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ABSTRACT

Plug-and-Play (PnP) methods constitute a class of iterative algorithms for imag-
ing problems where regularization is performed by an off-the-shelf denoiser. Al-
though PnP methods can lead to tremendous visual performance for various im-
age problems, the few existing convergence guarantees are based on unrealistic (or
suboptimal) hypotheses on the denoiser, or limited to strongly convex data-fidelity
terms. We propose a new type of PnP method, based on half-quadratic splitting,
for which the denoiser is realized as a gradient descent step on a functional param-
eterized by a deep neural network. Exploiting convergence results for proximal
gradient descent algorithms in the nonconvex setting, we show that the proposed
PnP algorithm is a convergent iterative scheme that targets stationary points of an
explicit global functional. Besides, experiments show that it is possible to learn
such a deep denoiser while not compromising the performance in comparison to
other state-of-the-art deep denoisers used in PnP schemes. We apply our proximal
gradient algorithm to various ill-posed inverse problems, e.g. deblurring, super-
resolution and inpainting. For all these applications, numerical results empirically
confirm the convergence results. Experiments also show that this new algorithm
reaches state-of-the-art performance, both quantitatively and qualitatively.

1 INTRODUCTION

Image restoration (IR) problems can be formulated as inverse problems of the form

x∗ ∈ arg min
x

f(x) + λg(x) (1)

where f is a term measuring the fidelity to a degraded observation y, and g is a regularization term
weighted by a parameter λ ≥ 0. Generally, the degradation of a clean image x̂ can be modeled by a
linear operation y = Ax̂+ ξ, where A is a degradation matrix and ξ a white Gaussian noise. In this
context, the maximum a posteriori (MAP) derivation relates the data-fidelity term to the likelihood
f(x) = − log p(y|x) = 1

2σ2 ||Ax− y||2, while the regularization term is related to the chosen prior.

Regularization is crucial since it tackles the ill-posedness of the IR task by bringing a priori knowl-
edge on the solution. A lot of research has been dedicated to designing accurate priors g. Among the
most classical priors, one can single out total variation (Rudin et al., 1992), wavelet sparsity (Mallat,
2009) or patch-based Gaussian mixtures (Zoran & Weiss, 2011). Designing a relevant prior g is a
difficult task and recent approaches rather apply deep learning techniques to directly learn a prior
from a database of clean images (Lunz et al., 2018; Prost et al., 2021; González et al., 2021).

Generally, the problem (1) does not have a closed-form solution, and an optimization algorithm is re-
quired. First-order proximal splitting algorithms (Combettes & Pesquet, 2011) operate individually
on f and g via the proximity operator

Proxf (x) = arg min
z

1

2
||x− z||2 + f(z). (2)

Among them, half-quadratic splitting (HQS) (Geman & Yang, 1995) alternately applies the proximal
operators of f and g. Proximal methods are particularly useful when either f or g is nonsmooth.

Plug-and-Play (PnP) methods (Venkatakrishnan et al., 2013) build on proximal splitting algorithms
by replacing the proximity operator of g with a generic denoiser, e.g. a pretrained deep network.
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These methods achieve state-of-the-art results (Buzzard et al., 2018; Ahmad et al., 2020; Yuan et al.,
2020; Zhang et al., 2021) in various IR problems. However, since a generic denoiser cannot gener-
ally be expressed as a proximal mapping (Moreau, 1965), convergence results, which stem from the
properties of the proximal operator, are difficult to obtain. Moreover, the regularizer g is only made
implicit via the denoising operation. Therefore, PnP algorithms do not seek the minimization of an
explicit objective functional which strongly limits their interpretation and numerical control.

In order to keep tractability of a minimization problem, Romano et al. (2017) proposed, with reg-
ularization by denoising (RED), an explicit prior g that exploits a given generic denoiser D in the
form g(x) = 1

2 〈x, x −D(x)〉. With strong assumptions on the denoiser (in particular a symmetric
Jacobian assumption), they show that it verifies

∇xg(x) = x−D(x). (3)
Such a denoiser is then plugged in gradient-based minimization schemes. Despite having shown
very good results on various image restoration tasks, as later pointed out by Reehorst & Schniter
(2018) or Saremi (2019), existing deep denoisers lack Jacobian symmetry. Hence, RED does not
minimize an explicit functional and is not guaranteed to converge.

Contributions. In this work, we develop a PnP scheme with novel theoretical convergence guar-
antees and state-of-the-art IR performance. Departing from the PnP-HQS framework, we plug a
denoiser that inherently satisfies equation (3) without sacrificing the denoising performance. The
resulting fixed-point algorithm is guaranteed to converge to a stationary point of an explicit func-
tional. This convergence guarantee does not require strong convexity of the data-fidelity term, thus
encompassing ill-posed IR tasks like deblurring, super-resolution or inpainting.

2 RELATED WORKS

PnP methods have been successfully applied in the literature with various splitting schemes:
HQS (Zhang et al., 2017b; 2021), ADMM (Romano et al., 2017; Ryu et al., 2019), Proximal Gra-
dient Descent (PGD) (Terris et al., 2020). First used with classical non deep denoisers such as
BM3D (Chan et al., 2016) and pseudo-linear denoisers (Nair et al., 2021; Gavaskar et al., 2021),
more recent PnP approaches (Meinhardt et al., 2017; Ryu et al., 2019) rely on efficient off-the-
shelf deep denoisers such as DnCNN (Zhang et al., 2017a). State-of-the-art IR results are currently
obtained with denoisers that are specifically designed to be integrated in PnP schemes, like IR-
CNN (Zhang et al., 2017b) or DRUNET (Zhang et al., 2021). Though providing excellent restora-
tions, such schemes are not guaranteed to converge for all kinds of denoisers or IR tasks.

Designing convergence proofs for PnP algorithms is an active research topic. Sreehari et al. (2016)
used the proximal theorem of Moreau (Moreau, 1965) to give sufficient conditions for the denoiser
to be an explicit proximal map, which are applied to a pseudo-linear denoiser. The convergence with
pseudo-linear denoisers have been extensively studied (Gavaskar & Chaudhury, 2020; Nair et al.,
2021; Chan, 2019). However, state-of-the-art PnP results are obtained with deep denoisers. Various
assumptions have been made to ensure the convergence of the related PnP schemes. With a “bounded
denoiser” assumption, Chan et al. (2016); Gavaskar & Chaudhury (2019) showed convergence of
PnP-ADMM with stepsizes decreasing to 0. RED (Romano et al., 2017) and RED-PRO (Co-
hen et al., 2021) respectively consider the classes of denoisers with symmetric Jacobian or demi-
contractive mappings, but these conditions are either too restrictive or hard to verify in practice. In
Appendix A.3, more details are given on RED-based methods. Many works focus on Lipschitz pro-
perties of PnP operators. Depending on the splitting algorithm in use, convergence can be obtained
by assuming the denoiser averaged (Sun et al., 2019b), firmly nonexpansive (Sun et al., 2021; Terris
et al., 2020) or simply nonexpansive (Reehorst & Schniter, 2018; Liu et al., 2021). These settings are
unrealistic as deep denoisers do not generally satisfy such properties. Ryu et al. (2019); Terris et al.
(2020) propose different ways to train deep denoisers with constrained Lipschitz constants, in order
to fit the technical properties required for convergence. But imposing hard Lipschitz constraints on
the network alters its denoising performance (Bohra et al., 2021; Hertrich et al., 2021). Yet, Ryu et al.
(2019) manages to get a convergent PnP scheme without assuming the nonexpansiveness ofD. This
comes at the cost of imposing strong convexity on the data-fidelity term f , which excludes many IR
tasks like deblurring, super-resolution or inpainting. Hence, given the ill-posedness of IR problems,
looking for a unique solution via contractive operators is a restrictive assumption. In this work, we
do not impose contractiveness, but still obtain convergence results with realistic hypotheses.
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One can relate the ideal deep denoiser to the “true” natural image prior p via Tweedie’s Identity.
In (Efron, 2011), it is indeed shown that the Minimum Mean Square Error (MMSE) denoiser D∗σ (at
noise level σ) verifies Dσ(x) = x+ σ2∇x log pσ(x) where pσ is the convolution of p with the den-
sity ofN (0, σ2 Id). In a recent line of research (Bigdeli et al., 2017; Xu et al., 2020; Laumont et al.,
2021; Kadkhodaie & Simoncelli, 2020), this relation is used to plug a denoiser in gradient-based
dynamics. In practice, the MMSE denoiser cannot be computed explicitly and Tweedie’s Identity
does not hold for deep approximations of the MMSE. In order to be as exhaustive as possible, we
detailed the addressed limitations of existing PnP methods in Appendix A.1.

