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Abstract001

Recently, large language models (LLMs) have002
shown promising performance in time series003
forecasting, including two paradigms: (a.) re-004
customizing LLMs for supervised forecasting,005
and (b.) keeping LLMs unchanged for zero-006
shot forecasting. However, how do large lan-007
guage models understand time series? In this008
work, we explore the understanding capability009
of LLMs on time series while maintaining their010
structure and parameters unchanged in zero-011
shot forecasting scenarios. Specifically, start-012
ing from basic time series patterns, we investi-013
gate the forecasting ability of LLMs on basic014
function series, as well as the impact of diverse015
periods, amplitudes, and phases on the forecast-016
ing for sinusoidal series. Subsequently, to gain017
deeper insights, we design a series of probing018
methods to further analyze the understanding019
of LLMs on time series. Finally, guided by020
these findings, we propose Frequency Decom-021
position (Freq-Decomp), a lightweight prepro-022
cessing method that enhances LLMs’ zero-shot023
forecasting performance. Experiments across024
real-world datasets show that LLMs excel at025
identifying periodic patterns, probing experi-026
ments provide insight into the perception of027
time series information by LLMs’ different lay-028
ers, and Freq-Decomp can yield consistent im-029
provements over prior zero-shot baselines.030

1 Introduction031

Time series data, as a fundamental data type, is032

widely present in various fields (Wen et al., 2022,033

2023) such as economic forecasting (Niu et al.,034

2023a; Lerner et al., 2004; Gu et al., 2020), health-035

care (Niu et al., 2023b; Chae et al., 2023), and036

traffic management (Alghamdi et al., 2019; Fang037

et al., 2024). Analyzing and predicting time se-038

ries contributes to uncovering real-world insights039

behind the data, aiding in the analysis of practi-040

cal problems, and providing decision support. In041

this context, there have been explorations ranging042

from statistical analysis to machine learning and 043

deep learning (Gamboa, 2017; Wen et al., 2021). 044

Particularly, recent advancements in models based 045

on Transformer architecture (Liu et al., 2023; Su 046

et al., 2024; Wu et al., 2021; Zhou et al., 2022) and 047

Linear structures (Zeng et al., 2023) have shown 048

promising results. These models can effectively 049

represent meaningful features of time series data 050

for tasks such as prediction. 051

Recently, large language models (LLMs) (Tou- 052

vron and et al., 2023; Brown and et al., 2020) have 053

demonstrated remarkable performance in natural 054

language processing (NLP), showcasing impressive 055

zero-shot learning capabilities, in-context learning, 056

and reasoning and planning abilities such as chain- 057

of-thought reasoning (Dong et al., 2023; Schaeffer 058

et al., 2023; Olsson and et al., 2022; Qiu et al., 059

2023). Subsequently, extensive research has been 060

conducted in fields like computer vision (Dosovit- 061

skiy et al., 2021; Kirillov et al., 2023; Oquab and 062

et al., 2023) and speech processing (Latif et al., 063

2023; Radford et al., 2022). Similarly, the field 064

of time series forecasting has seen numerous stud- 065

ies leveraging LLMs. Based on our observations, 066

we categorize these studies into two paradigms: 067

(a) re-customizing LLMs for supervised forecast- 068

ing (Zhou et al., 2023; Jin et al., 2023; Liu et al., 069

2024b,c), and (b) utilizing LLMs unchanged for 070

zero-shot forecasting (Gruver et al., 2023; Mirchan- 071

dani et al., 2023). For the first paradigm, the ap- 072

proach primarily involves re-customizing LLMs 073

(or parts of their structure) and adding extra pre- 074

diction heads to meet the requirements of down- 075

stream time series tasks. This process requires 076

additional data to supervise the training of the cus- 077

tomized language model and the prediction head to 078

achieve the final forecasting performance. The sec- 079

ond paradigm does not involve re-customizing the 080

LLMs. Instead, it maintains LLMs’ original struc- 081

ture and parameters unchanged and preprocesses 082

the time series to fit the input format of LLMs. 083
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However, LLMs are primarily trained on exten-084

sive text data, and how they understand time series085

and their characteristics in time series forecasting086

is still not well understood. Therefore, in this pa-087

per, we systematically explore the capability of088

frozen LLMs to understand time series in a zero-089

shot and training-free settings. Starting with ba-090

sic function series, we investigate the ability of091

LLMs to predict series with definite patterns. We092

begin by testing their ability to model synthetic093

series composed of basic functions, with a focus094

on periodic components such as sine and cosine095

waves. We examine how changes in amplitude, fre-096

quency, and phase affect predictive performance.097

To gain deeper insight, we propose three probing098

strategies-token perturbation, linear probing, and099

vocabulary mapping-to analyze how LLMs inter-100

nally represent time series signals. Our analysis101

reveals that LLMs are particularly sensitive to pe-102

riodicity, rely on special tokens (e.g., <s>) for an-103

choring sequence context, and gradually shift from104

local to global representations across layers. Based105

on these observations, we introduce Frequency De-106

composition (Freq-Decomp)—a lightweight pre-107

processing method that decomposes time series108

into frequency bands via Fourier transforms, allow-109

ing LLMs to better model individual components.110

Empirical results across ten real-world datasets and111

multiple LLM backbones (e.g., LLaMA2/3, Vi-112

cuna, Qwen) show that Freq-Decomp consistently113

enhances zero-shot forecasting performance, out-114

performing state-of-the-art baselines without mod-115

ifying model parameters. Our contributions are116

threefold:117

• Periodic Series. We provide empirical evidence118

that LLMs are biased toward periodic structures.119

And experiments with synthetic series show that120

the recognition ability of LLMs decreases as the121

number of superimposed frequency components122

increases, and this decline is more pronounced123

when the phases also vary.124

• Probing Methods. We present a systematic125

probing framework to analyze how LLMs un-126

derstand time series data. Token Perturbation127

Probing reveals the mutual impact relationships128

between different series tokens across differ-129

ent layers. Linear probing reveals the explo-130

ration of LLMs on input sequences, as the lay-131

ers progress, the search range gradually narrows132

or stabilizes. Vocabulary Mapping Probing elu-133

cidate the distribution of time series feature ex-134

ploration and sequence prediction from the per- 135

spective of special tokens and numeric tokens. 136

• Frequency Decomposition. We propose Freq- 137

Decomp, a simple yet effective method to im- 138

prove zero-shot time series forecasting with 139

frozen LLMs under training-free settings. 140

2 Related Works 141

2.1 LLMs for Time Series Analysis 142

Researchers have begun to focus on utilizing LLMs 143

to address time series problems. This research 144

was facilitated especially with the introduction 145

of PatchTST (Nie et al., 2023). Here, we cat- 146

egorize this research into two paradigms: (a) 147

re-customizing LLMs for supervised forecasting 148

(Zhou et al., 2023; Jin et al., 2023; Liu et al., 149

2024b,c) and (b) keeping LLMs unchanged for 150

zero-shot forecasting. For the first paradigm, in- 151

spired by PatchTST, researchers tokenize the time 152

series by applying patch operations and then re- 153

customize the pre-trained language models (such 154

as GPT-2 (Radford et al., 2019)) by adding a linear 155

prediction head to serve as the time series predic- 156

tor. Such research typically does not use the entire 157

language model structure but rather selects certain 158

layers to be repurposed as the main structure of the 159

time series predictor. The second paradigm main- 160

tains the integrity of the language models, trans- 161

forming the time series through preprocessing into 162

a format that the language models can accept. 163

2.2 Pattern Completion with LLMs 164

Other related work involves using LLMs for pattern 165

recognition and completion. This type of research 166

is not limited to time series data but focuses on how 167

LLMs process data with regular patterns (Tan and 168

Motani, 2023). For example, (Mirchandani et al., 169

2023) explored the capabilities of LLMs in rep- 170

resenting and extrapolating abstract non-linguistic 171

patterns, such as ARC patterns (Chollet, 2019), and 172

discussed their potential applications in controlling 173

robotics. This work deals with data exhibiting def- 174

inite patterns and employs few-shot learning to 175

make predictions. (Liu et al., 2024a) explored the 176

capability of LLMs to complete dynamic systems 177

governed by principles of physical interest. (Guo 178

et al., 2023) explored the ability of LLMs to learn 179

representations of dynamic system series while im- 180

plementing in-context learning mechanisms. Such 181

research aims to explore the ability of LLMs to 182
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complete or extrapolate patterns or dynamic sys-183

tems with relatively definite principles. However,184

there has been little exploration of LLMs’ capabil-185

ities in handling patterns or series with uncertain186

principles.187

3 Preliminaries188

3.1 Overview189

In this section, we first describe the overall setup.190

Given large language models (LLMs) fθ (θ rep-191

resents the parameters of the LLMs), our work192

aims to explore how they understand and predict193

time series. Specifically, for a given time series194

T = ⟨t1, t2, · · · , tn⟩, we tokenize and rescale it fol-195

lowing the LLMTime (Gruver et al., 2023) method-196

ology. Then, we can obtain the numerical tokens197

of the time series u = ⟨u1, u2, · · · , un⟩, and input198

them into the LLMs. Here, n denotes the length of199

the time series. The LLMs primarily used in this200

work is LLaMA2 (7B) (Touvron and et al., 2023).201

Implementation Details are in Appendix A.4.202

3.2 Settings203

Datasets We primarily use Darts (Herzen et al.,204

2022) and ETT (Zhou et al., 2021) datasets to test205

the pattern completion ability of LLMs, which are206

available to the public.207

• Darts is a collection of 8 univariate real-world208

time series datasets (e.g., airlines, etc.)209

• ETT datasets originate from the electricity in-210

dustry and record load and oil temperature vari-211

ation data. Here, we primarily utilize the ETTh1212

and ETTm1 datasets.213

Metrics We utilize mean absolute error (MAE)214

and mean square error (MSE) to serve as metrics in215

alignment with the majority of existing works (Jin216

et al., 2023; Zhou et al., 2023; Cao et al., 2024).217

4 Time Series Pattern Analysis218

4.1 Basic Function Series219

Method Firstly, to explore the ability of LLMs220

to understand time series, we start with basic func-221

tion series (e.g., linear, polynomial, cosine function,222

etc.). Specifically, we select a series of basic func-223

tions G = {g1(x), g2(x), · · · , gm(x)}, m denotes224

the number of basic functions. Then, we randomly225

sample their parameters based on the types of these226

Table 1: Samples were randomly generated for each
function based on different Basic function types.

