
Published as a conference paper at ICLR 2023

GOGGLE: GENERATIVE MODELLING FOR TABULAR
DATA BY LEARNING RELATIONAL STRUCTURE

Tennison Liu
University of Cambridge
tl522@cam.ac.uk

Zhaozhi Qian
University of Cambridge
zq224@cam.ac.uk

Jeroen Berrevoets
University of Cambridge
jb2384@cam.ac.uk

Mihaela van der Schaar
University of Cambridge
Alan Turing Institute
mv472@cam.ac.uk

ABSTRACT

Deep generative models learn highly complex and non-linear representations to
generate realistic synthetic data. While they have achieved notable success in
computer vision and natural language processing, similar advances have been less
demonstrable in the tabular domain. This is partially because generative modelling
of tabular data entails a particular set of challenges, including heterogeneous
relationships, limited number of samples, and difficulties in incorporating prior
knowledge. Additionally, unlike their counterparts in image and sequence domain,
deep generative models for tabular data almost exclusively employ fully-connected
layers, which encode weak inductive biases about relationships between inputs.
Real-world data generating processes can often be represented using relational
structures, which encode sparse, heterogeneous relationships between variables.
In this work, we learn and exploit relational structure underlying tabular data
(where typical dimensionality d < 100) to better model variable dependence, and
as a natural means to introduce regularization on relationships and include prior
knowledge. Specifically, we introduce GOGGLE, an end-to-end message passing
scheme that jointly learns the relational structure and corresponding functional
relationships as the basis of generating synthetic samples. Using real-world datasets,
we provide empirical evidence that the proposed method is effective in generating
realistic synthetic data and exploiting domain knowledge for downstream tasks.

1 INTRODUCTION

Learning generative models for synthetic data is an important area in machine learning with many
applications. For example, synthetic data can be used to simulate settings where real data is scarce or
unavailable [7, 10], support better supervised learning by increasing quality in datasets [8], improving
robustness and predictive performance [69, 60], and promoting fairness [72]. Additionally, synthetic
data is increasingly being used to overcome usage restrictions while preserving privacy [32, 78, 54].

Deep generative models have achieved notable success in approximating complicated, high-
dimensional distributions as encountered in computer vision, natural language processing, and
more [46]. A key contributor to this success is that learning architectures can easily exploit relational
inductive bias that enhance the learning of joint distributions. Informally, relational inductive biases
encode assumptions about the relational structure, which describes variables, and their relationships
[3]. For example, image variables (pixels) have high covariance within a local region and relational
rules that are invariant across regions—properties which are exploited by kernels in convolutional
neural networks (CNN) to better model image distributions [42]. Similarly, sequence variables are
highly dependent on sequentiality and relational rules are invariant across time-steps—recurrence
relations leveraged by recurrent neural networks (RNNs) to capture distributions over time [27].

In this work, we hope to exploit similar relational inductive biases to better model real-world
tabular datasets (where typical dimensionality d < 100). However, while images and sequences are

1

Published as a conference paper at ICLR 2023

homogeneous data formats with known relational structure, tabular data commonly contain more
heterogeneous relationships (e.g. variables are only correlated with a small subset of other variables),
where the exact relational structure is obscured by domain-specific knowledge [62]. Without an
obvious relational structure, deep generative models almost exclusively employ multilayer perceptrons
(MLP) to learn representations on tabular data. This is less than ideal as MLPs encode virtually no
relational information—indeed, all variables can interact to determine any other variable’s value.

However, this all-to-all relational structure is often unnecessary, the data generating process (DGP)
of tabular data is better described using sparse relational structures [39, 4]. Variable dependencies
can be more accurately captured by considering them as edges and learning representations over
the resulting relational structure. We hypothesize that generative models exploiting the relational
structure can more adequately address certain challenges that arise during modelling distributions
for tabular data, including ▶ heterogeneous relationships between variables, ▶ smaller datasets,
which are more prone to overfitting, and ▶ the lack of mechanism to incorporate prior knowledge
that can improve modelling performance.

Contributions. We introduce Generative MOdellinG with Graph LEarning (GOGGLE), an end-to-end
framework that learns an approximate relational structure as the foundation of generative modelling.
More specifically, we devise a general message passing scheme that models tabular data by jointly
learning (1) the relational structure and (2) the corresponding functional relationships (dependencies)
in the learned structure. To the best of our knowledge, this is the first work to jointly learn the
relational structure and the parameters of a generative model to model tabular data. Additionally,
we propose regularization on variable dependencies to reduce model overfitting on smaller tabular
datasets and propose a simple mechanism to include prior knowledge into the generative process.

We demonstrate the advantages of our approach in a series of experiments on multiple real-world
datasets. We employ both qualitative and quantitative approaches to demonstrate that GOGGLE
achieves consistent improvements over state-of-the-art benchmarks in generating synthetic data and
exploiting prior knowledge for better downstream performance.

2 CHALLENGES IN TABULAR DATA GENERATION

While deep generative models have seen notable success in image and sequence domains, tabular data
is ubiquitous in many salient applications, including medicine, finance, and economics. Generative
modelling for tabular data presents a distinct set of challenges, which are largely open research
questions. Here, we highlight them in turn:

1. Complicated relational structure. Tabular data commonly contain heterogeneous relational
structures, including sparse dependencies (variables only dependent on a small subset of other vari-
ables), and heterogeneous functional relationships (dependencies) between variables [62]. Unlike
in images and sequences, where the relational structures (locality and sequentiality respectively)
are better understood (and arguably generalizable), variable dependencies in tabular datasets are
domain specific and rarely known.

2. Overfitting and memorization. Modern deep generative models are over-parameterized, thus
requiring large datasets to learn the underlying distribution without overfitting [1]. This is espe-
cially demanding on tabular datasets that are smaller and where collection is difficult/expensive.
Real-world DGPs are sparse in structure, and we address overfitting concerns by enforcing sparsity
in variable dependencies, thus achieving a regularization effect by restricting the hypothesis
space. Additionally, as variables can only be generated using their neighborhoods, the model is
incentivized to find informative neighbors.

3. Domain knowledge. In many fields, such as medicine or social sciences, we have rich domain
knowledge on dependence between variables, sparsity, or importance of specific variables (i.e. de-
gree of connectivity [74]). Incorporating prior knowledge is especially useful in practical settings
where we may not have large datasets but can obtain expert knowledge to aid in model learning.
As far as we know, this is a capability that is currently lacking in tabular deep generative models.
Our generative process takes into account the relational structure, allowing a diverse range of
(partial) domain knowledge to be incorporated.

A distinction. We emphasize that the goal of our work is not probabilistic structure discovery,
which aims to discover the unique probabilistic graph from observed data [15, 85]. As there is

2

Published as a conference paper at ICLR 2023

Table 1: Overview of generative models in the tabular domain. Comparisons are made on
underlying model class and deep learning module, generative model distribution pθ, and the
following desiderata: model is capable of (1) generating in-distribution samples, (2) regularizing
variable dependencies, (3) incorporating prior knowledge.

Model Model Class/
Module Generative model pθ (1) (2) (3)

Non-neural methods
BN BN / None

∏d
i pθ(xi|Pa(xi)) ✓ ✓ ✓

MM MM / None
∑K

k=1 πkN (µk, σk; θ) ✓ ✗ ✗
Neural methods

CopulaGAN GAN / MLP ∫
pθ(x|z)p(z) dz ; p(z) ∈ PZ

✓ ✗ ✗
TableGAN GAN / MLP ✓ ✗ ✗
CTGAN GAN / MLP ✓ ✗ ✗
TVAE VAE / MLP ✓ ✗ ✗

GOGGLE VAE / MPNN
∏d

i pθ(xi|N (i);G) ; G ∈ G ✓ ✓ ✓

generally a set of plausible graphs that have equal likelihood on the training data, such methods make
assumptions about the graph type, variable distribution, and functional relations, which are necessary
to disambiguate a unique graph. In contrast, the aim of GOGGLE is to learn an approximate relational
structure to guide generative modelling (see Appendix D).

3 RELATED WORKS

Traditionally, generative modelling was performed through explicit parameterisation and estimation
of a joint probability distributions. Examples of this include Bayesian networks (BN) [82, 33],
mixture models (MM) [56, 29] and copulas (CP) [68, 49]. These models are limited in more complex
distributions, where it is difficult to learn high-dimensional dependencies correctly.

Recent advances in deep generative modelling (including VAEs [35], GANs [23], normalizing flows
(NFs) [55] have seen models that can generate realistic synthetic data from complex, high-dimensional
distributions. Specifically for tabular synthetic data, [76] introduced CTGAN and TVAE, which are
GAN-based and VAE-based models respectively that tackled many practical issues of modelling
tabular data, including multimodality and mixed data types. Similarly, TableGAN [47] employed
a GAN framework with an auxiliary classifier to predict the label of a generated sample. medGAN
[10] and ehrGAN [7] are more specialist methods developed for healthcare specifically. Instead
of generating synthetic data, neural methods have also been employed to perform data imputation
[22, 80]. Perhaps most similar to our work, [37] (and its tabular variant [75]) learn a causal graph in
the representation space to generate synthetic data, but assume access to the true causal graph.

The aforementioned methods resort to MLPs to model complex dependencies in an all-to-all fashion.
Additionally, they employ regularization in the weight space (e.g. L2 regularization [58] and Dropout
[66]) to reduce overfitting. These effects, as we will discover in §5, are unlikely to be optimal for
generative performance. Our work is also related to the field of relational inference, which seeks
to infer relationships between objects from observation data alone. Representative works include
[36], which seeks to infer interactions between objects in interacting systems, and [24, 25] that infers
relationships from omic interactions. In these works, a correctly recovered relational structure is
the object of inference. This stands in stark contrast to our work, where a partially correct structure
is satisfactory for our purposes. Indeed, as we shall show later, even learning a partially correct
structure can greatly improve synthetic data performance (see Appendix D for further discussion).
The key contribution of this work is in learning the relational structure jointly with deep representation
learning modules to improve generative modelling. We provide an overview in Table 1, evaluating
related methods based on their ability to address the previously described challenges.

