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Abstract

Recently, large language models (LLMs) have
shown promising performance in time series
forecasting, including two paradigms: (a.) re-
customizing LLMs for supervised forecasting,
and (b.) keeping LLMs unchanged for zero-
shot forecasting. However, how do large lan-
guage models understand time series? In this
work, we explore the understanding capability
of LLMs on time series while maintaining their
structure and parameters unchanged in zero-
shot forecasting scenarios. Specifically, start-
ing from basic time series patterns, we investi-
gate the forecasting ability of LLMs on basic
function series, as well as the impact of diverse
periods, amplitudes, and phases on the forecast-
ing for sinusoidal series. Subsequently, to gain
deeper insights, we design a series of probing
methods to further analyze the understanding
of LLMs on time series. Finally, guided by
these findings, we propose Frequency Decom-
position (Freq-Decomp), a lightweight prepro-
cessing method that enhances LLMs’ zero-shot
forecasting performance. Experiments across
real-world datasets show that LLMs excel at
identifying periodic patterns, probing experi-
ments provide insight into the perception of
time series information by LLMs’ different lay-
ers, and Freq-Decomp can yield consistent im-
provements over prior zero-shot baselines.

1 Introduction

Time series data, as a fundamental data type, is
widely present in various fields (Wen et al., 2022,
2023) such as economic forecasting (Niu et al.,
2023a; Lerner et al., 2004; Gu et al., 2020), health-
care (Niu et al., 2023b; Chae et al., 2023), and
traffic management (Alghamdi et al., 2019; Fang
et al., 2024). Analyzing and predicting time se-
ries contributes to uncovering real-world insights
behind the data, aiding in the analysis of practi-
cal problems, and providing decision support. In
this context, there have been explorations ranging

from statistical analysis to machine learning and
deep learning (Gamboa, 2017; Wen et al., 2021).
Particularly, recent advancements in models based
on Transformer architecture (Liu et al., 2023; Su
et al., 2024; Wu et al., 2021; Zhou et al., 2022) and
Linear structures (Zeng et al., 2023) have shown
promising results. These models can effectively
represent meaningful features of time series data
for tasks such as prediction.

Recently, large language models (LLMs) (Tou-
vron and et al., 2023; Brown and et al., 2020) have
demonstrated remarkable performance in natural
language processing (NLP), showcasing impressive
zero-shot learning capabilities, in-context learning,
and reasoning and planning abilities such as chain-
of-thought reasoning (Dong et al., 2023; Schaeffer
et al., 2023; Olsson and et al., 2022; Qiu et al.,
2023). Subsequently, extensive research has been
conducted in fields like computer vision (Dosovit-
skiy et al., 2021; Kirillov et al., 2023; Oquab and
et al., 2023) and speech processing (Latif et al.,
2023; Radford et al., 2022). Similarly, the field
of time series forecasting has seen numerous stud-
ies leveraging LL.Ms. Based on our observations,
we categorize these studies into two paradigms:
(a) re-customizing LLMs for supervised forecast-
ing (Zhou et al., 2023; Jin et al., 2023; Liu et al.,
2024b,c), and (b) utilizing LLMs unchanged for
zero-shot forecasting (Gruver et al., 2023; Mirchan-
dani et al., 2023). For the first paradigm, the ap-
proach primarily involves re-customizing LLMs
(or parts of their structure) and adding extra pre-
diction heads to meet the requirements of down-
stream time series tasks. This process requires
additional data to supervise the training of the cus-
tomized language model and the prediction head to
achieve the final forecasting performance. The sec-
ond paradigm does not involve re-customizing the
LLMs. Instead, it maintains LLMs’ original struc-
ture and parameters unchanged and preprocesses
the time series to fit the input format of LLMs.



However, LLMs are primarily trained on exten-
sive text data, and how they understand time series
and their characteristics in time series forecasting
is still not well understood. Therefore, in this pa-
per, we systematically explore the capability of
frozen LLMs to understand time series in a zero-
shot and training-free settings. Starting with ba-
sic function series, we investigate the ability of
LLMs to predict series with definite patterns. We
begin by testing their ability to model synthetic
series composed of basic functions, with a focus
on periodic components such as sine and cosine
waves. We examine how changes in amplitude, fre-
quency, and phase affect predictive performance.
To gain deeper insight, we propose three probing
strategies-token perturbation, linear probing, and
vocabulary mapping-to analyze how LLMs inter-
nally represent time series signals. Our analysis
reveals that LLMs are particularly sensitive to pe-
riodicity, rely on special tokens (e.g., <s>) for an-
choring sequence context, and gradually shift from
local to global representations across layers. Based
on these observations, we introduce Frequency De-
composition (Freq-Decomp)—a lightweight pre-
processing method that decomposes time series
into frequency bands via Fourier transforms, allow-
ing LLMs to better model individual components.
Empirical results across ten real-world datasets and
multiple LLM backbones (e.g., LLaMA2/3, Vi-
cuna, Qwen) show that Freq-Decomp consistently
enhances zero-shot forecasting performance, out-
performing state-of-the-art baselines without mod-
ifying model parameters. Our contributions are
threefold:

* Periodic Series. We provide empirical evidence
that LLMs are biased toward periodic structures.
And experiments with synthetic series show that
the recognition ability of LLMs decreases as the
number of superimposed frequency components
increases, and this decline is more pronounced
when the phases also vary.

* Probing Methods. We present a systematic
probing framework to analyze how LLMs un-
derstand time series data. Token Perturbation
Probing reveals the mutual impact relationships
between different series tokens across differ-
ent layers. Linear probing reveals the explo-
ration of LLMs on input sequences, as the lay-
ers progress, the search range gradually narrows
or stabilizes. Vocabulary Mapping Probing elu-
cidate the distribution of time series feature ex-

ploration and sequence prediction from the per-
spective of special tokens and numeric tokens.

* Frequency Decomposition. We propose Freq-
Decomp, a simple yet effective method to im-
prove zero-shot time series forecasting with
frozen LLMs under training-free settings.

2 Related Works

2.1 LLMs for Time Series Analysis

Researchers have begun to focus on utilizing LLMs
to address time series problems. This research
was facilitated especially with the introduction
of PatchTST (Nie et al., 2023). Here, we cat-
egorize this research into two paradigms: (a)
re-customizing LLMs for supervised forecasting
(Zhou et al., 2023; Jin et al., 2023; Liu et al.,
2024b,c) and (b) keeping LLMs unchanged for
zero-shot forecasting. For the first paradigm, in-
spired by PatchTST, researchers tokenize the time
series by applying patch operations and then re-
customize the pre-trained language models (such
as GPT-2 (Radford et al., 2019)) by adding a linear
prediction head to serve as the time series predic-
tor. Such research typically does not use the entire
language model structure but rather selects certain
layers to be repurposed as the main structure of the
time series predictor. The second paradigm main-
tains the integrity of the language models, trans-
forming the time series through preprocessing into
a format that the language models can accept.

2.2 Pattern Completion with LLMs

Other related work involves using LLMs for pattern
recognition and completion. This type of research
is not limited to time series data but focuses on how
LLM:s process data with regular patterns (Tan and
Motani, 2023). For example, (Mirchandani et al.,
2023) explored the capabilities of LLMs in rep-
resenting and extrapolating abstract non-linguistic
patterns, such as ARC patterns (Chollet, 2019), and
discussed their potential applications in controlling
robotics. This work deals with data exhibiting def-
inite patterns and employs few-shot learning to
make predictions. (Liu et al., 2024a) explored the
capability of LLMs to complete dynamic systems
governed by principles of physical interest. (Guo
et al., 2023) explored the ability of LLMs to learn
representations of dynamic system series while im-
plementing in-context learning mechanisms. Such
research aims to explore the ability of LLMs to



complete or extrapolate patterns or dynamic sys-
tems with relatively definite principles. However,
there has been little exploration of LLMs’ capabil-
ities in handling patterns or series with uncertain
principles.

