤ ψ(r), and let r∗ be the fixed point of ψ. Then for any
K0 > 1, with probability 1− exp(−x), every f ∈ F satisfies

EP [f ] ≤ K0

K0 − 1
EPn [f ] +

704K0

b
r∗ +

x (11(b− a) + 26bK0)

n
. (22)

B. Proofs for Theorem 5.1 and Corollary 5.2

Lemma C.3 

Lemma C.4 

Lemma C.5 

Lemma C.6 

Lemma C.7 

Optimization  

Theorem C.8 

Lemma C.9 
Theorem C.10 

Generalization  

Theorem C.11 

Theorem 5.1 

Figure 1: Roadmap of major results leading to the main result, Theorem 5.1. The uniform convergence results in Theo-
rem 6.1 are used in all the optimization results and Theorem C.8.

Proof of Theorem 5.1. We use Theorem C.10 and Theorem C.11 to prove this theorem.

First of all, with the condition on m, d in this theorem, Theorem 6.1 hold, and Pr [W(0) ∈ W0] ≥ 1− 2/n. It follows by
Theorem C.11 that with probability at least 1− exp

(
−Θ(nε̂2n)

)
,

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 3

)
.

Plugging such bound for EPn

[
(ft − f∗)2

]
in (118) of Theorem C.10 leads to

EP
[
(ft − f∗)2

]
− 6

ηt

(
µ2
0

2e
+ 3

)
≤ c′0(ε2n + w). (23)

Due to the definition of T̂ and ε̂2n, we have

ε̂2n ≤
1

ηT̂
≤ 2

η(T̂ + 1)
≤ 2ε̂2n. (24)

13
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Lemma C.14 suggests that with probability at least 1 − 4 exp(−Θ(nε2n)) over S, ε̂2n ≍ ε2n. Since T ≍ T̂ , for any
t ∈ [ctT, T ], we have

1

ηt
≍ 1

ηT
≍ 1

ηT̂
≍ ε̂2n ≍ ε2n. (25)

We have Pr [W0] ≥ 1− 2/n. Let w = ε2n, we now verify that w ∈ (0, 1). Due to the definition of the fixed point, w > 0.
Since

∑
i≥1

λi =
∫
X K(x,x)dµ(x) = 1/2, we have

0 < w =
1

n

∑
i≥1

min
{
λi, ε

2
n

}
≤ 1

n

∑
i≥1

λi ≤
1

2n
< 1.

(10) then follows from (23) with w = ε2n, (25) and the union bound. The condition on m in (87) in Theorem C.10, together
with w = ε2n and (25) leads to the condition on m in (9). Furthermore, T̂ ≍ ε−2

n follows from (25) and η = Θ(1).

Proof of Corollary 5.2. We apply Theorem 5.1 to prove this corollary.

It is well known, such as (Raskutti et al., 2014, Corollary 3), that ε2n ≍ n−
2α

2α+1 . It then can be verified by direct calculations
that the condition on m, (9) in Theorem 5.1, is satisfied with the given condition (11). It then follows from (10) in
Theorem 5.1 that EP

[
(fT̂ − f

∗)2
]
≲ n−

2α
2α+1 .

C. Detailed Proofs
Because Theorem 5.1 is proved by Theorem C.10 and Theorem C.11, in this section, we establish and prove all the theo-
retical results which lead to Theorem C.10 and Theorem C.11, along with the proof of Theorem C.10 and Theorem C.11.

C.1. Basic Definitions

We introduce the following definitions for the proof of Theorem 5.2. We define

u(t) := ŷ(t)− y. (26)

Let τ ≤ 1 be a positive number, and ε0 ∈ (0, 1) is an arbitrary positive constant. For t ≥ 0 and T ≥ 1 we define the
following quantities (or recall their definitions if defined before),

cu = µ0/min
{
2,
√

2eη
}
+ σ0 + τ + 1,

R =
ηcuT√
m
, (27)

Vt :=
{
v ∈ Rn : v = − (In − ηKn)

t
f∗(S)

}
, (28)

Et,τ :=
{
e : e =

⇀
e 1 +

⇀
e 2 ∈ Rn,⇀e 1 = − (In − ηKn)

t
w,
∥∥∥⇀e 2

∥∥∥
2
≤
√
nτ
}
. (29)

We define the set of neural network weights and the set of functions represented by the neural network during training as
follows.

W(S,W(0), T ) :=

{
W : ∃t ∈ [T ] s.t. vec (W) = vec (W(0))−

t−1∑
t′=0

η

n
ZS(t

′)u(t′),

14
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u(t′) ∈ Rn,u(t′) = v(t′) + e(t′),v(t′) ∈ Vt′ , e(t′) ∈ Et′,τ , for all t′ ∈ [0, t− 1]

}
. (30)

W(S,W(0), T ) is the set of weights of the neural network trained by GD on the training data S and random initialization
W(0) with the preconditioner M generated by Q and the steps of GD no greater than T . The set of functions represented
by the two-layer NN with weights inW(S,W(0), T ) is then defined as

FNN(S,W(0), T ) := {ft = f(W(t), ·) : ∃ t ∈ [T ],W(t) ∈ W(S,W(0), T )} . (31)

We define the function class F(B,w) for any B,w > 0 as

F(B,w) := {f : f = h+ e, h ∈ HK(B), ∥e∥∞ ≤ w} . (32)

We define the constant

Bh := µ0 + 1 +
√
2. (33)

It will be shown in Theorem C.8 that with high probability, the two-layer NN (1) trained by GD lies in the function class
F(Bh, w) where w can be sufficiently small with a sufficiently large network width m.

We define

W0 := {W(0) : (15), (16) hold} (34)

be the set of all the good random initializations which satisfy (15) and (16) in Theorem 6.1. Theorem 6.1 shows that
we have good random initialization with high probability, that is, Pr [W(0) ∈ W0] ≥ 1 − 2/n. When W(0) ∈ W0, the
uniform convergence results, (15) and (16), hold with high probability, which is crucial for our main result in Theorem 5.1.

C.2. Theorem C.10, Theorem C.11, and their proofs with related theoretical results

Theorem C.10 (repeat). Suppose w ∈ (0, 1) and m satisfy

m ≳ max
{
T 8d

8
3 /w

16
3 , T

40
3 d

8
3

}
, (35)

and the neural network f(W(t), ·) is trained by GD in Algorithm 1 with the learning rate η = Θ(1) ∈ (0, 1/λ̂1) on
random initialization W(0) ∈ W0, and T ≤ T̂ . Then for every t ∈ [T ], with probability at least 1 − exp (−Θ(n)) −
exp

(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
over the random noise w and the random training features S,

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≤ c0 min

0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2

2

+ c0ε
2
n. (36)

Furthermore, with probability at least 1 − exp (−Θ(n)) − exp
(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
over the random noise w, the

random training features S,

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≤ c′0(ε2n + w). (37)

Here B0, c0, c
′
0 are absolute positive constants depending on µ0, and c′0 also depends on σ0.

Theorem C.11 (repeat). Suppose the neural network trained after the t-th step of gradient descent, ft = f(W(t), ·),
satisfies u(t) = ft(S)− y = v(t) + e(t) with v(t) ∈ Vt and e(t) ∈ Et,τ and T ≤ T̂ . If

η ∈ [1, 2), τ ≤ 1

ηT
,

then for every t ∈ [T ], with probability at least 1− exp
(
−Θ(nε̂2n)

)
over the random noise w, we have

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 3

)
.
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We have the following two theorems regarding the uniform convergence of ĥ(W(0), ·, ·) to K(·, ·) and the uniform con-
vergence of v̂R(W(0), ·) to 2R√

2πκ
. Noting that d ≥ 4, Theorem C.1 and Theorem C.2 can be proved by using the proofs

of (Yang & Li, 2025, Theorem VI.7,Theorem VI.8).