Genre Vicuna Qwen
MAE ↓ MSE ↓ MAE ↓ MSE ↓

Sine 7.7298e-04 8.5829e-07 7.7298e-04 8.5829e-07
Cosine 7.5509e-04 9.3791e-07 7.6130e-04 8.9099e-07

Absolute 8.0011e-01 2.0237e+00 8.3408e-01 2.1060e+00
Linear 6.4938e-01 1.5325e+00 6.7482e-01 1.5941e+00

Logarithm 3.2064e-02 1.3905e-03 2.3618e-02 8.4406e-04
Polynomial 5.5825e-01 8.2777e-01 6.3369e-01 1.0176e+00
Reciprocal 8.7832e-01 2.0281e+00 8.7093e-01 2.0235e+00

ReLU 5.0175e-01 1.0431e+00 5.1793e-01 1.0844e+00

basic functions to generate a set of function in- 227

stances, 228

Ginst = {gij(x) | i ∈ [1,m j ∈ [1, τ ]}, (1) 229

where τ denotes the number of instances for each 230

basic function gi(x). For each instance, we gen- 231

erate a numerical sequence of length 200, evenly 232

spaced within the range of 1 to 200, to serve as 233

the values for the independent variable x. We 234

then input these x values into the generated func- 235

tion instances gij(x) to obtain the corresponding 236

y = gij(x) values. From these y values, we 237

construct the corresponding basic function series. 238

These series are used as time series inputs for the 239

LLMs to perform predictions. 240

Results The results are presented in Figure 1 (a.) 241

(based on LLaMA2), showing that LLMs perform 242

best on series derived from periodic functions (sine 243

and cosine). Additionally, the Table 10 presents 244

the outcomes of different basic function series on 245

the Vicuna and Qwen. It can be observed that, 246

compared to other function sequences, LLMs are 247

particularly more adept at predicting periodic func- 248

tions (sine and cosine) series. This suggests that 249

LLMs excel at recognizing repetitive patterns in 250

input series and mimicking them in the outputs. 251

4.2 Periodic Function Series 252

Method Based on the observation, we further an- 253

alyze the periodic function series. Specifically, we 254

explore three parameters of periodic function series: 255

amplitude (A), frequency (F), and phase (P). For 256

sine periodic functions gsin(x) = A sin(Fx+ P), 257

we vary the values of amplitude (A), frequency (F ), 258

and phase (P) separately to obtain sine function 259

instances, 260

Gsin
inst,{A,F ,P} = {gsinj (x) | j ∈ [1, τ ]}. (2) 261

Here, the subscript {A,F ,P} denotes the parame- 262

ters we randomly sample. We only randomly sam- 263
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(b.) The impact of frequency under different Phase .(a.) Effects of different basic function series.

Figure 1: (a.) The effects of different basic function series. (b.) The impact of frequency under phase 0.0 and 1.5π.

(b.) (a.)

Figure 2: (a.) The impact of amplitude under phase 0.0.
(b.) The synthetic impact of the quantities of frequency
and amplitude ingredients under phase 0.0.

ple one parameter while keeping the others con-264

stant, thus obtaining these three sets of instances265

Gsin
inst,{A}, Gsin

inst,{F}, and Gsin
inst,{P}. Similarly, we266

continue to use x from 4.1 as the independent vari-267

able and input the numerical series y = gsin(x)268

obtained from periodic functions into LLMs for269

prediction. We utilize LLMs to predict the obtained270

function series.271

Results Figure 1 (b.) illustrates the impact of272

frequency variations on LLMs’ predictive perfor-273

mance for sine function series with different phases.274

In these experiments, the length of the input series275

is fixed at 200. When the frequency is very low, the276

fixed series length results in less than one or half277

a cycle of the input series. During these instances,278

LLMs do not receive sufficient series pattern infor-279

mation, leading to significantly reduced prediction280

accuracy. As the frequency increases, LLMs ac-281

quire enough information from the input series,282

resulting in noticeable improvements in prediction283

performance. However, with continued frequency284

increases, the prediction performance, as measured285

by MAE and MSE, declines to some extent. This286

indicates that LLMs have a limit in their capacity to287

capture series patterns, making it difficult to accu-288

rately recognize patterns in high-frequency series.289

Furthermore, variations in phase have minimal im-290

pact on LLMs’ ability to predict periodic function291

series.292

Figure 2 (a.) shows the effect of increasing am-293

plitude values on LLMs’ predictive capabilities.294

Here, we fixed the phase at 0.0 and the frequency295

at 10. Although the prediction performance se-296

ries exhibit fluctuations, there is a clear trend of297

decreasing predictive ability as the amplitude in- 298

creases. This indicates that while the overall series 299

pattern remains unchanged, the large numerical 300

values in the input series negatively impact LLMs’ 301

understanding of the time series. 302

4.3 Synthetic Series 303

Method Previously, we analyzed individual pe- 304

riodic function series. In this section, we combine 305

multiple Sinusoidal series with varying amplitude 306

(A), frequency (F), and phase (P) to create the 307

more complex synthetic series. We adjust the num- 308

ber of ingredients η in the synthetic series and re- 309

strict the parameters of the ingredients used for 310

synthesis, denoted as F /A/P for frequency, ampli- 311

tude, and phase, respectively. Thus, we can obtain 312

a series of synthetic function instance sets, 313

Gsin
inst,Ω = {gsin,ηj (x) | j ∈ [1, τ ]}. (3) 314

The subscript Ω indicates {F ,FA,FP,FPA}, 315

the adjusted parameters for each instance set, al- 316

lowing simultaneous adjustment of two or more 317

parameters. And gsin,η indicates that the function 318

is composed of the sum of η functions gsin. We 319

use the same method in Section 4.1 to obtain the 320

series and input them into LLMs for prediction. 321

Results The results, shown in Figure 2 (b.), in- 322

dicate that as the number of synthetic ingredients 323

increases, the complexity of the composite pre- 324

diction rises, and the predictive performance of 325

LLMs declines. This suggests that LLMs have a 326

significantly reduced capacity to understand syn- 327

thetic series with varying amplitude, frequency, and 328

phase. Additionally, from the perspective of vari- 329

able adjustments, when comparing FP and FA to 330

F , even though the impact of phase on individual 331

series is minimal, the synthetic series with different 332

phases present a greater challenge to LLMs than 333

those with different amplitudes. This results in a 334

more significant decline in LLMs’ performance on 335

series synthesized by varying phases. 336
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(a.) (b.)

Figure 3: Layer-wise Analysis. The variation in the average token impact values across different layers. {Datasets}
w/o <s> denotes the input series without <s>. The result of (a.) is from LLaMA2 (7B), and (b.) is from Qwen.

(a.) (b.)

Figure 4: Sequence-wise Analysis. The variation in the average token impact values across token series (time series)
on the darts dataset. The subfigure (a.) is from LLaMA3 (8B), and (b.) is from LLaMA2 (7B).