3 Preliminaries

3.1 Overview

In this section, we first describe the overall setup.
Given large language models (LLMs) fy (0 rep-
resents the parameters of the LLMs), our work
aims to explore how they understand and predict
time series. Specifically, for a given time series
T = (ty,t2, - ,ty,), we tokenize and rescale it fol-
lowing the LLMTime (Gruver et al., 2023) method-
ology. Then, we can obtain the numerical tokens
of the time series w = (uj,ug, - ,u,), and input
them into the LLMs. Here, n denotes the length of
the time series. The LLMs primarily used in this
work is LLaMAZ2 (7B) (Touvron and et al., 2023).
Implementation Details are in Appendix A.4.

3.2 Settings

Datasets We primarily use Darts (Herzen et al.,
2022) and ETT (Zhou et al., 2021) datasets to test
the pattern completion ability of LLMs, which are
available to the public.

e Darts is a collection of 8 univariate real-world
time series datasets (e.g., airlines, etc.)

* ETT datasets originate from the electricity in-
dustry and record load and oil temperature vari-
ation data. Here, we primarily utilize the ETTh1
and ETTm] datasets.

Metrics We utilize mean absolute error (MAE)
and mean square error (MSE) to serve as metrics in
alignment with the majority of existing works (Jin
et al., 2023; Zhou et al., 2023; Cao et al., 2024).

4 Time Series Pattern Analysis

4.1 Basic Function Series

Method Firstly, to explore the ability of LLMs
to understand time series, we start with basic func-
tion series (e.g., linear, polynomial, cosine function,
etc.). Specifically, we select a series of basic func-
tions G = {g1(z), g2(x),- - , gm(x)}, m denotes
the number of basic functions. Then, we randomly
sample their parameters based on the types of these

Table 1: Samples were randomly generated for each
function based on different Basic function types.

Genre Vicuna Qwen
MAE | MSE | ‘ MAE | MSE |

Sine 7.7298e-04  8.5829e-07 | 7.7298e-04 8.5829e-07
Cosine 7.5509e-04  9.3791e-07 | 7.6130e-04 8.9099¢-07
Absolute | 8.0011e-01 2.0237e+00 | 8.3408e-01 2.1060e+00
Linear 6.4938e-01  1.5325e+00 | 6.7482e-01 1.5941e+00
Logarithm | 3.2064e-02  1.3905e-03 | 2.3618e-02  8.4406e-04
Polynomial | 5.5825e-01 8.2777e-01 | 6.3369¢e-01 1.0176e+00
Reciprocal | 8.7832e-01 2.0281e+00 | 8.7093e-01  2.0235e+00
ReLU 5.0175e-01  1.0431e+00 | 5.1793e-01  1.0844e+00

basic functions to generate a set of function in-
stances,

where 7 denotes the number of instances for each
basic function g;(x). For each instance, we gen-
erate a numerical sequence of length 200, evenly
spaced within the range of 1 to 200, to serve as
the values for the independent variable x. We
then input these = values into the generated func-
tion instances g;;(x) to obtain the corresponding
y = gij(x) values. From these y values, we
construct the corresponding basic function series.
These series are used as time series inputs for the
LLMs to perform predictions.

Results The results are presented in Figure 1 (a.)
(based on LLaMA?2), showing that LLMs perform
best on series derived from periodic functions (sine
and cosine). Additionally, the Table 10 presents
the outcomes of different basic function series on
the Vicuna and Qwen. It can be observed that,
compared to other function sequences, LLMs are
particularly more adept at predicting periodic func-
tions (sine and cosine) series. This suggests that
LLMs excel at recognizing repetitive patterns in
input series and mimicking them in the outputs.

4.2 Periodic Function Series

Method Based on the observation, we further an-
alyze the periodic function series. Specifically, we
explore three parameters of periodic function series:
amplitude (A), frequency (F), and phase (P). For
sine periodic functions ¢*"(z) = Asin(Fx + P),
we vary the values of amplitude (A), frequency (F),
and phase (P) separately to obtain sine function
instances,

Gt iarpy =19 (@) [je L7} @

Here, the subscript {.A, 7, P} denotes the parame-
ters we randomly sample. We only randomly sam-
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Figure 1: (a.) The effects of different basic function series. (b.) The impact of frequency under phase 0.0 and 1.57.

Figure 2: (a.) The impact of amplitude under phase 0.0.
(b.) The synthetic impact of the quantities of frequency
and amplitude ingredients under phase 0.0.

ple one parameter while keeping the others con-
stant, thus obtaining these three sets of instances

inst, (A} st (rye and GG (py. Similarly, we
continue to use = from 4.1 as the independent vari-
able and input the numerical series y = ¢*"(x)
obtained from periodic functions into LLMs for
prediction. We utilize LLMs to predict the obtained
function series.

Results Figure 1 (b.) illustrates the impact of
frequency variations on LLMs’ predictive perfor-
mance for sine function series with different phases.
In these experiments, the length of the input series
is fixed at 200. When the frequency is very low, the
fixed series length results in less than one or half
a cycle of the input series. During these instances,
LLMs do not receive sufficient series pattern infor-
mation, leading to significantly reduced prediction
accuracy. As the frequency increases, LLMs ac-
quire enough information from the input series,
resulting in noticeable improvements in prediction
performance. However, with continued frequency
increases, the prediction performance, as measured
by MAE and MSE, declines to some extent. This
indicates that LLMs have a limit in their capacity to
capture series patterns, making it difficult to accu-
rately recognize patterns in high-frequency series.
Furthermore, variations in phase have minimal im-
pact on LLMs’ ability to predict periodic function
series.

Figure 2 (a.) shows the effect of increasing am-
plitude values on LLMs’ predictive capabilities.
Here, we fixed the phase at 0.0 and the frequency
at 10. Although the prediction performance se-
ries exhibit fluctuations, there is a clear trend of

decreasing predictive ability as the amplitude in-
creases. This indicates that while the overall series
pattern remains unchanged, the large numerical
values in the input series negatively impact LLMs’
understanding of the time series.

4.3 Synthetic Series

Method Previously, we analyzed individual pe-
riodic function series. In this section, we combine
multiple Sinusoidal series with varying amplitude
(A), frequency (F), and phase (P) to create the
more complex synthetic series. We adjust the num-
ber of ingredients 7 in the synthetic series and re-
strict the parameters of the ingredients used for
synthesis, denoted as F/A/P for frequency, ampli-
tude, and phase, respectively. Thus, we can obtain
a series of synthetic function instance sets,
s ={g; ") [j €M7} B
The subscript  indicates {F, F A, FP, FPA},
the adjusted parameters for each instance set, al-
lowing simultaneous adjustment of two or more
parameters. And ¢*™" indicates that the function
is composed of the sum of 7 functions g*™. We
use the same method in Section 4.1 to obtain the
series and input them into LLMs for prediction.

Results The results, shown in Figure 2 (b.), in-
dicate that as the number of synthetic ingredients
increases, the complexity of the composite pre-
diction rises, and the predictive performance of
LLMs declines. This suggests that LLMs have a
significantly reduced capacity to understand syn-
thetic series with varying amplitude, frequency, and
phase. Additionally, from the perspective of vari-
able adjustments, when comparing P and F A to
F, even though the impact of phase on individual
series is minimal, the synthetic series with different
phases present a greater challenge to LLMs than
those with different amplitudes. This results in a
more significant decline in LLMs’ performance on
series synthesized by varying phases.
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5 Token Perturbation Probing

5.1 Method

In this section, we employ a Perturbation Token
Probing method to investigate the extent of mu-
tual impact among time series tokens within each
layer when utilizing LL.Ms for zero-shot time se-
ries forecasting. Given a series of numeric tokens
u = (uy,ug,- - ,uy) of the input time series 7,
LLMs can map each u; into a contextualized rep-
resentation hy(u);, where 6 represents the LLM’s
parameters. Following (Wu et al., 2020), we can
derive an impact function ¢(z;, ;) to capture the
impact of an arbitrary token u; on token u;,

¢(ui,uj) = d (hg(u\{ui})i, hg(u\{us, u;})i) -

4
We add a special token to the LLMs, replacing a
token u; in the input series. Then, we input this
modified series u\{u;} into the LLMs to obtain
the representation hg(u'\{w;}); for this token u,.
Next, we further replace an arbitrary token u; with
this special token, and use the obtained represen-
tation as the new representation hg(u\{u;, u;});
for u;. The above d(-, -) represents the Euclidean
distance metric. Through this method, we can ob-
tain the value of the impact function ¢ (u;, u;). By
repeating the perturbation process iteratively, we
can obtain an impact matrix £ € R™"*". Based
on the impact matrix, we conducted analysis, the
results are as follows.