Theorem C.1 (Adapted from (Yang & Li, 2025, Theorem VI.7) for d ≥ 4). Let W(0) =
{
⇀
wr(0)

}m
r=1

, where each
⇀
wr(0) ∼ N (0, κ2Id) for r ∈ [m]. Then for any δ ∈ (0, 1), with probability at least 1− δ over W(0),

sup
x∈X ,y∈X

∣∣∣K(x,y)− ĥ(W(0),x,y)
∣∣∣ ≤ C1(m, d, δ), (38)

where

C1(m, d, δ) :=
1√
m

(
6(1 + 2B

√
d) +

√
2 log

2(1 + 2m)2d

δ

)
+

14log 2(1+2m)2d

δ + 18

3m
, (39)

and B is an absolute positive constant. In addition, when m ≳ n1/(2d), m/ logm ≥ d, and δ ≍ 1/n,

C1(m, d, δ) ≲

√
d logm

m
. (40)

Theorem C.2 (Adapted from (Yang & Li, 2025, Theorem VI.8) for d ≥ 4). Let W(0) =
{
⇀
wr(0)

}m
r=1

, where each
⇀
wr(0) ∼ N (0, κ2Id) for r ∈ [m]. Suppose η ≲ 1, m ≳ 1. Then for any δ ∈ (0, 1), with probability at least 1 − δ over
W(0),

sup
x∈X

∣∣∣∣v̂R(W(0),x)− 2R√
2πκ

∣∣∣∣ ≤ C2(m, d, δ), (41)

where

C2(m, d, δ) := 3

√
d

κ
m− 3

16T
1
2 +

√
2log 2(1+2

√
m)d

δ

m
+

7log 2(1+2
√
m)d

δ

3m
. (42)

In addition, when m ≳ n2/d, m/ log
8
5 m ≥ d, and δ ≍ 1/n,

C2(m, d, δ) ≲
√
dm− 3

16T
1
2 . (43)

Lemma C.3. Suppose

m ≳ T 8d
8
3 /τ

16
3 , (44)

and the neural network f(W(t), ·) trained by gradient decent with the learning rate η = Θ(1) ∈ (0, 1/λ̂1) on
the random initialization W(0) ∈ W0. Then with probability at least 1 − exp (−Θ(n)) over the random noise w,
W(t) ∈ W(S,W(0), T ). Moreover, for all t ∈ [0, T ], u(t) = v(t) + e(t) where u(t) = ŷ(t) − y, v(t) ∈ VK,t,
e(t) ∈ EK,t,τ , and ∥u(t)∥2 ≤ cu

√
n.

Proof. First, when m ≳ T 8d
8
3 /τ

16
3 with a proper constant, it can be verified that Em,η,τ ≤ τ

√
n/T where Em,η,τ is

defined by (54) of Lemma C.5. Also, Theorem C.1 and Theorem C.2 hold when (44) holds. We then use mathematical
induction to prove the lemma. We will first prove that u(t) = v(t) + e(t) where v(t) ∈ Vt, e(t) ∈ Et,τ , and ∥u(t)∥2 ≤
cu
√
n for for all t ∈ [0, T ].

When t = 0, we have

u(0) = −y = v(0) + e(0), (45)

where v(0) := −f∗(S) = − (I− ηKn)
0
f∗(S), e(0) = −w =

⇀
e 1(0) +

⇀
e 2(0) with

⇀
e 1(0) = −

(
I − ηKn

)0
w and

⇀
e 2(0) = 0. Therefore, v(0) ∈ V0 and e(0) ∈ E0,τ . Also, it follows from the proof of Lemma C.4 that ∥u(0)∥2 ≤ cu with
probability at least 1− exp (−Θ(n)) over the random noise w.

16
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Suppose that for all t1 ∈ [0, t] with t ∈ [0, T −1], u(t1) = v(t1)+e(t1) where v(t1) ∈ Vt1 , and e(t1) =
⇀
e 1(t1)+

⇀
e 2(t1)

with v(t1) ∈ Vt1 and e(t1) ∈ Et1,τ , and ∥u(t1)∥2 ≤ cu
√
n for all t1 ∈ [0, t]. Then it follows from Lemma C.5 that the

recursion u(t′ + 1) = (I− ηKn)u(t
′) +E(t′ + 1) holds for all t′ ∈ [0, t]. As a result, we have

u(t+ 1) = (I− ηKn)u(t) +E(t+ 1)

= − (I− ηKn)
t+1

f∗(S)− (I− ηKn)
t+1

w +

t+1∑
t′=1

(I− ηKn)
t+1−t′

E(t′)

= v(t+ 1) + e(t+ 1), (46)

where v(t+ 1) and e(t+ 1) are defined as

v(t+ 1) := − (I− ηKn)
t+1

f∗(S) ∈ Vt+1, (47)

e(t+ 1) := − (I− ηKn)
t+1

w︸ ︷︷ ︸
⇀
e 1(t+1)

+

t+1∑
t′=1

(I− ηKn)
t+1−t′

E(t′)︸ ︷︷ ︸
⇀
e 2(t+1)

. (48)

We now prove the upper bound for
⇀
e 2(t+ 1). With η ∈ (0, 1/λ̂1), we have ∥I− ηKn∥2 ∈ (0, 1). It follows that

∥∥∥⇀e 2(t+ 1)
∥∥∥
2
≤

t+1∑
t′=1

∥I− ηKn∥t+1−t′
2 ∥E(t′)∥2 ≤ τ

√
n, (49)

where the last inequality follows from the fact that ∥E(t)∥2 ≤ Em,η,τ ≤ τ
√
n/T for all t ∈ [T ] and the induction

hypothesis. It follows that e(t+ 1) ∈ Et+1,τ . Also, it follows from Lemma C.4 that

∥u(t+ 1)∥2 ≤ ∥v(t+ 1)∥2 +
∥∥∥⇀e 1(t+ 1)

∥∥∥
2
+
∥∥∥⇀e 2(t+ 1)

∥∥∥
2

≤
(

µ0√
2eη

+ σ0 + τ + 1

)√
n = cu

√
n,

which completes the induction step and also the proof.

Lemma C.4. Let t ∈ [T ], v = − (I− ηKn)
t
f∗(S), e = − (I− ηKn)

t
w, and η ∈ (0, 1/λ̂1). Then with probability at

least 1− exp (−Θ(n)) over the random noise w,

∥v∥2 + ∥e∥2 ≤
(

µ0√
2eη

+ σ0 + 1

)√
n. (50)

Proof. When t ≥ 1, we have v = − (I− ηKn)
t
f∗(S), and

∥v(t)∥22 =

n∑
i=1

(
1− ηλ̂i

)2t [
U⊤f∗(S)

]2
i

1⃝
≤

n∑
i=1

1

2eηλ̂it

[
U⊤f∗(S)

]2
i

2⃝
≤ nµ2

0

2eηt
. (51)

Here 1⃝ follows Lemma C.13, 2⃝ follows by Lemma C.12.

Moreover, it follows from the concentration inequality about quadratic forms of sub-Gaussian random variables in (Wright,
1973) that

Pr
[
∥w∥22 − E

[
∥w∥22

]
> n

]
≤ exp (−Θ(n)) , (52)

and E [∥w∥2] ≤
√

E
[
∥w∥22

]
=
√
nσ0. Therefore, Pr [∥w∥2 −

√
nσ0 >

√
n] ≤ exp (−Θ(n)).
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As a result, we have

∥v∥2 + ∥e∥2 ≤

√
nµ2

0

2eη
+ ∥w∥2 ≤

(
µ0√
2eη

+ σ0 + 1

)√
n.

Lemma C.5. Let 0 < η < 1, 0 ≤ t ≤ T − 1 for T ≥ 1, and suppose that ∥ŷ(t′)− y∥2 ≤ cu
√
n holds for all 0 ≤ t′ ≤ t

and the random initialization W(0) ∈ W0. Then

ŷ(t+ 1)− y = (I− ηKn) (ŷ(t)− y) +E(t+ 1), (53)

where ∥E(t+ 1)∥2 ≤ Em,η,τ , and Em,η,τ is defined by

Em,η,τ := ηcu
√
n

(
4

(
2R√
2πκ

+ C2(m/2, d, 1/n)

)
+ C1(m/2, d, 1/n)

)
≲ ηcu

√
dnm− 3

16T
1
2 . (54)

Proof. Because ∥ŷ(t′)− y∥2 ≤
√
ncu holds for all t′ ∈ [0, t], by Lemma C.6, we have∥∥∥⇀wr(t

′)− ⇀
wr(0)

∥∥∥
2
≤ R, ∀ 0 ≤ t′ ≤ t+ 1. (55)

Define two sets of indices

Ei,R :=
{
r ∈ [m] :

∣∣∣wr(0)
⊤⇀x i

∣∣∣ > R
}
, Ēi,R := [m] \ Ei,R.

