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A [o] woman …

A [x] man …

Figure 1. Contrastive Concept Instantiation (CoCoIns) is a generation framework achieving subject consistency
across multiple individual creations without tuning or reference. Unlike prior work that requires customization tuning,
adopts an additional encoder for reference, or generates images in batches, CoCoIns creates instances of concepts
with a unique association that connects latent codes to subject instances. Given a latent code (o and x), CoCoIns
converts it into a pseudo-word ([o] and [x]) that decides the appearance of a subject concept. By reusing the same
code, users can consistently generate the same subject instances across multiple creations.

Abstract

While text-to-image generative models can synthesize diverse and faithful content, subject
variation across multiple creations limits the application in long content generation. Ex-
isting approaches require time-consuming tuning, references for all subjects, or access to
other creations. We introduce Contrastive Concept Instantiation (CoCoIns) to effectively
synthesize consistent subjects across multiple independent creations. The framework con-
sists of a generative model and a mapping network, which transforms input latent codes
into pseudo-words associated with certain instances of concepts. Users can generate con-
sistent subjects with the same latent codes. To construct such associations, we propose a
contrastive learning approach that trains the network to differentiate the combination of
prompts and latent codes. Extensive evaluations of human faces with a single subject show
that CoCoIns performs comparably to existing methods while maintaining higher flexibility.
We also demonstrate the potential of extending CoCoIns to multiple subjects and other
object categories. The source code and models will be released.

1 Introduction

Text-to-image generation has made remarkable advances (Rombach et al., 2022; Saharia et al., 2022; Podell
et al., 2023), opening up numerous downstream possibilities, including editing and style transfer. Among all
applications, maintaining subject consistency has been a long-standing problem for long content creation,
including storytelling (Li et al., 2019), comics (Wu et al., 2024a), or movie generation (Tulyakov et al., 2018;
Polyak et al., 2025). These applications consist of sequences of images and clips, where consistent characters
and objects facilitate recognizing subjects across moments and following the narratives.
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While numerous approaches have been explored to ensure subject consistency, they are often labor-intensive
or time-consuming. One straightforward approach is to gather all existing creations and manually swap
generated subjects with reference subjects using face swapping (Nirkin et al., 2019; Bitouk et al., 2008).
Another direction is to customize generators by optimizing virtual word tokens or finetuning model weights
to represent reference subjects and produce new creations (Gal et al., 2023a; Ruiz et al., 2022). To reduce
overhead for tuning generators, recent methods (Wei et al., 2023; Ye et al., 2023) incorporate additional
encoders that convert references into representations. However, these methods still require users to prepare
references for all subjects.

In contrast to addressing each creation individually, one can generate all creations in a batch, allowing
samples within the batch to interact and achieve consistency (Tewel et al., 2024; Zhou et al., 2024; Liu
et al., 2025). Specifically, the target prompts are merged into the same batch, and the latents of all samples
are processed together, allowing subjects within the same batch to converge toward a similar appearance.
Although promising results are achieved, these approaches require storing generated results to recreate the
same subjects in the future.

We propose a generation framework that maintains subject consistency across individual creations without
manual swapping, tuning, and reference preparation. Building such a framework presents numerous chal-
lenges – While we aim to generate a consistent subject appearance from a concept, preserving diversity
among all instances of the concept remains important. Since the generator is already trained and exhibits
high diversity and generalizability, we need to strike a good balance between minimizing the variation among
the same subject instances across individual creations while maintaining the diversity between different in-
stances. Additionally, collecting large-scale, high-quality data organized by subjects is challenging. Training
the generator to synthesize annotated subjects in low-quality datasets directly could hamper both output
quality and diversity.

To minimize variation among instances of the same subject while preserving diversity among instances, we
introduce a latent space to model the distributions of instances for each concept. The proposed method
is motivated by the common practices in natural and programming languages. If a user provides sufficient
descriptions that encompass every intricate aspect of a concept, the generator may be able to consistently
output the same appearance. Although covering comprehensive details is implausible with the limited
vocabulary of human language, prior work on customizing generative models has shown the efficacy of
pseudo-words (Gal et al., 2023a; Ruiz et al., 2022), which can convey essential information to represent
particular subject instances. Our framework is built upon instantiating concepts (Anderson et al., 1976;
Dershowitz, 1985) via pseudo-words. We associate codes in the latent space with specific concept instances
in the output space as if we create instances identified by latent codes. These latent codes are embeddings
sampled from the space, taken as input by the generation framework, and transformed into pseudo-words
that guide the generator to synthesize specific instances.

To establish the association between input latent codes and output subject instances, we develop a lightweight
mapping network that converts a latent code into a pseudo-word, which is then combined with a concept
token to represent a specific instance of the concept. We then develop a contrastive learning strategy to
train the mapping network. Instead of relying on subject annotations, the model learns to differentiate latent
codes by comparing its own outputs generated from various combinations of prompts and latent codes. This
self-supervision paradigm enables potential scalability and generalizability while avoiding the need to learn
directly from limited data.

We refer to our generation framework as Contrastive Concept Instantiation (CoCoIns). As illustrated
in Figure 1. Given a concept in a prompt indicating a subject (e.g. woman), the framework creates an instance
of that concept by transforming a sampled latent code into a pseudo-word (e.g. [o] in the example prompt)
that describes the concept. Each latent code and its transformed pseudo-word is uniquely tied to a specific
instance and can be utilized for future creations. Different latent codes yield different instances, showcasing
the preserved output diversity.

We conduct experiments on human images and perform systematic evaluation, including generating portrait
photographs and free-form images. We achieve favorable subject consistency and prompt fidelity against
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batch-generated approaches. We also demonstrate an early success in extending our approach to multi-
subject and general concepts. The main contributions of this work are:

• To the best of our knowledge, we propose the first subject-consistent generation framework for multiple
individual creations without tuning or encoding references.