3 THE GRADIENT STEP PLUG-AND-PLAY

The proposed method is based on the PnP version of half-quadratic-splitting (PnP-HQS) that
amounts to replacing the proximity operator of the prior g with an off-the-shelf denoiser Dσ . In
order to define a convergent PnP scheme, we first set up in Section 3.1 a Gradient Step (GS) de-
noiser. We then introduce the Gradient Step PnP (GS-PnP) algorithm in Section 3.2.

3.1 GRADIENT STEP DENOISER

We propose to plug a denoising operator Dσ that takes the form of a gradient descent step

Dσ = Id−∇gσ, (4)

with gσ : Rn → R. Contrary to Romano et al. (2017), our denoiser exactly represents a conservative
vector field. The choice of the parameterization of gσ is fundamental for the denoising performance.
As already noticed in Salimans & Ho (2021), we experimentally found that directly modeling gσ as a
neural network (e.g. a standard network used for classification) leads to poor denoising performance.
In order to keep the strength of state-of-the-art unconstrained denoisers, we rather use

gσ(x) =
1

2
||x−Nσ(x)||2, (5)

which leads to Dσ(x) = x−∇gσ(x) = Nσ(x) + JNσ (x)T (x−Nσ(x)), (6)

where Nσ : Rn → Rn is parameterized by a neural network and JNσ (x) is the Jacobian of Nσ at
point x. As discussed in Appendix A.2, the formulation (5) for gσ has been proposed in (Romano
et al., 2017, Section 5.2) and (Bigdeli & Zwicker, 2017) for a distinct but related purpose, and not
exploited for convergence analysis. Thanks to our definition (6) for Dσ , we can parameterize Nσ
with any differentiable neural network architecture Rn → Rn that has proven efficient for image
denoising. Although the representation power of the denoiser is limited by the particular form (6),
we show (see Section 5.1) that such parameterization still yields state-of-the-art denoising results.
We train the denoiser Dσ for Gaussian noise by minimizing the MSE loss function

L(Dσ) = Ex∼p,ξσ∼N (0,σ2I)[||Dσ(x+ ξσ)− x||2], (7)

or L(gσ) = Ex∼p,ξσ∼N (0,σ2I)[||∇gσ(x+ ξσ)− ξσ||2], (8)

when written in terms of gσ using equation (4).
Remark 1. By definition, the optimal solution g∗σ ∈ arg minL is related to the MMSE denoiserD∗σ ,
that is, the best non-linear predictor of x given x + ξσ . Therefore, it satisfies Tweedie’s formula
and ∇g∗σ = −σ2∇ log pσ (Efron, 2011) i.e. g∗σ = −σ2 log pσ + C, for some C ∈ R. Hence
approximating the MMSE denoiser with a denoiser parameterized as (4) is related to approximating
the logarithm of the smoothed image prior of pσ with − 1

σ2 gσ . This relation was used for image
generation with “Denoising Score Matching” by Saremi & Hyvarinen (2019); Bigdeli et al. (2020).

3.2 A PLUG-AND-PLAY METHOD FOR EXPLICIT MINIMIZATION

The standard PnP-HQS operator is TPnP-HQS = Dσ◦Proxτf , i.e. (Id−∇gσ)◦Proxτf when using the
GS denoiser as Dσ . For convergence analysis, we wish to fit the proximal gradient descent (PGD)
algorithm. We thus propose to switch the proximal and gradient steps and to relax the denoising step
with a parameter λ ≥ 0. Our PnP algorithm with GS denoiser (GS-PnP) then writes

xk+1 = T τ,λGS-PnP(xk) with T τ,λGS-PnP = Proxτf ◦(τλDσ + (1− τλ) Id),
= Proxτf ◦(Id−τλ∇gσ).

(9)
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Under suitable conditions on f and gσ (see Lemma 1 in Appendix C), fixed points of the PGD
operator T τ,λGS-PnP correspond to critical points of a classical objective function in IR problems

F (x) = f(x) + λgσ(x). (10)

Therefore, using the GS denoiser from equation (4) is equivalent to include an explicit regularization
and thus leads to a tractable global optimization problem solved by the PnP algorithm. Our complete
PnP scheme is presented in Algorithm 1. It includes a backtracking procedure on the stepsize τ that
will be detailed in Section 4.2. Also, after convergence, we found it useful to apply an extra gradient
step Id−λτ∇gσ in order to discard the residual noise brought by the last proximal step Proxτf .

4 CONVERGENCE ANALYSIS Algorithm 1: Plug-and-Play image restoration
Param.: init. z0, λ > 0, σ ≥ 0, ε > 0, τ0 > 0,

K ∈ N∗, η ∈ (0, 1), γ ∈ (0, 1/2).
Input : degraded image y.
Output: restored image x̂.
k = 0; x0 = Proxτf (z0); τ = τ0/η; ∆ > ε ;
while k < K and ∆ > ε do

zk = λτDσ(xk) + (1− λτ)xk;
xk+1 = Proxτf (zk);
if F (xk)− F (xk+1) < γ

τ ||xk − xk+1||2 ;
then τ = ητ ;
else ∆ = F (xk)−F (xk+1)

F (x0)
; k = k + 1 ;

end
x̂ = λτDσ(xK) + (1− λτ)xK ;

In this section, we introduce conditions on f
and Dσ that will ensure the convergence of the
PnP iterations (9) towards a solution of (10).
For that purpose, we make use of the litera-
ture of convergence analysis (Attouch et al.,
2013; Beck, 2017; Beck & Teboulle, 2009) of
the PGD algorithm in the nonconvex setting.

4.1 CONVERGENCE RESULTS

A common setting for image restoration
is the convex smooth L2 data-fidelity
f(x) = ||Ax− y||2. In order to cover the
noiseless case or to deal with a broader range of common degradation models, like Laplace
or Poisson noise, we only assume f to be proper, lower semicontinous and convex. Next, the
regularizer gσ is assumed to be differentiable with Lipschitz gradient, but not necessarily convex.
This assumption on gσ is reasonable from a practical perspective. Indeed, using a network Nσ with
differentiable activation functions, the function gσ introduced in Section 3 is differentiable with
Lipschitz gradient (details and proof are given in Appendix B). Without further assumptions on f
and gσ , the following theorem establishes the convergence of both the objective function values and
the residual for a large variety of IR tasks.
Theorem 1 (Proof in Appendix C). Let f : Rn → R ∪ {+∞} and gσ : Rn → R be proper lower
semicontinous functions with f convex and gσ differentiable with L-Lipschitz gradient. Let λ > 0,
F = f + λgσ and assume that F is bounded from below. Then, for τ < 1

λL , the iterates xk given
by the iterative scheme (9) verify

(i) (F (xk)) is non-increasing and converges.