4 GOGGLE: GENERATIVE MODELLING WITH GRAPH LEARNING

4.1 PROBLEM FORMULATION

Generative modelling. Generative modelling for tabular data attempts to uncover a probability
distribution pX over X ∈ X ⊆ Rd.1 We have access to a training dataset D, which consists of N
i.i.d. samples x ∼ pX . The goal is to learn the parameters θ of a generative model such that the

1
Generative modelling for high-dimensional datasets, as those encountered in genomics (where d typically> 1000) is outside the scope of this work.

3

Published as a conference paper at ICLR 2023

Initialise 𝐺!

Initialise 𝐹"

M
P

N
N

M
P

N
N

M
P

N
N… …

Training

𝜃! ← 𝜃 + 𝜂∇" ℒ ⋅ + ℛ ⋅

𝑞(𝑧|𝑥) 𝐹!(𝑧; 𝐺") 𝑥*

Inference

Trained Graph 𝐺#

Trained Model 𝐹"

ℛ(𝐺")
Prior

Knowledge

𝐿 Rounds of Message
Passing

ℒ(⋅) Loss
Function

𝑥 ∈ 𝒟

Loss
Function

Update Graph 𝐺#

Update 𝐹"

𝑧 ∼ 𝑝#

𝑥* 𝒟2

1

2

3

Figure 1: Key components of GOGGLE Framework. 1 Simultaneous learning of relational structure
Gϕ and Fθ s.t. generative process respects relational structure. 2 Injection of prior knowledge and
regularization on variable dependence. 3 Synthetic sample generated using x̂ = Fθ(z;Gϕ) , z ∼ pZ .

model distribution pθ is close to pX . Most deep generative models employ a set of noise variables
Z ∈ Z ⊆ Rq , which follows a tractable distribution pZ ∈ PZ (e.g. Gaussian distribution). Instead of
learning pX directly, the model learns a mapping gθ : Z → X where the transformed variable gθ(z)
has the same distribution as X . The mapping gθ can either be a surjective function (as in GANs [23]),
a bijective function (as in normalizing flows [55]), or a stochastic mapping (as in VAEs [35]) [45].

Relational structures as graphs. A graph G = (X,E) is a representation of the relational structure,
where X denotes random variables and E edges that encode relationships between variables. The
most general type of graph is a mixed graphs, which contain both directed and undirected edges,
where an undirected edge e.g. Xi −Xj is encoded as two directed edges Xi → Xj and Xj → Xi.
Importantly, a graph admits a sparse and compact representation, which underlies many real-world
generative processes [6, 41, 20]. Specifically, we can say that a variable Xi is only dependent on other
variables with directed edges into Xi, N (i) = {Xj : (Xj → Xi) ∈ E}. In light of simplicity, we
will refer to N (i) as the neighborhood of Xi. Formally, we can state that each variable is determined
by a specific functional relationship: Xi = fi(N (i), εi), where εi is a noise variable.

4.2 OVERVIEW

We hypothesize that sparse dependencies in a tabular dataset can be more accurately captured through
a relational structure. To that end, we propose a novel framework of generative modelling that is
guided by an underlying relational structure. While tabular generative models are conventionally
constructed with MLPs, we introduce a message passing scheme that operates on a learned graph,
better capturing heterogeneous variable relationships, and allowing regularization and prior knowledge
to be injected through the adjacency matrix. As the underlying structure is not known a priori (or
partially observed at best) in realistic settings, we design an end-to-end generative model to learn the
relational structure simultaneously with the corresponding functional relationships.

Figure 1 provides a schematic overview of GOGGLE. The four key components are: ▶ learnable
relational structure, which is parameterized by a graph and represented using a weighted adjacency
matrix Gϕ that indicates dependence between variables; ▶ generative model Fθ(·) that maps from
noise vector z ∼ pZ such that the transformed variable Fθ(z;Gϕ) has the same distribution as X .
The way the relational structure and the generative model interacts is that the generative model only
allows the set of relations deemed important by the learned relational structure Gϕ to influence the
generation of a variable. Additionally, there are the ▶ loss function L(·) and regularization term
R(Gϕ) used to train the model and encode prior knowledge, respectively.

4.3 LEARNING THE RELATIONAL STRUCTURE

Learning the relational structure entails exploring possible adjacency matrices based on relationships
between variables. In the absence of informative prior knowledge, we make the key (but minimal)
assumption of sparsity (viz. Assumption 1), or that the relational structure is sparser than a fully-

4

Published as a conference paper at ICLR 2023

connected graph. Intuitively, one can consider MLPs that represent all-to-all relationships as being
described by a fully-connected relational structure. The sparsity assumption encourages learning of a
sparse structure that also determines the most informative neighborhood that generates each variable
with the highest likelihood. When we have some prior knowledge about variable dependencies, we
will incorporate it through the adjacency matrix and a regularization term in the loss function.
Assumption 1 (Graph sparsity). We assume there exists a graph G such that the adjacency matrix
A = A(G) ∈ {0, 1}d×d has at least one instance where Aij = Aji = 0, indicating variables Xi

and Xj are not connected.

In our graphs, nodes are random variables and edges denote dependence between them. We represent
an undirected edge Xi −Xj as two directed edges, one from Xi → Xj , and one from Xj → Xi.
Specifically, we learn the entries in the unnormalized adjacency matrix, G̃ϕ ∈ Rd×d, which is then
normalized through an element-wise sigmoid(·) function to obtain Gϕ ∈ [0, 1]d×d. Intuitively,
Gϕ[i, j] represents the strength of the dependence between Xi → Xj .2

4.4 LEARNING THE FUNCTIONAL RELATIONSHIPS

The generative process must be consistent with the relational dependencies specified by the learned
relational structure Gϕ. We learn a generative model Fθ : Z → X by learning the mapping from
a tractable noise distribution (that can be easily sampled from) to the data distribution. For the
ease of exposition, we can informally say that the generative model describes the set of functional
relationships between variables Fθ = {f1, · · · , fd}, where each fi describes how Xi depends on its
neighborhood N (i) in Gϕ.

Learning challenges. Learning Fθ leads to two challenges. ▶ Computational complexity: Gϕ is
continuously updated during training, possibly resulting in different dependencies (different set of d
functional relationships) that has to be learned, limiting the scalability of the approach. ▶ Cycles
in the graph: Consider an undirected edge between two variables Xi −Xj . In this example, Xi is
in the neighborhood of Xj , and the generation of Xi will have to depend on the values of Xj . The
reverse is also true. This highlights that Fθ(·) should be able to work with potential cycles in the Gϕ

to ensure the functional relationships in the model are faithful to the learned graph.

A flexible parameterization. To address these challenges, we employ a message passing neural
network (MPNN) as a flexible and expressive parameterisation of the functional relationships model
[21]. This scheme addresses the aforementioned challenges by naturally handling cycles in the
graph and relaxing the computational burden of learning functional relations by applying a common
information propagation procedure. The proposed message passing scheme performs L rounds of
message passing and generates each variable x̂i from an initial embedding h

(0)
i , which is constructed

using the noise term zi. Each round l ∈ [L] of message passing is defined in terms of a message
function σ(l)(·), an aggregation function ⊕(l)(·) and an update function γ(l)(·).
During each round l, a message m

(l)
j is constructed for each of the variables in the neighborhood

∀ j ∈ N (i), using the message function σ(l):

m
(l)
j = σ(l)

(
h
(l−1)
j

)
(1)

Then, the aggregation function ⊕(l) combines all incoming messages from the neighborhood through
weighing each individual message by the learned weight in Gϕ:

h
(l)
N (i) = ⊕(l)

(
{Gj,im

(l)
j , ∀ j ∈ N (i)}

)
(2)

The variable embeddings h(l)
i are then updated using the aggregated neighborhood messages and its

previous embedding h
(l−1)
i through the update function γ(l):

h
(l)
i = γ(l)

(
h
(l)
N (i), h

(l−1)
i

)
(3)

Each round of message passing exploits the relationships and sparsity in the learned structure by
generating each variable using solely information from variables it depends on.

2
One could also interpret Gϕ[i, j] as the probability of an edge existing from Xi → Xj and obtain a binary adjacency matrix by sampling, where the

parameters could be learned through the Gumbel-Softmax trick [31].

5

Published as a conference paper at ICLR 2023

∼ 𝒩(𝑧; 𝜇, 𝜎)

𝑞(𝑧 ∣ 𝑥)

𝑓!!

𝑓!"

…

ℎ!
"

ℎ#
"

…

Message Passing Round 𝑙

𝑥!

…

𝑥#

𝑧!

…

𝑧#

𝑥$!

…

𝑥$#

Input
Features Latent Vector

Embedding Reconstruction

M
P

N
N

 R
ound 1

ℎ!
(!)

…

ℎ#
(!)

M
P

N
N

 R
ound L

ℎ" ℎ#

ℎ$

ℎ%

ℎ&

𝑚!

𝑚'

Learned Graph 𝐺!

𝐹!(𝑧; 𝐺")Generative Model

		𝑚"
($)= 𝜎($) ℎ"

$&'

ℎ𝒩)
($) =	⊕	

($) 𝑚"
$, ∀	𝑗 ∈ 𝒩 𝑖

ℎ)
($) = 𝛾($) ℎ𝒩)

$,		ℎ)
$&'

Figure 2: Generative architecture. The generative model is consistent with the learned relational
structure by generating each variable using its neighborhood. GOGGLE adopts a VAE architecture
with a MPNN to gradually generate synthetic data through L rounds of message passing.

To obtain the initial node embeddings h(0), we add the variable index as a one-hot en-
coded vector to the latent variable, which is then transformed using an embedding function,
i.e. h(0)

i = fθi(concat[zi,1i]). Here, 1i is the one-hot vector for the variable i, concat[·] is
the concatenation function and fθi(·) is the embedding function implemented using a single-layer
MLP. This transformation encodes meaningful variable-specific information in messages and embed-
dings. Using this scheme, the learning problem is drastically simplified from learning d functional
relationships in each round to just two message passing functions.

Lastly, σ(l) and γ(l) are arbitrary, learnable functions, and ⊕(l) is a permutation-invariant function,
including mean, max pooling, or sum. In other words, Fθ = {(σ(l), γ(l),⊕(l)) ∀ l ∈ L}. The node
embeddings after the last round are taken to be the generation, x̂i = h

(L)
i . The number of rounds L

of message passing, the choice of σ, γ,⊕, and the construction of the initial embeddings h(0) are
design choices that should be made to suit each task specifically. Additionally, the scheme can be
synchronous, which is useful when all the variables are being generated jointly, or asynchronous,
which is more suitable when the variables are being generated sequentially.