We have

ŷi(t+ 1)− ŷi(t) =
1√
m

m∑
r=1

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))
=

1√
m

∑
r∈Ei,R

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))
︸ ︷︷ ︸

:=D
(1)
i

+
1√
m

∑
r∈Ēi,R

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))
︸ ︷︷ ︸

:=E
(1)
i

= D
(1)
i +E

(1)
i , (56)

and D(1),E(1) ∈ Rn is a vector with their i-th element being D
(1)
i and E

(1)
i defined on the RHS of (56). Now we derive

the upper bound for E(1)
i . For all i ∈ [n] we have

∣∣∣E(1)
i

∣∣∣ =
∣∣∣∣∣∣ 1√
m

∑
r∈Ēi,R

ar

(
σ
(
⇀
wS,r(t+ 1)⊤

⇀
x i

)
− σ

(
⇀
wS,r(t)

⊤⇀x i

))∣∣∣∣∣∣
≤ 1√

m

∑
r∈Ēi,R

∣∣∣⇀wS,r(t+ 1)⊤
⇀
x i −

⇀
wS,r(t)

⊤⇀x i

∣∣∣
≤ 1√

m

∑
r∈Ēi,R

∥∥∥⇀wS,r(t+ 1)− ⇀
wS,r(t)

∥∥∥
2

1⃝
=

1√
m

∑
r∈Ēi,R

∥∥∥ η
n
[ZS(t)][(r−1)d+1:rd] (ŷ(t)− y)

∥∥∥
2
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2⃝
≤ cu√

m

∑
r∈Ēi,R

η√
m
≤ ηcu ·

∣∣Ēi,R∣∣
m

. (57)

Here 1⃝, 2⃝ follow from (74) and (75) in the proof of Lemma C.6.

Let m be sufficiently large such that R ≤ R0 for the absolute positive constant R0 < κ specified in Theorem 6.1. Since
W(0) ∈ W0, we have

sup
x∈X

∣∣∣∣v̂R(W(0),x)− 2R√
2πκ

∣∣∣∣ ≤ C2(m/2, d, 1/n), (58)

where v̂R(W(0),x) = 1
m

m∑
r=1

1I{∣∣∣⇀wr(0)⊤x
∣∣∣≤R}, so that v̂R(W(0),

⇀
x i) =

∣∣Ēi,R∣∣ /m. It follows from (57), (58) and the

induction hypothesis that ∣∣∣E(1)
i

∣∣∣ ≤ ηcu( 2R√
2πκ

+ C2(m/2, d, 1/n)

)
. (59)

It follows from (59) that
∥∥E(1)

∥∥
2

can be bounded by∥∥∥E(1)
∥∥∥
2
≤ ηcu

√
n

(
2R√
2πκ

+ C2(m/2, d, 1/n)

)
. (60)

D
(1)
i on the RHS of (56) is expressed by

D
(1)
i =

1√
m

∑
r∈Ei,R

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))

=
1√
m

∑
r∈Ei,R

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} (⇀wS,r(t+ 1)− ⇀
wS,r(t)

)⊤⇀
x i

=
1√
m

m∑
r=1

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} (− η
n
[ZS(t)][(r−1)d:rd] (ŷ(t)− y)

)⊤⇀
x i

+
1√
m

∑
r∈Ēi,R

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} ( η
n
[ZS(t)][(r−1)d:rd] (ŷ(t)− y)

)⊤⇀
x i

= − η
n
[H(t)]i (ŷ(t)− y)︸ ︷︷ ︸

:=D
(2)
i

+
1√
m

∑
r∈Ēi,R

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} ( η
n
[ZS(t)][(r−1)d:rd] (ŷ(t)− y)

)⊤⇀
x i︸ ︷︷ ︸

:=E
(2)
i

= D
(2)
i +E

(2)
i , (61)

where H(t) ∈ Rn×n is a matrix specified by

Hpq(t) =

⇀
x

⊤
p

⇀
xq

m

m∑
r=1

1I{⇀
wS,r(t)⊤

⇀
xp≥0

}1I{⇀
wr(t)⊤

⇀
x q≥0

}, ∀ p ∈ [n], q ∈ [n].

Let D(2),E(2) ∈ Rn be a vector with their i-the element being D
(2)
i and E

(2)
i defined on the RHS of (61). E(2) can be

expressed by E(2) = η
n Ẽ

(2) (ŷ(t)− y) with Ẽ(2) ∈ Rn×n and

Ẽ(2)
pq =

1

m

∑
r∈Ēi,R

1I{⇀
wS,r(t)⊤

⇀
xp≥0

}1I{⇀
wr(0)⊤

⇀
q q≥0

}⇀x⊤
q

⇀
xp ≤

1

m

∑
r∈Ēi,R

1 =

∣∣Ēi,R∣∣
m
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for all p ∈ [n], q ∈ [n]. The spectral norm of Ẽ(2) is bounded by∥∥∥Ẽ(2)
∥∥∥
2
≤
∥∥∥Ẽ(2)

∥∥∥
F
≤ n

∣∣Ēi,R∣∣
m

1⃝
≤ n

(
2R√
2πκ

+ C2(m/2, d, 1/n)

)
, (62)

where 1⃝ follows from (58). Also, ∥H(t)∥2 ≤ ∥H(t)∥F ≤
√
nN for all t ≥ 0. It follows from (62) that

∥∥E(2)
∥∥
2

can be
bounded by ∥∥∥E(2)

∥∥∥
2
≤ η

n

∥∥∥Ẽ(2)
∥∥∥
2
∥y(t)− y∥2 ≤ ηcu

√
n

(
2R√
2πκ

+ C2(m/2, d, 1/n)

)
. (63)

D
(2)
i on the RHS of (61) is expressed by

D(2) = − η
n
H(t) (ŷ(t)− y) = − η

n
K (ŷ(t)− y)︸ ︷︷ ︸

:=D(3)

+
η

n
(K−H(0)) (ŷ(t)− y)︸ ︷︷ ︸

:=E(3)

+
η

n
(H(0)−H(t)) (ŷ(t)− y)︸ ︷︷ ︸

:=E(4)

= D(3) +E(3) +E(4). (64)

On the RHS of (64), D(3),E(3),E(4) ∈ Rn are vectors which are analyzed as follows.
∥∥∥Ẽ(3)

∥∥∥
2

is bounded by

∥K−H(0)∥2 ≤ ∥K−H(0)∥F ≤ nC1(m/2, d, 1/n), (65)

where the last inequality holds due to W(0) ∈ W0.

In order to bound E(4), we first estimate the upper bound for |Hij(t)−Hij(0)| for all i, j ∈ [n]. We note that

1I{
1I{⇀wS,r(t)⊤⇀

x i} ̸=1I{wr(0)⊤⇀
x i}

} ≤ 1I{∣∣∣wr(0)⊤
⇀
x i

∣∣∣≤R} + 1I{∥∥∥wS,r(t)−
⇀
wr(0)

∥∥∥
2
>R

}. (66)

It follows from (66) that

|Hij(t)−Hij(0)|

=

∣∣∣∣∣∣
⇀
x

⊤
i

⇀
xj

m

m∑
r=1

(
1I{⇀

wS,r(t)⊤
⇀
x i≥0

}1I{⇀
wr(t)⊤

⇀
x j≥0

} − 1I{
wr(0)⊤

⇀
x i≥0

}1I{
wr(0)⊤

⇀
x j≥0

})∣∣∣∣∣∣
≤ 1

m

m∑
r=1

1I{
1I{⇀wS,r(t)⊤⇀

x i≥0} ̸=1I{⇀wr(0)⊤⇀
x i≥0}

} + 1I{
1I{⇀wS,r(t)⊤⇀

x j≥0} ̸=1I{⇀wr(0)⊤⇀
x j≥0}

}


≤ 1

m

m∑
r=1

(
1I{∣∣∣⇀wr(0)⊤

⇀
x i

∣∣∣≤R} + 1I{∣∣∣⇀wr(0)⊤
⇀
x j

∣∣∣≤R} + 21I{∥∥∥wS,r(t)−
⇀
wr(0)

∥∥∥
2
>R

})
≤ vR(W(0),

⇀
x i) + vR(W(0),

⇀
xj)

1⃝
≤ 4R√

2πκ
+ 2C2(m/2, d, 1/n), (67)

where 1⃝ follows from (58).

It follows from (65) and (67) that
∥∥E(3)

∥∥
2
,
∥∥E(4)

∥∥
2

are bounded by∥∥∥E(3)
∥∥∥
2
≤ η

n
∥K−H(0)∥2∥ŷ(t)− y∥2 ≤

η

n
· nC1(m/2, d, 1/n) · ∥y(t)− y∥2 ≤ ηcu

√
nC1(m/2, d, 1/n), (68)∥∥∥E(4)

∥∥∥
2
≤ η

n
∥H(0)−H(t)∥2∥ŷ(t)− y∥2 ≤

η

n
· n
(

4R√
2πκ

+ 2C2(m/2, d, 1/n)

)
· ∥y(t)− y∥2

≤ ηcu
√
n

(
4R√
2πκ

+ 2C2(m/2, d, 1/n)

)
. (69)
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It follows from (61) and (64) that

D
(1)
i = D

(3)
i +E

(2)
i +E

(3)
i +E

(4)
i . (70)

It then follows from (56) that

ŷi(t+ 1)− ŷi(t) = D
(1)
i +E

(1)
i = D

(3)
i +E

(1)
i +E

(2)
i +E

(3)
i +E

(4)
i︸ ︷︷ ︸

:=Ei

= − η
n
K (ŷ(t)− y) +Ei, (71)

where E ∈ Rn with its i-th element being Ei, and E = E(1) + E(2) + E(3) + E(4). It then follows from (60), (63), (68),
and (69) that

∥E∥2 ≤ ηcu
√
n

(
4

(
2R√
2πκ

+ C2(m/2, d, 1/n)

)
+ C1(m/2, d, 1/n)

)
. (72)

Finally, (71) can be rewritten as

ŷ(t+ 1)− y =
(
I− η

n
K
)
(ŷ(t)− y) +E(t+ 1),

which proves (53). The upper bound for ∥E∥2 in (54) follows from (72), Theorem 6.1, and noting that ηcu ≤ Θ(1).