5 Token Perturbation Probing337

5.1 Method338

In this section, we employ a Perturbation Token339

Probing method to investigate the extent of mu-340

tual impact among time series tokens within each341

layer when utilizing LLMs for zero-shot time se-342

ries forecasting. Given a series of numeric tokens343

u = ⟨u1, u2, · · · , un⟩ of the input time series T ,344

LLMs can map each ui into a contextualized rep-345

resentation hθ(u)i, where θ represents the LLM’s346

parameters. Following (Wu et al., 2020), we can347

derive an impact function ϕ(xi, xj) to capture the348

impact of an arbitrary token uj on token ui,349

ϕ(ui, uj) = d (hθ(u\{ui})i,hθ(u\{ui, uj})i) .
(4)350

We add a special token to the LLMs, replacing a351

token ui in the input series. Then, we input this352

modified series u\{ui} into the LLMs to obtain353

the representation hθ(u\{ui})i for this token ui.354

Next, we further replace an arbitrary token uj with355

this special token, and use the obtained represen-356

tation as the new representation hθ(u\{ui, uj})i357

for ui. The above d(·, ·) represents the Euclidean358

distance metric. Through this method, we can ob-359

tain the value of the impact function ϕ(ui, uj). By360

repeating the perturbation process iteratively, we361

can obtain an impact matrix E ∈ Rn×n. Based362

on the impact matrix, we conducted analysis, the363

results are as follows.364

5.2 Results 365

5.2.1 Layer-wise Analysis 366

Figure 3 illustrates the Layer-wise Analysis for 367

Token Perturbation Probing, which indicates the 368

variation in average impact values across different 369

layers. Specifically, we obtain impact matrices 370

through Perturbation Token Probing, average them 371

by layer, and record the mean values. We also 372

compare the impact of the presence or absence of 373

the <s> token in the input time series on the impact 374

matrices. It can be observed that the average impact 375

values are relatively low in the early layers (e.g., 376

0-1 layers in LLaMA2 (7B)) and the final layer 377

(e.g., 31 layer in LLaMA2 (7B)), while they are 378

higher in the intermediate layers. We suppose that 379

the low average impact values in the initial layers 380

indicate the model is still in the exploratory phase, 381

and the interactions between tokens are not very 382

pronounced. In contrast, the significant changes in 383

the average impact values in the final layer might 384

suggest that the model is preparing for generation 385

and prediction, hence modifying the impact matrix 386

accordingly. When the <s> token is removed, the 387

average impact values in the intermediate layers 388

decrease. This is due to, without the <s> token, 389

the values in the impact matrix are more dispersed 390

(the presence of <s> concentrates more impact), 391

leading to a reduction in average impact values. 392

5.2.2 Sequence-wise Analysis 393

In addition, we also measure the variation in aver- 394

age impact values as the time series tokens varia- 395
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tions, which is a sequence-wise analysis for Token396

Perturbation Probing. Specifically, we average the397

impact values along the layer dimension and for398

a specific token dimension to obtain the average399

impact of each time series token. The results (Fig-400

ure 4) show that in the presence of the <s> token401

(special token in LLMs), more time series tokens402

tend to focus on the information from <s>, making403

it the most influential. Without the <s> token, the404

impact values are more dispersed.405

6 Linear Probing406

6.1 Method407

We design linear probing (Alain and Bengio, 2018)408

experiments to further explore how LLMs under-409

stand time series. Linear probing allows us to test410

whether intermediate layer outputs (representations411

of time series tokens) h(ui)ℓ (ℓ denotes the layer)412

contains quantities of interest. Here, we trained413

a small probe regressor φ to probe the effect of414

using these intermediate representations h(ui)ℓ di-415

rectly for time series prediction. Specifically, we416

use a two-layer multilayer perceptron (MLP) as the417

probe regressor.418

φ(h) = W2σ(W1h+ b1) + b2, (5)419

where W2, W1, b1 and b2 denotes learnable pa-420

rameters, and we abbreviate h(ui)ℓ as h. Then, we421

compare the probe regressor’s predictions with the422

actual data and perform a statistical analysis on the423

computed Mean Squared Error (MSE).424

6.2 Results425

LLMs may malfunction when the length of patterns426

exceeds a certain threshold. To give a quantitative427

analysis, we design a linear probing method (Alain428

and Bengio, 2017; Guo et al., 2023) to test each429

time series token at every layer. Linear probing430

linearly regress quantities of interest (tokens xi)431

on each intermediate layer output of token xi (hli),432

where l denotes the layers and i denotes the time433

series tokens. We evaluate the predictive perfor-434

mance using linear probing, with MSE as the met-435

ric. Based on the test results, we investigate the436

position of the time series token with the small-437

est MSE in each layer, as shown in Figure 5 and438

6. Linear probing reveals that the initial layers of439

LLMs tend to perform broad searches for tokens440

with the smallest MSE over the entire sequence441

length. As the layers progress, the search range442

(a.) AirPassengers (b.) AusBeer (c.) GasRateCO2 (d.) HeartRate

(e.) MonthlyMilk (f.) Sunspots (g.) Wine (h.) Wooly

Figure 5: The results of linear probing on LLaMA2.

HeartRate (Vicuna) Wooly(Vicuna)

Wine (Vicuna) Sunspots (Vicuna)

MonthlyMilk(Vicuna)

GasRateCO2(Vicuna)

AusBeer(Vicuna)

Airpassenger(Vicuna)

Figure 6: The results of linear probing on Vicuna.

gradually narrows or stabilizes, indicating more 443

localized or refined token selection in later layers. 444

7 Vocabulary Mapping Probing 445

7.1 Method 446

For the numeric tokens u = ⟨u1, u2, · · · , un⟩ 447

of the input time series T , LLMs can pro- 448

vide us with a series of hidden state H = 449

{h(u1)ℓ,h(u2)ℓ,h(un)ℓ} at each intermediate 450

layer ℓ. Following (Dar et al., 2023), we adopt a 451

vocabulary mapping probing method to map these 452

hidden states H into the vocabulary embedding 453

space, allowing us to explore the representations of 454

these time series tokens. Specifically, for a given 455

numeric token h(ui)ℓ ∈ Rd in the time series, we 456

map it to the vocabulary embedding space using 457

the embedding matrix E ∈ RV×d, 458

h̃(ui)ℓ = Eh(ui)ℓ, (6) 459

where d denotes the hidden size of LLMs, and V 460

denotes the vocabulary size. We select the top k 461

vocabulary items with the highest logits in h̃(ui)ℓ 462

as the return results of the vocabulary probe. Thus, 463

we can obtain the vocabulary mapping of each time 464

series token h(ui)ℓ at each layer ℓ. 465

7.2 Results 466

7.2.1 Numeric Mapping 467

We selected the representations of time series to- 468

kens from each layer and mapped them to the cor- 469

responding vocabulary tokens using the vocabulary 470

mapping probe. The mapped tokens are ranked 471
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(1) AusBeer(Vicuna) (2) Airpassenger(Vicuna)

(5) AusBeer(Qwen) (6) Airpassenger(Qwen)

(5.a) Numeric Mapping

(1.a) Numeric Mapping

(6.a) Numeric Mapping

(2.a) Numeric Mapping(1.b) Special Token Mapping

(5.b) Special Token Mapping (6.b) Special Token Mapping

(2.b) Special Token Mapping

(4) Airpassenger(LLaMA2)

(3.a) Numeric Mapping (4.a) Numeric Mapping(3.b) Special Token Mapping (4.b) Special Token Mapping

(3) AusBeer(LLaMA2)

Figure 7: The results of Vocabulary Probing Probing for
Vicuna, LLaMa2, and Qwen.

top-k, and in this section, we analyze the first to-472

ken to determine if it is numeric. The statistical473

results are shown in subfigure (#.a) in Figure 7,474

where # represent the case index in thise Figure.475

In the initial layers of LLMs (e.g., layers 0-3 in476

LLaMA2), nearly all time series tokens are mapped477

to numeric tokens. This indicates that the early lay-478

ers primarily focus on observing local information479

(with time series inputs encoded as numeric values).480

The proportion of numeric tokens decreases in the481

later layers, suggesting that LLMs begin to explore482

global patterns beyond local numerical inputs.483

7.2.2 Special Token Mapping484

Simultaneously, we analyze the distributions of to-485

kens mapped to the special token (e.g., <s> token486

in LLaMA2) through the vocabulary mapping prob-487

ing. We select the top three mapped tokens, and488

if any of these tokens are <s>, we record this in489

Figure 7 (#.b) subfigures. In terms of layer depth,490

tokens mapped to <s> are primarily located in the491

later layers of LLMs. Combined with the results492

of the numeric mapping, the <s> mapping results493

complement the numeric mapping results. The ar-494

eas where numeric mapping is sparse correspond to495

where <s> mapping occurs. Therefore, it can be in-496

ferred that the later layers of LLMs integrate global497

information and specific numerical information for498

time series prediction.499

7.2.3 Special Token Influence500

In Figure 8, we compare the performance of dif-501

ferent LLMs with and without special tokens (e.g.502

LLaMA2 LLaMA3 Vicuna Qwen
Models

0.0

0.5

1.0

1.5

2.0

Pe
rf

or
m

an
ce
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Figure 8: Performance with and without special tokens.

Table 2: Comparison results on baselines.