• We develop a contrastive learning method that avoids learning from limited subject annotation and
preserves output quality and diversity.

• We perform extensive evaluations and demonstrate favorable performance against approaches that require
time-consuming tuning or batch generation.

2 Related Work

Subject-Driven Generation. One approach to subject consistency is based on subject-driven generation,
which aims to generate customized topics according to user-provided input. By learning new tokens (Gal
et al., 2023a; Voynov et al., 2023; Tewel et al., 2023) or model weights (Ruiz et al., 2022; Kumari et al., 2023;
Han et al., 2023; Ruiz et al., 2024), pretrained generative models can be customized to produce outputs
based on specific references. Textual Inversion (Gal et al., 2023a) learns virtual tokens that capture subject
information inverted from reference images. DreamBooth (Ruiz et al., 2022) fine-tunes the parameters of
pretrained models and learns unique identifiers that represent references. While subject consistency can
be achieved by customizing each target concept with user-provided references, these methods are time-
consuming as they require tuning for every subject.

To reduce the time and computational cost of tuning-based methods, another line of research incorporates
additional encoders to obtain representations from reference images, which generative models take as con-
ditions via augmented prompt embeddings (Wei et al., 2023; Shi et al., 2024; Xiao et al., 2024; Li et al.,
2023; Wang et al., 2024a; He et al., 2024; Chen et al., 2023; Gal et al., 2023b; Avrahami et al., 2023), self-
attention (Ding et al., 2024; Wang et al., 2024b), or cross-attention (Wei et al., 2023; Shi et al., 2024; Jia
et al., 2023; Ye et al., 2023; Wang et al., 2024b; 2025). In addition, some approaches (Valevski et al., 2023;
Wang et al., 2024d; Li et al., 2024; Peng et al., 2024; Papantoniou et al., 2024; Wu et al., 2024b; Yue et al.,
2024) focus solely on specific domains, e.g. human faces, in exchange for adopting more powerful encoders
dedicated to those domains, e.g. face recognition models (Deng et al., 2022). While encoders ease the tuning
process, users still need to prepare references for all target concepts. Designing specific mechanisms to insert
reference features into generative models is also necessary. In contrast, our approach operates in the text
embedding space, offering the potential to apply to extensive text-based generative models.

Subject-Consistent Generation. While subject-driven generation produces new creations featuring the
same subjects as references, another line of work focuses on generating a set of images with consistent subjects
from a set of prompts. The Chosen One (Avrahami et al., 2024) iteratively selects a cluster of similar images
and finetunes the model using that cluster. Consistory (Tewel et al., 2024), JeDi (Zeng et al., 2024), and
StoryDiffusion (Zhou et al., 2024) utilize the self-attention features of all samples in a batch. However,
these approaches are less flexible as they require access to other samples or features when performing new
generations. 1Prompt1Story (Liu et al., 2025) consolidates all prompts into a single lengthy prompt in a
specific format, where multiple context settings for a subject follow a single description of that subject. This
format limits the expressiveness of the prompts. In contrast, we achieve subject consistency with greater
flexibility by treating each generation individually while retaining the complete prompts.

Storytelling. Generating coherent stories (Li et al., 2019) requires maintaining character consistency over
time. Some approaches (Rahman et al., 2023; Pan et al., 2024; Liu et al., 2024; Shen et al., 2025; Maharana
et al., 2022) utilize cross-attention to access information from previous frames and prompts. Others introduce
a memory bank (Maharana et al., 2021), perform auxiliary foreground segmentation (Song et al., 2020), or
generate particular reference characters (Gong et al., 2023; Shen & Elhoseiny, 2023; Wang et al., 2024e).
These methods often involve training on storytelling datasets and focus on generating complete stories or
continuing them. Our approach emphasizes equipping existing generative models with the ability to maintain
subject consistency.
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Figure 2. Overview of Contrastive Concept Instantiation (CoCoIns). We develop a contrastive learning
approach to build associations between input latent codes and concept instances. For each training image, we generate
two image descriptions and randomly sample two latent codes z1 and z2. The mapping network first transforms the
two latent codes into pseudo-words w1 and w2. Then we collect a triplet of combinations of descriptions and latent
codes. We build (a) an anchor sample with description embedding e∗ modulated by inserting w1 before target concept
token, (b) a positive sample e+ with a similar description embedding modulated with w1, along with (c) a negative
sample e− with the same prompt as the anchor but modulated with a different pseudo-word w2. The network is
trained with a triplet loss to differentiate approximated images x̂∗, x̂+, and x̂−, from the denoiser prediction ϵ̂∗, ϵ̂+,
and ϵ̂−.

StyleGAN. Our generation framework shares insights similar to StyleGAN (Karras et al., 2019; 2020).
Both methods use a mapping network to transform input latents into an intermediate and more disentangled
latent space. The space in StyleGAN enables better control over generated image attributes by modulating
the generator through adaptive instance normalization (Huang & Belongie, 2017). In our framework, the
intermediate latents operate in the same space as text embeddings, allowing for better manipulation of subject
appearances through text conditions. CharacterFactory (Wang et al., 2024c) also learns a mapping network
that transforms random noise into virtual tokens associated with human names defined in a celebrity dataset.
These virtual tokens can produce consistent identities but lack control over semantics and attributes.

3 Methodology

Our goal is to maintain subject consistency across individual creations without time-consuming tuning or
labor-intensive reference collections. We introduce Contrastive Concept Instantiation (CoCoIns), a gen-
eration framework that models concept instances in a latent space and uniquely associates latent codes in
the space with output concept instances through contrastive learning. We introduce the base text-to-image
model in Section 3.1. Then we describe the framework in Section 3.2 and the contrastive learning strategy
in Section 3.3.