Lemma C.6. Suppose that t ∈ [0 : T − 1] for T ≥ 1, and ∥ŷ(t′)− y∥2 ≤
√
ncu holds for all 0 ≤ t′ ≤ t. Then∥∥∥⇀wS,r(t

′)− ⇀
wr(0)

∥∥∥
2
≤ R, ∀ 0 ≤ t′ ≤ t+ 1. (73)

Proof. Let [ZS(t)][(r−1)d:rd] denotes the submatrix of ZS(t) formed by the the rows of ZQ(t) with row indices in [(r−1)d :

rd]. By the GD update rule we have for every t′′ ∈ [0, T − 1] that
⇀
wS,r(t

′′ + 1)− ⇀
wS,r(t

′′) = − η
n
[ZS(t

′′)][(r−1)d:rd] (ŷ(t
′′)− y) , (74)

We have
∥∥∥[ZS(t

′′)][(r−1)d:rd]

∥∥∥
2
≤
√
n/m. It then follows from (74) that∥∥∥⇀wS,r(t

′′ + 1)− ⇀
wS,r(t

′′)
∥∥∥
2
≤ η

n

∥∥∥[ZS(t
′′)][(r−1)d:rd]

∥∥∥
2
∥ŷ(t′′)− y∥2 ≤

ηcu√
m
, ∀t′′ ∈ [0 : t]. (75)

Note that (73) trivially holds for t′ = 0. For t′ ∈ [1, t+ 1], it follows from (75) that∥∥∥⇀wS,r(t
′)− ⇀

wr(0)
∥∥∥
2
≤

t′−1∑
t′′=0

∥∥∥⇀wS,r(t
′′ + 1)− ⇀

wS,r(t
′′)
∥∥∥
2
≤ η√

m

t′−1∑
t′′=0

cu ≤
ηcuT√
m

= R, (76)

which completes the proof.

Lemma C.7. Let h(·) =
∑t−1
t′=0 h(·, t′) for t ∈ [T ], T ≤ T̂ where

h(·, t′) = v(·, t′) + ê(·, t′),

v(·, t′) = η

n

n∑
j=1

K(
⇀
xj ,x)vj(t

′),

ê(·, t′) = η

n

n∑
j=1

K(
⇀
xj ,x)

⇀
e j(t

′),

where v(t′) ∈ Vt′ , e(t′) ∈ Et′,τ for all 0 ≤ t′ ≤ t − 1. Suppose that τ ≲ 1/(ηT ), then with probability at least
1− exp

(
−Θ(nε̂2n)

)
over the random noise w,

∥h∥HK
≤ Bh = µ0 + 1 +

√
2, (77)

and Bh is also defined in (33).
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Proof. We have y = f∗(S) + w, v(t) = − (I− ηKn)
t
f∗(S), e(t) =

⇀
e 1(t) +

⇀
e 2(t) with

⇀
e 1(t) = − (I− ηKn)

t
w,∥∥∥⇀e 2(t)

∥∥∥
2
≲
√
nτ . We define

ê1(·, t) =
η

n

n∑
j=1

K(
⇀
xj ,x)

[
⇀
e 1(t

′)
]
j
, ê2(·, t) =

η

n

n∑
j=1

K(
⇀
xj ,x)

[
⇀
e 2(t

′)
]
j
.

Let Σ be the diagonal matrix containing eigenvalues of Kn, we then have

t−1∑
t′=0

v(x, t′) =
η

n

n∑
j=1

t−1∑
t′=0

[
(I− ηKn)

t′
f∗(S)

]
j
K(

⇀
xj ,x) =

η

n

n∑
j=1

t−1∑
t′=0

[
U (I− ηΣ)

t′
U⊤f∗(S)

]
j
K(

⇀
xj ,x). (78)

It follows from (78) that∥∥∥∥∥
t−1∑
t′=0

v(·, t′)

∥∥∥∥∥
2

HK

=
η2

n2
f∗(S)⊤U

t−1∑
t′=0

(I− ηΣ)
t′
U⊤KU

t−1∑
t′=0

(I− ηΣ)
t′
U⊤f∗(S)

=
1

n

∥∥∥∥∥η (Kn)
1/2

U

t−1∑
t′=0

(I− ηΣ)
t′
U⊤f∗(S)

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2

λ̂i

[
U⊤f∗(S)

]2
i
≤ µ2

0, (79)

where the last inequality follows from Lemma C.12.

Similarly, we have

∥∥∥∥∥
t−1∑
t′=0

ê1(·, t′)

∥∥∥∥∥
2

HK

≤ 1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2

λ̂i

[
U⊤w

]2
i
. (80)

It then follows from the argument in the proof of (Raskutti et al., 2014, Lemma 9) that the RHS of (80) is bounded with
high probability. We define a diagonal matrix R ∈ Rn×n with Rii =

(
1− (1− ηλ̂i)t

)2
/λ̂i for i ∈ [n]. Then the RHS of

(80) is 1/n · tr
(
URU⊤ww⊤). It follows from (Wright, 1973) that

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ u] ≤ exp

(
−cmin

{
nu/∥R∥2, n

2u2/∥R∥2F
})

(81)

for all u > 0, and c is a positive constant. Recall that ηt = ηt for all t ≥ 0, we have

E
[
1/n · tr

(
URU⊤ww⊤)] ≤ σ2

0

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2

λ̂i

1⃝
≤ σ2

0

n

n∑
i=1

min

{
1

λ̂i
, η2t λ̂i

}
≤ σ2

0ηt
n

n∑
i=1

min

{
1

ηtλ̂i
, ηtλ̂i

}
2⃝
≤ σ2

0ηt
n

n∑
i=1

min
{
1, ηtλ̂i

}
=
σ2
0η

2
t

n

n∑
i=1

min
{
η−1
t , λ̂i

}
= σ2

0η
2
t R̂

2
K(
√
1/ηt) ≤ 1. (82)

Here 1⃝ follows from the fact that (1 − ηλ̂i)
t ≥ max

{
0, 1− tηλ̂i

}
, and 2⃝ follows from min {a, b} ≤

√
ab for any

nonnegative numbers a, b. Because t ≤ T ≤ T̂ , we have R̂K(
√

1/ηt) ≤ 1/(σ0ηt), so the last inequality holds.

Moreover, we have the upper bounds for ∥R∥2 and ∥R∥F as follows. First, we have

∥R∥2 ≤ max
i∈[n]

(
1−

(
1− ηλ̂i

)t)2

λ̂i
≤ max

i∈[n]
min

{
1

λ̂i
, η2t λ̂i

}
≤ ηt. (83)
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We also have

1

n
∥R∥2F =

1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)4

(λ̂i)2
≤ η3t

n

n∑
i=1

min

{
1

η3t λ̂
2
i

, ηtλ̂
2
i

}
3⃝
≤ η3t

n

n∑
i=1

min

{
λ̂i,

1

ηt

}
= η3t R̂

2
K(
√

1/ηt) ≤
ηt
σ2
0

, (84)

where 3⃝ follows from

min

{
1

η3t λ̂
2
i

, ηtλ̂
2
i

}
= λ̂imin

{
1

η3t λ̂
3
i

, ηtλ̂i

}
≤ λ̂i.

Combining (80)-(84) with u = 1 in (81), we have

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ 1

]
≤ exp

(
−cmin

{
n/ηt, nσ

2
0/ηt

})
≤ exp (−nc′/ηt) ≤ exp

(
−c′nε̂2n

)
,

where c′ = cmin
{
1, σ2

0

}
, and the last inequality is due to the fact that 1/ηt ≥ ε̂2n since t ≤ T ≤ T̂ . It follows that with

probability at least 1− exp
(
−Θ(nε̂2n)

)
,
∥∥∥∑t−1

t′=0 ê1(·, t′)
∥∥∥2
HK

≤ 2.

