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Abstract

Many geographic information systems applications rely on data provided by user1

devices in the road network, including traffic monitoring, driving navigation, and2

road closure detection. The underlying signal is generally collected by sampling3

locations from user trajectories. The sampling process, though critical for various4

applications, has not been studied sufficiently in the literature. While the most5

natural way to sample a trajectory may be to use a frequency based algorithm, e.g.,6

sampling locations every x seconds, such a sampling strategy can be quite wasteful7

in resources (e.g., server-side processing, user battery) as well as stored user data.8

In this work, we conduct a horizontal study of various location sampling algorithms9

(based on frequency, road geography, reservoir sampling, etc.) on the road network10

of New York City and assess their trade-offs in terms of various metrics of interest,11

such as the size of the stored data and the induced quality of training for prediction12

tasks (e.g., predicting speeds).13

1 Introduction14

For many geographic information systems (GISs) that operate on road networks, the input received15

from user devices is vital for the purposes of providing services back to the users. Specifically,16

trajectories obtained from user devices can help in a wide range of downstream tasks. Examples17

of such tasks include identifying new roads and correcting the locations of nodes and edges in the18

graph [3], mobility prediction and next point of interest recommendation [1], and of course the central19

application of monitoring the road network and estimating delays on road segments [4], which in turn20

enables other use cases such as routing with dynamic information [2, 10] and global optimization21

in the road network [5]. The trajectories that enable these applications typically come in the form22

of timestamped location (e.g., GPS) samples. Various problems have been studied with respect to23

these timestamped location collection, such as completing long gaps in the trajectory [6] or efficiently24

processing these trajectories [9]. However designing exactly how the device samples locations and25

how the server decides what to use and what to discard has received little attention.26

In this work we will focus precisely on this problem and we will explore different algorithms and27

strategies for sampling location data from devices. We begin with what is the most natural and28

most widely used method: periodic sampling. This method relies on a fixed frequency at which the29

device sends a location sample to the server. Our study is motivated by the fact that this method is30

inherently wasteful. First, think of a congested highway where devices stuck in the same location31

are periodically transmitting the same information over and over. This results in a lot of data being32

transferred and processed, wasting user battery and server processing resources for little information33

in terms of the state of the road network. Second, this method ignores the unit that forms the road34

network: the road segment. Road segments are the real-world counterpart of the edges of the graph35

on which GIS algorithms typically operate and direct measurements of their delays are important.36
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Periodic sampling will instead use interpolation to identify the timestamps during which a car entered37

and exited a segment, assuming a constant speed between location samples.38

This interpolation process is precisely what makes delay measurements sensitive to the exact sampling39

policy used. Consider a simple example of two consecutive 50 meter road segments with and average40

traversal time of 10 seconds for the first segment and 20 seconds for the second segment. Consider a41

device that passes through these segments and gives a location sample at the start of the first segment42

and another one 20 seconds later. If this device travels at the average speed of each segment, the43

second sample will be in the middle of the second segment. Assuming a uniform speed between the44

samples, we would get that this uniform speed will be 3.75 m/s (since the car would have driven45

75 meters in 20 seconds) and we would get that the perceived traversal time for the first segment46

is 50/3.75 = 13.333 seconds. Similarly a device that gives a location sample at the start of first47

segment and another at the end of the second segment would give a perceived traversal time of 1548

seconds for the first segment. Finally, a device that provides a location sample exactly every 1049

seconds (starting from the beginning of the first segment) would correctly identify the end of the first50

segment and give a (correct) perceived traversal time of 10 seconds.51

The above discussion suggests that it is an interesting question to (i) study the locations at which52

devices should provide location samples and (ii) determine which of these samples can be dropped53

using sub-sampling strategies. To this end, we study several classes of algorithms for this problem.54

In all classes of algorithms, tweaking a corresponding parameter changes the number of location55

samples given by the devices. Typically, more samples will improve the signal given by the algorithm,56

meaning the performance of downstream tasks such as speed/traversal time prediction is improved.57