3.1 Text-to-Image Diffusion Models

We explore subject consistency in the context of text-to-image generation and base our approach on a latent
diffusion model (Rombach et al., 2022; Podell et al., 2023). We utilize a pre-trained text-to-image model
comprising an autoencoder (Kingma & Welling, 2014), a text encoder (Radford et al., 2021), and a denoiser.
Given an image I and a prompt P , we obtain the latent image representation x and prompt embedding e
via the autoencoder and text encoder, respectively. The denoiser ϵθ reverses the diffusion process:

xt =
√

αtx +
√

1 − αtϵ, ϵ ∼ N (0, I), (1)
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where α1:T ∈ (0, 1]T is a decreasing sequence, by predicting ϵ̂ from the noisy image xt, prompt e, and
timestep t:

ϵ̂ = ϵθ(xt, e, t). (2)

3.2 Instantiating Concepts

To generate consistent instances of a concept, we model the distribution of instances in a latent space and
associate latent codes in the space with concept instances in output images. As illustrated in Figure 2,
a mapping network takes a latent code as input and produces a pseudo-word, which conveys necessary
descriptive details to create a certain concept instance. The framework thus achieves subject consistency by
generating the same subject with a fixed latent code over multiple creations.

The proposed mapping network transforms a latent code into a virtual word token, which is then inserted
into the prompt embedding and guides the generation along with other words. Let e ∈ Rs×d denote the
embedding of a prompt P obtained via dictionary lookup, where s is the sequence length. The concept token
that a user wants to generate consistently (e.g. man in Figure 2) is at location i. Given a latent code z ∈ Rc,
the mapping network f : Rc → Rd produces an pseudo-word embedding w ∈ Rd that represents an instance:

w = f(z), z ∼ N (0, I). (3)

Then we insert the output w into the prompt embedding e at the location i before the concept token and
obtain the modulated prompt embedding ê:

ê = insert(e, w, i), (4)

where insert denotes the insertion operation. The modulated prompt embedding ê is further encoded by
the text encoder and serves as the text condition during generation.

3.3 Contrastive Association

We aim to establish unique associations between input latent codes and pseudo-words that represent visual
instances in the output images. Thus, a latent code can be reused to generate the same concept instance.

A naïve way is to train the network f to synthesize subjects from a dataset with identity annotation, such
as face recognition (Huang et al., 2008; Liu et al., 2015). However, we empirically find that training with
common noise prediction (Ho et al., 2020) often compromises the generalizability and output quality of the
generator, as these datasets are typically collected from data domains that are much narrower than the pre-
trained data of the generator. The network learns to synthesize subjects from datasets, but it may overfit
to the limited distributions. Thus, we develop a contrastive learning approach that does not require identity
annotation, allowing us to train the mapping network in a self-supervised manner.

Constructing Triplets. We prepare multiple combinations of prompts and latent codes. As illustrated in
Figure 2, the same prompts (e.g. “a man on a soccer field ...”) are paired with different latent codes, and
a similar prompt (e.g. “an image captures a man playing soccer ...”) is coupled with the same latent code.
The network is trained to generate pseudo-words inserted into prompts that synthesize certain instances.

Specifically, we prepare an image and a triplet of prompts for each training sample. The triplet consists of
(a) an anchor prompt, (b) a positive prompt, and (c) a negative prompt. The anchor prompt is a caption
that describes the image and is modulated by a latent code. The positive prompt is another description of
the image modulated with the same latent code. The negative prompt has the same caption as the anchor
prompt but is modulated with a different latent code. Formally, let e1 and e2 denote the embeddings of the
two descriptions P1 and P2 of the image I. Here, z1 and z2 indicate two different latent codes. i and j are
the locations of target concept tokens in e1 and e2, respectively. We create an anchor prompt e∗, a positive
prompt e+, and a negative prompt e− via

e∗ = insert(e1, w1, i), e+ = insert(e2, w1, j), w1 = f(z1),
e− = insert(e1, w2, i), w2 = f(z2).

(5)
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Then, we construct three noisy image latents to be paired with the three prompt embeddings. Since, in
practice, a user may perform multiple generations with different initial noises, to maintain subject consistency
between multiple generations, we obtain the noisy image latents by adding two different noises, ϵ1 and ϵ2,
sampled from a normal distribution, to the image latent x. We add the same noise to the anchor and negative
samples to create a difficult situation:

x∗
t =

√
αtx +

√
1 − αtϵ1, x+

t =
√

αtx +
√

1 − αtϵ2, x−
t =

√
αtx +

√
1 − αtϵ1, (6)

where x∗
t , x+

t , and x−
t denotes the anchor, positive and negative noisy image latents, which are then paired

with the modulated prompt embeddings e∗, e+, and e−, respectively, to form the inputs to the denoiser.

Building Association. To encourage the generative model to synthesize subjects associated with pseudo-
words, we apply a triplet loss (Schroff et al., 2015) to the denoiser outputs ϵ̂∗, ϵ̂+, and ϵ̂− of the anchor,
positive, and negative samples, pulling the anchor and positive samples closer while pushing away the negative
sample. Since consistency is meaningful only in image latents instead of noise, we first acquire the predicted
image latents x̂∗, x̂+, and x̂− with DDIM (Song et al., 2021) approximation. Then, the distances between
the three approximated latents are measured via

Lcon = Ldis(x̂∗, x̂+) + λneg · 1
Ldis(x̂∗, x̂−) , (7)

where Ldis denotes a distance function. Note that since we empirically find that the common form of triplet
with subtraction leads to less distinction between different input latent codes, the triplet loss is based on the
reciprocal of the distance between the anchor and negative sample.