Model AusBeer AirPassengers GasRateCO2 HeartRate
MAE MSE MAE MSE MAE MSE MAE MSE

Promptcast 1.2594 2.0353 0.7218 0.8821 0.8370 1.2809 1.1883 2.3561
Onefitall 1.2458 2.0408 1.0410 1.6880 1.0876 1.8837 1.0798 1.7404
Tempo 1.0847 1.8905 0.8882 1.1335 1.1283 1.9082 1.2239 2.2388

Time-LLM 1.1224 1.8743 1.0515 1.7423 1.0568 1.7433 1.1997 2.1329
LLMTime 0.9513 1.6420 0.9028 1.3850 1.2649 2.6860 1.2618 2.6131

Freq-Decomp 0.6504 0.6295 0.7125 0.8028 0.6739 0.7108 0.8408 1.4376

Model MonthlyMilk Sunspots Wine Wooly
MAE MSE MAE MSE MAE MSE MAE MSE

Promptcast 1.6009 3.1964 1.2402 2.3650 1.0717 1.9892 1.1377 2.0421
Onefitall 1.0826 1.7906 1.1737 2.0982 0.9565 1.2061 0.9711 1.3966
Tempo 1.1789 1.9440 1.1445 2.0355 0.8706 1.2373 1.0449 1.7496

Time-LLM 1.0372 1.5591 1.0506 1.7276 0.9170 1.4674 1.2998 2.5337
LLMTime 1.1724 1.9495 1.1403 1.9716 1.0875 1.6939 1.0561 1.7531

Freq-Decomp 0.9272 1.1805 0.9634 1.3721 0.8024 1.0458 0.8781 1.2198

<s> in LLaMA2). We statistic MSE and MAE on 503

Darts dataset. The performance with special tokens 504

of different LLMs consistently outperforms those 505

without special tokens. It is indicate that using spe- 506

cial tokens in zero-shot time series forecasting can 507

help the performance enhancement. 508

8 Frequency Decomposition for Zero-shot 509

Time Series Forecasting 510

Probing experiments are conducive to exploring 511

the changes in LLMs during time series analysis. 512

Building on these exploration, we propose the Freq- 513

Decomp method to enhance LLMs’ zero-shot fore- 514

casting capabilities. More detailed experiments and 515

analysis are shown in Appendix A.3, F, and G. 516

8.1 Method 517

According previous observations, we found that 518

LLMs excel at processing periodic series, but an 519

excessive synthesis of series of different periods 520

also impair the performance of LLMs (Section 4). 521

Meanwhile, LLMs may perform better with simpler 522

series (Section 6), and benefit from the use of spe- 523

cial tokens (Section 5 and 7). Thus, Freq-Decomp 524

method introduces a preprocessing method to de- 525

compose the original time series into frequency 526

bands before using LLMs. This enables LLMs to 527

handle the time seires patterns they are proficient 528
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in, leveraging their strengths in processing time529

series. Concretely, we transform the initial input530

time series T = ⟨t1, t2, · · · , tn⟩ into the frequency531

domain using the Fast Fourier Transform (FFT)532

operation F ,533

Ω = F (T ), (7)534

where the frequency domain representation of T535

is Ω = ⟨ω1, ω2, · · · , ωn⟩. Then, we partition the536

series Ω into µ frequency bands at equal intervals537

ΩB = ⟨B1, B2, · · · , Bµ⟩. These bands are ordered538

from low to high frequency. We apply the Inverse539

Fast Fourier Transform (IFFT) F−1 to map fre-540

quency bands ΩB back to time domain,541

S = F−1(ΩB), (8)542

where S = ⟨s1, s2, · · · , sµ⟩ is a collection of sub-543

series corresponding to individual bands in ΩB . We544

utilize LLMs to forecast each sub-series s using545

the same method applied in previous sections. This546

yields a collection of predicted output series So =547

⟨so1, so2, · · · , soµ⟩. Finally, we sum all the sub-series548

in So to obtain the prediction results for the original549

time series T .550

8.2 Comparison Results551

The comparison results with baselines are shown in552

Table 2. It is evident that Freq-Decomp consistently553

outperforms LLMs-based forecasting methods un-554

der the zero-shot scenario. The baselines include:555

Promptcast (Xue and Salim, 2023), LLMTime556

(Gruver et al., 2023), textbfOnefitall (Zhou et al.,557

2023), Tempo (Cao et al., 2024), and Time-LLM558

(Jin et al., 2023). Details are shown in Appendix559

A.1 . Aside from the Promptcast and LLMTime,560

which are designed for zero-shot settings, methods561

such as Onefitall, Tempo, and Time-LLM are re-562

customizing LLMs and originally developed for563

supervised time series forecasting. All methods are564

compared under the zero-shot scenario for fairness.565

Table 3: Results on ETTh1 and ETTm1 Datasets.

Model ETTh1 ETThm1
MAE MSE MAE MSE

Autoformer 0.569 0.693 0.576 0.735
FEDformer 0.502 0.509 0.553 0.698
Onefitall 0.577 0.732 0.558 0.747
PatchTST 0.465 0.485 0.437 0.491
Tempo 0.406 0.400 0.424 0.438
Time-LLM 0.452 0.450 0.397 0.359
Freq-Decomp 0.346 0.224 0.255 0.397

Table 4: Ablation study on different LLMs.

Model AusBeer AirPassengers GasRateCO2 HeartRate
MAE MSE MAE MSE MAE MSE MAE MSE

LLaMA2 0.9513 1.6420 0.9028 1.3850 1.2649 2.6860 1.2618 2.6131
+ Freq-Decomp 0.6504 0.6295 0.7125 0.8028 0.6739 0.7108 0.8408 1.4376

LLaMA3 1.2948 2.2790 0.9113 1.6871 1.1912 2.4585 1.1178 2.0000
+ Freq-Decomp 0.9380 1.5944 0.7848 0.8989 1.0078 1.9738 1.1047 1.9393

Vicuna 1.1949 2.4200 0.9777 1.7924 1.6231 3.4377 1.5310 3.2122
+ Freq-Decomp 0.3437 0.1726 0.8069 1.0032 0.8850 1.1704 1.1797 2.0033

CodeLlama 0.9122 1.3219 1.0653 1.8358 1.2615 2.2176 0.9792 1.4051
+ Freq-Decomp 0.4096 0.2676 0.7125 0.8028 0.9349 1.3342 0.8330 1.0942

Model MonthlyMilk Sunspots Wine Wooly
MAE MSE MAE MSE MAE MSE MAE MSE

LLaMA2 1.1724 1.9495 1.1403 1.9716 1.0875 1.6939 1.0561 1.7531
+ Freq-Decomp 0.9272 1.1805 0.9634 1.3721 0.8024 1.0458 0.8781 1.2198

LLaMA3 1.3069 2.4724 1.1114 1.9073 0.8961 1.6553 1.1070 1.6778
+ Freq-Decomp 0.9354 1.2516 0.9903 1.8304 0.8825 1.5543 0.7708 1.1372

Vicuna 1.3735 2.5699 1.2510 2.3140 1.0553 2.0337 1.4323 2.8917
+ Freq-Decomp 1.1324 1.9740 0.8653 1.2834 0.8466 1.1081 0.7452 1.0054

CodeLlama 1.1585 2.0072 1.1951 2.0455 1.2467 2.3468 1.3720 2.8167
+ Freq-Decomp 0.9208 1.1957 0.5417 0.5424 0.7627 1.1446 0.6665 0.7368

8.3 Results on ETT Dataset 566

We conduct experiments on the ETT dataset. We 567

introduce two extra baselines: Autoformer (Wu 568

et al., 2021) and FEDformer (Zhou et al., 2022). 569

Table 3 summarizes the results on ETTh1 and 570

ETTm1. Our method demonstrates comparable 571

performance advantages compared to these base- 572

line models on both datasets. Notably, these results 573

of Freq-Decomp are achieved without any training 574

on time-series dataset. The results from other mod- 575

els rely on transfer learning, requiring pre-training 576

on source time-series datasets before testing on 577

target datasets. Freq-Decomp eliminates the need 578

for such training, making it independent of spe- 579

cific time-series datasets and associated training 580

overhead. Detailed settings are in Appendix A.2. 581

8.4 Ablation Study on Different LLMs 582

Table 4 presents the performance of Freq-Decomp 583

compared to directly utilizing LLMs to forecasting. 584

It is evident that Freq-Decomp achieves significant 585

improvements across different LLMs. 586

9 Conclusion and Future Works 587

We explore the capability of LLMs to understand 588

time series. Firstly, we investigate the LLMs’ abil- 589

ity to complete predictions for various functions 590

and examine the effects of amplitude, frequency, 591

phase on periodic function series. Additionally, 592

we design three probes to further investigate the 593

LLMs’ understanding of time series. Finally, we 594

propose the Freq-Decomp method for enhancing 595

LLMs’ time series forecasting capabilities. We 596

leave for future work the exploration of domain 597

generalization in LLMs for time series, multimodal 598

extensions, and advanced inference techniques like 599

in-context learning, chain of thought, etc. 600
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Limitations601

This study is exploratory in nature, aiming to in-602

vestigate how large language models (LLMs) un-603

derstand and process time series through a series604

of methods. We conducted an in-depth analysis605

of LLMs’ handling of time series, arriving at clear606

conclusions and proposing enhancement methods.607

However, research in this area is still in its early608

stages. Key aspects such as zero-shot time series609

prediction, the foundational architecture of time se-610

ries prediction models, time series processing base611

on in-context learning, and multimodal process-612

ing that integrates time series with other modals613

require further investigation. Additionally, there614

are no potential risks associated with the research615

presented in this paper.616

Ethical Considerations617

This work relies solely on publicly available bench-618

mark datasets that do not contain sensitive personal619

information or content related to bias or discrim-620

ination. There are no notable ethical or societal621

risks associated with this research. And we used622

existing artifacts (e.g., datasets or models) in accor-623

dance with their specified intended use. We verified624

the licenses or usage guidelines before employing625

them in our research. For the artifacts we created,626

we clearly specify that they are intended solely for627

research use.628
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A Appendix 903

A.1 Baselines 904

The baselines in Section include: Promptcast 905

(Xue and Salim, 2023) utilizes LLMs as forecast- 906

ers by converting time series into numerical to- 907

kens; LLMTime (Gruver et al., 2023) transforms 908

the time series data by tokenizing and rescaling 909

it, treating the processed time series as numeri- 910

cal tokens; Onefitall (Zhou et al., 2023) leverages 911

LLMs’ certain intermediate layers, enhancing them 912

with temporal embeddings and prediction heads for 913

forecasting; Tempo (Cao et al., 2024) explores 914

a soft prompting strategy to fine-tune specific pa- 915

rameters of LLMs for forecasting. Time-LLM 916

(Jin et al., 2023) introduces a reprogramming ap- 917

proach to map time series into the textual space 918

of LLMs. Autoformer (Wu et al., 2021) revise 919

Transoformer by introducing the Auto-correlation 920

to replace the Self-attention. FEDformer (Zhou 921

et al., 2022) introduce a frequency enhanced de- 922

composed Transformer to reduce prediction error 923

and enhance processing efficiency 924

A.2 Settings for ETT Dataset 925

For this experiment, the forecasting horizon is set 926

to 96. The results for Tempo and FEDformer are 927

sourced from Table 1 of the Tempo paper [3], while 928

the results for other baseline models are obtained 929

from Table 16 of the Time-LLM paper (ETTh2 -> 930
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(b.) (a.)

