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Abstract

We present a model-based reinforcement learning framework that aims to
tackle environments with high dimensional state spaces. In contrast to
traditional approaches, agents under our framework learn a low dimensional
internal representation of the environment while avoiding the need to learn
a generative model of the environment itself. This solipsistic representa-
tion is trained to encode a belief that is consistent with the dynamics of
the environment and is then exploited for effective planning. We present
specific cases of our framework with choices of model and corresponding
planning algorithms that can deal with both discrete and continuous state
environments. We demonstrate empirically gains in efficiency over existing
model-free methods when learning directly from pixels and analyze the
properties of our learned representations.

1 Introduction

The real world is complex and a learning agent must be able to recognize relevant sig-
nals to decide what actions to take towards reaching a goal. The focus of our work
is to form environment representations for model-based planning and reward predic-
tion without having to learn a generative model of the potentially complex environ-
ment. To motivate our approach, Pavlov’s dog (Dennis and Mitterer, 2004) learns to
associate the sound of a bell with the eventual reward of food, despite sensory distractions.

Figure 1: Pavlov’s dog. After hearing
the bell, the dog receives a food re-
ward, with the time between the bell
and the reward gradually increased.
The dog learns to associate the sound
of the bell with the eventual arrival
of food, salivating due to this expec-
tation.

There are classically two interpretations: (a) a model-
free interpretation is that the dog learns a value v(xt)
(expectation of eventual food reward) as a function
of the environment state xt at time t; (b) a standard
model-based interpretation is that the dog models the
environment and can use that to predict the future
p(xt+k|xt) and any eventual reward. In contrast to
these standard approaches, we posit an alternative
model-based interpretation in which the dog forms an
internal ‘solipsistic’1 low-dimensional representation
st as a function of the external environment state
xt and forms a predictive model p(st+k|st) of the
representation, without learning a model of the envi-
ronment itself. This representation is useful if the dog
is able to accurately predict eventual reward rt+k using the solipsistic transition p(st+k|st)
and reward model p(rt+k|st+k).

∗Equal contribution, Correspondence to: {mingtian.zhang.17,peter.hayes.15}@ucl.ac.uk
1We use ‘solipsism’ to refer to the philosophy that only an internal representation of the world

may exist (Blackburn, 2005). In our context, the agent can plan on the basis of an internal dynamical
representation of the external world.
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In the Reinforcement Learning (RL) setting an agent observes state xt from the environment
at time-step t, takes action at, and subsequently observes xt+1 and reward rt+1. The
goal of the agent is to learn (through interactions with the environment) how to take
actions that result in favorable long-term rewards (Sutton and Barto, 2018). A standard
RL assumption is that there is an underlying Markov Decision Process with transition
p(xt+1|xt, at) (Deisenroth and Rasmussen, 2011; Gal et al., 2016; Amos et al., 2018; Chua
et al., 2018); rewards are functions of the observed state and the goal is usually to take
actions that maximize cumulative reward, see Figure 2a2. The action at depends on the
state xt−1, meaning that the state xt−1 is revealed before the action at is decided.

In model-based RL, we attempt to learn the model of the transition dynamics. Compared to
model-free approaches, model-based RL can be significantly more sample efficient (Deisenroth
and Rasmussen, 2011; Gal et al., 2016; Amos et al., 2018; Chua et al., 2018). However, for
environments with high-dimensional states (such as an image pixels) the complexity and
potential redundancy in the observations can make learning the environment dynamics using
a model difficult and potentially unnecessary (Ha and Schmidhuber, 2018; Hafner et al.,
2019b).

A recent trend is to learn a lower dimensional representation st that is used to model relevant
dynamics and reward prediction, such as PlaNet Hafner et al. (2019b), World Model (Ha
and Schmidhuber, 2018) and other variants (Chiappa et al., 2017; Ha and Schmidhuber,
2018), see Figure 2b. The usual strategy is to train a latent variable generative model
p(xt) =

∫
p(xt|st)p(st)dst with an encoding-decoding structure (Kingma and Welling, 2014),

while jointly training a dynamics model p(st+1|st, at) in the lower dimensional latent space
(Hafner et al., 2019b; Chiappa et al., 2017; Ha and Schmidhuber, 2018; Hafner et al., 2020).
The learned model infers a latent representation st given a state observation xt (for example
a sample from the posterior p(st|xt) ∝ p(xt|st)p(st)) that can be used by the dynamics
model for efficient planning. Arguably, a limitation of these recent approaches is that they
spend significant computational effort on learning a generative model of the high-dimensional
state xt – however, this generative model is not used directly during the planning phase.
The learned representation st in these approaches is therefore likely encoding redundant
information about the environment xt.

An alternative is to use model-free algorithms such as Deep Q-Networks (DQN), Proximal
Policy Optimization (PPO), amongst others (Mnih et al., 2015; Schulman et al., 2017; 2015;
Babaeizadeh et al., 2017). The upside is that these approaches avoid creating a generative
model of the environment by learning a policy from pixels to state values. A potential
downside is that they suffer from poor sample efficiency compared to model based approaches.