Subject Masks. Furthermore, since we only pursue subject consistency between images but not the simi-
larity of entire images, we calculate the loss only in subject areas by applying masks to the output images.
Subject masks can be obtained through an off-the-shelf referring segmentation model (Kirillov et al., 2023;
Liu et al., 2023b; Ren et al., 2024), which annotates pixels corresponding to input words. Let m denote
the mask with boolean values that cover the pixels of target concepts. We replace Ldis(·, ·) with Lm

dis(·, ·) in
Eq. (7) to indicate the masked distance function with mask m, where Lm

dis(x, y) = Ldis(m · x, m · y).

Background Preservation. With the aforementioned subject mask m, we negate the subject mask to
acquire the background mask m̃ = 1 − m. The background preservation loss is defined to minimize the
distance between the backgrounds of the images generated with and without the virtual tokens:

Lback = Lm̃
dis(x̂∗, x̂1) + Lm̃

dis(x̂+, x̂2) + Lm̃
dis(x̂−, x̂1). (8)

Here x̂1 and x̂2 are DDIM approximation of the denoiser output ϵθ(xt, e1, t) and ϵθ(xt, e2, t), respectively.
The final loss function consists of the contrastive and background preservation losses:

L = λcon · Lcon + λback · Lback, (9)

where λcon and λback are weights balancing the two losses.

4 Experimental Results

4.1 Implementation Details

Architecture. We implement the mapping network f as an n-layered MLP and leverage Stable Diffusion
XL (Podell et al., 2023) as the text-to-image diffusion model. We train only the mapping network f , with
all the other model weights frozen.

Negative Distance Weight Schedule. We empirically find that the distance between anchor samples and
negative samples is often too large at the beginning of training. The model tends to ignore the randomly
initialized input latent codes and produces identical outputs. Therefore, we implement the weight of negative
distance λneg = γ(k/K)β as an increasing function over training steps, where k and K are the current and
total training steps, and γ as well as β are hyperparameters.
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Figure 3. Qualitative comparisons on Portraits from (a) StoryDiffusion (Zhou et al., 2024), (b) Consistory (Tewel
et al., 2024), (c) 1Prompt1Story (Liu et al., 2025), (d) DreamBooth (Ruiz et al., 2022), and (e) CoCoIns. The left four
columns are generated with a man as the subject, and the right four with a woman. We achieve subject consistency
without generating images in batches and through reference tuning.

Table 1. Quantitative performance on Por-
traits. We achieve comparable consistency and bet-
ter diversity against the approaches that generate im-
ages in a batch.

Sim↑ Div↑ CLIP↑

CelebA 0.590 0.992 0.299

Consistory 0.356 0.774 0.218
StoryDiffusion 0.637 0.577 0.217
1Prompt1Story 0.307 0.611 0.228

Ours 0.600 0.799 0.193

Table 2. Quantitative performance on Scenes. We
achieve the best face similarity while maintaining similar
subject diversity and prompt fidelity against other meth-
ods. In addition, we generate images individually, enabling
high flexibility in future creations.

Sim↑ Div↑ CLIP↑ DS↑

Consistory 0.098 0.883 0.297 0.383
StoryDiffusion 0.159 0.814 0.290 0.407

Ours 0.256 0.847 0.290 0.388

4.2 Experiment Setups

We conduct comprehensive experiments on single-subject human faces with our approach, followed by mul-
tiple subjects and other object categories. More details on data collection can be found in Appendix D.

Training. We train the token modulator using the CelebA dataset (Liu et al., 2015), which comprises 20K
images and 10K identities. We generate prompts with the captioning model LLaVA-Next (Liu et al., 2023a)
and masks with the zero-shot referring segmentation model Grounded SAM 2 (Kirillov et al., 2023; Liu et al.,
2023b; Ren et al., 2024).

Evaluation. We design two prompt sets for experiments for comprehensive evaluations
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• Portraits: This set evaluates face similarity with clear front faces. It contains 1K sentences composed of
the template “A [subject] is looking at the camera.”, where [subject] is one of {man, woman, boy, girl,
person}. Each subject contains 200 sentences, resulting in a total of 1K samples

• Scenes: This set represents real-world performance with free-form prompts, where face poses and angles
vary. It comprises 1K sentences generated by a Large Language Model (LLM) (Ouyang et al., 2022). We
prompt the LLM to generate sentences of the same five subjects doing something in diverse situations,
including four settings: daily lives, professional environments, cultural or recreational occasions, and
outdoor activities, each with 50 samples.

We measure subject similarity and diversity over Portraits and Scenes. For faces, we estimate face similarity
(Sim) and diversity (Div) of cropped and aligned images. Face similarity is the pairwise cosine similarity of
ArcFace (Deng et al., 2022) embeddings between images of the same identities. To estimate diversity, we
first average the face embeddings on the same identities. We then calculate the pairwise cosine similarity
between the averaged embeddings of all identities.

Since Scenes considers images in real-world applications where faces are not always clear and large, we
calculate DreamSim (Fu et al., 2023) (DS), a learned perceptual distance aligned with human preference, for
subject similarity. We also measure prompt fidelity for both sets using CLIP, which is the cosine similarity
between the projected embeddings of the CLIP text and image encoders.

Evaluated Methods. We evaluate our method against tuning-free subject-consistent generation and
tuning-based customization. Tuning-free schemes include Consistory (Tewel et al., 2024), StoryDif-
fuion (Zhou et al., 2024), and 1Prompt1Story (Liu et al., 2025). Since tuning-based methods require training
for all subjects, which incurs heavy computational costs, we use DreamBooth (Ruiz et al., 2022) as an ex-
ample and present only quantitative results.