4.5 PUTTING IT TOGETHER

We adopt a VAE style architecture [35] and perform amortized inference on the initial noise vectors.3
Specifically, the noise vector is sampled from an encoder using the reparameterization trick z =
µ + σε, ε ∼ N (0, I). The functional relationships model Fθ(·) plays the role of the decoder to
generate x̂ = Fθ(z;Gϕ) ∼ p(x|z). The exact design of the method is visually illustrated in Figure 2.

Loss function and regularization. The generative model and learnable graph are jointly trained by
combining the classic ELBO loss function with a graph regularization term R(Gθ). The training
objective is described below, where λ is a hyperparameter controlling the regularization strength.

J (θ, ϕ) = ELBO(X, X̂; θ, ϕ) + λR(Gϕ)

= Eq(z|x)[ln pθ(x|z;Gϕ)]︸ ︷︷ ︸
Likelihood

−DKL[q(z|x)||p(z)]︸ ︷︷ ︸
KL

+ λR(Gθ)︸ ︷︷ ︸
Regularisation

(4)

A key advantage of GOGGLE is that we can easily incorporate prior knowledge about the graph
through the regularization term R(Gϕ) .This term will encourage the adjacency matrix to have certain
characteristics. In general, a sparsity prior R(Gϕ) = ||Gϕ||p will reward sparse graphs, and partial
knowledge of feature relationships can be encoded through the prior R(Gϕ) = ||Gϕ −G0||p, where
|| · ||p denotes the p-norm. We provide a more thorough discussion on the types of prior knowledge
that can be incorporated in Appendix B.

Training and generation. We implement message construction and embedding update func-
tions using single-layer ReLU-activated MLP. Specifically, σ(l) = ReLU

(
W (l)

m ×h
(l−1)
j

)
and γ(l) =

ReLU
(
W (l)

u ×concat
[
h
(l)

N(i)
,h

(l−1)
i

])
. Here, Wm and Wu are weight matrices of their respective MLPs.

Additionally, we aggregate messages using the mean, which can be viewed as taking a weighted
average over messages from a neighborhood.

3
We note that while we consider a VAE architecture, the appropriate generative architecture and loss functions (e.g. GANs, normalizing flows) should be designed

with the application in mind and such extensions are left for future works.

6

Published as a conference paper at ICLR 2023

We use a standard normal prior for pZ = N (0, I). The adjacency matrix is initialized as a fully-
connected graph, where edge weights are gradually refined during learning. In practice, we apply
a hard threshold on the learned adjacency matrices, where entries < 0.1 are zeroed out (similar to
ReLU activation). In the absence of prior knowledge, we impose a sparsity penalty R(Gϕ) = ||Gϕ||1.
Once the training is complete, a synthetic sample can be generated by first sampling a noise vector
z ∼ pZ and passing it through the functional relationships model: x̂ = Fθ(z;Gϕ).

4.6 A REMARK ON DATA AUGMENTATION

Moreover, and this might be of independent interest, we show that by using the blueprint presented,
we can also construct a generative model that can perform data augmentation. We consider data
augmentation as the ability to conditionally generate synthetic data when conditioned on any variable
to be a specific value, i.e. x̂ = Fθ(z,Xi = xi;Gϕ). To do so, we assume the DGP can be represented
by a directed, acyclic graph (DAG), meaning that variables are generated sequentially (asynchronous
message passing), following a topological order πGϕ

obtained from the learned graph. Specifically,
the generation of each variable is described through a structural equation model: x̂i = fi(N̂i, zi)
[50]. During generation, we can condition specific variables on a particular value to allow sampling
from the conditional distribution. We elaborate more on this method in Appendix A.

5 EXPERIMENTS

The core claim in this work is that exploring relational inductive biases can better capture the sparsity
and heterogeneous relationships in tabular data, and consequentially lead to enhanced learning of
generative models. We quantitatively evaluate aspects of our method to support this claim:

1. Synthetic data quality: How good is the synthetic data? §5.1 quantitatively evaluates the
characteristics of the synthetic data with respect to a variety of state-of-the-art benchmarks.

2. Prior knowledge: Does prior knowledge improve performance? §5.2 evaluates whether prior
knowledge about variable dependence can improve generation performance.

3. Gains: Why does it work? §5.3 investigates the dynamics of relational structure learning and
generative model, and to what extent the relational structure contributes to performance gains.

In the interest of limited space, we attach additional results in Appendix C. Specifically, we include:
4. Additional datasets: evaluating synthetic data performance on 6 more datasets; 5. t-SNE and
graph visualizations: t-SNE visualization on synthetic datasets to qualitatively investigate quality
[73]; we also examine the graphs learned in our experiments; 6. Sensitivity analysis: to better
evaluate the performance of our method on different dataset sizes and number of features; 7. Data
augmentation: assesses an alternative implementation of our method to perform data augmentation.

Benchmarks. We compare against state-of-the-art tabular synthetic data models, including Bayesian
Networks (BN) [51] and GAN-based models: CTGAN [76] and TableGAN [47]; VAE-based models:
TVAE [49]; and normalising flows NFLOW [55].

Following the experiment design in recent works [49, 76], we employ 8 real-world datasets from the
UCI repository [16], and 2 datasets from the BN repository [39]. We employ datasets with different
number of samples (ranging from 569 to 581012) and different feature counts (ranging from 12 to
168) to gain a better understanding of our method’s performance profile. We provide additional
information about benchmarks, datasets, hyperparameters, and evaluation methods in Appendix B.
For all results, we report mean ± std averaged over 10 runs. Our code is provided on GitHub.4

5.1 EVALUATION OF SYNTHETIC DATA

To assess the quality of synthetic data, we observe three desiderata (similar to [79, 76]): ▶ qual-
ity—samples should be realistic, cover the data distribution, and be generalized. We evaluate using
the three-dimensional metric (α-precision, β-recall, authenticity) proposed in [1], reporting their
average. ▶ detection—samples should be indistinguishable from the real data. We report the AU-
ROC performance of three post-hoc classifiers to distinguish real and generated samples. Finally, ▶
utility—samples should be just as useful as the real data on predictive tasks (i.e. train-on-synthetic,

4
https://github.com/tennisonliu/GOGGLE; https://github.com/vanderschaarlab/GOGGLE

7

https://github.com/tennisonliu/GOGGLE
https://github.com/vanderschaarlab/GOGGLE

Published as a conference paper at ICLR 2023

Table 2: Quality, detection, and utility of synthetic data. Bold indicates the best performance.

Dataset Adult Breast Covertype Credit

Quality (↑)
(higher is better)

BN 0.61 ± 0.04 0.59 ± 0.02 0.59 ± 0.02 0.61 ± 0.03
MM 0.58 ± 0.02 0.48 ± 0.03 0.52 ± 0.06 0.57 ± 0.03

CTGAN 0.57 ± 0.01 0.58 ± 0.02 0.59 ± 0.04 0.61 ± 0.07
TableGAN 0.59 ± 0.01 0.35 ± 0.06 0.63 ± 0.04 0.61 ± 0.06
TVAE 0.59 ± 0.03 0.48 ± 0.02 0.60 ± 0.07 0.53 ± 0.03
NFLOW 0.61 ± 0.02 0.53 ± 0.02 0.58 ± 0.02 0.58 ± 0.03
GOGGLE 0.62 ± 0.02 0.61 ± 0.01 0.59 ± 0.06 0.61 ± 0.07

Detection (↓)
(lower is better)

BN 0.69 ± 0.03 0.69 ± 0.02 0.66 ± 0.03 0.70 ± 0.02
MM 0.72 ± 0.04 0.71 ± 0.04 0.80 ± 0.05 0.75 ± 0.05

CTGAN 0.70 ± 0.03 0.70 ± 0.02 0.72 ± 0.03 0.71 ± 0.04
TableGAN 0.76 ± 0.03 0.80 ± 0.04 0.79 ± 0.05 0.69 ± 0.04
TVAE 0.73 ± 0.04 0.72 ± 0.03 0.72 ± 0.05 0.77 ± 0.03
NFLOW 0.78 ± 0.03 0.72 ± 0.05 0.79 ± 0.05 0.74 ± 0.03
GOGGLE 0.68 ± 0.04 0.68 ± 0.03 0.72 ± 0.03 0.69 ± 0.03

Utility (↑)
(higher is better)

BN −0.01 ± 0.00 −0.08 ± 0.01 −0.06 ± 0.00 −0.06 ± 0.00
MM −0.06 ± 0.01 −0.08 ± 0.01 −0.12 ± 0.03 −0.10 ± 0.02

CTGAN −0.05 ± 0.00 −0.06 ± 0.09 −0.06 ± 0.01 −0.05 ± 0.03
TableGAN −0.04 ± 0.01 −0.31 ± 0.08 −0.18 ± 0.04 −0.21 ± 0.05
TVAE −0.08 ± 0.01 −0.12 ± 0.02 −0.06 ± 0.01 −0.06 ± 0.00
NFLOW −0.04 ± 0.01 −0.07 ± 0.01 −0.08 ± 0.02 −0.13 ± 0.03
GOGGLE −0.01 ± 0.00 −0.04 ± 0.01 −0.05 ± 0.02 −0.04 ± 0.01

test-on-real) [19]. Utility is evaluated based on average AUROC change of three downstream
prediction models trained on synthetic data relative to real data.

Table 3: Average rank of models. GOGGLE con-
sistently achieves superior synthetic data quality.