The question we therefore study here, similar to other recent research work in this area
Hafner et al. (2019a), is whether it is possible to perform model-based RL without making a
generative model of the environment. If this were possible, we could potentially reap the
benefits of the sample-efficiency of model-based RL, without the need to model complex
high-dimensional observations.

2 Solipsistic Representations

A solipsistic representation st of an observation xt is one that is consistent (the predicted
next solipsistic state st+1 given action at matches the observed next solipsistic state st+1)
and informative (one can predict the reward well using st). A solipsistic Markov model is
depicted in Figure 3a, where we remove the arrow from s to x in the latent variable model
and instead introduce a recognition distribution p(st|xt), the purpose of which is to encode
only the information in xt that is needed to effectively learn the dynamics and reward.

We will use throughout a toy ‘MNIST game’ to help build intuition, see Figure 4. Each
observation xt is a 28× 28 MNIST image representing a digit from 0 to 9. The agent has
two possible actions: ‘minus 1’ or ‘plus 1’; the environment shows the resulting digit’s image.
The digit will stay the same when taking action ‘minus 1’ from digit 0 and ‘plus 1’ from digit

2Alternatively one may use a higher-order Markov model p(xt+1|ht) where ht = {s1:t, a1:t} is
the history of states and actions up to time point t (Chiappa et al., 2017).
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Figure 2: Graphical models for model-based RL. Shaded nodes denote observed quantities.
(a) Model dynamics and reward in the original space x and (b) in latent space s.

xt rt

st st+1 st+1

xt+1

at

(a) Solipsistic Markov Model
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(b) Solipsistic Memory Model

Figure 3: Graphical models of the solipsistic Markov model (a) and memory model (b).
We color the edge from the observation to the latent state to highlight that this is not a
generative model of the environment. A dashed line indicates the consistent relationship
between solipsistic state prediction and future state recognition, as discussed in section 2.

9. The game is initialized at digit 4. The reward rt is 1 if the state is an image of digit 9;
otherwise the reward rt = 0. Whilst the observation xt is a 784 dimensional image, clearly
the underlying dynamics is representable by an integer st ∈ {0, . . . , 9}.

(a) States of the environment (b) Transition dynamics

Figure 4: MNIST game. (a) The observation xt is one of the 10 images. (b) Given a ‘plus 1’
action, the following image xt+1 is a higher digit and vice versa for ‘minus 1’.

Solipsistic Consistency We wish to ensure that, for a given recognition distribution
prec(st|xt), the dynamics of the solipsistic model are consistent with the dynamics of the
true environment when training the model under sampled trajectories. Thus, in the setting
of Pavlov’s dog, if the model maps the current environment xt to the internal state xt → st
that represents hearing the bell st = bell, and the dog predicts st → st+1 from this that
st+1 = food, then we must have that the next external state xt+1 → st+1 indeed maps to food.
This ensures that solipsistic transitions are effective for planning. Similarly, in the MNIST
game, we need to force the solipsistic model to predict a digit that is consistent with the
image that would appear in the next time step under the true environment transition. More
specifically, we assume a Markov transition distribution ptran(st+1|st, at) which takes the
current solipsistic state and action as input and gives the distribution for the next solipsistic
state st+1. Given xt and at, the solipsistic state distribution at time t+ 1 can be predicted
using

ppred(st+1|xt, at) =
∑
st

ptran(st+1|st, at)prec(st|xt). (1)
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We want this predicted distribution to be consistent with the recognition distribution
prec(st+1|xt+1) given the observation xt+1 from the next time step. To achieve this we
introduce an agreement objective, for example the KL divergence,

KL(ppred(st+1|xt, at)||prec(st+1|xt+1)) . (2)

Reward Consistency For effective planning, we want the solipsistic representation to be
useful for reward prediction prew(rt|st). Given a solipsistic state st and observed reward rt
we use maximum likelihood to learn the reward model prew(rt|st). This is equivalent to min-
imizing the KL divergence KL(p̃(rt)||prew(rt|st)) between the empirical reward distribution
p̃(rt) that places all mass in the observed reward rt and the model prew(rt|st).
Solipsistic Contrast Finally, the intention of the recognition distribution prec(st|xt) is to
filter out redundant information when producing the solipsistic representation. To achieve
this, we need it to learn to distinguish if the state information is useful or not for both
reward prediction and transition dynamics. For example in the MNIST game, the recognition
distribution may just focus on the image backgrounds which are stationary over time and
the solipsistic transition function could just learn the identity mapping. Although this forms
a consistent solipsistic representation, it would be useless for planning. Furthermore, having
a reward objective is not sufficient to avoid this behavior. Features of the state which inform
reward prediction may not be the same as those which inform a useful dynamics model. For
example in the MNIST game, the recognition distribution may just keep the features which
are relevant to distinguish if an image is 9 or not for predicting the reward, but ignore other
useful information about the system dynamics.