(a.) AirPassengers

Figure 9: (a.) The impact of the quantities of decomposed frequency Bands. (b.) The impact of frequency bands on
performance, ranging from low to high frequencies.

ETTh1 row). The LLMs employed in this experi-931

ments is LLaMA2 (7B).932

A.3 Analyzing the Number of Frequency933

Bands934

Figure 9 (a.) illustrates the impact of the number of935

frequency bands. It shows that dividing the input936

time series into approximately five frequency bands937

yields the best prediction results. Figure 9 (b.) dis-938

plays the performance of LLMs across different939

frequency bands on the entire dataset. Regardless940

of how the frequency bands are divided (with band941

counts ranging from 3 to 8), LLMs perform poorly942

on low-frequency bands, while their prediction ac-943

curacy improves significantly on high-frequency944

bands.945

A.4 Implementation Details946

All the deep networks are implemented in Pytorch947

and run on A800-SXM4-80GB GPUs. Owing to948

the zero-shot scenario, LLMs were employed for949

inference on datasets. We draw 5 samples from950

LLMs, and use the median statistics of samples to951

calculate MSE and MAE. In addition, due to the952

relatively small number of samples in the Darts953

dataset, the runtime remains within 30 minutes. In954

contrast, for the ETT and Monash datasets, the955

larger data scale leads to longer runtimes, ranging956

from 5 to 10 hours. During the training of linear957

probing (Section 6), we utilized 30 epochs, a pre-958

diction length of 20, a learning rate of 0.0005. The959

LLMs used in this work include LLaMA3 (8B), Vi-960

cuna (13B), CodeLlama (7B), LLaMA2 (7B), and961

Qwen (14B).962

In addition, for exploration of fundamental time963

series patterns, we also employ basic functions as964

well as their synthetic forms to judge LLMs, which965

are described in Section 4.966

B Dataset Statistics 967

B.1 Darts 968

Darts(Herzen et al., 2022) is a powerful time se- 969

ries forecasting library that provides a unified Time 970

Series data container and consistent API, supports 971

various classical and deep learning models, and 972

offers comprehensive features such as co-variate 973

handling, probabilistic forecasting, ensemble learn- 974

ing, and more, suitable for a wide range of time 975

series modeling and forecasting tasks. More details 976

are show in Table 5. 977

B.2 Monash 978

Monash(Godahewa et al., 2021) datasets span di- 979

verse domains like tourism, banking, web, energy, 980

sales, economics, transportation, health, and na- 981

ture. They have varying sampling rates, from yearly 982

to high-frequency 4-second intervals, and include 983

both univariate and multivariate series aligned with 984

known timestamps, from which 58 derived datasets 985

with different frequencies and missing value treat- 986

ments have been created, with 7 newly curated 987

datasets and 23 standardized from various sources, 988

all carefully vetted for inclusion in the repository. 989

We selected four of the datasets for our experiments, 990

more details are shown in Table 6. 991

C Basic Function 992

We used 8 basic function, including sine, cosine, 993

absolute, linear, logarithm, polynomial, reciprocal 994

and relu function. And we randomly generate four 995

samples for each function. The detailed results 996

based on LLaMA2 are presented in Table 7. Ad- 997

ditionally, the Table 10 presents the outcomes of 998

different basic function series on the Vicuna and 999

Qwen. It can be observed that, compared to other 1000

function sequences, LLMs are particularly more 1001

adept at predicting periodic functions (sine and co- 1002

sine) series. 1003
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Table 5: Using (Mean(Stabard Deviation)) statistics for the data in columns L(Input) and L(Prediction).

Datasets(Darts) L(Input) L(Prediction) #Case
AirPassengersDataset 115(0) 29(0) 1

AusBeerDataset 168(0) 43(0) 1
GasRateCO2Dataset 236(0) 60(0) 1
MonthlyMilkDataset 134(0) 34(0) 1

SunspotsDataset 564(0) 141(0) 1
WineDataset 140(0) 36(0) 1

WoolyDataset 95(0) 24(0) 1
HeartRateDataset 720(0) 180(0) 1

Table 6: Using (Mean(Standard Deviation)) statistics for the data in columns L(Input) and L(Prediction).

Datasets(Monash) L(Input) L(Prediction) #Case
bitcoin 4156.89(467.27) 30.00(0.00) 18

nn5 daily 735.00(0.00) 56.00(0.00) 111
fred md 716.00(0.00) 12.00(0.00) 107

tourism monthly 274.58(55.58) 24.00(0.00) 366

Table 7: Four samples were randomly generated for each function based on different Basic function types. Comple-
mentary results are based on LLaMA2-7b-chat.

Genre Expression (Basic) MAE ↓ MSE ↓

Sine x 7→ sin
(
2π
b (x− c)

)
1.1 ∗ np.sin((2 ∗ np.pi/2.8) ∗ (x− 4.0)) +−27.4 9.6658e-04 1.1862e-06
0.1 ∗ np.sin((2 ∗ np.pi/4.5) ∗ (x− 0.2)) +−29.1 6.2864e-04 6.3579e-07
8.4 ∗ np.sin((2 ∗ np.pi/5.0) ∗ (x− 5.5)) +−9.6 8.4970e-04 1.1654e-06

−0.3 ∗ np.sin((2 ∗ np.pi/1.3) ∗ (x− 6.2)) +−27.1 6.3207e-04 6.3277e-07

Mean(Std) 7.6925e-04
(1.6733e-04)

9.0504e-07
(3.1276e-07)

Cosine x 7→ cos
(
2π
b (x− c)

)
3.5 ∗ np.cos((2 ∗ np.pi/3.9) ∗ (x− 4.0)) + 9.2 1.0383e-03 1.2949e-06

−8.2 ∗ np.cos((2 ∗ np.pi/1.6) ∗ (x− 1.3)) +−13.6 9.6355e-04 1.2982e-06
−4.9 ∗ np.cos((2 ∗ np.pi/3.2) ∗ (x− 1.3)) + 25.0 9.2881e-04 1.0349e-06
2.9 ∗ np.cos((2 ∗ np.pi/2.3) ∗ (x− 2.2)) + 7.9 9.3550e-04 1.0040e-06

Mean(Std) 9.6654e-04
(5.0151e-05)

1.1580e-06
(1.6049e-07)

Absolute x 7→ |x|

1.2 ∗ np.abs(x) 8.2498e-01 2.0839e+00
9.2 ∗ np.abs(x) 8.2498e-01 2.0839e+00
1.0 ∗ np.abs(x) 8.2498e-01 2.0839e+00
21.7 ∗ np.abs(x) 8.2498e-01 2.0839e+00

Mean(Std) 8.2498e-01
(0.0000e+00)

2.0839e+00
(0.0000e+00)

Linear x 7→ ax+ b

2.7 ∗ x+−8.7 8.2498e-01 2.0839e+00
2.5 ∗ x+ 5.4 8.2229e-01 2.0700e+00
3.9 ∗ x+−4.5 8.2498e-01 2.0839e+00
2.2 ∗ x+−7.0 1.2426e+00 3.0252e+00

Mean(Std) 9.2871e-01
(2.0926e-01)

2.3158e+00
(4.7301e-01)

Logarithm x 7→ a log(x)
log(b) + c

−7.1 ∗ (np.log(x)/np.log(6.6)) + 2.4 2.6773e-02 1.1731e-03
−2.6 ∗ (np.log(x)/np.log(1.5)) +−21.3 4.6028e-02 3.6697e-03
−13.6 ∗ (np.log(x)/np.log(9.4)) + 3.0 5.7175e-02 5.0419e-03
1.6 ∗ (np.log(x)/np.log(9.6)) + 20.3 1.0371e+00 2.5663e+00

Mean(Std) 2.9177e-01
(4.9705e-01)

6.4405e-01
(1.2815e+00)