To understand the trade-off for each class of algorithms and their relative performance, we conduct58

an experimental analysis. We create synthetic user trajectories in the network of New York City and59

use the induced congestion to define road segment delays. We then apply the different sampling60

algorithms on the synthetic trajectories to generate training data for speed estimation. We present61

results on the performance of the different algorithms and parameter choices with respect to the62

number of locations sampled versus the quality of the predictions.63

2 Sampling Methods64

In this section, we given an overview of various algorithms that we consider for sampling location65

data. Our algorithms are tailored toward our special use case of road networks and they are based on66

well-known sampling algorithms in the literature.67

2.1 Uniform Sampling68

The uniform sampling algorithm is perhaps the most natural one and the one most widely used in69

practice, due to its simplicity. In uniform sampling, we want to sample with a preset frequency.70

This frequency is set in advance and it is communicated to each device so as the device travels their71

assigned path, they will send related data at the requested frequency. It is easy to see that in cases72

that there is congestion or device is traveling on a high-traffic road, we collect too many unnecessary73

samples. This class of algorithms is parameterized by the sampling frequency.74

2.2 Randomized Segment-Based Sampling75

In this approach, roads are broken down into smaller segments. Each device provides a location76

sample as close as possible to the start of a new segment. This is typically not precise, due to GPS77

noise, or due to limitations on the device’s ability to ping frequently. We parameterize this class of78

algorithms with a probability of measurement p. Each device provides a measurement for any given79

road segment with probability p. Note that to provide such a measurement the device will need to80

ping at the beginning of the segment and at the beginning of the next segment.81

2.3 Congestion-Based Sampling82

This is another class of segment-based sampling algorithms. The difference from randomized83

segment-based sampling is in how the probability of pinging is determined. In order to avoid having84

unnecessary samples, we propose a probability of pinging that correlates with the inverse of the85
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congestion. Now one challenge here is that, we want to have independent (decentralized) sampling86

on each device but in order to get the congestion, we need to consider all devices traveling on87

the road. To circumvent this difficulty, we rely on additional data on the road such as expected88

traveling speed or speed limit, if we observe that our traveling speed is much lower then we lower89

our sampling probability. The parameter of this class of algorithms is a scaling factor that is applied90

to the congestion-based probability. We can think of this scaling factor as the expected number of91

samples we wish to extract per road segment.92

2.4 Reservoir Sampling93

This class of algorithms also relies on segment-based sampling. The idea of this sampling algorithm,94

is that more samples is not necessarily better. By the law of large numbers, the larger the sample size95

the more the sample will look like the population, so we want to make sure we get enough samples96

that can help us estimate the average speed correctly, however the gain beyond certain point becomes97

marginal. To this end, we consider Reservoir sampling which chooses k samples from a list of n98

objects where n is not required to be known in advance. Not requiring the number of objects in99

advance is a positive point, that both helps with running sampling methods in streaming settings and100

also not collecting too many samples for large n. More precisely, in this sampling, we put the first k101

items in the reservoir list and iteratively go through the remaining items by drawing a random number102

x between 1 and t for the t-th item, and then swapping this item with x-th item in the reservoir if103

x ≤ k. The caveat about this method is that it requires each item to know where in the list they are1104

which means that we need to have a centralized algorithm. Since routes are communicated through a105

centralized platform, we can ask the platform to communicate an index for each road to each device106

and then the device can decide to send their data if their generated number falls below k for their107

road segment. Note that this approach works with uniform k or specialized k for each road, however108

that needs to be communicated to the device traveling on the road. The obvious parameter for this109

class of algorithms is the size of the reservoir, k.110

3 Experiments111

We conduct experiments on synthetic user trajectories built on the real network of New York City.112

The use of synthetic trajectories is due to the fact that real trajectories are not available one the public113

data sets due to their sensitive nature. We now describe how we obtained these trajectories. We114

extract the map of New York City from OpenStreetMap [8] and generate a congestion function for115

each road segment using the functional form of the Bureau of Public Roads [7]. Specifically, for an116

edge (road segment) e with traffic demand x, we set:117

le(x) =
0.6tfe
c4e

x4 + tfe ,

where tfe is the time needed to cross the edge when the road is empty, i.e., the free-flow travel time,118

and ce is the capacity of the street, defined as the number of lanes multiplied by the free-flow speed.119