One solution is to additionally encourage the agent’s solipsistic dynamics to be inconsistent
with trajectories which are not observed in reality. In other words, we want an objective that
forces the predictive distribution ppred(st+1|x,at) to be different from prec(si|xi) for i 6= t+ 1
3. We thus maximize the expected KL divergence (for convenience dropping henceforth the
“pred”, “rec”, “rew” and “tran” subscripts)

Ei 6=t+1 [KL(p(st+1|xt, at)||p(si|xi))]. (3)

This solipsistic contrast term is similar to a contrastive loss used for representation learning
or self-supervised learning (Chopra et al., 2005; Hadsell et al., 2006; Chen et al., 2020). Since
the KL divergence is unbounded, we use a positive constant cap m.

Overall Objective: For a trajectory of length T the overall objective is to minimize,

1

T − 1

T−1∑
t=1

KL(p(st+1|xt, at)||p(st+1|xt+1)) +
λr
T

T∑
t=1

KL(p̃(rt)||p(rt|st))

+
λs

T − 1

T−1∑
t=1

Ei 6=t+1 [max(0,m−KL(p(st+1|xt, at)||p(si|xi)))] (4)

with respect to the parameters of the recognition distribution p(st|xt), transition distribution
p(st+1|st, at) and reward distribution p(rt|st); λs, λr andm are user chosen hyper-parameters.
In our experience, the results are not particularly sensitive to the choice of these parameters,
see section 3. For tasks that require accurate long-term planning, prediction errors using the
simple solipsistic Markov model may accumulate during roll-out4. In such cases we consider
a Solipsistic Memory model(SMM) whose transition depends on all past solipsistic states
and actions – see Figure 3b. Within our overall objective, we replace p(st+1|xt, at) with
p(st+1|xt, ht) where ht = {s1:t, a1:t} and use a recurrent neural network (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014) to learn the transition dynamics of the solipsistic
model.

3More generally, in the case of multiple trajectories, we can sample si from other trajectories.
4Whilst the underlying physical dynamics of a problem might be Markovian, any pixel based

representation will result in discretization error. For long sequences, small discretization errors can
accumulate, resulting in poor long term prediction unless a longer term history is used.
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2.1 Acting in the Environment and Planning

For a given solipsistic model, we take a sequence of actions using a re-planning procedure: we
observe x1 and determine the first solipsistic state distribution using the recognition process
p(s1|x1). We then determine a∗1 using a planning procedure (e.g. dynamic programming,
or sampling from a trained parameterized policy, as we discuss below) and take this action
in the environment, observing the resulting x2. We repeat this recognition and planning
procedure until time T , observing xt at each step and then planning the best next action.
This process of re-planning at every time step helps prevent the accumulation of prediction
errors from our model and is efficient since our solipsistic representation is low dimensional.
How planning and acting in the environment is folded into the overall RL process of model
and policy training is described in detail in algorithm 1, appendix A.

2.1.1 Planning in the Solipsistic Markov Model

Given the observation x1, we would like to predict the expected rewards we would obtain by
taking a sequence of subsequent actions a1:T−1. The recognition distribution enables us to
determine the distribution for the first solipsistic state p(s1|x1). Then, given x1 and a1:T−1,
the state-action trajectory can be described by the distribution

p(s1:T |x1, a1:T−1) = p(s1|x1)
T−1∏
t=1

p(st+1|st, at). (5)

For planning, the goal is to maximize the cumulative reward by choosing a sequence of
actions. For a discrete solipsistic state space, the objective is∑

s1:T

(
T∑
t=1

R(st)

)
p(s1|x1)

T∏
t=2

p(st|st−1, at−1), (6)

where we use the reward function defined as R(st) ≡ Ep(rt|st) [rt]. If we interpret the
solipsistic model as a Markov Decision Process (MDP) 5 then the optimal action sequence
has value

max
a1

∑
s1

p(s1|x1) · · ·max
aT−2

∑
sT−1

p(sT−1|sT−2, aT−1)max
aT−1

∑
sT

p(sT |sT−1, aT−1)
T∑
t=1

R(st). (7)

This is readily solved by dynamic programming, which we describe below.

Value Estimation We let V (sT ) = R(sT ). For t = T − 1, . . . , 2 and each state of st we
calculate

V (st) = R(st) + max
at

∑
st+1

p(st+1|st, at)V (st+1). (8)

The first optimal action can be computed using the value function

a∗1 = argmax
a1

∑
s1

p(s1|x1)
∑
s2

p(s2|s1, a1)V (s2). (9)

We then take the first optimal action a∗1 in the real environment to get observation x2, and
do re-planning based on the new solipsistic distribution p(s2|x2). The general procedure is to
repeat: (1) take the action a∗t in the environment and get the new observation xt+1, (2) use
the recognition function to compute p(st+1|xt+1), (3) compute the next action a∗t+1 using

a∗t+1 = argmax
at+1

∑
st+1

p(st+1|xt+1)
∑
st+2

p(st+2|st+1, at+1)V (st+2). (10)

In situations where a full action sequence is desired before interacting with the environment,
see appendix C. By using this re-planning scheme, we can sequentially decide the optimal
action sequence under our model, which we demonstrate in our MNIST game in section 3.1.
For continuous solipsistic states and non-linear transition dynamics, exact dynamic program-
ming is usually not available. See (Bertsekas, 1995) for alternative approximate dynamic
programming techniques.