Polynomial x 7→
∑n

i=1 ax
2

0.8 ∗ x ∗ ∗5 + 2.4 ∗ x ∗ ∗4 +−4.5 ∗ x ∗ ∗3 +−4.6 ∗ x ∗ ∗2 + 3.4 ∗ x ∗ ∗1 +−4.0 ∗ x ∗ ∗0 5.3509e-01 1.2728e+00
−1.2 ∗ x ∗ ∗2 + 0.9 ∗ x ∗ ∗1 + 0.8 ∗ x ∗ ∗0 6.5239e-01 5.6994e-01
2.7 ∗ x ∗ ∗2 + 4.2 ∗ x ∗ ∗1 +−4.7 ∗ x ∗ ∗0 6.3632e-01 1.6108e+00
−2.7 ∗ x ∗ ∗2 + 4.6 ∗ x ∗ ∗1 + 1.0 ∗ x ∗ ∗0 7.4325e-01 7.3617e-01

Mean(Std) 6.4176e-01
(8.5286e-02)

1.0474e+00
(4.8064e-01)

Reciprocal x 7→ 1
ax

1/(−2.0 ∗ x) 1.0940e+00 2.6786e+00
1/(8.7 ∗ x) 1.7257e-01 4.0537e-02
1/(−1.3 ∗ x) 1.0940e+00 2.6786e+00
1/(1.9 ∗ x) 1.6460e-01 3.8106e-02

Mean(Std) 6.3129e-01
(5.3430e-01)

1.3590e+00
(1.5238e+00)

ReLU x 7→ max(0, x)

−29.5 ∗ np.where(x > 0, x, x ∗ 0.8) + 8.7 4.4993e-01 2.7988e-01
−12.8 ∗ np.where(x > 0, x, x ∗ 0.5) + 16.0 1.7776e+00 3.4890e+00
6.9 ∗ np.where(x > 0, x, x ∗ 0.5) +−6.4 8.2498e-01 2.0839e+00
6.0 ∗ np.where(x > 0, x, x ∗ 0.9) +−22.5 8.2498e-01 2.0839e+00

Mean(Std) 9.6937e-01
(5.6708e-01)

1.9842e+00
(1.3152e+00)
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D Periodic Function Setup1004

In terms of the distinct combinations of amplitude1005

(A), frequency (F), and phase (P), we synthesize1006

a series of synthetic functions. Then, we feed them1007

into LLM, to judge the impact of the three factors1008

and synthetic complexity on performance.1009

Our specific settings for amplitude, frequency,1010

and phase are as follows:1011

• Amplitude: [1.0, 5.0, 10.0, 20.0, 50.0, 100.0],1012

• Phase: [0.0, 1.5],1013

• Frequency: Three segments:1014

– In the range [0.1, 1.0] with a step size of1015

0.1.1016

– In the range [1.0, 10.0] with a step size1017

of 1.0.1018

– In the range [10.0, 200.0] with a step size1019

of 10.0.1020

These settings allowed us to systematically investi-1021

gate the influence of different amplitude, frequency,1022

and phase parameters on the predictive capabilities1023

of LLMs.1024

E Metric Details1025

We use MAE (Mean Absolute Error) and MSE1026

(Mean Squared Error) as measurement metrics, and1027

their formula details are as follows:1028

MSE =

∑n
i=1(yi − ŷi)

2

n
(9)1029

MAE =

∑n
i=1 |yi − ŷi|

n
(10)1030

F Frequency Decomposition on Monash.1031

We present the comparison results between Freq-1032

Decomp and LLMTime on the Monash dataset1033

in the Table 8. It can be seen that our method1034

Freq-Decomp demonstrates a significant advantage1035

over the baseline method LLMTime on the Monash1036

dataset.1037

G Zero-shot Forecasting with Text1038

Prompts1039

G.1 Method1040

The analysis in the previous Sections demonstrates1041

that LLMs possess a certain degree of zero-shot1042

predictive capability for time series data. Con-1043

sidering that LLMs inherently excel at process-1044

ing textual data, this section conducts cross-modal1045

time series forecasting experiments by incorpo- 1046

rating relevant text prompts. Specifically, given 1047

the time series T = ⟨t1, t2, · · · , tn⟩, this sec- 1048

tion adds corresponding text prompt information 1049

P = ⟨w1, w2, · · · , wn⟩ and concatenates both of 1050

the sequences [P ;T ] before inputting them into the 1051

LLMs for zero-shot forecasting. Here, [; ] denotes 1052

the concatenation operation. 1053

G.2 Results 1054

The cross-modal time series forecasting results 1055

with text prompts are presented in Table 9. LLM- 1056

Time refers to the baseline model without the in- 1057

clusion of text prompt information P , while Cross- 1058

Modal represents the prediction performance when 1059

both text prompts and time series information 1060

[P ;T ] are input together. This experiment was con- 1061

ducted on the Darts dataset. It is evident that the 1062

Cross-Modal approach consistently outperforms 1063

the baseline model LLMTime across all datasets 1064

when text prompt information is incorporated. This 1065

indicates that methods based on LLMs can effec- 1066

tively jointly represent time series and text informa- 1067

tion, enhancing cross-modal time series prediction 1068

performance through the utilization of textual in- 1069

formation. The corresponding text prompts P are 1070

shown below. 1071

• AirPassengers. This time-series data is char- 1072

acterized by a high degree of volatility and 1073

an overall upward trend, suggesting that this 1074

volatile upward trend is likely to continue in 1075

the future, and therefore short-term volatility 1076

and the possibility of long-term growth should 1077

be considered in the forecast. 1078

• AusBeer. The trend of this set of time-series 1079

data shows a gradual rise then a peak and 1080

finally a fall. 1081

• GasRateCO2. This is a highly volatile pe- 1082

riod of time-series data that exhibits a certain 1083

degree of cyclicality and randomness. Fore- 1084

casts of future trends need to take into account 1085

a variety of factors such as historical trends, 1086

cyclical variations and possible external influ- 1087

ences. 1088

• MonthlyMilk. This time-series data shows 1089

a continuous upward trend, accompanied by 1090

frequent and varying fluctuations, presenting 1091

strong dynamics and complexity. 1092
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Table 8: Frequency Decomposition (Freq-Decomp) results on Monash.

Dataset(Monash) tourism monthly bitcoin fred md nn5 weekly
MAE MSE MAE MSE MAE MSE MAE MSE

LLMTime 1.0571 1.7150 1.2866 2.4910 0.8447 1.1519 1.0022 2.1980
Freq-Decomp(LLaMA2) 0.3933 1.0036 0.1243 0.1019 0.4337 0.9981 0.7551 0.9970

Table 9: Zero-shot forecasting results with text prompts.

Dataset(Darts) AusBeer AirPassengers GasRateCO2 HeartRate
MAE MSE MAE MSE MAE MSE MAE MSE

LLMTime 0.9513 1.6420 0.9028 1.3850 1.2649 2.6860 1.2618 2.6131
Cross-Modal 0.8158 1.1210 0.7574 0.7831 0.9619 1.5557 1.0732 1.9151

Dataset(Darts) MonthlyMilk Sunspots Wine Wooly
MAE MSE MAE MSE MAE MSE MAE MSE

LLMTime 1.1724 1.9495 1.1403 1.9716 1.0875 1.6939 1.0561 1.7531
Cross-Modal 1.0050 1.7312 0.9335 1.3555 0.7582 0.8402 1.0858 1.6711

Table 10: Samples were randomly generated for each function based on different Basic function types.

Genre Vicuna Qwen
MAE ↓ MSE ↓ MAE ↓ MSE ↓

Sine Samples

9.0164e-04 9.5720e-07 9.0164e-04 9.5720e-07
6.2864e-04 6.3579e-07 6.2864e-04 6.3579e-07
9.2959e-04 1.2074e-06 9.2959e-04 1.2074e-06
6.3207e-04 6.3277e-07 6.3207e-04 6.3277e-07

Mean(Std) 7.7298e-04(1.4298e-04) 8.5829e-07(2.4085e-07) 7.7298e-04(1.4298e-04) 8.5829e-07(2.4085e-07)

Cosine Samples

1.0383e-03 1.2949e-06 9.3550e-04 1.0040e-06
9.6355e-04 1.2982e-06 8.4973e-04 1.0686e-06
8.9707e-05 1.2365e-07 3.3118e-04 4.5646e-07
9.2881e-04 1.0349e-06 9.2881e-04 1.0349e-06

Mean(Std) 7.5509e-04(3.8619e-04) 9.3791e-07(4.8210e-07) 7.6130e-04(2.5061e-04) 8.9099e-07(2.5191e-07)

Absolue Samples

8.0035e-01 2.0240e+00 8.3408e-01 2.1060e+00
7.9831e-01 2.0189e+00 8.3408e-01 2.1060e+00
8.0097e-01 2.0259e+00 8.3408e-01 2.1060e+00
8.0081e-01 2.0261e+00 8.3408e-01 2.1060e+00

Mean(Std) 8.0011e-01(1.0639e-03) 2.0237e+00(2.9038e-03) 8.3408e-01(0.0000e+00) 2.1060e+00(0.0000e+00)

Linear Samples

7.9990e-01 2.0235e+00 8.3391e-01 2.1052e+00
8.0004e-01 2.0234e+00 8.3382e-01 2.1049e+00
1.9788e-01 6.0302e-02 1.9745e-01 6.0487e-02
7.9969e-01 2.0227e+00 8.3408e-01 2.1060e+00