Quality (↑) Detection (↓) Utility (↑)
CTGAN 4.9 4.1 4.1

TableGAN 4.8 4.8 4.5
TVAE 3.6 4.1 3.1
BN 1.7 2.1 2.3

NFLOW 2.9 3.5 3.2
GOGGLE 1.1 1.4 1.3

As indicated in Table 2, GOGGLE consistently
generates higher quality and lower detection
synthetic data relative to benchmarks. This im-
provement is especially noticeable on smaller
datasets (i.e. breast and credit). In this regime,
conventional generative models will overfit to
the limited Dtrain, whereas GOGGLE exploits
sparsity to achieve better generalization perfor-
mance. We note that BN emerge as our strongest
competitors in this setting (also noted in [76]),
frequently out-performing deep generative models. The logical hypothesis is that BN generalize
well to smaller datasets due to their stricter assumptions on the underlying graph, adding a strong
regularization effect. However, on larger-scale datasets, learning a high-quality BN is more diffi-
cult. GOGGLE, however, maintains superior performance on larger, more complex datasets as our
assumptions are less restrictive. On the utility aspect, indicates superior predictive performance on all
datasets. Remarkable, the predictive scores on GOGGLE’s synthetic data are very close to those on
real data. We evaluate on 6 additional datasets in Appendix C.1, and reported the average rank of
each method across all 10 datasets in Table 3.

5.2 GENERATION WITH PRIOR KNOWLEDGE

Next, we investigate whether incorporating partial knowledge through the relational structure can
lead to enhanced performance. Specifically, we regularize the learned graph G with partial prior
knowledge G0, i.e. RG = ||G−G0||1. This form of incorporating prior knowledge reflects that we
are not completely confident in our prior knowledge.

We evaluate on ECOLI an MAGIC, where we know the true underlying graph a-prior. Specifically,
we investigate three settings: ▶ zero knowledge GOGGLE0, where no domain knowledge is used, ▶
partial knowledge GOGGLE50, where 50% of edges are known (by randomly sub-sampling 50% of
the edges), and ▶ complete knowledge GOGGLE100 where the complete graph is known. We are
interested in evaluating in each setting when different amounts of data are available to train a model.
We visually depict the effect of prior knowledge on synthetic data quality in Figure 3.

The DGPs for both datasets (known a-prior) are Gaussian Bayesian Networks, matching exactly
the assumptions of the BN baseline, giving BN the upper hand as they have the correct model
specification. GOGGLE, even with partial knowledge, achieves significant performance gain when no
prior knowledge is employed. The performance gains from prior knowledge are especially noticeable
in lower data regimes, i.e. when |Dtrain| < 500 samples. This highlights a key advantage of our

8

Published as a conference paper at ICLR 2023

Table 4: Ablation study. Bold indicates the best performance.

Adult Credit
Quality (↑) Detection (↓) Utility (↑) Quality (↑) Detection (↓) Utility (↑)

GOGGLE-ER 0.41 ± 0.07 0.81 ± 0.05 −0.54 ± 0.08 0.46 ± 0.03 0.71 ± 0.03 −0.05± 0.01
GOGGLE-COV 0.53 ± 0.06 0.74 ± 0.05 −0.07 ± 0.01 0.55 ± 0.04 0.67 ± 0.07 −0.03± 0.01
GOGGLE-BN 0.56 ± 0.04 0.69 ± 0.05 −0.05 ± 0.01 0.41 ± 0.09 0.67 ± 0.04 −0.06± 0.01

GOGGLE-DENSE 0.49 ± 0.09 0.69 ± 0.04 −0.14 ± 0.03 0.56 ± 0.03 0.62 ± 0.08 −0.07± 0.01
GOGGLE-NMP 0.53 ± 0.07 0.72 ± 0.08 −0.15 ± 0.03 0.60 ± 0.04 0.65 ± 0.05 −0.03± 0.00
GOGGLE 0.62 ± 0.02 0.69 ± 0.03 −0.01 ± 0.00 0.60 ± 0.06 0.70 ± 0.02 −0.04 ± 0.00

250 500 1000 2000
0.00

0.25

0.50

Quality (↑)
(higher is better)

250 500 1000 2000
0.00

0.25

0.50

Detection (↓)
(lower is better)

250 500 1000 2000

−0.2

0.0

Utility (↑)
(higher is better)

GOGGLE0 GOGGLE50 GOGGLE100 BN CTGAN NFLOW

250 500 1000 2000

Dataset Size

0.00

0.25

0.50

250 500 1000 2000

Dataset Size

0.0

0.5

250 500 1000 2000

Dataset Size

−0.1

0.0

0.1

Figure 3: Prior knowledge and generation. ECOLI (top row) and MAGIC (bottom row).

model—to the best of our knowledge, it is the first generative model that can leverage prior knowledge
to generate more realistic synthetic samples.

5.3 ABLATION STUDY

GOGGLE is designed with the joint learning of both graph and functional relationships model.
Having empirically demonstrated strong overall results, an immediate question is how important the
dynamics of the two parts are for performance. Specifically, we consider the performance gain due
to joint learning over learning the two parts separately. This includes the case where a graph is first
learned separately: (1) sparse graph initialized using a sparse Erdos-Renyi random graph, with 10%
connectivity (GOGGLE-ER) [18], (2) initialized using cross-correlation matrix between variables
(GOGGLE-COV), (3) learned using the PC algorithm (GOGGLE-BN) [64]. We also consider the case
(4) when a graph is not learned but initialized as a fully connected dense graph (GOGGLE-DENSE);
and (5) when the functional relationships model is replaced by a predictor that generates each variable
using its neighborhood (GOGGLE-NMP). We perform an ablation study to report the performance
achieved by each of these settings in Table 4.

We empirically observe that, the joint learning of both components is crucial to achieve consistently
good performance. More specifically, we note that GOGGLE-ER achieves the worst performance
across all settings. This is expected as the graph is randomly initialized. GOGGLE-COV learns
an undirected graph, and only considers first order dependencies, leading to worse performance,
while GOGGLE-BN learns a directed graph, which is too restrictive an inductive bias if incorrect.
GOGGLE-DENSE employs a fully connected graph, and is equivalent to MLP-based generative
models. While it achieved lower detection on Credit, it is prone to overfit, resulting in lower quality
and utility scores. Lastly, GOGGLE-NMP generates each variable using only its immediate neighbors
and ignores information from variables more than 1-hop away, leading to worse performance.

6 DISCUSSION

In summary, we proposed GOGGLE, a novel tabular data generative model that jointly learns the
relational structure and functional relationships through a message passing scheme to better capture
the sparsity and heterogeneous relationships in tabular data. The explicit use of relational structure to
guide generation allows prior knowledge and regularization on variable dependencies to be directly
modelled. Limitations and future work. In this work, we focus on tabular data regime, where
d < 100, future works can focus on higher-dimensional tabular data (e.g. genomics). To scale to
higher-dimensions, we suggest extending the relational structure learning to the representation space
for better generative models [43].

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We thank the anonymous ICLR reviewers as well as members of the van der Schaar lab for many
insightful comments and suggestions. Tennison Liu would like to thank AstraZeneca for their
sponsorship and support. Jeroen Berrevoets thanks W.D. Armstrong Trust for their support. This
work is also supported by the National Science Foundation (NSF, grant number 1722516) and the
Office of Naval Research (ONR).

ETHICS AND REPRODUCIBILITY STATEMENT

Ethics. This paper addresses a fundamental and well-established problem in ML. Synthetic data has
the potential for social good, by allowing unfettered access to otherwise private data, an aspect which
should be explored in future works. However, we provide a word of caution as synthetic data will
inherit potential bias (if any) in the original dataset and inclusion of incorrect prior knowledge can
lead to unintended downstream effects.

Reproducibility. We detailed exact implementation details, including dataset preprocessing, im-
plementation of benchmark methods, architecture design, hyperparameter tuning, and evalua-
tion methods in Section 4, Section 5, and Appendix B. All datasets used in this work can
be downloaded from the UCI repository [16] and we provide the code to produce our results
at https://github.com/tennisonliu/GOGGLE and the wider lab repository https:
//github.com/vanderschaarlab/GOGGLE.

REFERENCES

[1] Alaa, A. M., van Breugel, B., Saveliev, E., and van der Schaar, M. (2021). How faithful is your
synthetic data? sample-level metrics for evaluating and auditing generative models. arXiv preprint
arXiv:2102.08921.

[2] Banerjee, O., El Ghaoui, L., and d’Aspremont, A. (2008). Model selection through sparse
maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine
Learning Research, 9:485–516.

[3] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,
M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

[4] Berrevoets, J., Kacprzyk, K., Qian, Z., and van der Schaar, M. (2022). Navigating causal deep
learning. arXiv preprint arXiv:2212.00911.

[5] Blackard, J. A. and Dean, D. J. (1999). Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables. Computers and
electronics in agriculture, 24(3):131–151.

[6] Bullmore, E. T. and Bassett, D. S. (2011). Brain graphs: graphical models of the human brain
connectome. Annual review of clinical psychology, 7:113–140.

[7] Che, Z., Cheng, Y., Zhai, S., Sun, Z., and Liu, Y. (2017). Boosting deep learning risk prediction
with generative adversarial networks for electronic health records. In 2017 IEEE International
Conference on Data Mining (ICDM), pages 787–792. IEEE.

[8] Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F., and Mahmood, F. (2021). Synthetic data
in machine learning for medicine and healthcare. Nature Biomedical Engineering, 5(6):493–497.

[9] Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of
machine learning research, 3(Nov):507–554.

[10] Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., and Sun, J. (2017). Generating
multi-label discrete patient records using generative adversarial networks. In Machine learning
for healthcare conference, pages 286–305. PMLR.

10

https://github.com/tennisonliu/GOGGLE
https://github.com/vanderschaarlab/GOGGLE
https://github.com/vanderschaarlab/GOGGLE

Published as a conference paper at ICLR 2023

[11] Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with dependence
trees. IEEE transactions on Information Theory, 14(3):462–467.

[12] Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine preferences
by data mining from physicochemical properties. Decision support systems, 47(4):547–553.

[13] de Jongh, M. and Druzdzel, M. J. (2009). A comparison of structural distance measures for
causal bayesian network models. Recent Advances in Intelligent Information Systems, Challenging
Problems of Science, Computer Science series, pages 443–456.

[14] DeVries, T. and Taylor, G. W. (2017). Dataset augmentation in feature space. arXiv preprint
arXiv:1702.05538.

[15] Drton, M. and Maathuis, M. H. (2017). Structure learning in graphical modeling. Annual
Review of Statistics and Its Application, 4:365–393.

[16] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[17] Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. (2019). Neural spline flows.
Advances in neural information processing systems, 32.

[18] Erdős, P., Rényi, A., et al. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60.

[19] Esteban, C., Hyland, S. L., and Rätsch, G. (2017). Real-valued (medical) time series generation
with recurrent conditional gans. arXiv preprint arXiv:1706.02633.