4.3 Empirical Results

Table 1 shows the quantitative performances of Portraits, and Figure 3 displays two subjects, a man and
a woman, each with four images, generated by all approaches. We measure the similarity (Sim) and di-
versity (Div) of the training dataset CelebA for reference. Although StoryDiffusion exhibits the highest
similarity, even surpassing CelebA, its diversity remains low. Subjects generated from different batches with
different initial noise converge toward a similar appearance. Our approach achieves comparable similarity
to StoryDiffusion and CelebA while generating diverse subjects.

We demonstrate the examples of Scenes in Figure 4 and present the quantitative performance in Table 2.
We compare our approach against Consistory and StoryDiffusion because 1Prompt1Story does not support
free-form prompts. It operates with a particular prompt structure where a subject description is followed by
multiple context descriptions. Our model performs favorably in terms of face similarity while also performing
comparably in terms of diversity and fidelity.

4.4 Ablation Study

Consistency Loss. We analyze the efficacy of triplet loss in maintaining consistency. First, we calculate
face similarity and diversity on Portraits and prompt fidelity on Scenes. Table 3 shows the performance
of applying the loss of only positive distance (Pos), positive and negative distance (Pos + Neg), using
the common form of triplet loss with negative distance subtraction (subtract), and setting the weight of
negative distance as a increasing sequence over training iterations. The four settings yield similar prompt
fidelity; however, implementing negative distance, the reciprocal form, and the weighing schedule enhances
performance.

Background Loss. We also evaluate the effect of removing background preservation loss under the same
test sets. As shown in Table 4, only consistency loss results in unsatisfactory face similarity and fidelity.
While training with masked distances (+ Mask) without preserving backgrounds achieves slightly higher
face similarity, it attains low diversity and fidelity. In this setting, although the loss is only calculated within
masked regions, the model modifies non-masked backgrounds, possibly due to the self-attention mechanism,
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Figure 4. Qualitative comparisons on Scenes from (a) StoryDiffusion Zhou et al. (2024), (b) Consistory Tewel
et al. (2024), (c) DreamBooth Ruiz et al. (2022), and (d) CoCoIns. 1Prompt1Story Liu et al. (2025) is absent here
because it needs a specific prompt format with unified subject descriptions. The left and right four columns are two
different subjects in diverse contexts. The prompts can be found in Appendix D.

Table 3. Performance of ablating consistency loss.
We train the network with the distance from posi-
tive sample (Pos) and the reciprocal of negative sam-
ple (Neg). Instead of the common triplet loss with the
subtraction of negative distance (subtract), we minimize
its reciprocal and apply a weighing schedule increasing
along training iterations (Schedule). The final setting
achieves the best face similarity and diversity with sim-
ilar prompt fidelity.

Sim↑ Div↑ CLIP↑

Pos 0.394 0.500 0.293
Pos + Neg 0.492 0.750 0.290
Pos + Neg (subtract) 0.380 0.444 0.294
Pos + Neg + Schedule 0.600 0.799 0.290

Table 4. Performance of ablating background
Loss. In addition to the triplet loss for consistency
(Consistency Loss), we adopt a segmentation mask
(Mask) to control the variation area and a background
preservation loss (Background) to make backgrounds
closed to the original predictions, which significantly
improves face diversity and prompt fidelity with simi-
lar face similarity.

Sim↑ Div↑ CLIP↑

Consistency Loss 0.444 0.395 0.138
+ Mask 0.619 0.352 0.128
+ Mask + Background 0.600 0.799 0.290

which allows information to interact globally. Applying background (+ Background) preservation signifi-
cantly improves diversity and fidelity.

Prompt and Noise Combinations. We compare the strategy for constructing training triplets. We
evaluate the performance of using the same two prompts or creating noisy latent images with the same noise
for anchor and positive samples. Table 5 shows that using different prompts and noise achieves the best
similarity and almost the same prompt fidelity.

Training with Subject Annotations. We show the results of directly training the mapping network as a
noise prediction problem with CelebA. Figure 5 shows that the model learns to maintain subject consistency,
but the output quality is also affected by limited, low-quality data.
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Table 5. Performance of prompts and noise com-
binations of constructing training triplets. Com-
pared to adopting the same prompts (=) or noise for
the anchor and positive samples, using two different ( ̸=)
prompts and noise yields the best face similarity and di-
versity with similar prompt fidelity.

Prompts Noise Sim↑ Div↑ CLIP↑

= ̸= 0.548 0.686 0.290
̸= = 0.306 0.772 0.292
̸= ̸= 0.600 0.799 0.290

Figure 5. Results of training the mapping network
as a noise prediction problem. The network overfits
the dataset and generates images of low quality.

Figure 6. Results of general concepts consistency.
Our approach makes no assumptions about object cat-
egories. It can be potentially applied to other concepts
such as cats, dogs, and cars.

Figure 7. Results of multi-subject consistency.
Given two different latent codes, the model trained with
single-subject images can maintain consistency for mul-
tiple subjects.

4.5 Extensions

General Concepts. Since our approach does not impose any constraints on subject classes, we also
demonstrate that it can be applied to general concepts. We train the model with animal (Choi et al., 2020)
and cars (Yu et al., 2015) images. The examples in Figure 6 show that the model can potentially be applied
to more concept categories besides humans.

Multi-Subject Consistency. In addition to analyzing single subjects, we demonstrate our potential to
support consistency between images with multiple subjects. Figure 7 contains two sets of examples of a man
and a woman in different settings. We use two different input codes for two subjects and generate the images
with the model trained on single-subject data. While the model has never seen two faces in an image, it can
identify face areas and maintain consistency for multiple subjects. Despite some entanglements and influence
between subjects, the results demonstrate the potential to extend the model to multi-subject scenarios.