We now find the upper bound for
∥∥∥∑t−1

t′=0 ê2(·, t′)
∥∥∥
HK

. We have

∥ê2(·, t′)∥
2
HK
≤ η2

n2
⇀
e
⊤
2 (t

′)K
⇀
e 2(t

′) ≤ η2λ̂1τ2,

so that ∥∥∥∥∥
t−1∑
t′=0

ê2(·, t′)

∥∥∥∥∥
HK

≤
t−1∑
t′=0

∥ê2(·, t′)∥HK
≤ Tη

√
λ̂1τ ≤ 1, (85)

if τ ≲ 1/(ηT ).

Finally, we have

∥h∥HK
≤

∥∥∥∥∥
t−1∑
t′=0

v̂(·, t′)

∥∥∥∥∥
HK

+

∥∥∥∥∥
t−1∑
t′=0

ê1(·, t′)

∥∥∥∥∥
HK

+

∥∥∥∥∥
t−1∑
t′=0

ê2(·, t′)

∥∥∥∥∥
HK

≤ µ0 + 1 +
√
2 = Bh.

Theorem C.8. For every t ∈ [T ], let the neural network f(·) = f(W(t), ·) be trained by gradient descent with the
learning rate η = Θ(1) ∈ (0, 1/λ̂1) on the random initialization W(0) ∈ W0 with T ≤ T̂ . Then with probability at least
1− exp (−Θ(n))− exp

(
−Θ(nε̂2n)

)
over the random noise w, f ∈ FNN(S,W(0), T ), and f can be decomposed by

f = h+ e ∈ F(Bh, w), (86)

where h ∈ HK(Bh) with Bh defined in (33), e ∈ L∞. When

m ≳ max
{
T 8d

8
3 /w

16
3 , T

40
3 d

8
3

}
, (87)

then

∥e∥∞ ≤ w. (88)

In addition,

∥f∥∞ ≤
Bh√
2
+ w. (89)
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Remark. We consider the kernel regression problem with the training loss L(α) = 1/2 · ∥Knα− y∥22. Letting β =

K
1/2
n α and then performing GD on β with this training loss and the learning rate η, it can be verified that the kernel

regressor right after the t-th step of GD is

f̂ (NTK)
t =

η

n

t−1∑
t′=0

n∑
i=1

K(·,⇀x i)α(t′)
i , (90)

where α(t′) = (In − ηKn)
t′
y. Following from the proof of Lemma C.6 and Theorem C.8, under the conditions of

Theorem C.8 we have

ht = f̂ (NTK)
t + ê2(·, t),

where ê2(·, t) = η
n

∑t−1
t′=0

∑n
j=1K(·,⇀xj)

[
⇀
e 2(t

′)
]
j

and
⇀
e 2(t

′) appears in the definition of Et,τ in (29). It is remarked

that in our analysis, we approximate ft by ht ∈ HK(Bh) with a small approximation error w, and we do not need to
approximate ft by the kernel regressor f̂ (NTK)

t with a sufficiently small approximation error which is the common strategy
used in existing works (Hu et al., 2021; Suh et al., 2022; Li et al., 2024). In fact, our analysis only requires m is suitably
large so that the HK-norm of ê2(·, t) = ht − f̂ (NTK)

t is bounded by a positive constant rather than an infinitesimal number
as m→∞, that is, ∥ê2(·, t)∥HK

≤ 1, which is revealed by the proof of Lemma C.7.

Proof. It follows from Lemma C.3 and its proof that conditioned on an event with probability at least1 − exp (−Θ(n)),

f ∈ FNN(S,W(0), T ) with W(0) ∈ W0. Moreover, f(·) = f(W, ·) with W =
{
⇀
wr

}m
r=1
∈ W(S,W(0), T ), and

vec (W) = vec (WS) = vec (W(0))−
∑t−1
t′=0 η/n·ZS(t

′)u(t′) for some t ∈ [T ], where u(t′) ∈ Rn,u(t′) = v(t′)+e(t′)
with v(t′) ∈ Vt′ and e(t′) ∈ Et′,τ for all t′ ∈ [0, t− 1].
⇀
wr is expressed as

⇀
wr =

⇀
wS,r(t) =

⇀
wr(0)−

t−1∑
t′=0

η

n
[ZS(t

′)][(r−1)d:rd] u(t
′), (91)

where the notation
⇀
wS,r emphasizes that

⇀
wr depends on the training data S.

We define the event

Er(R) :=
{∣∣∣⇀wr(0)

⊤x
∣∣∣ ≤ R} , r ∈ [m].

We now approximate f(W,x) by g(x) := 1√
m

∑m
r=1 ar1I

{
⇀
wr(0)⊤x≥0

}⇀w⊤
r x. We have

|f(W,x)− g(x)|

=
1√
m

∣∣∣∣∣
m∑
r=1

arσ

(
⇀
w

⊤
r x

)
−

m∑
r=1

ar1I{⇀
wr(0)⊤x≥0

}⇀w⊤
r x

∣∣∣∣∣
≤ 1√

m

m∑
r=1

∣∣∣∣ar (1I{Er(R)} + 1I{Ēr(R)}
)(

σ

(
⇀
w

⊤
r x

)
− 1I{⇀

wr(0)⊤x≥0
}⇀w⊤

r x

)∣∣∣∣
=

1√
m

m∑
r=1

1I{Er(R)}

∣∣∣∣σ(⇀w⊤
r x

)
− 1I{⇀

wr(0)⊤x≥0
}⇀w⊤

r x

∣∣∣∣
=

1√
m

m∑
r=1

1I{Er(R)}

∣∣∣∣σ(⇀w⊤
r x

)
− σ

(
⇀
wr(0)

⊤x
)
− 1I{⇀

wr(0)⊤x≥0
}(⇀wr −

⇀
wr(0))

⊤x

∣∣∣∣
≤ 2R√

m

m∑
r=1

1I{Er(R)}. (92)
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Plugging R = ηcuT√
m

in (92), we have

|f(W,x)− g(x)| ≤ 2R√
m

m∑
r=1

1I{Er(R)} = 2ηcuT ·
1

m

m∑
r=1

1I{Er(R)}

= 2ηcuT · v̂R(W(0),x) ≤ 2ηcuT

(
2R√
2πκ

+ C2(m/2, d, 1/n)

)
. (93)

Using (91), we can express g(x) as

g(x) =
1√
m

m∑
r=1

ar1I{⇀
wr(0)⊤x≥0

}⇀wr(0)
⊤x−

t−1∑
t′=0

1√
m

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} ( η
n
[ZS(t

′)][(r−1)d:rd] u(t
′)
)⊤

x

1⃝
= −

t−1∑
t′=0

η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

1I{⇀
wr(t′)⊤

⇀
x j≥0

}uj(t′)⇀x⊤
j x︸ ︷︷ ︸

:=Gt′ (x)

, (94)

where 1⃝ follows from the fact that 1√
m

∑m
r=1 ar1I

{
⇀
wr(0)⊤x≥0

}⇀wr(0)
⊤x = f(W(0),x) = 0 due to the particular initial-

ization of the two-layer NN. For each Gt′ on the RHS of (94), we have

Gt′(x)
2⃝
=

η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

dt′,r,juj(t
′)
⇀
x

⊤
j x+

η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

1I{⇀
wr(0)⊤

⇀
x j≥0

}uj(t′)⇀x⊤
j x

3⃝
=
η

n

n∑
j=1

K(x,
⇀
xj)uj(t

′) +
η

n

n∑
j=1

qjuj(t
′)︸ ︷︷ ︸

:=E1(x)

+
η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

dt′,r,juj(t
′)
⇀
x

⊤
j x︸ ︷︷ ︸

:=E2(x)

. (95)

where

dt′,r,j := 1I{⇀
wr(t′)⊤

⇀
x j≥0

} − 1I{⇀
wr(0)⊤

⇀
x j≥0

}
in 2⃝, and and

qj := ĥ(W(0),
⇀
xj ,x)−K(

⇀
xj ,x)

for all j ∈ [n] in 3⃝.

We now analyze each term on the RHS of (95). Let h(·, t′) : X → R be defined by

h(x, t′) :=
η

n

n∑
j=1

K(x,
⇀
xj)uj(t

′),

then h(·, t′) is an element in the RKHSHK for each t′ ∈ [0, t− 1]. We further define

h(·) :=
t−1∑
t′=0

h(·, t′), (96)

Since W(0) ∈ W0, qj ≤ C1(m/2, d, 1/n) for all j ∈ [n] with C1(m/2, d, 1/n) defined in (39). Moreover, u(t′) ≤ cu
√
n

with high probability, so that we have

∥E1∥∞ =

∥∥∥∥∥∥ ηn
n∑
j=1

qjuj(t
′)

∥∥∥∥∥∥
∞

≤ η

n
∥u(t′)∥2

√
nC1(m/2, d, 1/n) ≤ ηcuC1(m/2, d, 1/n). (97)
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We now bound the last term on the RHS of (95). Define X′ ∈ Rd×n with its j-column being X′(j) =
1
m

∑m
r=1 1I

{
⇀
wr(0)⊤x≥0

}dt′,r,j⇀xj for all j ∈ [n], then E2(x) =
η
n (X′u(t′))

⊤
x.