(ii) The residual ||xk+1 − xk|| converges to 0.

(iii) All cluster points of the sequence (xk) are stationary points of (10).
Remark 2. In the nonconvex setting, the quantity γk = min0≤i≤k ||xi+1 − xi||2 is commonly used
to analyze the convergence rate of the algorithm (Beck & Teboulle, 2009; Ochs et al., 2014). Fol-
lowing the proof of Theorem 1 in Appendix C, we can obtain γk ≤ 1

k
F (x0)−limF (xk)

1
2τ−

L
2

that is to say a

O( 1
k ) convergence rate for the squared L2 residual.

Remark 3. Even if most data-fidelity terms f encountered in image restoration are convex, Theo-
rem 1 can be extended to nonconvex f . The proof of (iii) requires technical adaptations that can be
found in Li & Lin (2015, Theorem 1) (as the 1-Lipschitz property of Proxτf does not hold anymore).
Such nonconvex f appear for example in the context of phase retrieval (Metzler et al., 2018).

We can further obtain convergence of the iterates by assuming that the generated sequence (xk) is
bounded and that f and gσ verify the Kurdyka-Lojasiewicz (KL) property. The boundedness of (xk)
is discussed in Appendix D. The KL property (defined in Appendix E) has been widely used to study
the convergence of optimization algorithms in the nonconvex setting (Attouch et al., 2010; 2013;
Ochs et al., 2014). Very large classes of functions, in particular all the semi-algebraic functions,
satisfy this property. In practice, in the extent of our analysis, the KL property is always satisfied.
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Theorem 2 (Proof in Attouch et al. (2013), Theorem 5.1). Let f : Rn → R ∪ {+∞} and
gσ : Rn → R be proper lower semicontinous functions with f convex and gσ differentiable with
L-Lipschitz gradient. Let λ > 0, F = f + λgσ and assume that F is bounded from below. Assume
that F verify the KL property. Suppose that τ < 1

λL . If the sequence (xk) given by the iterative
scheme (9) is bounded, then it converges, with finite length, to a critical point x∗ of F .

Remark 4. As explained in Attouch et al. (2013, Remark 5.2), the continuity of f is not re-
quired since we use the “exact forward-backward splitting algorithm”. We can thus deal with
non-continuous data-fidelity terms, as it is the case with the inpainting application in Appendix J.3.

A more detailed description of all the assumptions of Theorems 1 and 2 is given in Appendix F.

4.2 BACKTRACKING TO HANDLE THE LIPSCHITZ CONSTANT OF ∇gσ

The convergence of Algorithm 1 actually requires to control the Lipschitz constant of ∇gσ only
on a small subset of images related to {xk}. Therefore, estimating L for all images and setting
the maximum stepsize τ accordingly will lead to sub-optimal convergence speed. In order to avoid
small stepsizes, we use the backtracking strategy of Beck (2017, Chapter 10) and Ochs et al. (2014).

The convergence study in the proof of Theorem 1 is based on the sufficient decrease property of F
established in equation (33). Without knowing the exact Lipschitz constant L, backtracking aims
at finding the maximal stepsize τ yielding the sufficient decrease property. Given γ ∈ (0, 1/2),
η ∈ [0, 1) and an initial stepsize τ0 > 0, the following update rule on τ is applied at each iteration k:

while F (xk)− F (T τ,λGS-PnP(xk)) <
γ

τ
||T τ,λGS-PnP(xk)− xk||2, τ ←− ητ. (11)

Proposition 1 (Proof in Appendix G). Under the assumptions of Theorem 1, at each iter-
ation of the algorithm, the backtracking procedure (11) is finite (i.e. a stepsize satifying
F (xk)− F (T τ,λGS-PnP(xk)) ≥ γ

τ ||T
τ,λ
GS-PnP(xk)− xk||2 is found in a finite number if iterations), and

with backtracking, the convergence results of Theorem 1 and Theorem 2 still hold.

Remark 5. In practice, as explained in Section 5, we choose to initialize the stepsize as λτ0 = 1
and backtracking hardly ever activates. In this particular case, our results prove convergence of the
standard PnP-HQS scheme xk+1 = Proxτf ◦Dσ(xk) applied with our specific denoiser.

5 EXPERIMENTS

In this section, we first show the performance of the GS denoiser. Next we empirically confirm that
our GS-PnP method is convergent while providing state-of-the art results for different IR tasks.

5.1 GRADIENT-DESCENT-BASED DENOISER

Denoising Network Architecture We choose to parameterize Nσ with the architecture
DRUNet (Zhang et al., 2021)) (represented in Appendix H), a U-Net in which residual blocks are
integrated. One first benefit of DRUNet is that it is built to take the noise level σ as input, which is
consistent with our formulation. Also, the U-Net models have previously offered good results in the
context of prior approximation via Denoising Score Matching (Ho et al., 2020). Furthermore, Zhang
et al. (2021) showed that DRUNet yields state-of-the-art results for denoising but also for PnP image
restoration. In order to ensure differentiability w.r.t the input, we change RELU activations to ELU.
We also limit the number of residual blocks to 2 at each scale to lower the computational burden.

Training details We use the color image training dataset proposed in Zhang et al. (2021) i.e. a
combination of the Berkeley segmentation dataset (CBSD) (Martin et al., 2001), Waterloo Explo-
ration Database (Ma et al., 2017), DIV2K dataset (Agustsson & Timofte, 2017) and Flick2K data-
set (Lim et al., 2017). During training, the input images are corrupted with a white Gaussian noise
ξσ with standard deviation σ randomly chosen in [0, 50/255]. With our parameterization (6) of Dσ ,
the network Nσ is trained to minimize the L2 loss (7). While the original DRUNet is trained with
L1 loss, we stick to the L2 loss to keep the interpretability of gσ as an approximation of the log prior
(see Remark 1). For each batch, the gradient∇gσ is computed with PyTorch differentiation tools.
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We train the model on 128 × 128 patches randomly sampled from the training images, with batch
size 16, during 1500 epochs. We use the ADAM optimizer with learning rate 10−4, divided by 2
every 300 epochs. It takes around one week to train the model on a single Tesla P100 GPU.

Denoising results We evaluate the PSNR performance of the proposed GS denoiser (GS-DRUNet)
on 256× 256 color images center-cropped from the original CBSD68 dataset images (Martin et al.,
2001). In Table 1, we compare, for various noise levels σ, our model with the simplified DRUNet
(called “DRUNet light”) that has the same architecture as our GS-DRUNet (2 residual blocks) and
that is trained (with L2 loss) without the conservative field constraint. We also provide comparisons
with the original DRUNet (Zhang et al., 2021) (with 4 residual blocks at each scale and trained with
L1 loss) and two state-of-the-art denoisers encountered in the PnP literature: FFDNet (Zhang et al.,
2018) and DnCNN (Zhang et al., 2017a). For each network, we indicate in Table 1 the average
runtime while processing a 256× 256 color image on one Tesla P100 GPU.