5See appendix B for an alternative method where we do not assume a MDP.
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(c) V (st) for t from 1 to 10.

Figure 5: The learned solipsistic model for the MNIST game. The pixel images xt are
represented by their corresponding number on the x-axis. (a) The y-axis is the solipsistic
state st. The model learns to associate an image xt with a unique solipsistic state st, with
p(st|xt) being almost deterministic. (b) The learned model predicts the instantaneous reward
correctly. (c) The y-axis is the time step from 1 to 10. The value is normalized within each
time-step, the darker patches indicate higher values. Given any state at time step 1, the
optimal action is always ‘plus 1’.

2.1.2 Planning in the Solipsistic Memory Model

In the SMM dynamic programming is problematic and we instead learn a policy pw(at|st),
parameterized by a neural network. Here we assume that the state st contains sufficient
information to determine the best action; however, in order to accurately track long term
behavior, we need to use the SMM dynamics to track the state. This is typically the case
in pixel-based planning in which the best action is readily determinable from the current
state; however, keeping track of the long-term consequences of a sequence of actions requires
using a history of states (due to discretization errors in the image rendering). The resulting
objective to maximize is

E(w) ≡
∫ ( T∑

t=1

R(st)

)
p(s1|x1)

T∏
t=2

p(st|ht−1)pw(at−1|st−1)ds1:T da1:T−1. (11)

where, for discrete actions, the integral over a1:T−1 is replaced by summation. Previous work
has demonstrated that Variational Optimization (VO) style algorithms (Staines and Barber,
2012; Salimans et al., 2017) have an advantage over policy gradients for environments with
long time horizons. We therefore use a standard VO algorithm to learn the policy parameters
w, see appendix D.

3 Experiments

Rather than showing state-of-the-art across a range of RL challenges, the goal of the
experiments is to confirm our hypothesis that model-based RL can be achieved without
requiring a generative model of the observations xt. We discuss the simple MNIST game and
RL from pixels using continuous st for a version of the Cartpole benchmark from OpenAI
gym (Brockman et al., 2016). Full details of the models and training are given in appendix E.

3.1 MNIST Game

For the solipsistic state we assume we know the true number of states st ∈ {1, . . . , 10}. The
recognition distribution p(st|xt) is parameterized by a convolutional network. We param-
eterize the transition p(st+1|st, at) with two normalized 10× 10 matrices p(st+1|st, at = 0)
and p(st+1|st, at = 1). The reward distribution p(rt|st) is parameterized by a normalized
10× 2 matrix. At each episode we select random actions a1:14 and collect a single trajectory
x1:15 to add to our memory6. Then during model training, we iteratively sample batches of

6The MNIST game is simple enough that, during model training, random exploration is sufficient.
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consecutive states from memory with batch size 64 and update the model using equation 4
and ADAM (Kingma and Ba, 2015). This process then repeats at each episode.

We can see from Figure 5a that the 10 different images are assigned to 10 different solipsistic
states with high probability. In Figure 5b, we see successful reward predictions, with the
image state 9 having high probability of reward 1. At test time, we randomly initialize the
image state and set the horizon for planing to T = 10, since for any given state at t = 1, the
agent can reach the goal state within 10 steps. In Figure 5c we plot the value of each state
from t = 1, . . . , 10. The optimal action at time 1 is ‘plus 1’ for each initial state; similarly
the subsequent optimal action is always ‘plus 1’, thus correctly solving the problem.

3.2 Gym Control : Binary Action Cartpole

In Cartpole, a pole is attached by an un-actuated joint to a cart that moves along a friction-
less track, which can be controlled by applying a force of +1 or −1 to the cart at each time
step. A reward of 1 is received at every time step that the pole remains upright and the
episode terminates when it falls over or the cart moves too far from the center. A maximum
horizon of 200 time steps is generally used.

Instead of using the low-dimensional states provided by the OpenAI Gym, we use the
rendered image frames as the state observations. We first gray scale pre-process each video
frame and down-sample to produce a 64× 64 frame ft at time t; three consecutive frames
are then stacked to represent each state observation, xt = {ft, ft−1, ft−2} for t ≥ 3. This
provides higher-order dynamics information like speed, which are hidden in a single frame.
For simplicity we assume a stationary initial position (initial pole position is upright) and
define x1 = {f1, f1, f1} and x2 = {f2, f1, f1}. We use the SMM since this gives accurate long-
term prediction, despite discretization error from the pixel rendering of the true continuous
underlying dynamics.