5 Conclusion

In this work, we propose Contrastive Concept Instantiation (CoCoIns), the first approach to achieve subject
consistency without the need for time-consuming tuning and labor-intensive reference collection. Our key
idea is to model concept instances in a latent space and train a mapping network with contrastive learning
to associate latent codes in the space with output concept instances. We demonstrate its efficacy on single-
subject human faces and extend it to multi-subject and general concepts. We believe this work establishes
a foundation for ultimately controllable content creation.
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A Comparison of Settings and Implementation

We provide a comparison of settings and implementation between our approach and prior work in Table 6.
As discussed in Section 2, prior approaches can be categorized into subject-driven generation and subject-
consistent generation.

Subject-driven approaches personalize a generative model by tuning parameters on reference images or
incorporating additional pretrained encoders. These approaches are either time-consuming due to subject-
specific tuning or require integration of general encoders such as DINO or domain-specific encoders like face
recognition models.

Subject-consistent approaches modify the prompt or attention mechanisms of the base generator, avoid-
ing extra modules, reference images, or additional training. Their main limitation is the requirement for
generating images in batches or reliance on stored features.

Our method is more lightweight and flexible. It requires only an MLP trained once and supports individual
inference.

Table 6. Comparison of settings and implementation between our approach and prior work.

Approach Extra Modules Reference Training Inference Constraints

Tuning-based Personalization None Yes Subject Tuning None
Encoder-based Personalization Pretrained Encoders Yes Once None
Subject-Consistent Generation None No None Batch

CoCoIns (Ours) Lightweight MLP No Once None

B Additional Implementation Details

Computational Resources. The experiments are conducted on AMD EPYC 9354 CPU and four NVIDIA
A6000 GPUs. Each training round takes around eight hours.

Hyperparameters. We list the hyperparameters in Table 7. They are decided by grid search. The distance
function Ldis is the Mean Squared Error.

Latent Code Sampling. Latent codes are randomly sampled from Gaussian Distribution N (0, I), stated
in Equation (3). In each training triplet, the anchor and positive samples share the same latent code, and
the negative sample is paired with another randomly sampled code, as detailed in Equation (5).

Table 7. Hyperparameters.

Hyperparameters Value

c 256
λcons 1
λback 30
γ 0.00001
β 2
n 8
K 5000
Batch Size 128
Learning Rate 0.0001
Learning Rate Decay Cosine
Learning Rate Warmup 500
Optimizer Adam
Weight Decay 0.2
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Table 8. FID score between each
approach and its base models.

FID ↓

Consistory 13.3
StoryDiffusion 15.2

Ours 9.2

Table 9. Comparison of performance using MSE
and DreamSim loss as the distance function.

Distance Sim ↑ Div ↑ CLIP ↑

MSE 0.600 0.799 0.193
DreamSim 0.314 0.724 0.291

Table 10. Ablation study on
weighting background loss.

λback Sim ↑ Div ↑ CLIP ↑

10 0.637 0.603 0.265
30 0.600 0.799 0.290
50 0.516 0.707 0.292

Table 11. Ablation study on
weighting negative distances.

γ Sim ↑ Div ↑ CLIP ↑

10−4 0.666 0.766 0.288
10−5 0.600 0.799 0.290
10−6 0.445 0.635 0.293

Table 12. Ablation study on sched-
ules of negative distance weighting.

β Sim ↑ Div ↑ CLIP ↑

1 0.528 0.735 0.291
2 0.600 0.799 0.290
3 0.520 0.710 0.291

C Additional Experimental Results

C.1 Additional Comparison

Image Quality. We evaluate the quality of the generated images using the Fréchet Inception Distance (FID)
score. Since various approaches are based on different models, we compute the FID scores by comparing the
images produced by each approach with those generated by their respective base models. Consistory and
we use SDXL; StoryDiffusion utilizes RealVisXL. Given that the FID score is sensitive to sample size, we
duplicate the dataset of Scenes ten times to create a total of 10K prompts. We then generate 10K images
using both the compared approaches and their base models. As shown in Table 8, our generated images are
more closely aligned with the distribution of the base model.

Distance Function. We investigate the effect of different distance functions for measuring subject similarity
during training. In our training strategy, the model is trained to generate similar appearances from the
same image corrupted by two different noises, using two similar prompts and the same latent code. When
reconstruction is nearly perfect, a simple pixel-wise metric such as Mean Squared Error (MSE) is sufficient.
However, in more realistic scenarios where outputs are imperfect, we may need a subject-aware similarity
measure. One option is to use a subject encoder; however, existing encoders are typically designed for
narrow domains (e.g., face recognition) and often rely on non-differentiable operations, such as cropping and
landmark alignment, making them unsuitable for end-to-end training. An alternative is a learned perceptual
loss, such as DreamSim (Fu et al., 2023), which is trained to align with human perception of similarity.
However, its notion of similarity may reflect factors like layout and color rather than subject identity.

Therefore, we primarily use MSE as our distance function, but also include a comparison against DreamSim.
To apply DreamSim as a perceptual similarity metric, we decode the DDIM-approximated image latents
using the Autoencoder and compute the cosine similarity between their DreamSim embeddings. We use the
DINOv2 checkpoint for DreamSim. As shown in Table 9, compared to MSE, DreamSim loss struggles to
generate consistent subjects.

C.2 Additional Ablation Study

We examine the impact of hyperparameter choices on the performance, specifically (1) the balance between
the consistency and background loss and (2) the weighting scheduling of negative distances.

Table 10 shows the comparison between different background loss weightings, denoted by λback in Equa-
tion (9). Increasing the importance of background loss improves prompt fidelity at the cost of lower face
similarity and diversity. We choose the λback that balances these two factors.
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Interpolation

Figure 8. Results generated with interpolations of two latent codes. The leftmost and rightmost images are
generated by two randomly sampled codes. The intermediate images are the results of the interpolations of the two
codes, demonstrating the gradual transition between the two faces.