[20] Farasat, A., Nikolaev, A., Srihari, S. N., and Blair, R. H. (2015). Probabilistic graphical models
in modern social network analysis. Social Network Analysis and Mining, 5(1):1–18.

[21] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message
passing for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR.

[22] Gondara, L. and Wang, K. (2018). Mida: Multiple imputation using denoising autoencoders. In
Pacific-Asia conference on knowledge discovery and data mining, pages 260–272. Springer.

[23] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing
systems, 27.

[24] Hajiramezanali, E., Hasanzadeh, A., Duffield, N., Narayanan, K., and Qian, X. (2020). Bayrel:
Bayesian relational learning for multi-omics data integration. Advances in Neural Information
Processing Systems, 33:19251–19263.

[25] Hasanzadeh, A., Hajiramezanali, E., Duffield, N., and Qian, X. (2022). Morel: Multi-omics
relational learning. arXiv preprint arXiv:2203.08149.

[26] Higuera, C., Gardiner, K. J., and Cios, K. J. (2015). Self-Organizing Feature Maps Identify
Proteins Critical to Learning in a Mouse Model of Down Syndrome. PLOS ONE, 10(6):e0129126.
Publisher: Public Library of Science.

[27] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

[28] Hofmann, H. (1994). Statlog (german credit data) data set. UCI Repository of Machine Learning
Databases, 53.

[29] Hu, J., Reiter, J. P., and Wang, Q. (2018). Dirichlet process mixture models for modeling and
generating synthetic versions of nested categorical data. Bayesian Analysis, 13(1):183–200.

[30] Jahrer, M. (2019). Porto seguro’s safe driver prediction.

[31] Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144.

11

Published as a conference paper at ICLR 2023

[32] Jordon, J., Yoon, J., and Van Der Schaar, M. (2018). Pate-gan: Generating synthetic data with
differential privacy guarantees. In International conference on learning representations.

[33] Kaur, D., Sobiesk, M., Patil, S., Liu, J., Bhagat, P., Gupta, A., and Markuzon, N. (2021).
Application of bayesian networks to generate synthetic health data. Journal of the American
Medical Informatics Association, 28(4):801–811.

[34] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[35] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

[36] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). Neural relational inference
for interacting systems. In International Conference on Machine Learning, pages 2688–2697.
PMLR.

[37] Kocaoglu, M., Snyder, C., Dimakis, A. G., and Vishwanath, S. (2017). Causalgan: Learning
causal implicit generative models with adversarial training. arXiv preprint arXiv:1709.02023.

[38] Kohavi, R. et al. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision-tree
hybrid. In Kdd, volume 96, pages 202–207.

[39] Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques.
MIT press.

[40] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25.

[41] Kwon, D.-H. and Bessler, D. A. (2011). Graphical methods, inductive causal inference, and
econometrics: A literature review. Computational Economics, 38(1):85–106.

[42] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4):541–551.

[43] Li, X., Chen, Z., Poon, L. K., and Zhang, N. L. (2018). Learning latent superstructures in
variational autoencoders for deep multidimensional clustering. arXiv preprint arXiv:1803.05206.

[44] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection
with the lasso. The annals of statistics, 34(3):1436–1462.

[45] Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., and Welling, M. (2020). Survae flows:
Surjections to bridge the gap between vaes and flows. Advances in Neural Information Processing
Systems, 33:12685–12696.

[46] Nikolenko, S. I. (2021). Synthetic data for deep learning, volume 174. Springer.

[47] Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., and Kim, Y. (2018). Data synthesis
based on generative adversarial networks. Proceedings of the VLDB Endowment, 11(10):1071–
1083.

[48] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

[49] Patki, N., Wedge, R., and Veeramachaneni, K. (2016). The synthetic data vault. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 399–410. IEEE.

[50] Pearl, J. (2009). Causality. Cambridge university press.

[51] Pearl, J. (2011). Bayesian networks.

[52] Peters, J. and Bühlmann, P. (2015). Structural intervention distance for evaluating causal graphs.
Neural computation, 27(3):771–799.

12

Published as a conference paper at ICLR 2023

[53] Plataniotis, K. N. and Hatzinakos, D. (2017). Gaussian mixtures and their applications to signal
processing. Advanced signal processing handbook, pages 89–124.

[54] Qian, Z., Cebere, B.-C., and van der Schaar, M. (2023). Synthcity: facilitating innovative use
cases of synthetic data in different data modalities. arXiv preprint arXiv:2301.07573.

[55] Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR.

[56] Roberts, S. J., Husmeier, D., Rezek, I., and Penny, W. (1998). Bayesian approaches to gaussian
mixture modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1133–
1142.

[57] Schäfer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statistical applications in genetics and
molecular biology, 4(1).

[58] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks,
61:85–117.

[59] Scutari, M., Howell, P., Balding, D. J., and Mackay, I. (2014). Multiple quantitative trait analysis
using bayesian networks. Genetics, 198(1):129–137.

[60] Sehwag, V., Mahloujifar, S., Handina, T., Dai, S., Xiang, C., Chiang, M., and Mittal, P. (2021).
Robust learning meets generative models: Can proxy distributions improve adversarial robustness?
arXiv preprint arXiv:2104.09425.

[61] Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P. O.,
and Bollen, K. (2011). Directlingam: A direct method for learning a linear non-gaussian structural
equation model. The Journal of Machine Learning Research, 12:1225–1248.

[62] Shwartz-Ziv, R. and Armon, A. (2022). Tabular data: Deep learning is not all you need.
Information Fusion, 81:84–90.

[63] Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25.

[64] Spirtes, P. and Glymour, C. (1991). An algorithm for fast recovery of sparse causal graphs.
Social science computer review, 9(1):62–72.

[65] Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D. (2000). Causation, prediction,
and search. MIT press.

[66] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1):1929–1958.

[67] Street, W. N., Wolberg, W. H., and Mangasarian, O. L. (1993). Nuclear feature extraction for
breast tumor diagnosis. In Biomedical image processing and biomedical visualization, volume
1905, pages 861–870. SPIE.

[68] Sun, Y., Cuesta-Infante, A., and Veeramachaneni, K. (2019). Learning vine copula models
for synthetic data generation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 5049–5057.

[69] Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E.,
Boochoon, S., and Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the
reality gap by domain randomization. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 969–977.

[70] Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill-climbing bayesian
network structure learning algorithm. Machine learning, 65(1):31–78.

13

Published as a conference paper at ICLR 2023

[71] Ucar, T., Hajiramezanali, E., and Edwards, L. (2021). Subtab: Subsetting features of tabular
data for self-supervised representation learning. Advances in Neural Information Processing
Systems, 34:18853–18865.

[72] van Breugel, B., Kyono, T., Berrevoets, J., and van der Schaar, M. (2021). Decaf: Generating
fair synthetic data using causally-aware generative networks. Advances in Neural Information
Processing Systems, 34.

[73] Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of machine
learning research, 9(11).

[74] Waples, R. S. and Gaggiotti, O. (2006). Invited review: What is a population? an empirical
evaluation of some genetic methods for identifying the number of gene pools and their degree of
connectivity. Molecular ecology, 15(6):1419–1439.

[75] Wen, B., Colon, L. O., Subbalakshmi, K., and Chandramouli, R. (2021). Causal-tgan: Generat-
ing tabular data using causal generative adversarial networks. arXiv preprint arXiv:2104.10680.

[76] Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veeramachaneni, K. (2019). Modeling tabular
data using conditional gan. Advances in Neural Information Processing Systems, 32.

[77] Xu, L. and Veeramachaneni, K. (2018). Synthesizing tabular data using generative adversarial
networks. arXiv preprint arXiv:1811.11264.

[78] Yoon, J., Drumright, L. N., and Van Der Schaar, M. (2020a). Anonymization through data
synthesis using generative adversarial networks (ads-gan). IEEE journal of biomedical and health
informatics, 24(8):2378–2388.

[79] Yoon, J., Jarrett, D., and Van der Schaar, M. (2019). Time-series generative adversarial networks.
Advances in Neural Information Processing Systems, 32.

[80] Yoon, J., Jordon, J., and Schaar, M. (2018). Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning, pages 5689–5698. PMLR.

[81] Yoon, J., Zhang, Y., Jordon, J., and van der Schaar, M. (2020b). Vime: Extending the success of
self-and semi-supervised learning to tabular domain. Advances in Neural Information Processing
Systems, 33:11033–11043.

[82] Young, J., Graham, P., and Penny, R. (2009). Using bayesian networks to create synthetic data.
Journal of Official Statistics, 25(4):549.

[83] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2018). mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations.

[84] Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P. (2018). Dags with no tears: Continuous
optimization for structure learning. Advances in Neural Information Processing Systems, 31.

[85] Zhou, Y. (2011). Structure learning of probabilistic graphical models: a comprehensive survey.
arXiv preprint arXiv:1111.6925.

14

Published as a conference paper at ICLR 2023

A DATA AUGMENTATION MODEL

The data augmentation model conditionally generates augmented data, i.e. x̂ = Fθ(z,Xi = xi;Gϕ).
To allow conditioning on any variable during the generation stage, we assume a directed acyclic
graph (DAG). This means that variables are generated sequentially, following topological order πGϕ

,
which can be described through a SEM [50]:

x̂i = fi(N̂ (i), zi)

In contrast to the synthetic data model, the generation of each variable is conditioned on the predicted
value of its parents. 5 Each variable is transformed through a specific embedding function h

(0)
i =

fθi(x̂i) ∀ i ∈ [d], where h
(0)
i ∈ Rd0 and we implement fθi using a one layer MLP. This is followed

by one round of message passing, where the embedding update function is implemented using a
single-layer MLP. We aggregate parent embeddings using the mean, equivalent to taking a weighted
average:

m
(1)
j = σ

(1)
θ (·) = h

(0)
j

h
(1)
N (i) = ⊕(1)(·) = mean

(
{Gj,im

(1)
j , ∀ j ∈ N (i)}

)
x̂i = γ

(1)
θ (·) = tanh

(
W (1)

u × h
(1)
N (i)

)
The output after message passing is taken to be the prediction of the current variable x̂i. This model
is trained using the GAN adversarial loss (eq. (5)). Additionally, we use the continuous DAG penalty
introduced in [84] to force a DAG to be recovered:

max
Fθ

min
D

E[logD(Fθ(Z;Gϕ)) + log(1−D(X))]︸ ︷︷ ︸
GANLoss

+λ(tr(exp(Gϕ ◦Gϕ))− d)︸ ︷︷ ︸
Regularisation

(5)

To generate augmented data, we randomly sample a subset of the variables, and for each of which, we
sample a conditioning value uniformly from the support of that variable, a ∼ U (min(Xi),max(Xi)).
We then generate augmented data by conditioning chosen variables on sampled values, x̂ ∼
p(X|Xi = a) = Fθ(z,Xi = a;Gϕ) [50]. We note that this conditional generation corresponds to
sampling out-of-distribution, as we are sampling from a different distribution that is defined on the
same support as the training.