We follow algorithm 1 (see appendix A) to interact with the environment and learn the policy
and model. We set st ∈ R16 and choose p(st|xt) = δ(st−gθ(xt)), p(st+1|ht) = δ(st+1−fθ(ht)).
The recognition function gθ and transition function fθ are a convolutional neural network and
recurrent network respectively. The reward distribution pθ(rt|st) is a Bernoulli distribution
with the probability parameterized using a small neural network with a sigmoid output. All
model parameters are trained jointly using the ADAM optimizer. Since the KL divergence
between two delta distributions is not formally defined for equation 4, we use the spread
KL divergence (Zhang et al., 2020b) with fixed Gaussian spread noise that has variance 0.5,
resulting in a square loss objective.

0 100 200 300 400 500

0

50

100

150

200
Our method
PPO clip=0.1
PPO clip=0.2
DQN

Figure 6: Evaluating learned policies. x-axis
is number of trajectories sampled from the
environment. y-axis is cumulative reward re-
ceived, averaged over 5 training runs. The
data is smoothed using a moving average with
window size 3.

The policy, section 2.1.2, pθ(at|st) is a
Bernoulli distribution with the probability
parameterized using a small feed-forward
network with a sigmoid output and trained
using VO - see appendix E. When evaluating
the trained policy in the real environment
we take the most likely action at each re-
planning step.

We compare to DQN and PPO (Mnih
et al., 2015; Schulman et al., 2017) following
their standard open source implementations
adapted for acting directly in pixel space –
see appendix E.3 for details. In Figure 6 we
report the average reward over 5 different
runs for all methods, with each run carried
out using different random parameter seeds,
but the same fixed initial position of the
environment.

Compared to PPO and DQN our solipsistic
model-based approach is significantly more
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sample efficient, learning to balance the pole for over 150 time steps, after seeing only 300
trajectories. This demonstrates that our solipsistic approach is accurately modeling both
the relevant environment dynamics and the reward. For this setting, we found PPO and
DQN struggled to balance the pole for over 50 time steps on average after 2500 sampled
trajectories from the environment - see Figure 10 in appendix E.3.

3.2.1 Learned Representations

Of interest for a qualitative analysis on the recognition function and learned solipsistic repre-
sentations are: (1) has the recognition function learned to filter out redundant information?
(2) are the solipsistic trajectories consistent with their corresponding observation trajectories?
To answer (1) we extract filters from the first layer of the CNN recognition function, which
act as attention maps over the pixels. In Figure 7 we see that different filters are attending
to different physical attributes, for example pole position, pole speed and cart position. In
contrast, no clear physical interpretation was apparent for samples from PPO’s convolutional
policy and value networks, which we discuss further in appendix E.4. In support of (2),
in Figure 8d we illustrate that the solipsistic trajectories have smooth transitions and are
disentangled in accordance with their corresponding trajectories in pixel space.

Figure 7: Visualization of the CNN filters’ activations. We take action ‘push cart to the
right’ for 15 steps, so that the velocity of the cart and pole are monotonically increasing.
The left half of the figure shows four states (i.e. the 4 rows) {x1, x5, x10, x15} where each
state is the stack of 3 successive frames (i.e. the 3 columns) xt = {ft, ft−1, ft−2}. The right
half of the figure shows the activations of the CNN’s first layer in the recognition network.
We select 4 filters’ activations (there are 8 filters in the first layer of recognition network) and
use a sigmoid function to create these grey-scale images. The first filter appears to encode
spatial information of the cart and pole (the activated pixels are consistent with the position
of both throughout). The second and third filters we believe represent velocity information
for the pole (given the activated pixels can be interpreted as providing a finite difference
type estimate of velocity by encoding the position of the pole in the first and last frames),
while the fourth can be interpreted as encoding information about the velocity of the cart
(given more pixels become activated in the region of the cart the faster it goes).

4 Related Work

A traditional approach to reduce the complexity of the state is to apply state-aggregation
methods, such as non-parametric dimensionality reduction techniques (Powell, 2007), or
hand-coded features, to obtain lower-dimensional state representations – see (Mahadevan,
2009) and (Bertsekas, 2018) for a review. These methods require strong prior knowledge
about the environment and are not generally useful in situations with complex state spaces.
Further the representations are learned separately from the modeling process, which can
hinder overall performance when utilized for planning (Kuvayev and Sutton, 1996). In
contrast, our solipsistic approach jointly learns the dynamics model and representations.

Recent work (Gelada et al., 2019; Zhang et al., 2020a) also propose to use deep neural
networks to learn state representations without reconstructing the original state. However,
they only demonstrate the benefits of this approach in model-free learning whereas we show
how to do planning using the learned representation and the model dynamics.
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(a) Trajectory 1
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(b) Trajectory 2
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(c) Trajectory 3
(d) Solipsistic state trajectories

Figure 8: (a,b,c) show three test trajectories, where we plot the frames {f1, f10, . . . , f50}. (d)
We construct x1, . . . , x50 by stacking the successive frames within each trajectory, and then
produce s1, . . . , s50. We use PCA to project the solipsistic states to 2D for visualization.
Trajectories 1 and 2 are similar (the pole falls to the left) and have similar solipsistic
trajectories. Trajectory 3 shows the object fall to the right and the solipsistic representation
is far away from that of trajectory 1 and 2.