Mean(Std) 6.4938e-01(2.6067e-01) 1.5325e+00(8.4996e-01) 6.7482e-01(2.7561e-01) 1.5941e+00(8.8546e-01)

Logarithm Samples

2.2265e-02 6.8289e-04 2.1808e-02 6.8705e-04
3.4981e-02 1.5917e-03 2.5749e-02 9.0281e-04
3.6029e-02 1.6956e-03 1.1935e-02 1.9467e-04
3.4981e-02 1.5917e-03 3.4981e-02 1.5917e-03

Mean(Std) 3.2064e-02(5.6736e-03) 1.3905e-03(4.1072e-04) 2.3618e-02(8.2678e-03) 8.4406e-04(5.0219e-04)

Polynomial Samples

3.9087e-01 8.0511e-01 4.4991e-01 1.0453e+00
6.3900e-01 5.4080e-01 8.1822e-01 8.8458e-01
6.5851e-01 5.8106e-01 6.6118e-01 5.8204e-01
5.4461e-01 1.3841e+00 6.0543e-01 1.5586e+00

Mean(Std) 5.5825e-01(1.0580e-01) 8.2777e-01(3.3661e-01) 6.3369e-01(1.3170e-01) 1.0176e+00(3.5386e-01)

Reciprocal Samples

1.0940e+00 2.6786e+00 1.0940e+00 2.6786e+00
2.3126e-01 7.6730e-02 2.0173e-01 5.8156e-02
1.0940e+00 2.6786e+00 1.0940e+00 2.6786e+00
1.0940e+00 2.6786e+00 1.0940e+00 2.6786e+00

Mean(Std) 8.7832e-01(3.7358e-01) 2.0281e+00(1.1266e+00) 8.7093e-01(3.8636e-01) 2.0235e+00(1.1347e+00)

ReLU Samples

2.0259e-01 6.1406e-02 2.0396e-01 6.4134e-02
2.0443e-01 6.3682e-02 1.9960e-01 6.1490e-02
7.9998e-01 2.0233e+00 8.3408e-01 2.1060e+00
8.0001e-01 2.0240e+00 8.3408e-01 2.1060e+00

Mean(Std) 5.0175e-01(2.9824e-01) 1.0431e+00(9.8055e-01) 5.1793e-01(3.1615e-01) 1.0844e+00(1.0216e+00)
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• Sunspots. This time-series data is character-1093

ized by a combination of high-frequency os-1094

cillations and a slow upward trend over a long1095

period of time, as evidenced by sharp fluc-1096

tuations between spikes and troughs and an1097

overall gradual increase in peaks over time.1098

• Wine. This time-series data exhibits a char-1099

acteristic of high-frequency oscillations su-1100

perimposed on a long-term uptrend, where1101

each spike and trough corresponds to a large1102

change over a short period of time, while over-1103

all, the curve shows a progressively higher1104

pattern over time.1105

• Wooly. The trend of this set of time series1106

data shows frequent upward and downward1107

fluctuations, and on the whole shows an up-1108

ward and then downward trend, with certain1109

cyclical characteristics.1110

• HeartRate. The trend of this set of time-series1111

data is characterized by a random fluctuation1112

H Probing Results under Time-LLM1113

Settings1114

Currently, research on time series prediction us-1115

ing LLMs can be categorized into two main ap-1116

proaches. The first approach retains the original1117

LLMs and leverages their intrinsic embedding lay-1118

ers to encode time series information into the lan-1119

guage space. The second approach modifies the1120

LLMs (e.g., Time-LLM(Jin et al., 2023), Onefi-1121

tall(Zhou et al., 2023)) by bypassing the LLMs’1122

embedding layers for time series encoding and in-1123

stead introduces additional temporal embedding1124

layers and prediction head layers. The latter ap-1125

proach requires sufficient data to align the newly1126

introduced layers with the LLMs’ hidden space.1127

As shown in our comparison with other state-of-1128

the-art LLM-based forecasting models, the second1129

approach is less suitable for zero-shot scenarios.1130

Among this second category, Time-LLM is a rep-1131

resentative work. It enables prediction using the1132

LLaMA2 model, and thus we analyze the perfor-1133

mance of the LLaMA2 model under the Time-LLM1134

setup using the three probing experiments proposed1135

in our work.1136

H.1 Experimental Procedure1137

Alignment of new layers. We first trained the1138

newly introduced layers in Time-LLM to align their1139

representational space with that of the LLMs. The1140

0 5 10 15 20 25 30
No. Layers

0.00e+00

1.00e-05

2.00e-05

3.00e-05

4.00e-05

M
ag

ni
tu

de

AirPassengers w/o <s>
AusBeer w/o <s>
GasRateCO2 w/o <s>
HeartRate w/o <s>

AirPassengers
AusBeer
GasRateCO2
HeartRate

0 5 10 15 20 25 30
No. Layers

0.00e+00

1.00e-05

2.00e-05

3.00e-05

4.00e-05

5.00e-05

M
ag

ni
tu

de

MonthlyMilk w/o <s>
Wine w/o <s>
Wooly w/o <s>
Sunspots w/o <s>

MonthlyMilk
Wine
Wooly
Sunspots

Figure 10: The variation in the average token impact
values across different layers based on LLaMA2-7B.
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Figure 11: The variation in the average token impact val-
ues across token series (time series) based on LLaMA2-
7B.

ETTH1 dataset was used for this purpose, and the 1141

LLaMA2 model, consistent with that used in our 1142

work, was employed. Importantly, the LLaMA2 1143

parameters were not adjusted; only the parameters 1144

of the newly added layers (e.g., reprogramming 1145

layer, temporal embedding layer, output mapping 1146

layer in Time-LLM) were fine-tuned. 1147

Probing experiments. After aligning the new 1148

layers, the model was initialized with the fine-tuned 1149

parameters, with LLaMA2 continuing to use its 1150

pre-trained parameters. Under this setup, the three 1151

proposed probing experiments were conducted on 1152

LLaMA2, with all model parameters frozen. 1153

H.2 Results 1154

H.2.1 Token Perturbation Probing 1155

The results of Token Perturbation Probing are ex- 1156

hibited in Figure 10 and 11. 1157

Layer-wise Analysis. The initial layers exhibit 1158

minimal mutual influence, consistent with the re- 1159

sults observed in our work, where LLMs were 1160

directly used for zero-shot time series prediction 1161

through in-context learning. However, since Time- 1162

LLM does not generate predictions but instead uses 1163

an external trainable prediction head (output map- 1164

ping layer in Time-LLM), the trend in the final 1165

layer is opposite to that observed in our work and 1166

newly uploaded results. This highlights the differ- 1167

ences between generating predictions using LLMs 1168

and using an external prediction head. 1169

Sequence-wise Analysis. Our work (using 1170

LLMs with in-context learning to generate predic- 1171
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tions) shows a tendency to focus on the initial to-1172