We need to derive the upper bound for ∥X′∥2. Because
∥∥∥⇀wr −

⇀
wr(0)

∥∥∥
2
≤ R, it follows that 1I{⇀

wr(t′)⊤
⇀
x j≥0

} =

1I{⇀
wr(0)⊤

⇀
x j≥0

} when
∣∣∣⇀wr(0)

⊤x′
j′

∣∣∣ > R for all j′ ∈ [n]. Therefore,

|dt′,r,j′ | =
∣∣∣∣1I{⇀

wr(t′)⊤
⇀
x j≥0

} − 1I{⇀
wr(0)⊤

⇀
x j≥0

}∣∣∣∣ ≤ 1I{∣∣∣⇀wr(0)⊤
⇀
x j

∣∣∣≤R},
and it follows that∣∣∣∣ m∑

r=1
1I{⇀

wr(0)⊤
⇀
x i≥0

}dt′,r,j
∣∣∣∣

m
≤

m∑
r=1
|dt′,r,j |

m
≤

m∑
r=1

1I{∣∣∣⇀wr(0)⊤
⇀
x j

∣∣∣≤R}
m

= v̂R(W(0),
⇀
xj)

≤ 2R√
2πκ

+ C2(m/2, d, 1/n), (98)

where v̂R is defined by (14), and the last inequality follows from Theorem C.2.

It follows from (98) that ∥X′∥2 ≤
√
n
(

2R√
2πκ

+ C2(m/2, d, 1/n)
)

, and we have

∥E2(x)∥∞ ≤
η

n
∥X′∥2∥u(t

′)∥2∥x∥2 ≤ ηcu
(

2R√
2πκ

+ C2(m/2, d, 1/n)

)
. (99)

Combining (95), (97), and (99), for any t′ ∈ [0, t− 1],

∥Gt′(x)− h(x, t′)∥∞ ≤ ∥E1∥∞ + ∥E2∥∞

≤ ηcu
(
C1(m/2, d, 1/n) +

2R√
2πκ

+ C2(m/2, d, 1/n)

)
. (100)

Define e(·) = f(W, ·)− h(·), it then follows from (93), (94), and (100) that

∥e(x)∥∞ ≤ ∥f(W, ·)− g∥∞ + ∥g − h∥∞

≤ ∥f(W, ·)− g∥∞ +

t−1∑
t′=0

∥Gt′ − h(·, t′)∥∞

2⃝
≤ 2ηcuT

(
2R√
2πκ

+ C2(m/2, d, 1/n)

)
+ ηcuT

(
C1(m/2, d, 1/n) +

2R√
2πκ

+ C2(m/2, d, 1/n)

)
≤ ηcuT

(
C1(m/2, d, 1/n) + 3

(
2R√
2πκ

+ C2(m/2, d, 1/n)

))
:= ∆m,n,N,cx,η,τ . (101)

We now give estimates for ∆m,n,N,cx,η,τ . Since W(0) ∈ W0, it follows from Theorem 6.1 that C1(m/2, d, 1/n) ≲√
d logm
m ≲

√
dm− 3

16T
1
2 , and 2R/(

√
2πκ) + C2(m/2, d, 1/n) ≲

√
dm− 3

16T
1
2 . As a result,

∆m,n,N,cx,η,τ ≲
√
dm− 3

16T 3/2.

By direct calculations, for any w > 0, when

m ≳ T 8d
8
3 /w

16
3 ,
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we have ∆m,n,N,cx,η,τ ≤ w.

It follows from Lemma C.7 that with probability at least 1− exp
(
−Θ(nε̂2n)

)
over the random noise w,

∥h∥HK
≤ Bh, (102)

where Bh is defined in (33), and τ are required to satisfy

τ ≲ 1/(ηT ).

Lemma C.3 requires that m ≳ T 8d
8
3 /τ

16
3 . As a result, we have

m ≳ T
40
3 d

8
3 .

It also follows from the Cauchy-Schwarz inequality that ∥h∥∞ ≤ Bh/
√
2. This together with (101) proves (89).

The following lemma gives the upper bound for the Rademacher complexity of a localized function class in F(B,w)
comprising functions with their L2-norm bounded by every r > 0.

Lemma C.9. For every B,w > 0 every r > 0,

R
({
f ∈ F(B,w) : EP

[
f2
]
≤ r
})
≤ φB,w(r), (103)

where

φB,w(r) := min
Q : Q≥0

(
√
r + w)

√
Q

n
+B


∞∑

q=Q+1

λq

n


1/2+ w. (104)

Proof. We first decompose the Rademacher complexity of the function class
{
f ∈ F(B,w) : EP

[
f2
]
≤ r
}

into two terms
as follows:

R
({
f : f ∈ F(B,w),EP

[
f2
]
≤ r
})

≤ 1

n
E

[
sup

f∈F(B,w) : EP [f2]≤r

n∑
i=1

σih(
⇀
x i)

]
︸ ︷︷ ︸

:=R1

+
1

n
E

[
sup

f∈F(B,w) : EP [f2]≤r

n∑
i=1

σie(
⇀
x i)

]
︸ ︷︷ ︸

:=R2

. (105)

We now analyze the upper bounds forR1,R2 on the RHS of (105).

Derivation for the upper bound forR1.

For any f ∈ F(B,w), we have f = h+ e with h ∈ HK(B), e ∈ L∞, ∥e∥∞ ≤ w. When EP
[
f2
]
≤ r, it follows from the

triangle inequality that ∥h∥L2 ≤ ∥f∥L2 + ∥e∥L2 ≤
√
r + w := rh.

We now consider h ∈ HK(B) with ∥h∥L2 ≤ rh in the remaining of this proof. We have

n∑
i=1

σif(
⇀
x i) =

n∑
i=1

σi

(
h(
⇀
x i) + e(

⇀
x i)
)
=

〈
h,

n∑
i=1

σiK(·,⇀x i)

〉
HK

+

n∑
i=1

σie(
⇀
x i). (106)

Because {vq}q≥1 is an orthonormal basis ofHK , for any 0 ≤ Q ≤ n, we further express the first term on the RHS of (106)
as〈
h,

n∑
i=1

σiK(·,⇀x i)

〉
HK
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=

〈
Q∑
q=1

√
λq ⟨h, vq⟩HK

vq,

Q∑
q=1

1√
λq

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

〉
HK

+

〈
h,
∑
q>Q

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

〉
HK

.

(107)

Due to the fact that h ∈ HK , h =
∞∑
q=1

β
(h)
q vq =

∞∑
q=1

√
λqβ

(h)
q eq with vq =

√
λqeq . Therefore, ∥h∥2L2 =

∞∑
q=1

λqβ
(h)
q

2
, and

∥∥∥∥∥
Q∑
q=1

√
λq ⟨h, vq⟩HK

vq

∥∥∥∥∥
HK

=

∥∥∥∥∥
Q∑
q=1

√
λqβ

(h)
q vq

∥∥∥∥∥
HK

=

√√√√ Q∑
q=1

λqβ
(h)
q

2
≤ ∥h∥L2 ≤ rh. (108)

According to Mercer’s Theorem, because the kernel K is continuous symmetric positive definite, it has the decomposition

K(·,⇀x i) =
∞∑
j=1

λjej(·)ej(
⇀
x i),

so that we have〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

=

〈
n∑
i=1

σi

∞∑
j=1

λjejej(
⇀
x i), vq

〉
HK

=

〈
n∑
i=1

σi

∞∑
j=1

√
λjej(

⇀
x i) · vj , vq

〉
HK

=

n∑
i=1

σi
√
λqeq(

⇀
x i). (109)

Combining (107), (108), and (109), we have〈
h,

n∑
i=1

σiK(·,⇀x i)

〉
1⃝
≤

∥∥∥∥∥
Q∑
q=1

√
λq ⟨h, vq⟩HK

vq

∥∥∥∥∥
HK

·

∥∥∥∥∥∥
Q∑
q=1

1√
λq

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

∥∥∥∥∥∥
HK

+ ∥h∥HK
·

∥∥∥∥∥∥
∞∑

q=Q+1

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

∥∥∥∥∥∥
HK

≤ ∥h∥L2

∥∥∥∥∥
Q∑
q=1

n∑
i=1

σieq(
⇀
x i)vq

∥∥∥∥∥
HK

+B

∥∥∥∥∥∥
∞∑

q=Q+1

n∑
i=1

σi
√
λqeq(

⇀
x i)vq

∥∥∥∥∥∥
HK

≤ rh

√√√√ Q∑
q=1

(
n∑
i=1

σieq(
⇀
x i)