Contrastive learning is widely used in the field of representation learning (Bengio et al., 2013).
The aim is to encourage similar datapoints to have similar representations (Chopra et al.,
2005; Hadsell et al., 2006; Chen et al., 2020). In RL, this idea has been used to improve the
data efficiency of model-free algorithms by treating contrastive learning as an auxiliary task
(Oord et al., 2018; Srinivas et al., 2020; Jaderberg et al., 2017). The contrastive objective
we use (section 2) instead aims to prevent the recognition function from learning a trivial
solution to ensure the solipsistic representation is useful for planning.

Most closely related to our work is Hafner et al. (2019a) which uses a Recurrent State Space
Model without a decoder component, akin to our Solipistic Markov Model setup. They use
the variational information bottleneck (VIB) principle (Tishby et al., 2000; Alemi et al.,
2016) to derive the following regularizing term for their learning objective:

log p(st|xt)− log
∑
i

p(st|xi), (12)

where the summation is over the observations in the current sequence batch. The paper
shows that this term keeps st predictable from the current image, whilst also keeping the
latent representations diverse. Although this work also achieves model based RL in the
representation space without reconstructing the original image state, their regularized VIB
objective is different to our Solipsistic consistent-contrast objective (equation 4). We leave
detailed comparisons in both theory and practice to future work.

5 Summary

We introduced Solipsistic Reinforcement Learning, a new model-based reinforcement learning
framework that learns useful latent representations of the environment for planning and
reward prediction, without constructing a generative model of the environment. Our work is
consistent with the recent general trend away from modeling the dynamics of high dimensional
spaces and towards learning models that more directly solve the task at hand. Whilst model-
based reinforcement learning is arguably preferable to model-free alternatives, particularly
because of data efficiency, most previous approaches do not learn in an end-to-end fashion
and also require an explicit model of the environment. We hope therefore that we have
shown that there is scope to solve reinforcement learning problems in a model-based way,
but without the downsides of requiring complex models of the environment.
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A Overall Learning Procedure

Here we provide the general procedure we follow for tackling RL problems with solipsistic
reinforcement learning, where we assume the use of the memory model and a parameterized
policy.

Algorithm 1: Overall learning procedure - with parameterized policy and memory model
1 Set constants I, Nmodel, Npolicy, Tcollect, Tmodel, Tpolicy, B (model batch size), ε

(exploration noise), J (number Monte Carlo samples in VO)
2 InitializeM← ∅ (trajectory memory)
3 Initialize Parameters of ptran, prec, prew, pw0 (to random policy)

4 for iteration i = 1, . . . , I do

/* Trajectory collection */
5 for collection step c = 1, . . . , C do
6 Reset environment
7 for time step t = 1, . . . , Tcollect do
8 Observe xt, rt and sample st ∼ prec(st|xt)
9 Sample ât based on exploration strategy using pwi

(at|st), ε ; // See
section E

10 Take action ât in environment

11 M ←M ∪ {(xt, st, ât, rt)}Tcollect
t=1

/* Model training */
12 for training step n = 1, . . . , Nmodel do
13 From memoryM sample batch of trajectories {{(xt, st, ât, rt)b}Tmodel

t=1 }Bb=1
14 Jointly update parameters of ptran, prec, prew using equation 4 and ADAM

/* Policy training */
15 Re-initialize wi to a random policy
16 Initialise VO parameter µ1 ← wi
17 for training step n = 1, . . . , Npolicy do
18 for sample j = 1, . . . , J do
19 initialize h1 ← ∅
20 Sample x1 from memoryM
21 Sample s1 ∼ prec(s1|x1)
22 Sample wj ∼ N(µn, 0.2)
23 for time step t = 1, . . . , Tpolicy do
24 Sample at ∼ pwj

i
(at|st)

25 ht ← ht ∪ (st, at)
26 Predict R(st)
27 Sample st+1 ∼ ptran(st+1|ht)
28 Compute E(wj) =

∑T
t=1R(st) ; // See section D

29 Compute µn+1 with {E(wj)}Jj using VO update equation 18 and ADAM
30 Update policy parameters wi+1 ← µn+1
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B Best Trajectory Planning

In section 2.1, our goal is to maximize the cumulative reward objective∑
s1:T

(
T∑
t=1

R(st)

)
p(s1|x1)

T∏
t=2

p(st|st−1, at−1). (13)

We then assume the state st is only revealed after we take action at−1 and form the problem
as a Markov Decision Process in equation 7. An alternative objective is to directly optimize
equation 13 with respect to the action sequence a1, . . . , at−1 – we refer to this as the ‘best
trajectory planning’ objective. Although the optimization problem is no longer tractable,
an approximate but efficient Expectation Maximization (EM) style algorithm can be used
following the lines of (Furmston and Barber, 2011). When applied to the setting of only a
final reward, we didn’t find any significant improvement over MDP planning; however, we
leave a more detailed discussion of this approach for future work.