5.2 Results
5.2.1 Layer-wise Analysis

Figure 3 illustrates the Layer-wise Analysis for
Token Perturbation Probing, which indicates the
variation in average impact values across different
layers. Specifically, we obtain impact matrices
through Perturbation Token Probing, average them
by layer, and record the mean values. We also
compare the impact of the presence or absence of
the <s> token in the input time series on the impact
matrices. It can be observed that the average impact
values are relatively low in the early layers (e.g.,
0-1 layers in LLaMAZ2 (7B)) and the final layer
(e.g., 31 layer in LLaMAZ2 (7B)), while they are
higher in the intermediate layers. We suppose that
the low average impact values in the initial layers
indicate the model is still in the exploratory phase,
and the interactions between tokens are not very
pronounced. In contrast, the significant changes in
the average impact values in the final layer might
suggest that the model is preparing for generation
and prediction, hence modifying the impact matrix
accordingly. When the <s> token is removed, the
average impact values in the intermediate layers
decrease. This is due to, without the <s> token,
the values in the impact matrix are more dispersed
(the presence of <s> concentrates more impact),
leading to a reduction in average impact values.

5.2.2 Sequence-wise Analysis

In addition, we also measure the variation in aver-
age impact values as the time series tokens varia-



tions, which is a sequence-wise analysis for Token
Perturbation Probing. Specifically, we average the
impact values along the layer dimension and for
a specific token dimension to obtain the average
impact of each time series token. The results (Fig-
ure 4) show that in the presence of the <s> token
(special token in LL.Ms), more time series tokens
tend to focus on the information from <s>, making
it the most influential. Without the <s> token, the
impact values are more dispersed.

6 Linear Probing

6.1 Method

We design linear probing (Alain and Bengio, 2018)
experiments to further explore how LLMs under-
stand time series. Linear probing allows us to test
whether intermediate layer outputs (representations
of time series tokens) h(u;)’ (¢ denotes the layer)
contains quantities of interest. Here, we trained
a small probe regressor ¢ to probe the effect of
using these intermediate representations h(u;)* di-
rectly for time series prediction. Specifically, we
use a two-layer multilayer perceptron (MLP) as the
probe regressor.

¢o(h) = Wao(Wih +by) + bo, )

where W5, W1, by and by denotes learnable pa-
rameters, and we abbreviate h(u;)’ as h. Then, we
compare the probe regressor’s predictions with the
actual data and perform a statistical analysis on the
computed Mean Squared Error (MSE).

6.2 Results

LLMs may malfunction when the length of patterns
exceeds a certain threshold. To give a quantitative
analysis, we design a linear probing method (Alain
and Bengio, 2017; Guo et al., 2023) to test each
time series token at every layer. Linear probing
linearly regress quantities of interest (tokens x;)
on each intermediate layer output of token z; (hé),
where [ denotes the layers and ¢ denotes the time
series tokens. We evaluate the predictive perfor-
mance using linear probing, with MSE as the met-
ric. Based on the test results, we investigate the
position of the time series token with the small-
est MSE in each layer, as shown in Figure 5 and
6. Linear probing reveals that the initial layers of
LLMs tend to perform broad searches for tokens
with the smallest MSE over the entire sequence
length. As the layers progress, the search range
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Figure 5: The results of linear probing on LLaMA?2.
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Figure 6: The results of linear probing on Vicuna.

gradually narrows or stabilizes, indicating more
localized or refined token selection in later layers.

7 Vocabulary Mapping Probing
7.1 Method

For the numeric tokens u = (uj,ug, - ,up)
of the input time series 7, LLMs can pro-
vide us with a series of hidden state H =
{h(u1)", h(u2)’, h(u,)’} at each intermediate
layer ¢. Following (Dar et al., 2023), we adopt a
vocabulary mapping probing method to map these
hidden states H into the vocabulary embedding
space, allowing us to explore the representations of
these time series tokens. Specifically, for a given
numeric token h(u;)* € R? in the time series, we
map it to the vocabulary embedding space using
the embedding matrix E € RY*4,

h(u;)" = Eh(u;)", (6)

where d denotes the hidden size of LLMs, and V
denotes the vocabulary size. We select the top k
vocabulary items with the highest logits in h(u;)*
as the return results of the vocabulary probe. Thus,
we can obtain the vocabulary mapping of each time
series token h(u;)¢ at each layer /.

7.2 Results
7.2.1 Numeric Mapping

We selected the representations of time series to-
kens from each layer and mapped them to the cor-
responding vocabulary tokens using the vocabulary
mapping probe. The mapped tokens are ranked
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Figure 7: The results of Vocabulary Probing Probing for
Vicuna, LLLaMa2, and Qwen.

top-k, and in this section, we analyze the first to-
ken to determine if it is numeric. The statistical
results are shown in subfigure (#.a) in Figure 7,
where # represent the case index in thise Figure.
In the initial layers of LLMs (e.g., layers 0-3 in
LLaMA?2), nearly all time series tokens are mapped
to numeric tokens. This indicates that the early lay-
ers primarily focus on observing local information
(with time series inputs encoded as numeric values).
The proportion of numeric tokens decreases in the
later layers, suggesting that LLMs begin to explore
global patterns beyond local numerical inputs.

7.2.2 Special Token Mapping

Simultaneously, we analyze the distributions of to-
kens mapped to the special token (e.g., <s> token
in LLaMA2) through the vocabulary mapping prob-
ing. We select the top three mapped tokens, and
if any of these tokens are <s>, we record this in
Figure 7 (#.b) subfigures. In terms of layer depth,
tokens mapped to <s> are primarily located in the
later layers of LLMs. Combined with the results
of the numeric mapping, the <s> mapping results
complement the numeric mapping results. The ar-
eas where numeric mapping is sparse correspond to
where <s> mapping occurs. Therefore, it can be in-
ferred that the later layers of LLMs integrate global
information and specific numerical information for
time series prediction.

7.2.3 Special Token Influence

In Figure 8, we compare the performance of dif-
ferent LLMs with and without special tokens (e.g.
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Figure 8: Performance with and without special tokens.

Table 2: Comparison results on baselines.

AusBeer AirPassengers GasRateCO2 HeartRate

Model

MAE MSE MAE MSE MAE MSE MAE MSE
Promptcast 1.2594 2.0353 0.7218 0.8821 0.8370 1.2809 1.1883 2.3561
Onefitall 1.2458 2.0408 1.0410 1.6880 1.0876 1.8837 1.0798 1.7404
Tempo 1.0847 1.8905 0.8882 1.1335 1.1283 1.9082 1.2239 2.2388
Time-LLM 1.1224 1.8743 1.0515 1.7423 1.0568 1.7433 1.1997 2.1329
LLMTime | 0.9513 1.6420 0.9028 13850 12649 2.6860 1.2618 2.6131
Freq-Decomp | 0.6504 0.6295 0.7125 0.8028 0.6739 0.7108 0.8408 1.4376
Model MonthlyMilk Sunspots Wine Wooly
MAE MSE MAE MSE MAE MSE MAE MSE
Promptcast 1.6009 3.1964 12402 23650 1.0717 1.9892 1.1377 2.0421
Onefitall 1.0826 1.7906 1.1737 2.0982 0.9565 1.2061 0.9711 1.3966
Tempo 1.1789 1.9440 1.1445 2.0355 0.8706 1.2373 1.0449 1.7496
Time-LLM 1.0372  1.5591 1.0506 1.7276 0.9170 1.4674 1.2998 2.5337
LLMTime 1.1724 1.9495 1.1403 19716 1.0875 1.6939 1.0561 1.7531
Freq-Decomp | 0.9272 1.1805 0.9634 1.3721 0.8024 1.0458 0.8781 1.2198

<s>in LLaMA?2). We statistic MSE and MAE on
Darts dataset. The performance with special tokens
of different LLMs consistently outperforms those
without special tokens. It is indicate that using spe-
cial tokens in zero-shot time series forecasting can
help the performance enhancement.