kens of the input sequence, especially when special1173

tokens (e.g., <s> token) are present. In contrast,1174

Time-LLM, which uses an external temporal em-1175

bedding layer and prediction head, shows a dif-1176

ferent trend along the input sequence. LLMs do1177

not focus primarily on the initial tokens but rather1178

on identifying relevant tokens across the entire se-1179

quence. This is logical, as Time-LLM passes the1180

entire sequence’s encoded representation to the ex-1181

ternal prediction head, which requires the involve-1182

ment of all tokens in the sequence, consistent with1183

our analysis.1184

In summary, Token Perturbation Probing under1185

the Time-LLM setup, when applied to LLaMA2-7b,1186

reveals differences compared to direct generation-1187

based prediction using LLMs. However, these dif-1188

ferences are consistent with the characteristics of1189

the Time-LLM setup, indicating that Token Pertur-1190

bation Probing applies not only to generation-based1191

time series prediction with LLMs but also to sce-1192

narios where additional temporal embedding layers1193

and prediction heads are introduced.1194

H.2.2 Linear Probing1195

The results of Linear Probing are exhibited in Fig-1196

ure 12.1197

Layer-wise Variation. Due to differences in pre-1198

diction methods (generation vs. external predic-1199

tion head) and encoding approaches (using LLMs’1200

native embeddings vs. external temporal embed-1201

ding layers), the results of Linear Probing differ1202

slightly. Compared to the results in our work, Lin-1203

ear Probing under the Time-LLM setup shows more1204

pronounced variations along the layers of LLMs.1205

We speculate that this may be due to the differ-1206

ent encoding and prediction methods employed1207

in Time-LLM. The patch operation used in Time-1208

LLM results in a shorter encoded sequence than1209

the original time series, making it easier for LLMs1210

to operate on the entire sequence, leading to more1211

pronounced variations.1212

Prediction Preparation. Direct generation-1213

based prediction with LLMs requires the model to1214

prepare for generation in the final layers, leading to1215

a relatively stable phase in these layers. In contrast,1216

under the Time-LLM setup, where an external1217

prediction head is used, the final layers do not need1218

to prepare for generation, resulting in no obvious1219

stable phase.1220

In summary, Linear Probing can also detect the1221

differences under the Time-LLM setup compared 1222

to direct prediction using LLMs, which aligns with 1223

the encoding and prediction characteristics of Time- 1224

LLM. 1225

H.2.3 Vocabulary Mapping Probing 1226

The results of Linear Probing are exhibited in Fig- 1227

ure 13. 1228

Special Token Mapping. Under the Time-LLM 1229

setup, time series data undergoes a patch operation 1230

and is fed into LLMs via an external temporal en- 1231

coder. Consequently, unlike directly inputting time 1232

series numerical sequences into LLMs, Vocabulary 1233

Mapping does not map to numerical characters in 1234

the vocabulary. In this experiment, we analyzed 1235

the distribution of mappings to special tokens (e.g., 1236

<s> token) versus non-special tokens. 1237

Layer-wise Distribution of Special Tokens. It 1238

is evident that when directly using LLMs for 1239

generation-based prediction, special tokens are 1240

more frequently mapped in the later layers of 1241

LLMs. In contrast, under the Time-LLM setup, 1242

special tokens are mainly mapped in the earlier 1243

layers of LLMs. This is likely due to the different 1244

prediction methods: direct generation-based pre- 1245

diction with LLMs requires special tokens in the 1246

later layers to assist in the generation, whereas, un- 1247

der the Time-LLM setup, LLMs’ task is to encode 1248

time series information for the external prediction 1249

head, which reduces the need to focus on special 1250

tokens in the later layers. 1251

Overall, due to the differences in prediction 1252

methods and the modifications made to LLMs for 1253

encoding and predicting time series, the results of 1254

these three probing experiments under the Time- 1255

LLM setup differ from those observed with direct 1256

generation-based prediction using LLMs. However, 1257

this also demonstrates that the probing methods pro- 1258

posed in this paper are applicable to more complex 1259

modifications of LLMs, yielding probing results 1260

consistent with the characteristics of the respective 1261

setups. 1262

I Detailed Vocabulary Mapping Results 1263

I.1 Numeric Mapping 1264

We present nine examples from the Synthetic 1265

datasets using the numeric mapping method. As 1266

Figure 14 shows, almost all time series tokens are 1267

mapped into numeric tokens in the first 3 layers of 1268

LLM. As the number of layers increases, there is 1269
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Figure 12: Linear probing results under Time-LLM settings.

a decreasing trend in the proportion of numeric to-1270

kens. However, when the length of the time series1271

increases, there is an increase in the proportion of1272

tokens that are mapped to numeric values.1273

I.2 <s> Mapping1274

In addition, we further analyze the representation1275

of time series tokens across layers by mapping1276

them to the <s> token using the vocabulary map-1277

ping probe. As depicted in Figure 15, the tokens1278

mapped to <s> are predominantly distributed in1279

layers 20-30 for the Synthetic datasets. Similarly,1280

these mappings primarily occur in the initial 60 por-1281

tions of the time series. These findings reinforce1282

the notion that these layers capture global patterns1283

and leverage information from the early segments1284

of the time series. The consistent observation of1285

such mappings across different datasets suggests1286

the importance of integrating global information1287

for subsequent time series prediction tasks.1288

J Additional Linear Probe Results1289

As show in Figure 16, there is fluction in the posi-1290

tions in the initial layers, but they mostly stabilize1291

after the 10th layer, except for the Linear+Cosine1292

dataset, which stabilizes after 20th layer. This find-1293

ing suggests that, for most datasets, the initial lay-1294

ers of the LLMs go through an exploratory phase1295

where the positions of the time series tokens with1296

the smallest MSE may vary. However, as the num-1297

ber of layers increases, these positions gradually1298

stabilize, indicating that the model has learned the1299

stable patterns present in the datasets. This holds1300

true for most datasets, except for the linear+cosine1301

dataset, where stable positions with the smallest1302

MSE are obtained at deeper layers.1303

K Additional Token Perturbation Probe 1304

Figure 17 and Figure 18 depict 3D visualizations of 1305

different token impact values on the AirPassengers 1306

dataset, specifically focusing on the first 19 tokens. 1307

The distinction between the two figures lies in the 1308

presence or absence of the token <s>. In Figure 1309

17, which includes the <s> token, it was observed 1310

that almost all tokens across all layers exhibited 1311

a significantly high level of attention towards the 1312

first token <s>. Furthermore, as the token posi- 1313

tion increased (indicating attention towards more 1314

tokens), the attention values towards the first to- 1315

ken <s> gradually decreased. On the other hand, 1316

Figure 18, which excludes the <s> token, showed 1317

that although the attention towards the first token 1318

<s> remained high for all tokens, the attention to- 1319

wards other tokens was not as low as in Figure 17. 1320

In other words, the difference in attention towards 1321

preceding tokens was not as pronounced as seen 1322

in Figure 17. Additionally, there was an overall 1323

decreasing trend in attention values across tokens 1324

when the <s> token was absent. 1325

Similarly, Figure 19 and Figure 20 both depict 1326

3D visualizations of different layer impact values 1327

on the AirPassengers dataset, focusing on the first 1328

31 tokens. The distinction between the two lies in 1329

Figure 19 including the <s> token, while Figure 20 1330

excludes it. The observations in these figures align 1331

with the previous ones, indicating that almost all 1332

tokens exhibit significantly high attention towards 1333

the first token <s>. Furthermore, in Figure 20 1334

(without <s> token), the difference in attention 1335

towards preceding tokens is not as substantial as 1336

in Figure 19, while overall attention values show a 1337

decreasing trend. 1338
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(1) AusBeer (2) Airpassenger

(3) GasRateCO2 (4) MonthlyMilk

 (3.a) Non-special Character Mapping

 (1.a) Non-special Character Mapping (2.a) Non-special Character Mapping(1.b) Special Token Mapping

(3.b) Special Token Mapping (4.b) Special Token Mapping

(2.b) Special Token Mapping

 (4.a) Non-special Character Mapping

(5) Sunspots (6) Wine

(7) Wooly (8) HeartRate

 (7.a) Non-special Character Mapping

 (5.a) Non-special Character Mapping (6.a) Non-special Character Mapping(5.b) Special Token Mapping

(7.b) Special Token Mapping (8.b) Special Token Mapping

(6.b) Special Token Mapping

 (8.a) Non-special Character Mapping

Figure 13: Vocabulary mapping probing results under Time-LLM settings.
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(a.) Beat (b.) Exponential (c.) Gaussian Wave

(d.) Linear + Cosine (e.) Log (f.) Sigmoid

(g.) Square (h.) X Times Series (i.) Xsine

Figure 14: Distribution of layers and series mapped to numbers with marginal distribution statistics on Synthetic
datasets.
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(a.) Beat (b.) Exponential (c.) Gaussian Wave

(d.) Linear + Cosine (e.) Log (f.) Sigmoid

(g.) Square (h.) X Times Series (i.) Xsine

Figure 15: Distribution of layers and series mapped to <s> with marginal distribution statistics on Synthetic datasets.
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(a.) Beat (b.) Exponential (c.) Gaussian Wave

(d.) Linear + Cosine (e.) Log (f.) Sigmoid

(g.) Square (h.) X Times Series (i.) Xsine

Figure 16: The variation in the time series token positions with the smallest MSE across different layers, as obtained
through linear probing on Synthetic datasets.
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This finding suggests that the initial token <s>1339

holds considerable importance and captures the1340

attention of the model across multiple layers. How-1341

ever, as the model attends to more tokens and the1342

token position increases, the relative importance of1343

the first token <s> diminishes. This observation1344

highlights the evolving relationship between tokens1345

and the decreasing emphasis on the initial token as1346

the model processes a wider context of tokens.1347

L Visualization1348

We also provide visualization of the prediction re-1349

sults of Freq-Decomp and LLMTime on the Darts1350

dataset. These results, based on different LLMs,1351

are displayed in Figures 22, 23, and 24.1352
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Figure 17: 3D visualizations of different token impact values on AirPassengers datasets.
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Figure 18: 3D visualizations of different token impact values on AirPassengers datasets without <s>.
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Figure 19: 3D visualizations of different Layer impact values on AirPassengers datasets.
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Figure 20: 3D visualizations of different Layer impact values on AirPassengers datasets without <s>.
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(1) AusBeer(Vicuna) (2) Airpassenger(Vicuna)

(3) AusBeer(Qwen) (4) Airpassenger(Qwen)

(3.a) Numeric Mapping

(1.a) Numeric Mapping

(4.a) Numeric Mapping

(2.a) Numeric Mapping(1.b) Special Token Mapping

(3.b) Special Token Mapping (4.b) Special Token Mapping

(2.b) Special Token Mapping

Figure 21: The results of Vocabulary Mapping Probing based on Vicuna and Qwen.

28



AusBeer Airpassenger

GasRateCO2 MonthlyMilk

Freq-Decomp LLMTime Freq-Decomp LLMTime

Freq-Decomp LLMTime Freq-Decomp LLMTime

Sunspots Wine

Wooly HeartRate

Freq-Decomp LLMTime Freq-Decomp LLMTime

Freq-Decomp LLMTime Freq-Decomp LLMTime

Figure 22: Visualization of prediction results based on Vicuna.
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Figure 23: Visualization of prediction results based on LLaMA3.
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Figure 24: Visualization of prediction results based on CodeLlama.
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