C Full Trajectory Planning Using the Model

In section 2.1 we discussed a planning approach using our model where we do re-planning
each time we sample an action. For the situation that the environment needs an ‘immediate’
response from the agent (with no time for re-planning), we may decide a sequence of actions
purely based on the model predictions given observation x1. Subsequently, we deploy that
action sequence in the environment. We describe the method below.

We first compute the value function using equation 8 and decide the first optimal action
based on

a∗1 = argmax
a1

∑
s1

p(s1|x1)
∑
s2

p(s2|s1, a1)V (s2). (14)

For t = 2, . . . , T − 1, we sequentially compute

a∗t = argmax
at

∑
st

p(st|x1, a∗1, . . . , a∗t−1)
∑
st+1

p(st+1|st, at)V (st+1), (15)

where

p(st|x1, a∗1, . . . , a∗t−1) =
∑
st−1

p(st|st−1, a∗t−1)p(st−1|x1, a∗1, . . . , a∗t−2) (16)

for t ≥ 3. The potential drawback of this approach is that the error will accumulate during the
long term predictions using the model. We implemented this method for the MNIST game,
but found little difference in the results over re-planning. In that setting the model provides
very accurate long term planning. We leave it to future work to assess the performance of
this approach in more complex environments.

D Variational Optimization

With VO we model the parameters of the policy with a Gaussian distribution w ∼ N (w |µ, σ)
to form a differentiable upper bound that we can minimise w.r.t µ and σ.

U(µ, σ) = Ep(w|µ,σ) [−E(w)], (17)

where E(w) is our memory model planning objective from equation 11. After optimising this
bound with respect to µ, σ, we take the final µ as our value for w. We compute gradients
with the usual log-derivative trick, using J Monte Carlo samples to approximate the resulting
expectation as follows. In practice, we find that learning σ does not improve performance,
hence we fix it to a value of 0.2 throughout and minimize w.r.t µ,

∂U

∂µ
≈ 1

J

J∑
j=1

∂

∂µ
log p(wj |µ, σ)(−E(wj)), (18)
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where wj refers to the jth Monte Carlo sample of the policy parameters - see section Policy
training in algorithm 1 for further details. In practice, we also apply fitness shaping Salimans
et al. (2017) to E(wj) in equation 18 to make the VO update invariant w.r.t. order-preserving
transformations of the reward value.

E Experiment Details

E.1 MNIST Game

In this section we discuss the details of the architectures and hyper-parameter settings used
for our toy MNIST game experiment from section 3.1.

Model Architecture The recognition network is composed of a two-layer convolution
neural network, followed by a two-layer feed-forward network. The two convolution layers
have 10 and 20 filters respectively with stride 2 and kernel size 5. We use max pooling
after convolutional layer. We use ReLU activation functions for both the convolutional and
feed-forward layers. The forward network has 100 hidden units in each layer and the output
size is equal to the number of solipsistic states (in this case 10). We use a softmax function
to create the probabilities of the categorical distribution for determining the solipsistic state
assignments.

Model Training For our model objective equation 4 we set the hyper parameters as λs = 1,
λr = 2 and m = 5. We use ADAM (Kingma and Ba, 2015) as the optimizer with learning
rate 10−4 to train the model for Nmodel = 3000 iterations with batch size B = 64.

Solipsistic Contrast For computational efficiency, we approximate the contrast term in
equation 3 using the following Monte Carlo approximation

Ei 6=t+1 [KL(p(st+1|xt, at)||p(si|xi))] ≈
1

B − 1

∑
sj

KL(p(st+1|xt, at)||p(sj |xj)) , (19)

where sj ∈ M(st+1)\st+1 andM(st+1) is the mini-batch set that st+1 belongs to. So the
setM(st+1)\st+1 has size B − 1.

E.2 Gym Control

In this section we discuss the details of the architectures and hyper-parameter settings used
for our Cartpole experiment from section 3.2. For model and policy training we follow
algorithm 1.

Model Architecture The recognition network is a four-layer convolution neural network
with Batch Norm (Ioffe and Szegedy, 2015) and ReLU activation functions followed by
a feed-forward layer with output size equal to the size of the solipsistic representation
dim(S) = 16. We set the kernel size to 3 for the first three convolutional layers and 5 for the
last convolutional layer. We set the channel size to 8 and stride to 1 for the first convolutional
layer and 16 with stride 2 for the other three convolutional layers. The policy network is a
two layers feed forward neural network with 50 hidden units in each layer, which maps from
the solipsistic state to a sigmoid function that parameterizes the probability of a Bernoulli
distribution. The RNN we used is a single layer Gated Recurrent Unit (GRU) (Chung et al.,
2014) with memory in the first time-step initialized as the first solipsistic state s1. In each
recurrent step, the GRU cell takes one action as input and outputs the prediction of the
solipsistic state for the next time step. Therefore, the size of the hidden memory of GRU is
equal to the size of the solipsistic state.