8 Frequency Decomposition for Zero-shot
Time Series Forecasting

Probing experiments are conducive to exploring
the changes in LLMs during time series analysis.
Building on these exploration, we propose the Freq-
Decomp method to enhance LLMs’ zero-shot fore-
casting capabilities. More detailed experiments and
analysis are shown in Appendix A.3, F, and G.

8.1 Method

According previous observations, we found that
LLMs excel at processing periodic series, but an
excessive synthesis of series of different periods
also impair the performance of LLMs (Section 4).
Meanwhile, LLMs may perform better with simpler
series (Section 6), and benefit from the use of spe-
cial tokens (Section 5 and 7). Thus, Freq-Decomp
method introduces a preprocessing method to de-
compose the original time series into frequency
bands before using LLMs. This enables LLMs to
handle the time seires patterns they are proficient



in, leveraging their strengths in processing time
series. Concretely, we transform the initial input
time series 7' = (t1,t2,- - - ,1,) into the frequency
domain using the Fast Fourier Transform (FFT)
operation .%,

Q= 7(T), (7

where the frequency domain representation of T’
is Q = (wy,wa, -+ ,wy). Then, we partition the
series §2 into u frequency bands at equal intervals
Qp = (B1, Ba,- -+ , B,). These bands are ordered
from low to high frequency. We apply the Inverse
Fast Fourier Transform (IFFT) .Z ! to map fre-
quency bands 25 back to time domain,

5’:5’5_1(93), 3)

where S = (s1, 52, -+, 5,) is a collection of sub-
series corresponding to individual bands in Q2. We
utilize LLMs to forecast each sub-series s using
the same method applied in previous sections. This
yields a collection of predicted output series S° =
(s7,89,- -, sp,). Finally, we sum all the sub-series
in S° to obtain the prediction results for the original
time series 7.

8.2 Comparison Results

The comparison results with baselines are shown in
Table 2. It is evident that Freq-Decomp consistently
outperforms LL.Ms-based forecasting methods un-
der the zero-shot scenario. The baselines include:
Promptcast (Xue and Salim, 2023), LLMTime
(Gruver et al., 2023), textbfOnefitall (Zhou et al.,
2023), Tempo (Cao et al., 2024), and Time-LLM
(Jin et al., 2023). Details are shown in Appendix
A.1. Aside from the Promptcast and LLMTime,
which are designed for zero-shot settings, methods
such as Onefitall, Tempo, and Time-LLM are re-
customizing LLMs and originally developed for
supervised time series forecasting. All methods are
compared under the zero-shot scenario for fairness.

Table 3: Results on ETTh1 and ETTm1 Datasets.

Model ETThl ETThml
MAE MSE MAE MSE
Autoformer 0.569 0.693 0.576 0.735
FEDformer 0.502 0.509 0.553 0.698
Onefitall 0.577 0.732 0.558 0.747
PatchTST 0.465 0485 0437 0491
Tempo 0406 0.400 0.424 0.438
Time-LLM 0.452 0450 0.397 0.359
Freq-Decomp 0.346 0.224 0.255 0.397

Table 4: Ablation study on different LLMs.

AusBeer AirPassengers GasRateCO2 HeartRate
MAE MSE MAE MSE MAE MSE MAE MSE

LLaMA2 09513 1.6420 0.9028 1.3850 1.2649 2.6860 1.2618 2.6131
+ Freq-Decomp | 0.6504 0.6295 0.7125 0.8028 0.6739 0.7108 0.8408 1.4376

Model

LLaMA3 1.2948 2.2790 09113 1.6871 1.1912 2.4585 1.1178 2.0000
+ Freq-Decomp | 0.9380 1.5944 0.7848 0.8989 1.0078 1.9738 1.1047 1.9393
Vicuna 1.1949 24200 0.9777 17924 1.6231 3.4377 1.5310 3.2122

+ Freq-Decomp | 0.3437 0.1726 0.8069 1.0032 0.8850 1.1704 1.1797 2.0033
CodeLlama 09122 13219 1.0653 1.8358 1.2615 22176 0.9792 1.4051
+ Freq-Decomp | 0.4096 0.2676 0.7125 0.8028 0.9349 1.3342 0.8330 1.0942

MonthlyMilk

Model Sunspots Wine Wooly

MAE MSE MAE MSE MAE MSE MAE MSE

LLaMA2 1.1724  1.9495 1.1403 19716 1.0875 1.6939 1.0561 1.7531

+ Freq-Decomp | 0.9272 1.1805 0.9634 1.3721 0.8024 1.0458 0.8781 1.2198
LLaMA3 1.3069 24724 1.1114 19073 0.8961 1.6553 1.1070 1.6778

+ Freq-Decomp | 0.9354 1.2516 0.9903 1.8304 0.8825 1.5543 0.7708 1.1372
Vicuna 1.3735 25699 1.2510 23140 1.0553 2.0337 1.4323 2.8917
+Freq-Decomp | 1.1324 1.9740 0.8653 1.2834 0.8466 1.1081 0.7452 1.0054
CodeLlama 1.1585 20072 1.1951 2.0455 1.2467 23468 1.3720 2.8167

+Freq-Decomp | 0.9208 1.1957 0.5417 0.5424 0.7627 1.1446 0.6665 0.7368

8.3 Results on ETT Dataset

We conduct experiments on the ETT dataset. We
introduce two extra baselines: Autoformer (Wu
et al., 2021) and FEDformer (Zhou et al., 2022).
Table 3 summarizes the results on ETThl and
ETTml. Our method demonstrates comparable
performance advantages compared to these base-
line models on both datasets. Notably, these results
of Freq-Decomp are achieved without any training
on time-series dataset. The results from other mod-
els rely on transfer learning, requiring pre-training
on source time-series datasets before testing on
target datasets. Freq-Decomp eliminates the need
for such training, making it independent of spe-
cific time-series datasets and associated training
overhead. Detailed settings are in Appendix A.2.

8.4 Ablation Study on Different LL.LMs

Table 4 presents the performance of Freq-Decomp
compared to directly utilizing LLMs to forecasting.
It is evident that Freq-Decomp achieves significant
improvements across different LLMs.

9 Conclusion and Future Works

We explore the capability of LLMs to understand
time series. Firstly, we investigate the LLMs’ abil-
ity to complete predictions for various functions
and examine the effects of amplitude, frequency,
phase on periodic function series. Additionally,
we design three probes to further investigate the
LLMs’ understanding of time series. Finally, we
propose the Freq-Decomp method for enhancing
LLMs’ time series forecasting capabilities. We
leave for future work the exploration of domain
generalization in LLMs for time series, multimodal
extensions, and advanced inference techniques like
in-context learning, chain of thought, etc.



Limitations

This study is exploratory in nature, aiming to in-
vestigate how large language models (LLMs) un-
derstand and process time series through a series
of methods. We conducted an in-depth analysis
of LLMs’ handling of time series, arriving at clear
conclusions and proposing enhancement methods.
However, research in this area is still in its early
stages. Key aspects such as zero-shot time series
prediction, the foundational architecture of time se-
ries prediction models, time series processing base
on in-context learning, and multimodal process-
ing that integrates time series with other modals
require further investigation. Additionally, there
are no potential risks associated with the research
presented in this paper.