σ(./255) 5 15 25 50 Time (ms)

FFDNet 39.95 33.53 30.84 27.54 1.9
DnCNN 39.80 33.55 30.87 27.52 2.3
DRUNet 40.31 33.97 31.32 28.08 69.8

DRUNet light 40.19 33.89 31.25 28.00 6.3
GS-DRUNet 40.26 33.90 31.26 28.01 10.4

Table 1: Average PSNR denoising performance
and runtime of our GS denoiser on 256 × 256
center-cropped images from the CBSD68 dataset,
for various noise levels σ. While keeping small
runtime, GS-DRUNet slightly outperforms its un-
constrained counterpart DRUNet light and outdis-
tances the deep denoisers FFDNet and DnCNN.

Our GS-DRUNet denoiser, despite being con-
strained to be an exact conservative field,
reaches the performance of (and even slightly
outperforms) its unconstrained counterpart
DRUNet light. Second, departing from the lat-
ter, we are able to reduce the processing time by
a large margin (÷7) while keeping close PSNR
to the original DRUNet (around -0.05dB) and
maintaining a significant PSNR gap (around
+0.5dB) with other deep denoisers like DnCNN
and FFDNet. Note that the time difference be-
tween GS-DRUNet and DRUNet light is due to
the computation of ∇gσ via backpropagation.
These results indicate that GS-DRUNet is likely
to yield a competitive and fast PnP algorithm.

5.2 PLUG-AND-PLAY IMAGE RESTORATION

We show in this section that, in addition to being convergent, our PnP Alg. 1 reaches state-of-the-art
performance in deblurring and super-resolution (Sections 5.2.1 and 5.2.2) and realizes relevant in-
painting (Appendix J.3). In all cases, we seek an estimate x of a clean image x̂ ∈ Rn, from an obser-
vation obtained as y = Ax̂+ ξν ∈ Rm, with A a m×n degradation matrix and ξν a white Gaussian
noise with zero mean and standard deviation ν. The objective function minimized by Alg. 1 is

F (x) =
1

2ν2
||Ax− y||2 +

λ

2
||Nσ(x)− x||2. (12)

In practice, for ν > 0, we multiply F in equation (12) by ν2 and consider F = f + λνgσ with
f(x) = 1

2 ||Ax− y||
2, gσ(x) = 1

2 ||Nσ(x)− x||2 and λν = λν2. With this formulation, the conver-
gences of iterates and objective values are guaranteed by Theorems 1 and 2. We also demonstrate in
Appendix J.3 that our framework can be extended to other kinds of objective functions. For example,
inpainting noise-free input images leads to a non differentiable data-fidelity term f .

Due to the large computational time of some compared methods, we use for evaluation and compar-
ison a subset of 10 color images taken from the CBSD68 dataset (CBSD10) together with the 3 fa-
mous set3C images (butterfly, leaves and starfish). Quantitative results run on the full CBSD68 data-
set are given in Appendix J. All images are center-cropped to the size 256× 256. For each IR prob-
lem, we provide default values for the parameters σ and λ that can be used to treat sucessfully a large
class of images and degradations. The influence of both parameters is analyzed in Appendix J.5.
Performance can be marginally improved by tuning λ for each image, for example with the method
of Wei et al. (2020) based on reinforcement learning. In our experiments, backtracking is performed
with η = 0.9 and γ = 0.1. We observe (see Appendix B) that on a majority of images, the Lipschitz
constant L of ∇gσ is slightly larger than 1. As convergence is ensured for λντ = ν2λτ < 1

L , we
set the initial stepsize to τ0 = (ν2λ)−1. At the first iteration, the gradient step in equation (9) is
thus exactly Dσ . In the majority of our experiments, backtracking is never activated. The algorithm
is initialized with a proximal step and terminates when the relative difference between consecutive
values of the objective function is less than ε or the number of iterations exceeds K.
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5.2.1 DEBLURRING

For image deblurring, the degradation operator A = H is a convolution performed with circular
boundary conditions. Therefore, H = F∗ΛF , where F is the orthogonal matrix of the discrete
Fourier transform (and F∗ its inverse), and Λ is a diagonal matrix. The proximal operator of the
data-fidelity term f(x) = 1

2 ||Hx− y||
2 involves only element-wise inversion and writes

Proxτf (z) = F∗(In + τΛ∗Λ)−1F(τHT y + z). (13)
We demonstrate the effectiveness of our method on a large variety of blur kernels (represented in
Table 2) and noise levels. As in (Zhang et al., 2017b; Pesquet et al., 2021; Zhang et al., 2021), we use
the 8 real-world camera shake kernels proposed in Levin et al. (2009) as well as the 9 × 9 uniform
kernel and the 25×25 Gaussian kernel with standard deviation 1.6 (as in (Romano et al., 2017)). We
consider Gaussian noise with 3 noise levels ν ∈ {2.55, 7.65, 12.75}/255 i.e. ν ∈ {0.01, 0.03, 0.05}.
For all noise levels, we set σ = 1.8ν, λν = ν2λ = 0.1 for motion blur (kernels (a) to (h)) and
λν = 0.075 for static blur (kernels (i) and (j)). Initialization is done with z0 = y but we show in
Appendix J.6 the robustness to the initialization. The stopping criteria are ε = 10−5 and K = 400.

We compare in Table 2 our method (GS-PnP) against the patch-based method EPLL (Zoran & Weiss,
2011; Hurault et al., 2018), the deep PnP methods IRCNN (Zhang et al., 2017b), DPIR (Zhang et al.,
2021), MMO (Pesquet et al., 2021), and the “RED-FP” algorithm (Romano et al., 2017) (with TNRD
denoiser (Chen & Pock, 2016)) referred to as RED. Both IRCNN and DPIR use PnP-HQS with a
fast decrease of τ and σ in a few iterations (8 iterations for DPIR) without guarantee of convergence.
DPIR uses the DRUNet denoiser from Table 1. MMO is the only compared method that guarantees
convergence by plugging a DnCNN denoiser trained with Lipschitz constraints (but the only given
network was trained for very low noise level). Finally, as RED only treats the Y channel in the
YCbCr color space, we also indicate in Appendix J.1, for RED and the proposed method, the PSNR
evaluated on the Y channel only.

Among all methods, GS-PnP closely follows DPIR in terms of PSNR for low noise level but per-
forms equally or better for higher noise levels. Other comparisons are conducted in Appendix J.1 on
the Set3c and the full CBSD68 datasets (Tables 4 and 5). These results exhibit that GS-PnP reaches
state-of-the-art in PnP deblurring for a variety of kernels and noise levels. We underline that the con-
vergence of GS-PnP is guaranteed, whereas DPIR can asymptotically diverge (see Appendix J.7).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

ν Method Avg

0
.0
1

EPLL 28.32 28.24 28.36 25.80 29.61 27.15 26.90 26.69 25.84 26.49 27.34
RED 30.47 30.01 30.29 28.09 31.22 28.92 28.90 28.67 26.66 28.45 29.17

IRCNN 32.96 32.62 32.53 32.44 33.51 33.62 32.54 32.20 28.11 29.19 31.97
MMO 32.35 32.06 32.24 31.67 31.77 33.17 32.30 31.80 27.81 29.26 31.44
DPIR 33.76 33.30 33.04 33.09 34.10 34.34 33.06 32.77 28.34 29.16 32.50