B IMPLEMENTATION DETAILS

B.1 MODELS AND EVALUATION

Models. All models are implemented in PyTorch [48]. The data is split 60-20-20 into train, validation
and test sets and reported results are averaged over 10 runs. Training is performed using the Adam
[34]. All experiments are run on an NVIDIA Tesla K40C GPU, taking less than an hour to complete.

Hyperparameters. For all methods compared, we consider hyperparameters include batch size
∈ {64, 128}, learning rate ∈ {1e−3, 5e−3, 1e−2}. We include a weight decay of 1e−3 [58]. Hyper-
parameters are searched using Bayesian Optimization [63]. Each model is allowed a computation
budget of 10 sweeps in Bayesian Optimization, where the search objective is the reconstruction loss
on the validation set. We describe model-specific hyperparameters in the exact implementation details
below. For the graph sparsity term, we consider regularization penalty λ ∈ {1e−3, 1e−2, 1e−1}. For
the KL divergence penalty, we consider α ∈ {0.1, 0.5, 1.0}. All models are trained for a maximum
of 1000 epochs, with early stopping if no improvements on the validation set for 50 epochs.

Evaluation. We partition the observed dataset D into a training set Dtrain and a test set Dtest, and
train generative models on Dtrain. Using the trained models, we generate a synthetic data set Dsyn,
which has the same number of samples as Dtest. We then evaluate the aforementioned desiderata on
(Dtest,Dsyn). To evaluate quality, we employ the three-dimensional metric, α-precision, β-recall,
and authenticity, which assesses whether the samples are realistic, diverse enough to cover the

5N (i) = Pa(i), the neighborhood is strictly the set of parent variables due to the DAG.

15

Published as a conference paper at ICLR 2023

variability in real data, and generalization performance respectively [1]. Each metric evaluates a
different aspect of synthetic data quality, and we average the three metrics to obtain a holistic score.
Detection is evaluated by training post-hoc classifiers to distinguish samples from the original and
generated datasets. Specifically, we train a two-layer MLP, XGB classifier and GMM classifier and
average the classification AUROC. To evaluate utility, we report average performance achieved by
three downstream prediction models (linear model, two-layer MLP, and XGB model) trained on
Dsyn and evaluated on Dtest. We report the change in AUROC of models trained on Dsyn and those
trained on Dtrain.

B.2 SYNTHETIC DATA BENCHMARKS

In this subsection, we provide further details on the benchmarks we compare against: including
Bayesian networks (BN) [51], GAN-based [76], TableGAN [47] and VAE-based [76, 49] and a
normalizing flow NFLOW [55]. Additionally, we also consider data augmentation methods: Gaussian
noise InNoise [40]; MixUp [83] and SwapNoise [30]. The baselines are implemented using the
open source package synthcity [54].6

MM [53]. We train a Gaussian mixture model, where the number of components ∈ {5, 10, 15}, and
each component has its own general covariance matrix. We use Expectation-Maximization to fit the
parameters of the model, with a stopping condition at 1e-3 or max iteration of 200 iterations. Lastly,
we initialize the model using k-means clustering.

BN [51]. We train BN in two stages, where the first stage learns the network structure and the second
stage performs learning based on the returned DAG. We use the PC algorithm to learn the DAG
[64]. Once a DAG is returned, the conditional probabilities are learned through maximum likelihood
estimation, where continuous variables are assumed to come from a linear Gaussian conditional
probability distribution (CPD) and discrete variables from a discrete CPD.

CTGAN [76], TableGAN [47]. For CTGAN, we use an MLP with two ReLU-activated hidden layers
to implement the generator. Similarly, we employ an MLP with two ReLU-activated hidden layers
to implement the discriminator. The hyperparameters are tuned according to the recommended
settings in [49]. TableGAN is implemented using a Deep Convolution GAN with recommended
settings in [47], where the generator has three deconvolutional layers, and the discriminator has three
convolutional layers.

TVAE [49]. The VAE-based model is implemented with an encoder with two ReLU-activated layers.
The decoder similarly has two hidden layers. We use a 32 dimensional latent space that is normally
distributed and a standard normal prior.

NFLOW [55]. We implement the normalizing flows using the rational-quadratic transform introduced
in [17]. Specifically, it is implemented using an MLP with 2, 128-dimensional hidden layers and
permutation operations. A standard normal base distribution is employed, and the flow is run with
500 steps.

B.3 DATA AUGMENTATION BENCHMARKS

InNoise [40], MixUp [83], SwapNoise [30]. For InNoise, we add zero-centered Gaussian
noise ε ∼ N(0, σ2) to the inputs, where we consider σ ∈ {0.01, 1}. For SwapNoise, we randomly
swap 10% of elements between two inputs. MixUp is implemented by randomly combining two
samples x̂ = λx′ + (1− λ)x′′, where x′, x′′ ∼ Dtrain and λ ∼ Beta(0.2, 0.2).

DAFS [14]. We train an autoencoder, where the encoder and decoder are both implemented as MLPs
with two ReLU-activated hidden layers. We take the feature vector at the output of the encoder ci and
randomly apply one of three possible operations (1) add Gaussian noise ε ∼ (0, σ2), (2) interpolation
λ(cj − ci) + ci, or (3) extrapolation λ(ci − cj) + ci where λ = 0.5 as suggested by the authors.
Augmented samples x′ are then obtained by passing the altered feature vector through the decoder.

6
https://synthcity.readthedocs.io/en/latest/

16

Published as a conference paper at ICLR 2023

Table 5: Experimental datasets. Description of experimental datasets.

Dataset Description Number of
instances

Number of
features

Adult [38] Census data 48842 15
Breast [67] Breast cancer 569 32
Covertype [5] Forest cover 581012 54
Credit [28] Credit risk 1000 20
ECOLI [57] Functional genomics 2000 46
MAGIC-IRRI [59] Plant genetics 2000 64
Red [12] Wine quality 1599 12
White [12] Wine quality 4898 12
Mice [26] Protein expression 1080 82
Musk [16] Musk molecules 6598 168

B.4 DATASETS

We use 10 datasets in total, including 8 UCI datasets [16],7 specifically Adult, Breast,
Covertype, Credit, White, Red, Mice, Musk and 2 Bayesian Network repository datasets
[39],8 specifically ECOLI and MAGIC-IRRI. A summary of the datasets, including dataset descrip-
tion, the dimensionality, and number of samples, is presented in Table 5.

B.5 PRIOR KNOWLEDGE

The use of an explicit graph to guide generation allows for a variety of prior knowledge to be
incorporated through the adjacency matrix. Here, we describe a few options of incorporating domain
expertise:

• Sparsity. The learned graph can be sparse such that variables only depend on a small subset of
other variables. Mathematically, R(Gϕ) = ||Gϕ||p, where || · ||p denotes the Lp matrix norm.

• Dependence. Partial knowledge about the dependencies between features can be encoded through
a graph prior G0, i.e., R(Gϕ) = ||Gϕ −G0||p.

• Graph types. Graphs of specific types can be learned. For example, if an undirected graph is
assumed, we can employ a symmetric prior ||Gϕ−GT

ϕ ||p. Alternatively, we can use the DAG penalty
[84] to encourage learning a directed, acyclic graph (DAG), R(Gϕ) = tr(exp(Gϕ ◦ Gϕ) −D),
where tr(·) is the matrix trace and D is the number of variables.

• Connectivity. Encourage different patterns of connectivity through penalty on degree of each
variable ||Dϕ −D0||p, where D ∈ Rd is the degree of each variable.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional results to comprehensively evaluate our proposed methods,
specifically:

1. Additional datasets: §C.1 evaluates synthetic data performance on 4 additional datasets.
2. Visualizations:§C.2 visualizes t-SNE projections on original and synthetic datasets to qualitatively

investigate quality and examines learned adjacency matrices.
3. Sensitivity: §C.4 investigates performance sensitivities according to data size and feature counts.
4. Data augmentation: §C.5 describes the best model performance after data augmentation.

C.1 ADDITIONAL RESULTS

Additional datasets. We assess the quality of synthetic dataset using the same desiderata introduced
in §5.1, namely quality, detection, and utility. We use six additional datasets, ECOLI, MAGIC-IRRI,
Red, White, Mice, and Musk. The results are reported in Table 6.

7
https://archive.ics.uci.edu/ml/datasets.php

8
https://www.bnlearn.com/bnrepository/

17

Published as a conference paper at ICLR 2023

Table 6: Quality, detection, and utility of synthetic data. Bold indicates the best performance.