Ethical Considerations

This work relies solely on publicly available bench-
mark datasets that do not contain sensitive personal
information or content related to bias or discrim-
ination. There are no notable ethical or societal
risks associated with this research. And we used
existing artifacts (e.g., datasets or models) in accor-
dance with their specified intended use. We verified
the licenses or usage guidelines before employing
them in our research. For the artifacts we created,
we clearly specify that they are intended solely for
research use.
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A Appendix

A.1 Baselines

The baselines in Section include: Promptcast
(Xue and Salim, 2023) utilizes LLMs as forecast-
ers by converting time series into numerical to-
kens; LLMTime (Gruver et al., 2023) transforms
the time series data by tokenizing and rescaling
it, treating the processed time series as numeri-
cal tokens; Onefitall (Zhou et al., 2023) leverages
LLMs’ certain intermediate layers, enhancing them
with temporal embeddings and prediction heads for
forecasting; Tempo (Cao et al., 2024) explores
a soft prompting strategy to fine-tune specific pa-
rameters of LLMs for forecasting. Time-LLM
(Jin et al., 2023) introduces a reprogramming ap-
proach to map time series into the textual space
of LLMs. Autoformer (Wu et al., 2021) revise
Transoformer by introducing the Auto-correlation
to replace the Self-attention. FEDformer (Zhou
et al., 2022) introduce a frequency enhanced de-
composed Transformer to reduce prediction error
and enhance processing efficiency

A.2 Settings for ETT Dataset

For this experiment, the forecasting horizon is set
to 96. The results for Tempo and FEDformer are
sourced from Table 1 of the Tempo paper [3], while
the results for other baseline models are obtained
from Table 16 of the Time-LLM paper (ETTh2 ->
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Figure 9: (a.) The impact of the quantities of decomposed frequency Bands. (b.) The impact of frequency bands on

performance, ranging from low to high frequencies.

ETThl row). The LLMs employed in this experi-
ments is LLaMA?2 (7B).

A.3 Analyzing the Number of Frequency
Bands

Figure 9 (a.) illustrates the impact of the number of
frequency bands. It shows that dividing the input
time series into approximately five frequency bands
yields the best prediction results. Figure 9 (b.) dis-
plays the performance of LLMs across different
frequency bands on the entire dataset. Regardless
of how the frequency bands are divided (with band
counts ranging from 3 to 8), LLMs perform poorly
on low-frequency bands, while their prediction ac-
curacy improves significantly on high-frequency
bands.

A.4 Implementation Details

All the deep networks are implemented in Pytorch
and run on A800-SXM4-80GB GPUs. Owing to
the zero-shot scenario, LL.Ms were employed for
inference on datasets. We draw 5 samples from
LLMs, and use the median statistics of samples to
calculate MSE and MAE. In addition, due to the
relatively small number of samples in the Darts
dataset, the runtime remains within 30 minutes. In
contrast, for the ETT and Monash datasets, the
larger data scale leads to longer runtimes, ranging
from 5 to 10 hours. During the training of linear
probing (Section 6), we utilized 30 epochs, a pre-
diction length of 20, a learning rate of 0.0005. The
LLMs used in this work include LLaMA?3 (8B), Vi-
cuna (13B), CodeLlama (7B), LLaMA?2 (7B), and
Qwen (14B).

In addition, for exploration of fundamental time
series patterns, we also employ basic functions as
well as their synthetic forms to judge LLMs, which
are described in Section 4.
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B Dataset Statistics

B.1 Darts

Darts(Herzen et al., 2022) is a powerful time se-
ries forecasting library that provides a unified Time
Series data container and consistent API, supports
various classical and deep learning models, and
offers comprehensive features such as co-variate
handling, probabilistic forecasting, ensemble learn-
ing, and more, suitable for a wide range of time
series modeling and forecasting tasks. More details
are show in Table 5.

B.2 Monash

Monash(Godahewa et al., 2021) datasets span di-
verse domains like tourism, banking, web, energy,
sales, economics, transportation, health, and na-
ture. They have varying sampling rates, from yearly
to high-frequency 4-second intervals, and include
both univariate and multivariate series aligned with
known timestamps, from which 58 derived datasets
with different frequencies and missing value treat-
ments have been created, with 7 newly curated
datasets and 23 standardized from various sources,
all carefully vetted for inclusion in the repository.
We selected four of the datasets for our experiments,
more details are shown in Table 6.

C Basic Function

We used 8 basic function, including sine, cosine,
absolute, linear, logarithm, polynomial, reciprocal
and relu function. And we randomly generate four
samples for each function. The detailed results
based on LLaMA? are presented in Table 7. Ad-
ditionally, the Table 10 presents the outcomes of
different basic function series on the Vicuna and
Qwen. It can be observed that, compared to other
function sequences, LLMs are particularly more
adept at predicting periodic functions (sine and co-
sine) series.



Table 5: Using (Mean(Stabard Deviation)) statistics for the data in columns L(Input) and L(Prediction).

Datasets(Darts) ‘ L(Input) ‘ L(Prediction) ‘ #Case
AirPassengersDataset 115(0) 29(0) 1
AusBeerDataset 168(0) 43(0) 1
GasRateCO2Dataset 236(0) 60(0) 1
MonthlyMilkDataset 134(0) 34(0) 1
SunspotsDataset 564(0) 141(0) 1
WineDataset 140(0) 36(0) 1
WoolyDataset 95(0) 24(0) 1
HeartRateDataset 720(0) 180(0) 1

Table 6: Using (Mean(Standard Deviation)) statistics for the data in columns L(Input) and L(Prediction).

Datasets(Monash) ‘ L(Input) ‘ L(Prediction) ‘ #Case
bitcoin 4156.89(467.27) | 30.00(0.00) 18
nn5 daily 735.00(0.00) 56.00(0.00) 111
fred md 716.00(0.00) 12.00(0.00) 107
tourism monthly 274.58(55.58) 24.00(0.00) 366

Table 7: Four samples were randomly generated for each function based on different Basic function types. Comple-
mentary results are based on LLaMA2-7b-chat.

Genre ‘ Expression (Basic) MAE | MSE |
1.1 % np.sin((2 * np.pi/2.8) x (x — 4.0)) + —27.4 9.6658e-04 1.1862¢-06
0.1 % np.sin((2 * np.pi/4.5) * (x — 0.2)) + —29.1 6.2864¢-04 6.3579e-07
. s 8.4 % np.sin((2 * np.pi/5.0) * (x — 5.5)) + —9.6 8.4970e-04  1.1654e-06
2y
Sine 7+ sin (3 (z — <)) —0.3 % np.sin((2 % np.pi/1.3) * (x — 6.2)) + —27.1 6.3207e-04  63277e-07
7.6925¢-04  9.0504e-07
Mean(Std) (1.6733e-04)  (3.1276e-07)
3.5 % np.cos((2 * np.pi/3.9) * (x — 4.0)) + 9.2 1.0383e-03 1.2949¢-06
—8.2x np.cos((2 x np.pi/1.6) * (x — 1.3)) + —13.6 9.6355e-04 1.2982¢-06
. : —4.9 x np.cos((2 * np.pi/3.2) * (x — 1.3)) + 25.0 9.2881e-04 1.0349¢-06
o s cos (25 (z —
Cosine z  cos ((z <)) 2.9 np.cos((2 * np.pi/2.3) * (x — 2.2)) + 7.9 9.3550e-04  1.0040e-06
9.6654¢-04 _ 1.1580e-06
Mean(Std) (5.0151¢-05)  (1.6049¢-07)
1.2+ np.abs(z) 8249801 2.0839e+00
9.2 % np.abs(z) 8.2498¢-01  2.0839e+00
N . 1.0 * np.abs(z) 8.2498e-01 2.0839e+00
Absolute z 1 |z| 21.7 % np.abs(z) 8.2498¢-01  2.0839e+00
8.2498¢-01  2.0839¢+00
Mean(Std) (0.0000e+00)  (0.0000e-+00)
27 %x + 8.7 8.2498¢-01  2.0839e+00
25z +54 8.2229e-01  2.0700e+00
Linear 2 15 4z + b 392+ -45 8.2498¢-01  2.0839e+00
rrraw 2242 +—T7.0 1.2426e400  3.0252e+00
9.2871e-01  2.3158¢+00
Mean(Std) (2.0926e-01)  (4.7301e-01)
—7.1% (np.log(z)/np.log(6.6)) 4 2.4 2.6773e-02 1.1731e-03
—2.6 % (np.log(z)/np.log(1.5)) + —21.3 4.6028e-02 3.6697¢-03
. log(z) —13.6 * (np.log(x) /np.log(9.4)) + 3.0 5.7175e-02 5.0419e-03
Logarithm & ag;,65 + ¢ 1.6 * (np.log(x)/np.log(9.6)) + 20.3 1.0371e+00  2.5663+00
29177e-01  6.4405e-01
Mean(Std) (4.9705e-01)  (1.2815¢+00)
0.8%x %+ +2.4*xx kx4 + —4.5%xx %3+ —4.6%kx*x*2+34*xx*x*x1 + —4.0xxx*0 | 5.3509e-01 1.2728e+00
—12%x %2+ 0.9%z* %1 + 0.8 x x x %0 6.5239¢-01 5.6994e-01
Polvnomial s 2 2T w*+2 +42xxxx1 + —4.7xx % %0 6.3632e-01 1.6108e+00
OlynomIaly = 2=y 4F 0T w24 465z xl - 1.0% 2 %50 74325¢-01  7.3617e-01
6.4176e-01  1.0474e+00
Mean(Std) (8.5286e-02)  (4.8064e-01)
1/(—2.0+x2) 1.0940e+00  2.6786e+00
1/(8.7 % x) 1.7257e-01  4.0537e-02
Reciorocal o s L 1/(—1.3 % ) 1.0940e+00  2.6786e+00
procal = oz 1/(1.9 % z) 1.6460e-01  3.8106e-02
- 6.3129¢-01  1.3590e+00
Mean(Std) (5.3430e-01)  (1.5238e+00)
—29.5 % np.where(z > 0,2,z % 0.8) + 8.7 4.4993e-01 2.7988e-01
—12.8 x np.where(z > 0,2,z % 0.5) + 16.0 1.7776e+00 3.4890e+00
i . 6.9 * np.where(z > 0,z,2 % 0.5) + —6.4 8.2498e-01 2.0839e+00
ReL.U z > max(0, 7) 6.0 + np.where(z > 0,2,z +0.9) + —22.5 8.2498¢-01  2.0839e+00
9.6937¢-01  1.9842e+00
Mean(Std) (5.6708¢-01)  (1.3152¢+00)
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D Periodic Function Setup