We then partition the map into 8 areas and pick a random travel demand for each pair or areas. For120

each demand, we compute a set of (at most 10) candidate routes between the origin and destination121

using the alternative route computation algorithm from [10]. We split the demand equally over these122

candidate routes. This process induces a certain congestion on each road segment, which in turn123

determines the average travel time of all cars passing through it by means of applying the congestion124

function le(x). For each car and each segment that it passes through, we add a noise parameter, which125

finally gives rise to our ground truth user trajectories. This noise models how different cars traverse126

the same road segment with different delays and is the cause of downstream prediction errors.127

We apply each one of the sampling algorithms to each one of these “ground truth” trajectories. Each128

one of our four algorithms types uses a parameter (the sampling frequency for uniform sampling,129

the sampling probability for random sampling, the expected number of samples per segment for130

congestion-based sampling, and the size of the reservoir for reservoir sampling) and we select 4131

values of each parameter, giving rise to 16 total algorithms. Using the location samples selected by132

the algorithms, we recompute the perceived road segment entry and exit timestamps by interpolating133

1Note that the order does not matter, however we need to assign a unique number from 1 to n to each of the
items
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Sampling Method Parameter MSE MAE MBE Sample Size
Uniform Sampling 5 6.90 1.35 0.40 1252746
Uniform Sampling 10 11.34 2.03 0.38 630995
Uniform Sampling 15 17.63 2.68 0.36 423639
Uniform Sampling 20 24.25 3.17 0.34 320088
Congestion-Based Sampling 10 5.68 0.77 0.46 35104
Congestion-Based Sampling 20 4.90 0.73 0.40 66116
Congestion-Based Sampling 30 5.38 0.74 0.41 92717
Congestion-Based Sampling 40 4.59 0.73 0.41 115688
Reservoir Sampling 10 4.59 0.72 0.43 33954
Reservoir Sampling 20 4.42 0.72 0.42 57404
Reservoir Sampling 30 4.29 0.71 0.41 76407
Reservoir Sampling 40 4.51 0.72 0.41 93329
Randomized Segment-Based Sampling 25 4.47 0.72 0.41 129616
Randomized Segment-Based Sampling 50 4.37 0.71 0.41 223111
Randomized Segment-Based Sampling 75 4.41 0.71 0.40 279424
Randomized Segment-Based Sampling 100 4.42 0.71 0.40 299244

Table 1: Performance of various sampling algorithm on test data set.

Figure 1: The mean square error of sampling algorithms on test data. X-Axis is on log scale and the
Uniform sampling for more focused view.

between location samples and assuming a constant speed. This process induces a different perceived134

road segment travel time for each location sampling strategy. These perceived travel times are in fact135

our training data for road segment delay prediction. We have 16 training data sets, one per algorithm.136

Since we only have travel time and not much additional information on segment properties or137

trajectories, for square loss minimization, the average speed values for each segment, yields the138

optimal prediction. We then use this calculated average per segment and evaluate each algorithm on139

the test data set which again is from the trajectories that were sampled uniformly and excluded from140

the training. All trajectories are from the same time period. For evaluate our algorithms by reporting141

the mean square loss (MSE), mean aboslute loss (MAE), and mean biased error (MBE) along side142

the number of samples in the training set (see Table 1).143

We also plot the trade-off between the size of the sample set and the quality of the predictions for144

each algorithm in Figure 1. We exclude the Uniform sampling since it requires a lot of samples and145

has high error. Since we add noise to our data, we don’t necessarily see decrease in the reported146

error as we allow more samples. Based on reported numbers, it is easy to see that the Randomized147

segment-based and Reservoir sampling have the best performance. The Congestion based sampling148

starts to get more competitive results as we allow more samples. Overall, the Reservoir sampling149

yields the best result, especially if we consider the Pareto curve where we prefer a point with lower150

error and lower sample size, we see that the curve consists of the three points on the bottom left151

corresponding to the Reservoir sampling.152
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