Dataset ECOLI MAGIC-IRRI Red White Mice Musk

Quality (↑)
(higher

is better)

BN 0.57 ± 0.06 0.67 ± 0.04 0.63 ± 0.06 0.60 ± 0.04 0.63 ± 0.02 0.58 ± 0.05
CTGAN 0.38 ± 0.06 0.33 ± 0.10 0.50 ± 0.07 0.53 ± 0.04 0.46 ± 0.05 0.48 ± 0.04
TableGAN 0.38 ± 0.08 0.33 ± 0.07 0.46 ± 0.08 0.53 ± 0.02 0.41 ± 0.04 0.56 ± 0.03
TVAE 0.45 ± 0.09 0.61 ± 0.02 0.57 ± 0.04 0.58 ± 0.05 0.57 ± 0.05 0.57 ± 0.04
NFLOW 0.56 ± 0.08 0.62 ± 0.07 0.56 ± 0.03 0.55 ± 0.04 0.52 ± 0.07 0.57 ± 0.03
GOGGLE 0.57 ± 0.05 0.63 ± 0.09 0.63 ± 0.07 0.62 ± 0.03 0.59 ± 0.05 0.61 ± 0.02

Detection (↓)
(lower

is better)

BN 0.39 ± 0.07 0.40 ± 0.03 0.71 ± 0.06 0.60 ± 0.03 0.73 ± 0.05 0.80 ± 0.05
CTGAN 0.74 ± 0.09 0.73 ± 0.07 0.77 ± 0.10 0.81 ± 0.06 0.75 ± 0.03 0.75 ± 0.03
TableGAN 0.74 ± 0.02 0.73 ± 0.06 0.74 ± 0.04 0.75 ± 0.09 0.80 ± 0.06 0.78 ± 0.05
TVAE 0.74 ± 0.02 0.69 ± 0.05 0.72 ± 0.07 0.74 ± 0.04 0.71 ± 0.06 0.77 ± 0.06
NFLOW 0.70 ± 0.03 0.70 ± 0.08 0.74 ± 0.05 0.73 ± 0.03 0.71 ± 0.03 0.73 ± 0.05
GOGGLE 0.60 ± 0.03 0.69 ± 0.09 0.71 ± 0.04 0.70 ± 0.05 0.72 ± 0.04 0.69 ± 0.08

Utility (↑)
(higher
is better)

BN 0.01 ± 0.00 0.05 ± 0.00 −0.06±0.01 −0.11±0.04 −0.02 ± 0.00 −0.19±0.06
CTGAN −0.20±0.03 −0.13±0.01 0.01 ± 0.00 −0.11±0.02 −0.08±0.03 −0.13±0.04
TableGAN −0.18±0.06 −0.10±0.05 0.01 ± 0.00 −0.17±0.01 −0.15±0.04 −0.10±0.03
TVAE −0.06±0.01 0.00 ± 0.00 −0.05±0.01 −0.11±0.02 −0.09±0.02 −0.08 ± 0.01
NFLOW −0.05±0.01 −0.02±0.00 −0.05±0.01 −0.14±0.05 −0.08±0.02 −0.14±0.05
GOGGLE −0.02±0.00 0.01 ± 0.00 0.01 ± 0.00 −0.08 ± 0.01 −0.10±0.02 −0.11±0.03

We note that BN achieves the best performance on ECOLI and MAGIC-IRRI, which is reasonable as
those datasets are generated according to a known Bayesian network, and BN models have a natural
advantage. On those two datasets, GOGGLE is able to consistently outperform other deep generative
models. On Red and White, GOGGLE achieves superior performance against other benchmarks.
On the contrary, BN, our closest competitor, achieve worse performance as the underlying DAG
assumptions become too restrictive. Additionally, we highlight that models trained on synthetic data
generated by GOGGLE consistently achieves similar performance to those trained on real datasets,
indicating strong data utility.

C.2 VISUALIZATION OF SYNTHETIC DATA RESULTS

In Figures 4 to 7, we observe that synthetic data generated by GOGGLE exhibit markedly better
overlap with the original dataset than other benchmarks using t-SNE for visualization. We note
that the GAN-based models, specifically CTGAN and TableGAN exhibit mode collapse behaviour
and the TVAE and NFLOW can fail to match the underlying distribution (on ECOLI and Breast,
respectively).

C.3 ANALYSIS OF RELATIONAL STRUCTURES

Qualitative analysis. We visualize the learned graphs on Credit and Breast in Figure 9.
For the purposes of our qualitative analysis, we deliberately increase the weighting of the graph
sparsity regularization λ. The Breast dataset [16] contains numeric features extracted from
images of a breast mass. We note that the target variable (diagnosis of tumor) has a high degree of
connectivity, and dependent on various physical properties of the tumor, including mean perimeter
and mean compactness. We similarly observe informative variables identified in the Credit dataset
[16] , where the account balance depends on occupation, credit amount, and length of current
employment. Additionally, we plot the adjacency matrix of trained models in Figure 8, where a
sparsity regularization term was applied to all models to encourage sparsely connected graphs.

Quantitative analysis. We previously claimed that we are only interested in an approximately correct
relational structure, which our evaluations in Table 4 and Figure 3 found is sufficient to improve
synthetic data quality. However, are these structures indeed approximately correct? That is the
question we aim to address here. We compute the structural hamming distance (SHD) [13], which
computes graph distances between predicted and ground truth graphs by the number of insertions,
deletions or flips to transform one graph to another. We compare the relational structure learned by
GOGGLE against 1) the graph learned by a Bayesian Network (BN), 2) Erdos-Renyi random graph
generated with edge probability matching empirical edge probability p in the ground-truth graph
(ER(p)), 3) thresholded correlation graph (CORR).

We describe results in Table 7. We note that BN model is the pseudo-oracle as the true DGP for
ECOLI and MAGIC are indeed Bayesian Networks with linear Gaussian functional relationships
(matching the model specifications of BN). ER(p) serves as a dummy baseline as the predicted graph
is randomly guessed. We note that the correlation graphs (CORR, with threshold at 0.5) learn many

18

Published as a conference paper at ICLR 2023

Table 7: Structural hamming distance. Distance from learned graph to ground truth graph.

Datasets BN ER(p) CORR GOGGLE
ECOLI 61± 2 131± 6 204 110± 5
MAGIC 82± 3 192± 10 103 95± 2

20 10 0 10 20

comp-1

20

10

0

10

20

co
m

p-
2

T-SNE Projection

Original
Synthetic

(a) BN

20 10 0 10

comp-1
15

10

5

0

5

10

15

20

co
m

p-
2

T-SNE Projection

Original
Synthetic

(b) CTGAN

15 10 5 0 5 10 15

comp-1

20

15

10

5

0

5

10

15

co
m

p-
2

T-SNE Projection

Original
Synthetic

(c) TableGAN

20 10 0 10 20

comp-1
15

10

5

0

5

10

15

co
m

p-
2

T-SNE Projection

Original
Synthetic

(d) TVAE

10 5 0 5 10 15

comp-1
15

10

5

0

5

10

15

co
m

p-
2

T-SNE Projection

Original
Synthetic

(e) NFLOW

20 10 0 10 20

comp-1

15

10

5

0

5

10

15

20

co
m

p-
2

T-SNE Projection

Original
Synthetic

(f) GOGGLE

Figure 4: t-SNE projection on Breast dataset.

40 20 0 20 40

comp-1

40

20

0

20

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(a) BN

40 20 0 20 40

comp-1

40

20

0

20

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(b) CTGAN

40 20 0 20 40

comp-1

30

20

10

0

10

20

30

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(c) TableGAN

40 20 0 20

comp-1

40

20

0

20

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(d) TVAE

20 0 20 40

comp-1
40

30

20

10

0

10

20

30

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(e) NFLOW

40 20 0 20 40

comp-1

40

30

20

10

0

10

20

30

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(f) GOGGLE

Figure 5: t-SNE projection on Red dataset.

40 20 0 20 40

comp-1

40

20

0

20

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(a) BN

30 20 10 0 10 20 30

comp-1

20

10

0

10

20

30

co
m

p-
2

T-SNE Projection

Original
Synthetic

(b) CTGAN

20 0 20

comp-1
30

20

10

0

10

20

30

co
m

p-
2

T-SNE Projection

Original
Synthetic

(c) TableGAN

30 20 10 0 10 20 30

comp-1
40

30

20

10

0

10

20

30

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(d) TVAE

30 20 10 0 10 20 30

comp-1

20

10

0

10

20

co
m

p-
2

T-SNE Projection

Original
Synthetic

(e) NFLOW

40 20 0 20 40

comp-1

30

20

10

0

10

20

30

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(f) GOGGLE

Figure 6: t-SNE projection on ECOLI dataset.

60 40 20 0 20 40 60

comp-1

60

40

20

0

20

40

60

80

co
m

p-
2

T-SNE Projection

Original
Synthetic

(a) BN

60 40 20 0 20 40 60

comp-1
80

60

40

20

0

20

40

60

80

co
m

p-
2

T-SNE Projection

Original
Synthetic

(b) CTGAN

60 40 20 0 20 40 60

comp-1

60

40

20

0

20

40

60

80

co
m

p-
2

T-SNE Projection

Original
Synthetic

(c) TableGAN

50 25 0 25 50 75

comp-1
60

40

20

0

20

40

60

co
m

p-
2

T-SNE Projection

Original
Synthetic

(d) TVAE

75 50 25 0 25 50 75

comp-1

60

40

20

0

20

40

co
m

p-
2

T-SNE Projection

Original
Synthetic

(e) NFLOW

50 0 50

comp-1
60

40

20

0

20

40

60

co
m

p-
2

T-SNE Projection

Original
Synthetic

(f) GOGGLE

Figure 7: t-SNE projection on White dataset.

0 2 4 6 8 10 12

0

2

4

6

8

10

12

(a) Adults

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b) Breast

0 5 10 15 20

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(c) Credit

0 10 20 30 40

0

10

20

30

40

(d) ECOLI

0 10 20 30 40 50 60

0

10

20

30

40

50

60

(e) MAGIC

0 2 4 6 8 10

0

2

4

6

8

10

(f) White

Figure 8: Learned adjacency matrices.

spurious, yet uninformative edges as it is solely driven by association relationships. We note that the
graphs learned by GOGGLE are more sparse, and informative.

19

Published as a conference paper at ICLR 2023

0

1
2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20
19: Foreign Worker
5: Value Savings/Stocks
20: Target
6: Length of current employment
0: Account Balance
7: Instalment per cent
8: Sex & Marital Status
9: Guarantors
10: Duration in Current address
11: Most valuable available asset
12: Age (years)
13: Concurrent Credits
14: Type of apartment
15: No of Credits at this Bank
16: Occupation
2: Payment Status of Previous Credit
3: Purpose
17: No of dependents
1: Duration of Credit (month)
4: Credit Amount
18: Telephone

(a) Credit

0

1

2

3

4

5

6

7 8

9

10

11

12

1314

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
9: mean fractal dimension
3: mean area
15: compactness error
21: worst texture
23: worst area
13: area error
1: mean texture
5: mean compactness
22: worst perimeter
2: mean perimeter
27: worst concave points
12: perimeter error
24: worst smoothness
25: worst compactness
30: target
0: mean radius
7: mean concave points
10: radius error
17: concave points error
28: worst symmetry
8: mean symmetry
20: worst radius
11: texture error
16: concavity error
29: worst fractal dimension
14: smoothness error
4: mean smoothness
26: worst concavity
19: fractal dimension error
6: mean concavity
18: symmetry error

(b) Breast

Figure 9: Learned graphs.
Table 8: Data augmentation. AUROC on Dtest of models trained on augmented data. Bold indicates
the best performance.