In terms of the distinct combinations of amplitude
(A), frequency (F), and phase (P), we synthesize
a series of synthetic functions. Then, we feed them
into LLM, to judge the impact of the three factors
and synthetic complexity on performance.

Our specific settings for amplitude, frequency,
and phase are as follows:

e Amplitude: [1.0, 5.0, 10.0, 20.0, 50.0, 100.0],
¢ Phase: [0.0, 1.5],

* Frequency: Three segments:

— In the range [0.1, 1.0] with a step size of
0.1.

— In the range [1.0, 10.0] with a step size
of 1.0.

— In the range [10.0, 200.0] with a step size
of 10.0.

These settings allowed us to systematically investi-
gate the influence of different amplitude, frequency,
and phase parameters on the predictive capabilities
of LLMs.

E Metric Details

We use MAE (Mean Absolute Error) and MSE
(Mean Squared Error) as measurement metrics, and
their formula details are as follows:

n .02
n

(€))

MAE:M (10)
n

F Frequency Decomposition on Monash.

We present the comparison results between Freq-
Decomp and LLMTime on the Monash dataset
in the Table 8. It can be seen that our method
Freq-Decomp demonstrates a significant advantage
over the baseline method LLMTime on the Monash
dataset.

G Zero-shot Forecasting with Text
Prompts

G.1 Method

The analysis in the previous Sections demonstrates
that LLMs possess a certain degree of zero-shot
predictive capability for time series data. Con-
sidering that LLMs inherently excel at process-
ing textual data, this section conducts cross-modal
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time series forecasting experiments by incorpo-
rating relevant text prompts. Specifically, given
the time series T = (t1,t9, - ,t,), this sec-
tion adds corresponding text prompt information
P = (wj,ws,- -+ ,w,) and concatenates both of
the sequences [P; T'] before inputting them into the
LLMs for zero-shot forecasting. Here, [; | denotes
the concatenation operation.

G.2 Results

The cross-modal time series forecasting results
with text prompts are presented in Table 9. LLM-
Time refers to the baseline model without the in-
clusion of text prompt information P, while Cross-
Modal represents the prediction performance when
both text prompts and time series information
[P; T are input together. This experiment was con-
ducted on the Darts dataset. It is evident that the
Cross-Modal approach consistently outperforms
the baseline model LLMTime across all datasets
when text prompt information is incorporated. This
indicates that methods based on LLMs can effec-
tively jointly represent time series and text informa-
tion, enhancing cross-modal time series prediction
performance through the utilization of textual in-
formation. The corresponding text prompts P are
shown below.

» AirPassengers. This time-series data is char-
acterized by a high degree of volatility and
an overall upward trend, suggesting that this
volatile upward trend is likely to continue in
the future, and therefore short-term volatility
and the possibility of long-term growth should
be considered in the forecast.

* AusBeer. The trend of this set of time-series
data shows a gradual rise then a peak and
finally a fall.

GasRateCO2. This is a highly volatile pe-
riod of time-series data that exhibits a certain
degree of cyclicality and randomness. Fore-
casts of future trends need to take into account
a variety of factors such as historical trends,
cyclical variations and possible external influ-
ences.

MonthlyMilk. This time-series data shows
a continuous upward trend, accompanied by
frequent and varying fluctuations, presenting
strong dynamics and complexity.



Table 8: Frequency Decomposition (Freq-Decomp) results on Monash.

Dataset(Monash) tourism monthly bitcoin fred md nn5 weekly
MAE MSE MAE MSE MAE MSE MAE MSE
LLMTime 1.0571 1.7150 1.2866 2.4910 0.8447 1.1519 1.0022 2.1980
Freq-Decomp(LLaMA2) | 0.3933 1.0036 0.1243 0.1019 0.4337 0.9981 0.7551 0.9970

Table 9: Zero-shot forecasting results with text prompts.

Dataset(Darts) AusBeer AirPassengers GasRateCO2 HeartRate
MAE MSE MAE MSE MAE MSE MAE MSE
LLMTime 09513 1.6420 0.9028 1.3850 1.2649 2.6860 1.2618 2.6131
Cross-Modal | 0.8158 1.1210 0.7574 0.7831 0.9619 1.5557 1.0732 1.9151
MonthlyMilk Sunspots Wine Wooly
Dataset(Darts) | \jAp "MSE MAE MSE MAE MSE MAE MSE
LLMTime 1.1724 1.9495 1.1403 1.9716 1.0875 1.6939 1.0561 1.7531

Cross-Modal

1.0050 1.7312

0.9335 1.3555

0.7582 0.8402

1.0858 1.6711

Table 10: Samples were randomly generated for each function based on different Basic function types.