)2

+B

√√√√ ∞∑
q=Q+1

(
n∑
i=1

σi
√
λqeq(

⇀
x i)

)2

, (110)

where 1⃝ is due to Cauchy-Schwarz inequality. Moreover, by Jensen’s inequality we have

E


√√√√ Q∑

q=1

(
n∑
i=1

σieq(
⇀
x i)

)2
 ≤

√√√√√E

 Q∑
q=1

(
n∑
i=1

σieq(
⇀
x i)

)2
 ≤

√√√√E

[
Q∑
q=1

n∑
i=1

e2q(
⇀
x i)

]
=
√
nQ. (111)

and similarly,

E


√√√√ ∞∑
q=Q+1

(
n∑
i=1

σi
√
λqeq(

⇀
x i)

)2
 ≤

√√√√√E

 ∞∑
q=Q+1

λq

n∑
i=1

e2q(
⇀
x i)

 =

√√√√n

∞∑
q=Q+1

λq. (112)

Since (110)-(112) hold for all Q ≥ 0, it follows that

E

[
sup

h∈HK(B),∥h∥L2≤rh

1

n

n∑
i=1

σih(
⇀
x i)

]
≤ min
Q : Q≥0

rh√nQ+B

√√√√n

∞∑
q=Q+1

λq

 . (113)

28



Sharp Generalization for Over-Parameterized Neural Networks: A Distribution-Free Analysis in Spherical Covariate

It follows from (105), (106), and (113) that

R1 ≤
1

n
E

[
sup

h∈HK(B),∥h∥L2≤rh

n∑
i=1

σih(
⇀
x i)

]
≤ min
Q : Q≥0

rh
√
Q

n
+B


∞∑

q=Q+1

λq

n


1/2 . (114)

Derivation for the upper bound forR2.

Because
∣∣∣1/n∑n

i=1 σie(
⇀
x i)
∣∣∣ ≤ w when ∥e∥∞ ≤ w, we have

R2 ≤
1

n
E

[
sup

e∈L∞ : ∥e∥∞≤w

n∑
i=1

σie(
⇀
x i)

]
≤ w. (115)

It follows from (114) and (115) that

R
({
f : f ∈ F(B,w),EP

[
f2
]
≤ r
})
≤ min
Q : Q≥0

rh
√
Q

n
+B


∞∑

q=Q+1

λq

n


1/2+ w.

Plugging rh in the RHS of the above inequality completes the proof.

Theorem C.10. Suppose w ∈ (0, 1) and m satisfy

m ≳ max
{
T 8d

8
3 /w

16
3 , T

40
3 d

8
3

}
, (116)

and the neural network f(W(t), ·) is trained by GD in Algorithm 1 with the learning rate η = Θ(1) ∈ (0, 1/λ̂1) on
random initialization W(0) ∈ W0, and T ≤ T̂ . Then for every t ∈ [T ], with probability at least 1 − exp (−Θ(n)) −
exp

(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
over the random noise w and the random training features S,

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≤ c0 min

0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2

2

+ c0ε
2
n.

(117)

Furthermore, with probability at least 1 − exp (−Θ(n)) − exp
(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
over the random noise w, the

random training features S,

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≤ c′0(ε2n + w). (118)

Here B0, c0, c
′
0 are absolute positive constants depending on µ0, and c′0 also depends on σ0.

Proof. We first remark that the conditions on m, (116), is required by Lemma C.3 and Theorem C.8.

It follows from Lemma C.3 and Theorem C.8 that for every t ∈ [T ], conditioned on an event Ω with probability at least
1− exp (−Θ(n))− exp

(
−Θ(nε̂2n)

)
over the random noise w, we have W(t) ∈ W(S,W(0), T ), and

f(W(t), ·) = ft ∈ FNN(S,W(0), T ).

Moreover, conditioned on the event Ω,

ft ∈ F(Bh, w).
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We then derive the sharp upper bound for EP
[
(ft − f∗)2

]
by applying Theorem A.3 to the function class

F =
{
F = (f − f∗)2 : f ∈ F(Bh, w)

}
.

Let B0 := Bh/
√
2 + 1 + µ0/

√
2 ≥ Bh/

√
2 + w + µ0/

√
2, then we have ∥F∥∞ ≤ B2

0 with F ∈ F , so that EP
[
F 2
]
≤

B2
0EP [F ]. Let T (F ) = B2

0EP [F ] for F ∈ F . Then Var [F ] ≤ EP
[
F 2
]
≤ T (F ) = B2

0EP [F ].

We have

R ({F ∈ F : T (F ) ≤ r}) = R

({
(f − f∗)2 : f ∈ F(Bh, w),EP

[
(f − f∗)2

]
≤ r

B2
0

})
1⃝
≤ 2B0R

({
f − f∗ : f ∈ F(Bh, w),EP

[
(f − f∗)2

]
≤ r

B2
0

})
2⃝
≤ 4B0R

({
f ∈ F(Bh, w) : EP

[
f2
]
≤ r

4B2
0

})
, (119)

where 1⃝ is due to the contraction property of Rademacher complexity in Theorem A.2. Since f∗ ∈ F(Bh, w), f ∈
F(Bh, w), we have f−f∗

2 ∈ F(Bh, w) due to the fact that F(Bh, w) is symmetric and convex, and it follows that 2⃝ holds.

It follows from (119) and Lemma C.9 that

B2
0R ({F ∈ F : T (F ) ≤ r}) ≤ 4B3

0R

({
f : f ∈ F(Bh, w),EP

[
f2
]
≤ r

4B2
0

})
≤ 4B3

0φBh,w

(
r

4B2
0

)
:= ψ(r). (120)

ψ defined as the RHS of (120) is a sub-root function since it is nonnegative, nondecreasing and ψ(r)√
r

is nonincreasing. Let
r∗ be the fixed point of ψ, and 0 ≤ r ≤ r∗. It follows from (Bartlett et al., 2005, Lemma 3.2) that 0 ≤ r ≤ ψ(r) =

4B3
0φ
(

r
4B2

0

)
. Therefore, by the definition of φ in (104), for every 0 ≤ Q ≤ n, we have

r

4B3
0

≤
( √

r

2B0
+ w

)√
Q

n
+Bh


∞∑

q=Q+1

λq

n


1/2

+ w. (121)

Solving the quadratic inequality (121) for r, we have

r ≤ 8B4
0Q

n
+ 8B3

0

w
(√

Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2 . (122)

(122) holds for every 0 ≤ Q ≤ n, so we have

r ≤ 8B3
0 min
0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2 . (123)

It then follows from (120) and Theorem A.3 that with probability at least 1 − exp(−x) over the random training features
S,

EP
[
(ft − f∗)2

]
− K0

K0 − 1
EPn

[
(ft − f∗)2

]
−
x
(
11B2

0 + 26B2
0K0

)
n

≤ 704K0

B2
0

r∗, (124)
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or

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≲ r∗ +

x

n
, (125)

with K0 = 2 in (124).

It follows from (123) and (125) that

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]

≲ min
0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2+

x

n
.

Let x = nε2n in the above inequality, and we note that the above argument requires Theorem C.8 which holds with
probability at least 1− exp (−Θ(n))− exp

(
−Θ(nε̂2n)

)
over the random noise w, then (117) is proved.

We now prove (118). First, it follows from the definition of φBh,w in (104) that

ψ(r) = 4B3
0φBh,w

(
r

4B2
0

)

= 4B3
0 min
Q : Q≥0


( √

r

2B0
+ w

)√
Q

n
+Bh


∞∑

q=Q+1

λq

n


1/2+ 4B3

0w

≤ 4B3
0Bh min

Q : Q≥0


√
Qr

n
+


∞∑

q=Q+1

λq

n


1/2+ 4B3

0w

(√
Q

n
+ 1

)

≤ 4
√
2B3

0Bh
σ0

· σ0RK(
√
r) + 8B3

0w := ψ1(r),

where the last inequality follows from the Cauchy-Schwarz inequality. It can be verified that ψ1(r) is a sub-root function.
Let the fixed point of ψ1(r) be r∗1 . Because the fixed point of σ0RK(

√
r) as a function of r is ε2n, it follows from the

properties about the fixed points of sub-root functions in (Yang & Li, 2025, Lemma B.9) that

r∗1 ≤ max

{
32B6

0B
2
h

σ2
0

, 1

}
ε2n + 16B3

0w. (126)

It then follows from Theorem A.3 with K0 = 2 that with probability at least 1− exp(−x),

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≲ r∗1 +

x

n
.