Close FarSelected

Figure 9. Results generated with neighbors of a pseudo-word. We generate 100 images with randomly
sampled latent codes and a fixed initial noise. Given a randomly selected code and its corresponding image, we find
the neighbors of the selected code by sorting the cosine similarity between the pseudo-words transformed from the
code and the others. The result shows that the pseudo-words of the closer neighbors (i.e. high cosine similarity)
produces more similar faces.

Additionally, as discussed in Section 4.1, the weighting of negative distances is implemented as an increasing
schedule parameterized by γ(k/K)β , where k is the current training step, and K is the number of total train-
ing steps. γ and β are hyperparameters. We also examine the effect of varying these two hyperparameters.

Table 11 presents the results for different values of γ, and Table 12 provides comparisons between different
values of β. Similar to our observations in the previous study on the consistency and background loss, some
sets of hyperparameters lead to higher face similarity but lower diversity or prompt fidelity. We choose the
hyperparameter set that balances all of these important metrics.

C.3 Analysis of the Latent Space

We analyze the latent space that models the instance distributions of concepts. To help understand the rela-
tionships between latent codes in the space and the information captured by pseudo-words, we demonstrate
the results generated with interpolations of latent codes and neighbors of pseudo-words.

Interpolation of Latent Codes. We reveal the relationships between latent codes by visualizing their
interpolations. Given two randomly sampled latent codes, we generate images through their gradual inter-
polation and a fixed initial noise for the generation process. As illustrated in the two examples in Figure 8,
the leftmost and rightmost images correspond to the two original latent codes, while the intermediate images
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Figure 10. Eight sets of examples from Portraits. The subjects for each row are woman, man, girl, and boy.

depict the transition between them. The use of fixed initial noise results in a similar background appearance
across the interpolated images.

Neighbors of Pseudo-Words. We also illustrate the information captured by a pseudo-word by retrieving
its neighbors. Specifically, we randomly sample 100 latent codes and generate images from them. We then
select one code and its corresponding image, and compute the cosine similarity between the pseudo-word
derived from this code and those from the remaining codes. The other images are sorted based on this
similarity. As shown in Figure 9, the leftmost image is generated from the selected latent code, while the
images to its right are arranged in descending order of pseudo-word similarity. The results indicate that
closer neighbors, i.e., pseudo-words with higher similarity, tend to generate more visually similar faces.

C.4 Additional Generated Samples

We provide additional samples from Portrait in Figure 10 and Scenes in Figure 11. Each row contains two
subjects with four examples. The subjects for each row are woman, man, girl, and boy.

More multi-subject examples are in Figure 12. We also include the comparison with two previous approaches,
Consistory and StoryDiffusion. Our examples demonstrate high image quality and consistency. The prompts
in Figure 7 and Figure 12 are both “a man and a woman sitting on the sofa”, “a man and a woman taking
the bus”, “a man and a woman walking on the street”, and “a man and a woman dancing on the stage”.

More examples in Figure 13 demonstrate consistency for general concepts. The prompts in Figure 6 and
Figure 13 are “a photo of a cat”, “dog” or “car”.

D Data Collection and Generation

Identifying Subjects in Descriptions. We generate descriptions for training images with a multi-modal
captioner (Liu et al., 2023a). Then, we prompt an LLM to identify the words that are most likely to be the
subjects in the sentences. The prompt is as follows:

These are two captions of an image. Tag the words related to the subjects of the captions.
Return the captions in a JSON with keys “caption1” and “caption2”.
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Figure 11. Eight sets of examples from Scenes. The subjects for each row are woman, man, girl, and boy.
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Figure 12. More examples and comparison with previous work of multi-subject consistency.

1. Identify words related to a person: Look for specific nouns or noun phrases that refer
to a person. Exclude pronouns (e.g., “he”, “she”, “they”, “it”) and collective nouns
(e.g., “people”) from tagging.

2. Tag these words: Surround each identified word or noun phrase with <subj> and </subj>
tags. Use <subj1>, <subj2>, etc., for different items. Apply the same index number to
all references to the same item.

3. If no relevant words are found: Return the original captions without any changes.
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Figure 13. Two sets of examples demonstrating consistency for general concepts.

4. Handling ambiguity: If a word has ambiguous references or unclear roles, do not tag it.
5. Pronouns: Do not tag pronouns.

Then, we implement a tag parser to provide subject locations during training. In inference, users can provide
the locations to indicate target concepts that need to be consistent.

Generating Diverse Scenes for Evaluation. One of the test datasets is collected to represent diverse,
real-world contexts. Taking “man” as an example, we prompt an LLM to generate these sentences using the
following instruction:

Generate fifty scene descriptions of a man in daily life.
1. Focus on the subject
• The subject should always be a “man”.
• Provide descriptions of diverse scenes that feature a specific subject performing an action

in a certain place.
2. Make actions and locations diverse
• Always use a verb and location that has not appeared in previous sentences.
• The scenes should be related to everyday life, such as cooking, driving, walking, reading,

etc.
3. Portrait Details:
• The descriptions should feature close-up views of the subject’s face.
• Sensory details should enhance the scene (lighting, surroundings, sounds, smells, etc.),

but keep the focus on the subject’s face. The environment should be vivid but relevant
to the subject’s action or setting.