Genre Vicuna Qwen
MAE | MSE | | MAE | MSE |
9.0164e-04 9.5720e-07 9.0164e-04 9.5720e-07
Samples 6.2864¢-04 6.3579¢-07 6.2864¢-04 6.3579¢-07
Sine 9.2959¢-04 1.2074e-06 9.2959¢-04 1.2074e-06
6.3207e-04 6.3277e-07 6.3207e-04 6.3277e-07
Mean(Std) | 7.7298e-04(1.4298e-04)  8.5829¢-07(2.4085e-07) | 7.7298e-04(1.4298e-04)  8.5829¢-07(2.4085¢-07)
1.0383e-03 1.2949¢-06 9.3550e-04 1.0040e-06
Samples 9.6355e-04 1.2982¢-06 8.4973e-04 1.0686¢e-06
Cosine 8.9707e-05 1.2365e-07 3.3118e-04 4.5646e-07
9.2881e-04 1.0349¢-06 9.2881e-04 1.0349¢-06
Mean(Std) | 7.5509e-04(3.8619¢-04)  9.3791e-07(4.8210e-07) | 7.6130e-04(2.5061e-04)  8.9099¢-07(2.5191e-07)
8.0035e-01 2.0240e+00 8.3408e-01 2.1060e+00
Samples 7.9831e-01 2.0189e+00 8.3408e-01 2.1060e+00
Absolue 8.0097e-01 2.0259e+00 8.3408e-01 2.1060e+00
8.0081e-01 2.0261e+00 8.3408e-01 2.1060e+00
Mean(Std) | 8.0011e-01(1.0639¢-03)  2.0237e+00(2.9038e-03) | 8.3408e-01(0.0000e+00) 2.1060e+00(0.0000e+00)
7.9990e-01 2.0235e+00 8.3391e-01 2.1052e+00
Samples 8.0004e-01 2.0234e+00 8.3382e-01 2.1049e+00
Linear 1.9788e-01 6.0302¢-02 1.9745e-01 6.0487¢-02
7.9969¢-01 2.0227e+00 8.3408e-01 2.1060e+00
Mean(Std) | 6.4938e-01(2.6067e-01) 1.5325e+00(8.4996e-01) | 6.7482¢-01(2.7561e-01)  1.5941e+00(8.8546e-01)
2.2265e-02 6.8289¢-04 2.1808e-02 6.8705e-04
) Samples 3.4981e-02 1.5917¢-03 2.5749¢-02 9.0281e-04
Logarithm 3.6029¢-02 1.6956e-03 1.1935e-02 1.9467¢-04
3.4981e-02 1.5917¢-03 3.4981e-02 1.5917¢-03
Mean(Std) | 3.2064e-02(5.6736e-03)  1.3905e-03(4.1072¢-04) | 2.3618e-02(8.2678e-03)  8.4406e-04(5.0219¢-04)
3.9087e-01 8.0511e-01 4.4991e-01 1.0453e+00
Samples 6.3900e-01 5.4080e-01 8.1822e-01 8.8458e-01
Polynomial 6.5851e-01 5.8106e-01 6.6118e-01 5.8204e-01
5.4461e-01 1.3841e+00 6.0543¢-01 1.5586e+00
Mean(Std) | 5.5825e-01(1.0580e-01)  8.2777e-01(3.3661e-01) | 6.3369¢-01(1.3170e-01)  1.0176e+00(3.5386e-01)
1.0940e+00 2.6786e+00 1.0940e+00 2.6786e+00
Samples 2.3126e-01 7.6730e-02 2.0173e-01 5.8156e-02
Reciprocal 1.0940e+00 2.6786e+00 1.0940e+00 2.6786e+00
1.0940e+00 2.6786e+00 1.0940e+00 2.6786e+00
Mean(Std) | 8.7832e-01(3.7358e-01) 2.0281e+00(1.1266e+00) | 8.7093e-01(3.8636e-01)  2.0235e+00(1.1347e+00)
2.0259¢-01 6.1406e-02 2.0396e-01 6.4134e-02
Samples 2.0443e-01 6.3682¢-02 1.9960e-01 6.1490e-02
ReLU 7.9998¢-01 2.0233e+00 8.3408e-01 2.1060e+00
8.0001e-01 2.0240e+00 8.3408e-01 2.1060e+00
Mean(Std) | 5.0175e-01(2.9824e-01) 1.0431e+00(9.8055e-01) | 5.1793e-01(3.1615¢-01)  1.0844e+00(1.0216e+00)
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* Sunspots. This time-series data is character-
ized by a combination of high-frequency os-
cillations and a slow upward trend over a long
period of time, as evidenced by sharp fluc-
tuations between spikes and troughs and an
overall gradual increase in peaks over time.

* Wine. This time-series data exhibits a char-
acteristic of high-frequency oscillations su-
perimposed on a long-term uptrend, where
each spike and trough corresponds to a large
change over a short period of time, while over-
all, the curve shows a progressively higher
pattern over time.

* Wooly. The trend of this set of time series
data shows frequent upward and downward
fluctuations, and on the whole shows an up-
ward and then downward trend, with certain
cyclical characteristics.

HeartRate. The trend of this set of time-series
data is characterized by a random fluctuation

H Probing Results under Time-LLM

Settings

Currently, research on time series prediction us-
ing LL.Ms can be categorized into two main ap-
proaches. The first approach retains the original
LLMs and leverages their intrinsic embedding lay-
ers to encode time series information into the lan-
guage space. The second approach modifies the
LLMs (e.g., Time-LLM(Jin et al., 2023), Onefi-
tall(Zhou et al., 2023)) by bypassing the LLMs’
embedding layers for time series encoding and in-
stead introduces additional temporal embedding
layers and prediction head layers. The latter ap-
proach requires sufficient data to align the newly
introduced layers with the LLMs’ hidden space.
As shown in our comparison with other state-of-
the-art LLM-based forecasting models, the second
approach is less suitable for zero-shot scenarios.
Among this second category, Time-LLM is a rep-
resentative work. It enables prediction using the
LLaMAZ2 model, and thus we analyze the perfor-
mance of the LLaMA?2 model under the Time-LLM
setup using the three probing experiments proposed
in our work.

H.1 Experimental Procedure

Alignment of new layers. We first trained the
newly introduced layers in Time-LLM to align their
representational space with that of the LLMs. The

16

5.00e-05
4.00e-05
4.00e-05
2 3.00e-05 )
3 3 3.00e-05
5 2.00e-05 5

g

H

1.00e-05

il | 8 2.00e-05
=
1.00e-05

0.00e+00
10 15 20 25 30 [
No. Layers

To 15 20 25 30
No. Layers

Figure 10: The variation in the average token impact
values across different layers based on LLaMA2-7B.

1.50e-05 2.506.05

1.25e-05
° o 2.00e-05
T 1.00e-05 4
2 £ 1.50e-05
£ 7.50e-06 5 \
g £ 1.00e-05 Y.
Z 5.00e-06 = LN

2.50e-06 5.00e-06

0.00e+00

0.00e+00

Figure 11: The variation in the average token impact val-
ues across token series (time series) based on LLaMA?2-
7B.

ETTHI1 dataset was used for this purpose, and the
LLaMA?2 model, consistent with that used in our
work, was employed. Importantly, the LLaMA2
parameters were not adjusted; only the parameters
of the newly added layers (e.g., reprogramming
layer, temporal embedding layer, output mapping
layer in Time-LLM) were fine-tuned.

Probing experiments. After aligning the new
layers, the model was initialized with the fine-tuned
parameters, with LLaMA?2 continuing to use its
pre-trained parameters. Under this setup, the three
proposed probing experiments were conducted on
LLaMAZ2, with all model parameters frozen.

H.2 Results

H.2.1 Token Perturbation Probing

The results of Token Perturbation Probing are ex-
hibited in Figure 10 and 11.

Layer-wise Analysis. The initial layers exhibit
minimal mutual influence, consistent with the re-
sults observed in our work, where LLMs were
directly used for zero-shot time series prediction
through in-context learning. However, since Time-
LLM does not generate predictions but instead uses
an external trainable prediction head (output map-
ping layer in Time-LLM), the trend in the final
layer is opposite to that observed in our work and
newly uploaded results. This highlights the differ-
ences between generating predictions using LLMs
and using an external prediction head.

Sequence-wise Analysis. Our work (using
LLMs with in-context learning to generate predic-



tions) shows a tendency to focus on the initial to-
kens of the input sequence, especially when special
tokens (e.g., <s> token) are present. In contrast,
Time-LLM, which uses an external temporal em-
bedding layer and prediction head, shows a dif-
ferent trend along the input sequence. LLMs do
not focus primarily on the initial tokens but rather
on identifying relevant tokens across the entire se-
quence. This is logical, as Time-LLM passes the
entire sequence’s encoded representation to the ex-
ternal prediction head, which requires the involve-
ment of all tokens in the sequence, consistent with
our analysis.

In summary, Token Perturbation Probing under
the Time-LLM setup, when applied to LLaMA2-7b,
reveals differences compared to direct generation-
based prediction using LLMs. However, these dif-
ferences are consistent with the characteristics of
the Time-LLM setup, indicating that Token Pertur-
bation Probing applies not only to generation-based
time series prediction with LLMs but also to sce-
narios where additional temporal embedding layers
and prediction heads are introduced.

H.2.2 Linear Probing

The results of Linear Probing are exhibited in Fig-
ure 12.