GS-PnP 33.52 33.07 32.91 32.83 34.07 34.25 32.96 32.54 28.11 29.03 32.33

0
.0
3

EPLL 25.31 25.12 25.82 23.75 26.99 25.23 25.00 24.59 24.34 25.43 25.16
RED 25.71 25.32 25.71 24.38 26.65 25.50 25.27 24.99 23.51 25.54 25.26

IRCNN 28.96 28.65 28.90 28.38 30.03 29.87 28.92 28.52 25.92 27.64 28.58
IRCNN 28.96 28.65 28.90 28.38 30.03 29.87 28.92 28.52 25.92 27.64 28.58
DPIR 29.38 29.06 29.21 28.77 30.22 30.23 29.34 28.90 26.19 27.81 28.91

GS-PnP 29.22 28.89 29.20 28.60 30.32 30.21 29.32 28.92 26.38 27.89 28.90

0
.0
5

EPLL 24.08 23.91 24.78 22.57 25.68 23.98 23.70 23.19 23.75 24.78 24.04
RED 22.78 22.54 23.13 21.92 23.78 22.97 22.89 22.67 22.01 23.78 22.84

IRCNN 27.00 26.74 27.25 26.37 28.29 28.06 27.22 26.81 24.85 26.83 26.94
DPIR 27.52 27.35 27.73 27.02 28.63 28.46 27.79 27.30 25.25 27.11 27.42

GS-PnP 27.45 27.28 27.70 26.98 28.68 28.44 27.81 27.38 25.49 27.15 27.44

Table 2: PSNR(dB) comparison of image deblurring methods on CBSD10 with various blur ker-
nels k and noise levels ν. Best and second best results are displayed in bold and underlined.

For qualitative comparison, we show in Figure 1(c-f) the deblurring obtained with various methods
on the image “starfish” (from set3C). Note that our algorithm, compared to competing methods,
can recover the sharpest edges. We also give convergence curves that empirically confirm the con-
vergence of the values F (xk) (g) and of the residual min0≤i≤k ||xi+1 − xi||2/||x0||2 (h). These
observations are supported by the additional experiment shown in Appendix J.1, Figure 6.
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(a) Clean (b) Observed (20.97dB) (c) RED (25.92dB) (d) IRCNN (28.66dB)

(e) DPIR (29.76dB) (f) GS-PnP (29.90dB) (g) F (xk) (h) γk (log scale)

Figure 1: Deblurring with various methods of “starfish” degraded with the indicated blur kernel and
input noise level ν = 0.03. Note that our algorithm better recovers the structures. In (g) and (h), we
show the evolution of F (xk) and γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 and in Appendix J.4 of the
PSNR. We empirically verify convergence of functional values and residual. Note that the empirical
convergence rate in (h) is faster than the O( 1

k ) theoretical worst case rate established in Remark 2.

5.2.2 SUPER-RESOLUTION

For single image super-resolution, the low-resolution image y ∈ Rm is obtained from the high-
resolution one x ∈ Rn via y = SHx + ξν where H ∈ Rn×n is the convolution with anti-aliasing
kernel. The matrix S is the standard s-fold downsampling matrix of size m × n and n = s2 ×m.
In this context, we make use of the closed-form calculation of the proximal map for the data-fidelity
term f(x) = 1

2 ||SHx− y||
2, given by Zhao et al. (2016):

Proxτf (z) = ẑτ −
1

s2
F∗Λ∗

(
Im +

τ

s2
ΛΛ∗

)−1
ΛF ẑτ , (14)

where ẑτ = τHTST y + z and Λ = [Λ1, . . . ,Λs2 ] ∈ Rm×n, with Λ = diag(Λ1, . . . ,Λs2) a block-
diagonal decomposition according to a s × s paving of the Fourier domain. Note that Im + τ

dΛΛ∗

is a m × m diagonal matrix and its inverse is computed element-wise. As expected, with s = 1,
equation (14) comes down to equation (13).

As in Zhang et al. (2021), we evaluate super-resolution performance on 8 Gaussian blur kernels
represented in Table 3: 4 isotropic kernels with different standard deviations (0.7, 1.2, 1.6 and 2.0)
and 4 anisotropic kernels. Results are averaged between isotropic and anisotropic. We consider
downsampled images at scale s = 2 and s = 3 and Gaussian noise with 3 different noise levels
ν ∈ {0.01, 0.03, 0.05}. Our method (GS-PnP) is compared against bicubic upsampling, RED,
IRCNN (“IRCNN+” from (Zhang et al., 2021)) and DPIR. We give again in Appendix J.2 the results
obtained on the Set3C dataset (Table 7). All our results are obtained with λν = ν2λ = 0.065 and
σ = 2ν. Initialization z0 is done with a bicubic interpolation of y (with a shift correction (Zhang
et al., 2021)) and the stopping criteria are ε = 10−6 and K = 400.

Besides being the only compared PnP method with convergence guarantee, GS-PnP outperforms
in PSNR all other PnP algorithms over the considered range of blur kernels, noise levels and scale
factors. We show in Figure 2 the super-resolution of the image “leaves” downsampled by 2, with
an isotropic kernel and noise level ν = 0.03. GS-PnP (f) recovers more accurately structures and
color details than competing approaches (c-e), while converging in terms of function values (g) and
residual (h). Additional visual comparisons are presented in Appendix J.2.
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Kernels Method s = 2 s = 3 Avg
ν = 0.01 ν = 0.03 ν = 0.05 ν = 0.01 ν = 0.03 ν = 0.05

Bicubic 24.85 23.96 22.79 23.14 22.52 21.62 23.15
RED 28.29 24.65 22.98 26.13 24.02 22.37 24.74

IRCNN 27.43 26.22 25.86 26.12 25.11 24.79 25.92
DPIR 28.62 27.30 26.47 26.88 25.96 25.22 26.74

GS-PnP 28.77 27.54 26.63 26.85 26.05 25.29 26.86
Bicubic 23.38 22.71 21.78 22.65 22.08 21.25 22.31

RED 26.33 23.91 22.45 25.38 23.40 21.91 23.90
IRCNN 25.83 24.89 24.59 25.36 24.36 23.95 24.83
DPIR 26.84 25.59 24.89 26.24 24.98 24.32 25.48

GS-PnP 26.80 25.73 25.03 26.18 25.08 24.31 25.52

Table 3: PSNR(dB) comparison of image super-resolution methods on CBSD10 with various
scales s, blur kernels k and noise levels ν. PNSR results are averaged over kernels at each row.

(a) Clean (b) Observed (c) RED (21.75dB) (d) IRCNN (22.82dB)

(e) DPIR (23.97dB) (f) GS-PnP (24.81dB) (g) F (xk) (h) γk (log scale)

Figure 2: Super-resolution with various methods on “leaves” (set3C) downsampled by 2, with
the indicated blur kernel and input noise level ν = 0.03. Note that our algorithm is the
one that recovers sharpest leaves. In (g) and (h), we show the evolution of F (xk) and
γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 and in AppendixJ.4 the evolution of the PSNR.. The em-
pirical convergence rate is faster than the O( 1

k ) theoretical worst case rate established in Remark 2.