Model Training We use ADAM with learning rate 10−4, on batches of size B = 10 of
sampled environment trajectories of length Tmodel = 50, with λs = 1, λr = 2 and m = 5.

Policy Training We use VO (section D), with J = 50 parameter perturbations, under
model prediction roll-outs of length Tpolicy = 200 and we train for Npolicy = 50 iterations,
using ADAM with learning rate 10−2. We found that re-initializing the policy parameters w
after each model update helped overall performance.
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Exploration Strategy At each iteration i of algorithm 1 during the Trajectory collection
phase we collect C = 5 trajectories and add them to our memory for subsequent model
training. We use an exploration strategy (see line 9 of algorithm 1) during trajectory collection
as follows: for c = 1 we follow the latest policy pwi

(at|st) with re-planning (section B) to
collect a full trajectory. Then, for c = 2, . . . , 5, we instead follow an ε-policy, where we take
the action sampled from pwi

(at|st) with probability ε and we take a random action with
probability 1− ε, where ε = 0.5.

Solipsistic Contrast We use xmt to denote the state at time t of the mth trajectory. We
approximate the contrast term in equation 3 using the following Monte Carlo approximation

Ei 6=t+1

[
KL
(
p(smt+1|xmt , amt )||p(si|xi)

)]
≈ KL

(
p(smt+1|xmt , amt )||p(snt+1|xnt+1)

)
, (20)

where the nth (n 6= m) trajectory is sampled from memory. We found this one-sample Monte
Carlo approximation works well in practice.

E.2.1 Training Statistics

In Figure 9 we illustrate the training statistics from a single run of algorithm 1. This is
representative of the typical behavior that appears for each run of this procedure from
different parameter initializations. We plot the solipsistic consistency (equation 2), solipsistic
contrast (equation 3) and reward consistency (section 2) in Figure 9a, Figure 9b and Figure
9c respectively. In Figure 9d, we plot the average of the predicted rewards received during
each iteration of policy training, within our overall learning procedure. More specifically, we
plot 1

J

∑J
j=1E(wj), where the j samples are used during our VO update step (section D).
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Figure 9: Typical behavior of the training statistics corresponding to the reward evaluations
reported in Figure 6.
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Figure 10: Evaluating the baseline policies trained using 2500 trajectories. We plot the
average over 5 runs using different random seeds for our parameter initialization. We smooth
the curves using a moving average with window size 3. We find the curves for PPO have high
variance, meaning that PPO can occasionally get reasonable performance for this number
of trajectories (e.g. balancing the pole for over 100 time steps successfully) but is not very
unstable during training and across across different random seeds.

E.3 Baseline Model-Free Methods

E.3.1 PPO

We implemented the PPO method (Schulman et al., 2017) as a baseline to evaluate our
methods. We run PPO using two different clip ratios 0.1 and 0.2. The policy and the value
networks share similar architecture to our recognition convolutional neural network described
in section E.2 with the only difference being the dimensionality of the output layers. For
the Cartpole experiment, the output size of the policy network is 2 and we use a softmax
activation function to parameterize the probabilities of choosing from two actions. The
output of the value network is a linear layer with output dimension 1. For each training
episode, we sample 5 trajectories from the true environment with a maximum length of 200.
We then train the model for 10 epochs using ADAM where we take the hyper-parameters
provided by the OpenAI Baselines implementation Dhariwal et al. (2017), where learning is
3−4, γ = 0.99, λ = 0.95, the weight of the value term is 0.5 and the weight of the entropy
term is 0.01. We report results for two different clip ratios of 0.1 and 0.2.

E.3.2 DQN

The other model free baseline we compared to is DQN (Mnih et al., 2015). Like for the
case of PPO, we keep the architecture of the Q-network and the target network similar to
our recognition network, except for the final output layer. In our Cartpole experiment, the
Q-network outputs the Q-value for the two possible actions given the states. The action
with the larger Q-value is chosen during control. We train DQN for 2500 episodes (as shown
in Figure 10). For each episode, we sample one trajectory with the maximum length of 200.
After a limited grid search of hyper-parmeters, we find that the hyper-parameters from the
PyTorch DQN tutorial (Paszke, 2020; Paszke et al., 2019).
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E.4 Activation Maps of PPO

In this section, we visualize the activations of the first convolution layer of the policy network
and the value network for PPO. We plot all 8 filters’ activations and use a sigmoid function to
create the following grey-scale images. Each column represents a filter. Each row represents
the state of a trajectory as the cart is pushed to the right with monotonically increasing
velocity (as in Figure 7). In both Figure 11 and Figure 12, none of the activation maps have
a change in activation that can clearly be interpreted as relating to the increase in velocity
(unlike the case of the solipsistic recognition model illustrated Figure 7); only the positional
information of the cart and pole is obviously captured.

Figure 11: Visualization of the activations in the PPO’s policy network.

Figure 12: Visualization of the activations in the PPO’s value network.
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