Layer-wise Variation. Due to differences in pre-
diction methods (generation vs. external predic-
tion head) and encoding approaches (using LLMs’
native embeddings vs. external temporal embed-
ding layers), the results of Linear Probing differ
slightly. Compared to the results in our work, Lin-
ear Probing under the Time-LLM setup shows more
pronounced variations along the layers of LLMs.
We speculate that this may be due to the differ-
ent encoding and prediction methods employed
in Time-LLM. The patch operation used in Time-
LLM results in a shorter encoded sequence than
the original time series, making it easier for LLMs
to operate on the entire sequence, leading to more
pronounced variations.

Prediction Preparation. Direct generation-
based prediction with LLMs requires the model to
prepare for generation in the final layers, leading to
a relatively stable phase in these layers. In contrast,
under the Time-LLM setup, where an external
prediction head is used, the final layers do not need
to prepare for generation, resulting in no obvious
stable phase.

In summary, Linear Probing can also detect the
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differences under the Time-LLM setup compared
to direct prediction using LLLMs, which aligns with
the encoding and prediction characteristics of Time-
LLM.

H.2.3 Vocabulary Mapping Probing

The results of Linear Probing are exhibited in Fig-
ure 13.

Special Token Mapping. Under the Time-LLM
setup, time series data undergoes a patch operation
and is fed into LLMs via an external temporal en-
coder. Consequently, unlike directly inputting time
series numerical sequences into LLMs, Vocabulary
Mapping does not map to numerical characters in
the vocabulary. In this experiment, we analyzed
the distribution of mappings to special tokens (e.g.,
<s> token) versus non-special tokens.

Layer-wise Distribution of Special Tokens. It
is evident that when directly using LLMs for
generation-based prediction, special tokens are
more frequently mapped in the later layers of
LLMs. In contrast, under the Time-LLM setup,
special tokens are mainly mapped in the earlier
layers of LLMs. This is likely due to the different
prediction methods: direct generation-based pre-
diction with LLMs requires special tokens in the
later layers to assist in the generation, whereas, un-
der the Time-LLM setup, LLMs’ task is to encode
time series information for the external prediction
head, which reduces the need to focus on special
tokens in the later layers.

Overall, due to the differences in prediction
methods and the modifications made to LLMs for
encoding and predicting time series, the results of
these three probing experiments under the Time-
LLM setup differ from those observed with direct
generation-based prediction using LLMs. However,
this also demonstrates that the probing methods pro-
posed in this paper are applicable to more complex
modifications of LLMs, yielding probing results
consistent with the characteristics of the respective
setups.

I Detailed Vocabulary Mapping Results

I.1 Numeric Mapping

We present nine examples from the Synthetic
datasets using the numeric mapping method. As
Figure 14 shows, almost all time series tokens are
mapped into numeric tokens in the first 3 layers of
LLM. As the number of layers increases, there is
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Figure 12: Linear probing results under Time-LLM settings.

a decreasing trend in the proportion of numeric to-
kens. However, when the length of the time series
increases, there is an increase in the proportion of
tokens that are mapped to numeric values.

L2 <s> Mapping

In addition, we further analyze the representation
of time series tokens across layers by mapping
them to the <s> token using the vocabulary map-
ping probe. As depicted in Figure 15, the tokens
mapped to <s> are predominantly distributed in
layers 20-30 for the Synthetic datasets. Similarly,
these mappings primarily occur in the initial 60 por-
tions of the time series. These findings reinforce
the notion that these layers capture global patterns
and leverage information from the early segments
of the time series. The consistent observation of
such mappings across different datasets suggests
the importance of integrating global information
for subsequent time series prediction tasks.

J Additional Linear Probe Results

As show in Figure 16, there is fluction in the posi-
tions in the initial layers, but they mostly stabilize
after the 10th layer, except for the Linear+Cosine
dataset, which stabilizes after 20th layer. This find-
ing suggests that, for most datasets, the initial lay-
ers of the LLMs go through an exploratory phase
where the positions of the time series tokens with
the smallest MSE may vary. However, as the num-
ber of layers increases, these positions gradually
stabilize, indicating that the model has learned the
stable patterns present in the datasets. This holds
true for most datasets, except for the linear+cosine
dataset, where stable positions with the smallest
MSE are obtained at deeper layers.
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K Additional Token Perturbation Probe

Figure 17 and Figure 18 depict 3D visualizations of
different token impact values on the AirPassengers
dataset, specifically focusing on the first 19 tokens.
The distinction between the two figures lies in the
presence or absence of the token <s>. In Figure
17, which includes the <s> token, it was observed
that almost all tokens across all layers exhibited
a significantly high level of attention towards the
first token <s>. Furthermore, as the token posi-
tion increased (indicating attention towards more
tokens), the attention values towards the first to-
ken <s> gradually decreased. On the other hand,
Figure 18, which excludes the <s> token, showed
that although the attention towards the first token
<s> remained high for all tokens, the attention to-
wards other tokens was not as low as in Figure 17.
In other words, the difference in attention towards
preceding tokens was not as pronounced as seen
in Figure 17. Additionally, there was an overall
decreasing trend in attention values across tokens
when the <s> token was absent.

Similarly, Figure 19 and Figure 20 both depict
3D visualizations of different layer impact values
on the AirPassengers dataset, focusing on the first
31 tokens. The distinction between the two lies in
Figure 19 including the <s> token, while Figure 20
excludes it. The observations in these figures align
with the previous ones, indicating that almost all
tokens exhibit significantly high attention towards
the first token <s>. Furthermore, in Figure 20
(without <s> token), the difference in attention
towards preceding tokens is not as substantial as
in Figure 19, while overall attention values show a
decreasing trend.
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Figure 13: Vocabulary mapping probing results under Time-LLM settings.
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This finding suggests that the initial token <s>
holds considerable importance and captures the
attention of the model across multiple layers. How-
ever, as the model attends to more tokens and the
token position increases, the relative importance of
the first token <s> diminishes. This observation
highlights the evolving relationship between tokens
and the decreasing emphasis on the initial token as
the model processes a wider context of tokens.

L Visualization

We also provide visualization of the prediction re-
sults of Freq-Decomp and LLMTime on the Darts
dataset. These results, based on different LLMs,
are displayed in Figures 22, 23, and 24.
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Figure 17: 3D visualizations of different token impact values on AirPassengers datasets.
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Figure 19: 3D visualizations of different Layer impact values on AirPasseng
i :

26



Layer (5)

Layer (1) Layer (2) Layer (3) Layer (4)
8 8 L I e 8 .
g g 3 T 3 | e
; TSR . .
8 3 50 § g 50
H H H H
£ £ £ £
H H H H
& & & &
o
5
Tokg 10
x7 20 20 nk""lx; 20
Layer (6) Layer (9) Layer (10) Layer (11)
v v v o o
H H H H H
2 2 2 T 2 2
1 \ T 50 S s s [ \ s \ ; K ! \ {
00 § K H . H H
H £ K H H
4 4 & & &
0 10,6 0 0 0 0
el g o S Rld 5 Rl 13 LRI RTR &
"s(x) 20 0 "s(x) 20 0 % S (x) 20 0 ™S (X)) 20 0 "s(x) 20 0 <
Layer (12) Layer (13) Layer (14) Layer (15) Layer (16) Layer (17)
8 8 | § I I
N N | N " "
g s H H 1
H H ! H H H
H H H H H
H H £ £ H
H H H H H
& & & & &
o
5
'%.,}20}‘5 20 0
Layer (20)
) ) [
v v o
g s H
g g s
H H F
i i H
& & &
° ,.Z 10 5 75 10 5
k"'llxl,s 20 0% ’fc',s”(l’s 200 <
Layer (24) Layer (28)
N N I )
4l s0 8 s s
§ H \ K
® s
£ £ £
H H H
£ £ £
& & &

0 0

5 5
Tora 10 B oo 10 B
kens o) 20 0 kens oy 20 0

Layer (31)

Layer (30)

Perturbation Values (z)
Perturbation Values (z)

0

5
Tok, 10
Kens (345 20

Figure 20: 3D visualizations of different Layer impact values on AirPassengers datasets without <s>.
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Figure 23: Visualization of prediction results based on LLaMA3.
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Figure 24: Visualization of prediction results based on CodeLlama.
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