6 CONCLUSION

In this work, we introduce a new PnP algorithm with convergence guarantees. A denoiser is trained
to realize an exact gradient step on a regularization function that is formulated through a neural net-
work. This denoiser is plugged in an iterative scheme closely related to PnP-HQS, which is proved
to converge towards a stationary point of an explicit functional. One strength of this approach is to
simultaneously allow for a non strongly convex (and non smooth) data-fidelity term with a denoiser
that may not be nonexpansive. Experiments conducted on ill-posed imaging problems (deblurring,
super-resolution, inpainting) confirm the convergence results and show that the proposed PnP algo-
rithm reaches state-of-the-art image restoration performance. This work also opens several research
perspectives. One could first examine which information is encoded in the proposed prior. For ex-
ample, based on the sharp visual results, one can question if a relation can be drawn between this
prior and the gradient energy or sparsity. Also, it would be interesting to see if the recovery analysis
developed in (Liu et al., 2021) can adapt to the proposed framework.
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7 REPRODUCIBILITY STATEMENT

Anonymous source code is given in supplementary material. It contains a README.md file that
explains step by step how to run the algorithm and replicate the results of the paper. Moreover, the
pseudocode of our algorithm is given Algorithm 1. In Section 5 it is precisely detailed how all the
hyper-parameters are chosen and, for each experiment, which dataset is used. As for the theoretical
results presented in Section 4, complete proofs are given in the appendixes.
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Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating mini-
mization and projection methods for nonconvex problems: An approach based on the kurdyka-
łojasiewicz inequality. Mathematics of operations research, 35(2):438–457, 2010.
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A COMPARISON WITH THE PNP LITERATURE

A.1 LIMITATIONS OF PREVIOUS PNP METHODS

In the existing literature, PnP approaches have one of the following limitations:

• They are not able to provide proof of convergence when non strongly convex data-fidelity
terms are involved (Ryu et al., 2019), which is the case of some classical IR problems such
as deblurring, super-resolution or inpainting.

• They are restricted to (nearly) nonexpansive denoisers (Reehorst & Schniter, 2018; Ryu
et al., 2019; Sun et al., 2019b; Xu et al., 2020) or denoisers with a symmetric Jacobian
(Romano et al., 2017). But it has already been shown that imposing symmetric Jacobian
or Lipschitz property on a deep denoiser network alters its denoising performance (Bohra
et al., 2021; Hertrich et al., 2021). We highlight that it was already empirically observed
(Romano et al., 2017; Zhang et al., 2021) that the performance of the denoiser directly
impacts the performance of the corresponding PnP scheme for IR.

• They show convergence of iterates thanks to decreasing time steps (Chan et al., 2016), but
there is no characterization of the obtained solution (it is not a minima or a critical point of
any functional).

On the other hand, our method is proved to converge to a stationary point of an explicit functional
including a non strongly convex data-fidelity term. It also relies on a (possibly expansive) denoiser
that, although being constrained to be a conservative vector field, allows to produce state-of-the-art
results for various ill-posed IR problems.

A.2 ON THE REGULARIZATION gσ .

We first underline that the main point of our method is to define the denoiser as Dσ = Id−∇gσ .
The choice for gσ is important for the denoising performance. With respect to the convergence
properties of GS-PnP, this is nevertheless a secondary issue, as our method would converge for other
differentiable regularizers gσ .

The proposed regularization gσ(x) = 1
2 ||x−Nσ(x)||2 was previously mentioned in the RED original

paper (Romano et al., 2017) (but explicitly left aside) and used in the DAEP paper (Bigdeli &
Zwicker, 2017). The main difference between our regularizer and the one alternately proposed in
RED and DAEP is the following:

• RED and DAEP both consider a generic given pretrained denoiser Dσ : Rn → Rn, which
is then associated with the regularizer gσ(x) = 1

2 ||x − Dσ(x)||2 and used as such in IR
problems.

• In our method, we set gσ(x) = 1
2 ||x−Nσ(x)||2 (with Nσ : Rn → Rn differentiable) and

then we train the denoiser as Dσ = Id−∇gσ with the loss function ||Dσ(x+ ξ)− x||2 for
clean images x and additive white Gaussian noise (AWGN) ξ.

With this new formulation, we are ensured that Dσ = Id−∇gσ is inherently a conservative vector
field, without further assumptions on Nσ . Thanks to this relation, the (slightly modified) PnP-HQS
given in relation (9) becomes a proximal gradient descent (PGD). We can then make use of conver-
gence results of the PGD algorithm in the nonconvex setting to show the convergence of PnP-HQS.

In contrast to the original RED paper, we aimed at finding one setting of Plug-and-Play image
restoration that allows for a convergence proof with sufficiently general hypotheses. For this pur-
pose, we had to consider this very particular form of regularization.
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A.3 RECENT LITERATURE ON REGULARIZATION BY DENOISING

We here provide a more detailed discussion on the follow-up literature on RED.

In parallel to the RED method (Romano et al., 2017), the authors of Bigdeli & Zwicker (2017)
propose to use the regularization, mentioned but not exploited in RED, g(x) = ||Dσ(x) − x||2,
where Dσ is a pretrained denoising autoencoder. Next, Bigdeli et al. (2017) extended this work
with a new prior, which is the Gaussian-smoothed version of the natural image prior. Inspired by
Tweedie’s formula, they approximate the gradient of this log smoothed prior with the residual of
a pretrained denoising autoencoder. With this new formulation, it is possible to optimize on the
restored image but also on other parameters (e.g. the noise level and the used blur kernel).

Initially designed in the context of convex data-fidelity term, RED Romano et al. (2017) has been
applied in the nonconvex setting for phase retrieval problems in prDeep Metzler et al. (2018).

Regularization by Artifact-Removal (RARE) (Liu et al., 2020) extends the RED framework by re-
placing the denoiser by a more general artifact-removal operator. The main advantage of this op-
erator is that it can be trained without groundtruth data, but only by mapping pairs of artifact and
noise contaminated images obtained directly from undersampled measurements. This is particularly
useful for medical imaging applications where it is difficult to acquire fully-sampled training data.

The convergence of the original RED algorithm is discussed in Reehorst & Schniter (2018). The
authors provide a convergence proof for RED-PGD which requires the denoiser to be nonexpansive,
which, as detailed in the previous sections, is a restrictive hypothesis.

The authors of Liu et al. (2021) provide a recovery guarantee for the PnP framework, meaning con-
vergence to a x∗ that satisfies y = Ax∗ while being in the set Fix(D) of the fixed points of D. More
precisely, they show the convergence of the PnP-PGD method towards such a true solution x∗ under
the assumptions that the denoiser residual R = Id−D is bounded and Lipschitz, and that the mea-
surement operator satisfies a “set-restricted eigenvalue condition” (S-REC, which can be understood
as strong convexity on the image of the denoiser Im(D)). Under the additional assumptions that the
denoiser is nonexpansive and that there exists x ∈ Fix(D) that is also critical for the regularizer g,
they show that PnP and RED have the same solutions. As mentioned by the authors, it is neverthe-
less difficult to verify the S-REC condition for a given measurement operator: since Im(D) is not
explicit, it is not clear how much S-REC relaxes the strong convexity. As explained in Sections 2
and 3, our results do not require strong convexity of the data-fidelity term.

Instead of including an explicit regularization in the functional, RED-PRO (Cohen et al., 2021)
aims at minimizing the data-fidelity term on the set Fix(D) of fixed points of a generic denoiser
D. The study is conducted under the hypothesis that the denoiser is demicontractive, which implies
that Fix(D) is convex, thus leading to a convex optimization problem. However, this assumption
seems difficult to verify in practice and the existence of fixed points for the RED-PRO operator does
not appear straightforward. In contrast, the fixed points of the GS-PnP operator are directly related
to the stationary points of the global functional F = f + λgσ (Lemma 1 in Appendix C), whose
existence is guaranteed as soon as F is coercive (see the discussion in Appendix D).