Letting x = nε2n, then plugging the upper bound for r∗1 , (126), in the above inequality leads to

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≲ ε2n + 16B3

0w, (127)

which proves (118). Again, we note that the above argument requires Theorem C.8 which holds with probability at least
1− exp (−Θ(n))− exp

(
−Θ(nε̂2n)

)
over the random noise w.

Theorem C.11. Suppose the neural network trained after the t-th step of gradient descent, ft = f(W(t), ·), satisfies
u(t) = ft(S)− y = v(t) + e(t) with v(t) ∈ Vt and e(t) ∈ Et,τ and T ≤ T̂ . If

η ∈ [1, 2), τ ≤ 1

ηT
, (128)
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then for every t ∈ [T ], with probability at least 1− exp
(
−Θ(nε̂2n)

)
over the random noise w, we have

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 3

)
. (129)

Proof. We have

ft(S) = f∗(S) +w + v(t) + e(t), (130)

where v(t) ∈ Vt, e(t) ∈ Et,τ ,
⇀
e (t) =

⇀
e 1(t) +

⇀
e 2(t) with

⇀
e 1(t) = − (In − ηKn)

t
w and

∥∥∥⇀e 2(t)
∥∥∥
2
≤
√
nτ . We have

ηλ1 ∈ (0, 1) if η ∈ [1, 2). It follows from (130) that

EPn

[
(ft − f∗)2

]
=

1

n
∥ft(S)− f∗(S)∥22 =

1

n
∥v(t) +w + e(t)∥22

=
1

n

∥∥∥− (I− ηKn)
t f∗(S) +

(
In − (In − ηKn)

t)w +
⇀
e 2(t)

∥∥∥2

2

1⃝
≤ 3

n

n∑
i=1

(
1− ηλ̂i

)2t [
U⊤f∗(S)

]2
i
+

3

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t
)2 [

U⊤w
]2
i
+

3

n

∥∥∥⇀
e 2(t)

∥∥∥2

2

2⃝
≤ 3µ2

0

2eηt
+

3

n

n∑
i=1

(
1− (1− ηλi)

t)2 [U⊤w
]2
i
+ 3τ2

≤ 3

ηt

(
µ2
0

2e
+

1

η

)
+ 3 · 1

n

n∑
i=1

(
1− (1− ηλi)

t)2 [U⊤w
]2
i︸ ︷︷ ︸

:=Eε

≤ 3

ηt

(
µ2
0

2e
+ 1

)
+ 3Eε. (131)

Here 1⃝ follows from the Cauchy-Schwarz inequality, 2⃝ follows from (51) in the proof of Lemma C.4. We then derive the

upper bound for Eε on the RHS of (131). We define the diagonal matrix R ∈ Rn×n with Rii =
(
1− (1− ηλi)t

)2
. Then

we have

Eε = 1/n · tr
(
URU⊤ww⊤)

It follows from (Wright, 1973) that

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ u] ≤ exp

(
−cmin

{
nu/∥R∥2, n

2u2/∥R∥2F
})

. (132)

for all u > 0, and c is a positive constant. With ηt = ηt for all t ≥ 0, we have

E
[
1/n · tr

(
URU⊤ww⊤)] = σ2

0

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2 1⃝
≤ σ2

0

n

n∑
i=1

min
{
1, η2t λ̂

2
i

}
≤ σ2

0ηt
n

n∑
i=1

min

{
1

ηt
, ηtλ̂

2
i

}
2⃝
≤ σ2

0ηt
n

n∑
i=1

min

{
1

ηt
, λ̂i

}
= σ2

0ηtR̂
2
K(
√

1/ηt) ≤
1

ηt
. (133)

Here 1⃝ follows from the fact that (1 − ηλ̂i)
t ≥ max

{
0, 1− tηλ̂i

}
, and 2⃝ follows from min {a, b} ≤

√
ab for any

nonnegative numbers a, b. Because t ≤ T ≤ T̂ , we have RK(
√

1/ηt) ≤ 1/(σ0ηt), so the last inequality holds.

Moreover, we have the upper bounds for ∥R∥2 and ∥R∥F as follows. First, we have

∥R∥2 ≤ max
i∈[n]

(
1−

(
1− ηλ̂i

)t)2

≤ min
{
1, η2t λ̂

2
i

}
≤ 1. (134)
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We also have

1

n
∥R∥2F =

1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)4

≤ ηt
n

n∑
i=1

min

{
1

ηt
, η3t λ̂

4
i

} 3⃝
≤ ηt

n

n∑
i=1

min

{
λ̂i,

1

ηt

}
= ηtR̂

2
K(
√

1/ηt) ≤
1

σ2
0ηt

.

(135)

If 1/ηt ≤ η3t (λ̂i)
4, then min

{
1/ηt, η

3
t (λ̂i)

4
}
= 1/ηt. Otherwise, we have η4t λ̂

4
i < 1, so that ηtλ̂i < 1 and it follows that

min
{
1/ηt, η

3
t (λ̂i)

4
}
≤ η3t λ̂4i ≤ λ̂i. As a result, 3⃝ holds.

Combining (132)-(135), we have

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ u] ≤ exp

(
−cnmin

{
u, u2σ2

0ηt
})
.

Let u = 1/ηt in the above inequality, we have

exp
(
−cnmin

{
u, u2σ2

0ηt
})

= exp (−c′n/ηt) ≤ exp
(
−c′nε̂2n

)
where c′ = cmin

{
1, σ2

0

}
, and the last inequality is due to the fact that 1/ηt ≥ ε̂2n since t ≤ T ≤ T̂ . It follows that with

probability at least 1− exp
(
−Θ(nε̂2n)

)
,

Eε ≤ u+
1

ηt
=

2

ηt
. (136)

It then follows from (131)-(136) that

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 3

)
holds with probability at least 1− exp

(
−c′nε̂2n

)
.

C.3. Auxiliary Results about Reproducing Kernel Hilbert Spaces

Lemma C.12 (In the proof of (Raskutti et al., 2014, Lemma 8)). For any f ∈ HK(µ0), we have

1

n

n∑
i=1

[
U⊤f(S′)

]2
i

λ̂i
≤ µ2

0. (137)

Similarly, for f ∈ HK(int)(µ0), we have 1
n

∑n
i=1

[U⊤f(S′)]
2

i

λi
≤ µ2

0.

Lemma C.13. For any positive real number a ∈ (0, 1) and natural number t, we have

(1− a)t ≤ e−ta ≤ 1

eta
. (138)

Proof. The result follows from the facts that log(1− a) ≤ a for a ∈ (0, 1) and supu∈R ue
−u ≤ 1/e.

Lemma C.14. (Yang & Li, 2025, Lemma B.7)] With probability at least 1− 2 exp(−Θ(nε2n)),

ε2n ≤ c1ε̂2n. (139)

Furthermore, with probability at least 1− 2 exp(−Θ(nε2n)),

ε̂2n ≤ c1ε2n. (140)

Here c1 is an absolute positive constant depending on σ0.

Remark. Lemma C.14 shows that with probability at least 1 − 4 exp(−Θ(nε2n)), ε
2
n ≍ ε̂2n, which is also a fact used in

kernel complexity or local Rademacher based analysis for kernel regression in the statistical learning literature.
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D. Simulation Study

We present simulation results for GD in this section. We randomly sample n points
{
⇀
x i

}n
i=1

as a i.i.d. sample of random

variables distributed uniformly on the unit sphere in R50. n ranges within [100, 1000] with a step size of 100. We set the
target function to f∗(x) = s⊤x where s ∼ Unif (X ) is randomly sampled. We also uniformly and independenly sample
1000 points on the unit sphere in R50 as the test data. We train the two-layer NN (1) using either GD by Algoirthm 1 or
GD by Algoirthm 1 with m ≍ n2 on a NVIDIA A100 GPU card with a learning rate η = 0.1, and report the test loss in
Figure 2. It can be observed that early-stopping is always helpful in training neural networks with better generalization,
as the test loss initially decreases and then increases with over-training. Figure 2 illustrates the test loss with respect to
the steps (or epochs) of GD for n = 100, 500, 1000. For each n in [100, 1000] with a step size of 100, we find the step
of GD where minimum test loss is achieved, denoted by t̂n, which is the empirical early stopping time. We note that
the theoretically predicted early stopping time is 1/ε̂2n ≍ nd/(2d−1), and we compute the ratio of early stopping time for
each n by t̂n/nd/(2d−1). Such ratios for different values of n are illustrated in the bottom right figure of Figure 2. It is
observed that the ratio of early stopping time is roughly stable and distributed between [8, 10], suggesting that predicted
early stopping time is empirically proportional to the empirical early stopping time.

Figure 2: Illustration of the test loss by GD
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