4. Tag the subjects:
• Tag the subject with <subj1> </subj1>. For example,“a <subj1>man</subj1> stands in

the room”
• Do not tag pronouns (such as “he”, “his”, “him”, etc.).
• If there are multiple subjects, use different indexes for each individual (e.g., <subj1>,

<subj2>, etc.).
• Use the same index for all references to the same subject.
5. Length: No more than three sentences.
Now generate 50 more samples with scenes related to technical or professional settings. For
example, locations can be offices, schools, hospitals, labs, farms, factories, studios, kitchens,
etc.
Now generate 50 more samples with scenes related to casual, cultural, or recreational occa-
sions, such as dances, music, dramas, movies, sports, arts, etc.
Now generate 50 more samples with scenes related to outdoor activities or in nature, such
as gardens, parks, mountains, forests, beaches, rivers, lakes, etc.

Prompts of Qualitative Comparison. The images in Figure 4 are generated with the following prompts:
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• A man fixes his bicycle chain in the workshop, grease streaking his concentrated face. The smell of rubber
and oil surrounds him as he works by lamplight.

• A man kneads bread dough in his sun-drenched kitchen, flour dusting his smile lines as morning light
streams through gauzy curtains. His focused gaze follows the rhythmic movements of his hands, while
the yeasty aroma fills the warm air.

• At the television studio, a man directs a live broadcast, speaking calmly into his headset. His focused
gaze darts between multiple monitors as he calls camera changes.

• A man tracks wildlife in the misty forest, his experienced eyes reading subtle signs in the undergrowth.
The early morning light filters through the canopy, illuminating his weathered face as he studies fresh
prints.

• A woman tends to her rooftop beehives, moving with calm confidence among the buzzing insects. Her
peaceful expression reflects years of experience as she checks each frame.

• Under fluorescent lights at the corner store, a woman browses magazine covers, her reflection ghosted in
the glossy pages. Her fingers trace headlines as she squints slightly, the artificial brightness highlighting
the fine lines around her eyes.

• In the acoustically treated recording studio, a woman masters audio tracks, her trained ear catching subtle
nuances. Her eyes close briefly as she adjusts levels with precise movements.

• A woman fills her bird feeder in the backyard, morning dew soaking the hem of her robe. She squints
against the rising sun, watching finches dart around her head as she pours the seeds.

Tackling Subject Ambiguity. Our experiments focus on single-subject consistency. To create a clean
training dataset and minimize ambiguity, we use CelebA (Liu et al., 2015), which primarily contains human
portraits. We generate masks using a powerful, off-the-shelf model, Grounding SAM 2 (Ren et al., 2024).
We then manually filter out images with more than one face according to segmentation results. This step
ensures that the training images contain single subjects and reduces ambiguous masks.

Extension to Multi-Subject Scenes. Although the model is trained only on single-subject portrait
images, it can handle subject consistency in more challenging conditions, such as free-form prompts in
Scenes and images with two subjects. For more challenging scenarios with multi-subject images, the proposed
loss function framework can be further extended. Since the prior work (Hertz et al., 2022) has shown the
relationships between word embeddings and feature maps, and a pseudo-word functions in the text embedding
space to describe the subject that follows, we hypothesize that the model can learn to associate a pseudo-word
with features of its corresponding subject, even in a multi-subject scene.

More thorough experimentation and evaluations need to be conducted for multi-subject scenarios, which will
be part of our future work.

Segmentation Accuracy. In the single-subject experiments, the issue of inaccurate segmentation is less
pronounced. The task of segmenting a person in a portrait, as is common in the CelebA dataset, is relatively
straightforward for a powerful model like Grounded SAM 2. In addition, we have manually validated 100
randomly sampled images and find the predictions to be consistently reliable for this use case.

Licenses. The main experiments are conducted on CelebA (Liu et al., 2015). It is made available for
non-commercial research purposes and requires users to comply with the terms outlined in the official usage
agreement.

E Further Discussions

Preventing Prompt Corruption. To ensure that a pseudo-word only affects the subject and does not
corrupt the rest of the prompt, we use a background preservation loss. This loss minimizes the difference in
the background areas between an image generated with the pseudo-word and one generated without it. This
localizes the effect of a pseudo-word to the masked subject area, thereby preserving the overall scene context
dictated by the original prompt. The ablation study in Table 4 shows that removing this loss significantly
harms prompt fidelity.

Place of Pseudo-Words. CoCoIns is developed based on the assumption that the pseudo-word lies in the
text embedding space. Our mapping network f is explicitly designed to take a latent code z and output

22



Under review as submission to TMLR

a pseudo-word w as a vector that has the same dimension as the text embeddings of the pre-trained text
encoder. This pseudo-word vector is then inserted directly into the sequence of prompt embeddings before
the subject token.

Aligning Pseudo-Words. The consistency loss is not defined on the pseudo-words directly. Instead,
a pseudo-word is made meaningful through an indirect alignment process using a contrastive loss on the
generated images.

We use a triplet loss that operates on the predicted image latents from the denoiser. The model is trained
to minimize the visual difference between images generated with the same pseudo-word (even with different
prompts and noise) while maximizing the visual difference between images generated with different pseudo-
words. This process forces the model to treat each pseudo-word as a unique identifier for a specific visual
appearance. The meaning of a pseudo-word becomes the consistent subject identity it produces.

We also analyze the space of pseudo-words in Appendix C.3, which provides strong evidence that this indirect
alignment is successful. The experimental results show that:

• Interpolation: Smoothly interpolating between two latent codes results in a smooth visual transition
between the two corresponding faces.

• Similarity: Pseudo-words that are closer to each other in the embedding space (i.e., have higher cosine
similarity) produce subjects with a more similar appearance.

These results demonstrate that the learned space of pseudo-words is well-structured and meaningful.

F Broader Impacts

Our approach enables image generative models to maintain subject consistency, extending their applicability
across various tasks and modalities. Although this versatility could potentially be misused, such risks can
be effectively mitigated through responsible deployment strategies, including strict usage policies, gated
releases, and watermarking techniques.
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