ASYNC-RED (Sun et al., 2020) enables faster computation of RED by decomposing the inference
into a sequence of partial (block-coordinate) updates on x which can be executed asynchronously in
parallel over a multicore system. As in their previous work BC-RED (Sun et al., 2019a), the authors
propose to further reduce the computational time by using only a random subset of measurements
at every iteration. Convergence of ASYNC-RED is shown, provided the denoiser is nonexpansive.
A possible future extension of our work is the integration of the ASYNC framework to accelerate
GS-PnP for large scale imaging inverse problems. As our GS-PnP converges without assuming
nonexpansiveness of the denoising operation, it would be interesting to see if one can adapt the
GS-PnP convergence properties to an ASYNC-GSPnP algorithm.

B LIPSCHITZ CONSTANT OF ∇gσ

First, let us give a result which ensures that a large class of neural networks trained with differen-
tiable activation functions have Lipschitz gradients with respect to the input image.
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Proposition 2. LetH = hp◦ . . .◦h1 be a composition of differentiable functions hi : Rdi−1 → Rdi .
Let us assume that for any i the differential map h′i is bounded and Lipschitz. Then H ′ is Lipschitz.

Proof. Let us denote Hi = hi ◦ . . . ◦ h1 (and by convention, H0 = Id). Let ‖h′i‖∞ be the best
uniform bound on the operator norms ‖h′i(x)‖, x ∈ Rdi−1 (which is also the best Lipschitz constant
of hi). Let us also denote ‖h′i‖Lip the Lipschitz constant of h′i. The chain rule gives that for any x,
H ′(x) can be expressed as a composition of linear maps

H ′(x) = h′p(Hp−1(x))h′p−1(Hp−2(x)) . . . h′1(x) (15)

Therefore, for any x, y,

H ′(x)−H ′(y) =

p−1∑
i=0

h′p(Hp−1(x)) . . . h′i+2(Hi+1(x))h′i+1(Hi(x))h′i(Hi−1(y)) . . . h′1(y) (16)

− h′p(Hp−1(x)) . . . h′i+2(Hi+1(x))h′i+1(Hi(y))h′i(Hi−1(y)) . . . h′1(y).

(17)

We can thus bound the operator norms

‖H ′(x)−H ′(y)‖ ≤
p−1∑
i=0

(
‖h′p(Hp−1(x)) . . . h′i+2(Hi+1(x))‖ (18)

‖h′i+1(Hi(x))− h′i+1(Hi(y))‖‖h′i(Hi−1(y)) . . . h′1(y)‖
)
. (19)

and thus

‖H ′(x)−H ′(y)‖ ≤
p−1∑
i=0

( ∏
j 6=i+1

‖h′j‖∞
)
‖h′i+1‖Lip‖H ′i‖∞‖x− y‖ (20)

which concludes because the chain-rule ensures that ‖H ′i‖∞ ≤ ‖h′i‖∞ . . . ‖h′1‖∞.

Proposition 2 applies for a neural network obtained as a composition of fully-connected layers with
ELU activation functions, that is, by composing functions of the form

h(x) = E(Ax+ b) (21)

where A is a matrix, b a vector and E is the element-wise ELU defined by

E(x)i =

{
xi if xi ≥ 0

exi − 1 if xi < 0 .
(22)

It is easy to see that E is differentiable and that E′ is 1-Lipschitz with ‖E′‖∞ ≤ 1. Therefore

h′(x) = E′(Ax+ b)A (23)

is also bounded and Lipschitz.

Let us also mention that this proposition encompasses the case of U-nets which, in addition to
composing fully-connected layers, also integrates skip-connections. For example, taking a skip-
connection on a composition h3 ◦ h2 ◦ h1 amounts to defining

H(x) = h3
(
h2(h1(x)) , h1(x)

)
. (24)

This can be simply rewritten H = h3 ◦ h̃2 ◦ h1 where

h̃2(x) =
(
h2(h1(x)), h1(x)

)
. (25)

It is then clear that h̃2 has bounded Lipschitz differential as soon as h1 and h2 do.

The bound obtained in the proof of Proposition 2 is exponential in the depth of the neural net-
work. We now provide some experiments showing that, in practice, the Lipschitz constant of ∇gσ
does not explode. We show in Figure 3, for various noise levels σ, the distribution of the spec-
tral norms ||∇2gσ(x)||S on the training image set X , estimated with power iterations. The com-
puted value varies a lot across images. Hence approximating the Lipschitz constant of ∇gσ with
L = maxx∈X ||∇2gσ(x)||S would lead to under-estimated stepsizes and slow convergence on most
images. Backtracking solves this issue by finding at each iteration the optimal stepsize allowing
sufficient decrease of the objective function.
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Figure 3: Histogram of the values of the spectral norm ||∇2gσ(x)||S evaluated on 128 × 128 im-
ages from the training dataset, degraded with white Gaussian noise with various standard devia-
tions σ (./255). Figure best seen in color.

C PROOF OF THEOREM 1

We first remind that a function f : Rn −→ R ∪+∞ is proper if its domain

dom(f) = {x ∈ R, f(x) < +∞} (26)

is non empty. Also, recall that f is lower semicontinuous at x∗ if lim infx→x∗ f(x) ≥ f(x∗).

Proof.

(i) For ease of notation, we consider λ = 1. The generalisation for any λ > 0 is straightfor-
ward by rescaling gσ (and L) accordingly. We denote the proximal gradient fixed point operator
Tτ = Proxτf ◦(Id−τ∇xgσ), the objective function F = f + gσ and we introduce

Qτ (x, y) = gσ(y) + 〈x− y,∇gσ(y)〉+
1

2τ
||x− y||2 + f(x). (27)

We have

arg min
x

Qτ (x, y) = arg min
x

gσ(y) + 〈x− y,∇gσ(y)〉+
1

2τ
||x− y||2 + f(x)

= arg min
x

f(x) +
1

2τ
||x− (y − τ∇gσ(y)||2

= Proxτf ◦(Id−τ∇xgσ)(y) = Tτ (y).

(28)

By definition for the arg min, xk+1 = Tτ (xk)⇒ Qτ (xk+1, xk) ≤ Qτ (xk, xk). Moreover, with gσ
being L-smooth, we have by the descent lemma, for any τ ≤ 1

L and any x, y ∈ Rn,

gσ(x) ≤ gσ(y) + 〈x− y,∇gσ(y)〉+
1

2τ
||x− y||2, (29)

so that for every x, y ∈ Rn,

Qτ (x, x) = F (x) and Qτ (x, y) ≥ F (x). (30)

Therefore, at iteration k,

F (xk+1) ≤ Qτ (xk+1, xk) ≤ Qτ (xk, xk) = F (xk). (31)

(F (xk)) is thus non-increasing. Since F is lower-bounded, (F (xk)) thus converges to a limit F ∗.

(ii) Note that Qτ (xk+1, xk) ≤ Qτ (xk, xk) implies

f(xk+1) ≤ f(xk)− 〈xk+1 − xk,∇gσ(xk)〉 − 1

2τ
||xk+1 − xk||2. (32)
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Using also (29) with stepsize 1
L , we get

F (xk+1) = f(xk+1) + gσ(xk+1)

≤ f(xk)− 〈xk+1 − xk,∇gσ(xk)〉 − 1

2τ
||xk+1 − xk||2

+ gσ(xk) + 〈xk+1 − xk,∇gσ(xk)〉+
L

2
||xk+1 − xk||2

= F (xk)−
(

1

2τ
− L

2

)
||xk+1 − xk||2.