Dataset Adult Breast Covertype Credit
Baseline 0.70 ± 0.09 0.96 ± 0.01 0.59 ± 0.13 0.65 ± 0.02
InNoise 0.68 ± 0.05 0.97 ± 0.01 0.61 ± 0.10 0.64 ± 0.03
MixUp 0.66 ± 0.08 0.90 ± 0.01 0.56 ± 0.09 0.65 ± 0.02

SwapNoise 0.65 ± 0.05 0.91 ± 0.01 0.58 ± 0.08 0.63 ± 0.01
FSAug 0.71 ± 0.06 0.96 ± 0.01 0.60 ± 0.13 0.67 ± 0.02

GOGGLE-SD 0.70 ± 0.05 0.97 ± 0.01 0.60 ± 0.10 0.66 ± 0.01
GOGGLE 0.72 ± 0.03 0.98 ± 0.00 0.62 ± 0.10 0.67 ± 0.02

C.4 SENSITIVITY ANALYSIS

Lastly, we are interested in identifying settings where GOGGLE excel as a generative model. Specif-
ically, we are interested in understanding sensitivities of model performance with respect to the
effects of feature counts and number of samples in the dataset. We compare our model against the
benchmarks in Figure 10. Here, the datasets are shown on the x-axis and are sorted in order of
increasing feature count, and increasing number of samples (see Table 5 for more on datasets). We
note that the advantage of GOGGLE is more noticeable when there are less number of samples (i.e.,
on Breast, Credit and Red). In the regime with larger number of samples, all models exhibit
similar performance, although GOGGLE still achieves performance improvements. Furthermore,
models achieve similar performance when the number of features is low. However, when the number
of features increases, the performance of GAN-based models deteriorate. This is interesting, and a
potential logical explanation is that they are overfitting to the training data.

C.5 EVALUATION OF AUGMENTED DATA

We compare popular tabular data augmentation methods by inspecting downstream model perfor-
mance. Specifically, we generate augmented data Daug from Dtrain (and has the same number of
samples), train predictive models on the combined Dcomb = {Dtrain,Daug}, and evaluate perfor-
mance on Dtest. We train four downstream prediction models, including linear model, two-layer
MLP, RF classifier, and XGB model and report the averaged performance achieved by the four models.
We perform data augmentation on GOGGLE by randomly selecting variables to condition on and
sampling uniformly from the marginal support of the variable. In Table 8, we observe that augmented
data generated by GOGGLE leads to improved generalization performance across all datasets.

D CONNECTION TO RELATED WORKS

There are several parallels between our works and several related research fields, namely probabilistic
graph discovery, relational learning, and self-supervised learning (SSL). These fields are reflected
by the common approach in exploiting relational structure underlying tabular data. Here, we discuss
commonalities and differences in depth.

20

Published as a conference paper at ICLR 2023

Red
White

Adult
Cred

it
Brea

st

ECOLI

Covert
ype

MAGIC-IR
RI

0.4

0.6

0.8

Red
White

Adult
Cred

it
Brea

st

ECOLI

Covert
ype

MAGIC-IR
RI

0.4

0.6

0.8

Red
White

Adult
Cred

it
Brea

st

ECOLI

Covert
ype

MAGIC-IR
RI

−0.4

−0.2

0.0

BN CTGAN TABLEGAN TVAE NFLOW GOGGLE

(a) Feature Count

Brea
st
Cred

it Red
ECOLI

MAGIC-IR
RI
White

Adult

Covert
ype

0.4

0.6

0.8

Brea
st
Cred

it Red
ECOLI

MAGIC-IR
RI
White

Adult

Covert
ype

0.4

0.6

0.8

Brea
st
Cred

it Red
ECOLI

MAGIC-IR
RI
White

Adult

Covert
ype

−0.4

−0.2

0.0

BN CTGAN TABLEGAN TVAE NFLOW GOGGLE

(b) Number of Samples

Figure 10: Sensitivity analysis. Evaluating synthetic data based on (left) quality (↑), (middle)
detection (↓), and (right) utility (↑). Datasets are sorted according to (a) increasing feature counts,
and (b) increasing number of samples.

Probabilistic graph discovery. Probabilistic graph discovery aims to recover the true probabilistic
graphical model (PGM) underlying observed data [85, 15]. We propose a generative model for tabular
data that learns and leverages an underlying graph to improve the performance of data synthesis.
Importantly, our model does not recover the true PGM from data if the data is indeed generated
by a PGM (i.e. it does not perform PGM structural discovery). Additionally, the message passing
computation is not an instance of or an approximation to a probabilistic inference routine. Specifically,
we take advantage of the sparse and compact representations of graphical models to learn better
generative models, incorporate prior knowledge, and perform conditional generation. We do so
by incorporating a graph as explicit structure into the generative process. We summarize the key
distinctions between our work and the probabilistic structure learning literature.

The graph learned in GOGGLE encodes conditional dependence structure between variables (global
Markov property), in the same sense that PGMs reflect allowed conditional dependencies. The key
distinction between our approach and probabilistic structural learners is that we only require an
approximate structure. In contrast, structural learners aim to recover unique graphs that are close to
the true DGP. This learned graph is used to answer probabilistic inference queries, e.g. P (Y |X = x),
which requires the graph to be correct. In order to recover a unique graph, structural learns generally
assume certain graph, or distributions, or relationships between variables.

Our objective is to learn an approximate graph that models associational dependence and can guide
generation. Therefore, we do not need to make similar assumptions that unnecessarily restrict the
class of learnable distributions and can lead to a miss-specified model. Additionally, we emphasize
that our proposed method is not designed to perform sampling-based probabilistic inference. Due to
the different objectives, we make minimal assumptions on the graph type, variable distribution, and
functional relations.

Relational learning. The goal of relational inference is to infer relationships between objects from
observational data alone (interacting objects in NRI [36], and molecular interactions in multi-omics
integration in BayRel [24] and MoReL [25]). The output of the learning method is a probabilistic
relational graph, which is evaluated based on correctness of the recovered graph. The biggest
difference of our work is that GOGGLE is fine if the structure is only partially correct, or wrong,
which is in stark contrast to any literature on structure discovery. The relational structure in our case

21

Published as a conference paper at ICLR 2023

Table 9: Comparison to related works. Commonalities and differences between our work, relational
inference, and probabilistic structural discovery.

Probabilistic Graph Discovery GOGGLE
Commonality Edges reflect allowed conditional dependencies between variables

Objective Recover unique probabilistic graph
underlying observed data

Learn approximate graph describing
dependencies between variables

Evaluation
Metric

Quality of discovered graph: graph
distance measure [52, 61], edge

classification metric

Quality of synthetic data: quality,
detection, and utility [1]

Application Probabilistic inference P (Y |X = x) Generate conditional synthetic data
x ∼ Pθ(X)

Specific graph types (i.e. directed or
undirected)

Arbitrary graph types (i.e. mixed, directed,
or undirected)

Distributional assumptions on variables
(e.g. Gaussian)

No assumptions on variable distribution
Assumptions

Assumptions on functional relationships
between variables (e.g. Linear with

Gaussian additive noise)

No assumptions on functional
relationships model

Representative
Works

UGM: Chow-Liu algorithm [11],
graphical LASSO [2], neighborhood

selection [44]. DGM: score-based [9],
constraint-based [65], hybrid [70]

Deep generative: GAN-based [76],
VAE-based [77]. Non-neural: BN,

mixture models, copula

acts as an inductive bias encouraging a sparse set of informative neighbors to be found, thus better
learning the distribution of tabular data, and plays a regularization effect on spurious relationships.
As we show in Table 4 and Figure 3, these partially correct structures that we learn can consistently
improve generative synthetic data performance.

SSL. SSL methods for tabular data are similarly driven by uncovering relational information between
features to learn good representations. However, this is often done implicitly, as in VIME [81], which
applies a masking operator to encourage the representation learning module to learn inter-feature
relationships. Similarly, SubTab [71] employs a contrastive loss by generating views on subsets of
features, implicitly encouraging learned representations to extract mutual information. Our work is
different in explicitly incorporating a relational mechanism into the generative process, explicitly
encouraging informative relations to be found, in addition to providing a flexible mechanism for prior
knowledge and regularization. We discuss specific differences in objectives, methods and evaluation
criteria below:

Table 10: Comparison to related works. Commonalities and differences between our work,
relational inference, and self-supervised learning (SSL).

Relational Inference SSL GOGGLE
Commonality Exploit relational structure between variables

Learning
output (goal)

The relational graph G Representation vector h Data distribution p(X)

Learning
method

Probabilistic inference over
relational graph p(G|X)

Learning encoder function
h = f(x) through

contrastive loss or pretext
generation

Joint learning of the
relation graph G and the
distribution p(X) that is

compatible with G
Evaluation Edge prediction metric;

graph distance metric
Quality of representations,

e.g. performance in
downstream tasks

Quality of synthetic data:
quality, detection, utility

Representative
works

NRI [36], BayReL [24],
MoReL [25]

VIME [81], SubTab [71] CT-GAN [77], TVAE [76]

22

	Introduction
	Challenges in Tabular Data Generation
	Related Works
	GOGGLE: Generative Modelling with Graph Learning
	Problem Formulation
	Overview
	Learning the Relational Structure
	Learning the Functional Relationships
	Putting it Together
	A Remark on Data Augmentation

	Experiments
	Evaluation of Synthetic Data
	Generation with Prior Knowledge
	Ablation Study

	Discussion
	Data Augmentation Model
	Implementation Details
	Models and Evaluation
	Synthetic Data Benchmarks
	Data Augmentation Benchmarks
	Datasets
	Prior Knowledge

	Additional Experiments
	Additional Results
	Visualization of Synthetic Data Results
	Analysis of Relational Structures
	Sensitivity Analysis
	Evaluation of Augmented Data

	Connection to Related Works