(33)

Summing over k = 0, 1, ...,m gives

m∑
k=0

||xk+1 − xk||2 ≤
1

1
2τ −

L
2

(F (x0)− F (xm+1))

≤ 1
1
2τ −

L
2

(F (x0)− F ∗) .
(34)

Therefore, limk→∞ ||xk+1 − xk|| = 0.

(iii) We begin by the two following lemmas characterizing the proximal gradient descent operator
Tτ = Proxτf ◦(Id−τ∇xgσ).

Lemma 1. With the assumptions of Theorem 1, for x∗ ∈ Rn, x∗ is a fixed point of the proximal
gradient descent operator Tτ = Proxτf ◦(Id−τ∇xgσ), i.e. Tτ (x∗) = x∗, if and only if x∗ is a
stationary point of problem (10), i.e. −∇gσ(x∗) ∈ ∂f(x∗).

Proof. By definition of the proximal operator, we have

Tτ (x∗) = x∗ ⇔ x∗ = Proxτf ◦(Id−τ∇xgσ)(x∗)

⇔ x∗ − τ∇xgσ(x∗)− x∗ ∈ τ∂f(x∗)

⇔ −∇xgσ(x∗) ∈ ∂f(x∗).

(35)

Lemma 2. With the assumptions of Theorem 1, Tτ is 1 + τL Lipschitz.

Proof. Using the fact that for f convex, Proxτf is 1-Lipschitz (Bauschke & Combettes, 2011,
Proposition 12.28), and by the Lipschitz property of∇xgσ ,

||Tτ (x)− Tτ (y)|| = ||Proxτf ◦(Id−τ∇xgσ)(x)− Proxτf ◦(Id−τ∇xgσ)(y)||
≤ ||(Id−τ∇xgσ)(x)− (Id−τ∇xgσ)(y)||
≤ (1 + τL)||x− y||.

(36)

Note that, by nonconvexity of gσ , the fixed point operator Tτ is not necessarily nonexpansive, but we
can still show the convergence of the fixed-point algorithm towards a critical point of the objective
function. We can now turn to the proof of (iii). Let x∗ be a cluster point of (xk)k≥0. Then there
exists a subsequence (xkj )j≥0 converging to x∗. We have ∀j ≥ 0,

||x∗ − Tτ (x∗)|| ≤ ||x∗ − xkj ||+ ||xkj − Tτ (xkj )||+ ||Tτ (xkj )− Tτ (x∗)||
≤ (2 + τL)||x∗ − xkj ||+ ||xkj − Tτ (xkj )|| by Lemma 2.

(37)

Using (ii), the right-hand side of the inequality tends to 0 as j →∞. Thus ||x∗ − Tτ (x∗)|| = 0 and
x∗ = Tτ (x∗), which by Lemma 1 means that x∗ is a stationary point of problem (10).
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D ON THE BOUNDEDNESS OF (xk)

In order to obtain convergence of the iterates, in Theorem 2 the generated sequence (xk) is assumed
to be bounded. In the experiments (Section 5), we observed that under the rest of assumptions of
Theorem 2, boundedness was always verified. A sufficient condition for the boundedness of the
iterates is the coercivity of the objective function, that is, lim|x|→∞ F (x) = +∞ (because the
non-increasing property gives F (xk) ≤ F (x0)).

Similar to Laumont et al. (2021), we can constrain F to be coercive by choosing a convex compact
set C ⊂ Rn where the iterates should stay and by adding an extra term to the regularization gσ:

ĝσ(x) = gσ(x) +
1

2
||x−ΠC(x)||2 =

1

2
||x−Nσ(x)||2 +

1

2
||x−ΠC(x)||2 (38)

with ΠC the Euclidian projection on C. As gσ is differentiable, the gradient step becomes

(Id−τλ∇xĝσ)(x) = (Id−τλ∇xgσ) + τλ(x−ΠC(x)). (39)

In our experiments, we choose the compact set C as C = [−1, 2]n. In practice we observe that
all the iterates always remain in C and that the extra regularization term ||x−ΠC(x)||2 is never
activated. Therefore, we don’t present this technical adaptation in Algorithm 1 but we let the reader
aware that boundedness of (xk) is not a limiting assumption.

E KL PROPERTY

Definition 1. Kurdyka-Lojasiewicz (KL) property (taken from Attouch et al. (2010))

(a) A function f : Rn −→ R ∪ +∞ is said to have the Kurdyka-Lojasiewicz property at
x∗ ∈ dom(f) if there exists η ∈ (0,+∞), a neighborhood U of x∗ and a continuous
concave function ψ : [0, η) −→ R+ such that ψ(0) = 0, ψ is C1 on (0, η), ψ′ > 0 on (0, η)
and ∀x ∈ U ∩ [f(x∗) < f < f(x∗) + η], the Kurdyka-Lojasiewicz inequality holds:

ψ′(f(x)− f(x∗))dist(0, ∂f(x)) ≥ 1. (40)

(b) Proper lower semicontinuous functions which satisfy the Kurdyka-Lojasiewicz inequality
at each point of dom(∂f) are called KL functions.

This condition can be interpreted as the fact that, up to a reparameterization, the function is sharp
i.e. we can bound its subgradients away from 0. A big class of functions that have the KL-property
is given by real semi-algebraic functions. For more details and interpretations, we refer to Attouch
et al. (2010) and Bolte et al. (2010).

F ON THE ASSUMPTIONS OF THEOREMS 1 AND 2

In this section, we explicitly list and comment all the assumptions required by Theorems 1 and 2.
These assumptions are standard in nonconvex optimization. We now detail why each assumption is
verified for our plug-and-play image restoration algorithm.

Assumptions of Theorem 1:

• Data-fidelity term f : Rn → R ∪ {+∞} proper lower semicontinous and convex. This
is a general assumption that includes most of the data-fidelity terms classically used in IR
problems. Note that we do not require differentiability of f . Degradations with Gaussian,
Poisson or Laplacian noise models fall into this hypothesis. As noticed in Remark 3, our
results can even be easily extended to a nonconvex data-fidelity term f , which encompasses
applications like phase retrieval Metzler et al. (2018). In practice, it is helpful to have f
proximable, i.e. Proxf with closed-form formula. Otherwise, Proxf needs to be calculated
at each iteration with an optimization algorithm.
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• Regularization function gσ : Rn → R proper lower semicontinous and differentiable with
L-Lipschitz gradient. We parametrize as gσ(x) = 1

2 ||x−Nσ(x)||2 with Nσ a differen-
tiable neural network. This assumption on gσ is thus reasonable from a practical perspec-
tive. Indeed, using a network Nσ with differentiable activation functions, our function gσ
is differentiable with Lipschitz gradient (details and proof are given in Appendix B).

• Functional F = f + λgσ bounded from below. This is straightforward as all the terms are
positive.

• The stepsize τ < 1
λL . This is handled by backtracking (see Section 4.2).

Assumptions of Theorem 2:

• Assumptions of Theorem 1

• F verify the KL property. The KL property (defined in Appendix E) has been widely used to
study the convergence of optimization algorithms in the nonconvex setting (Attouch et al.,
2010; 2013; Ochs et al., 2014). Very large classes of functions, in particular all the semi-
algebraic functions, satisfy this technical property. It encompasses all the data-fidelity and
regularization terms encountered in inverse problems.

• The sequence (xk) given by the iterative scheme (9) is bounded. As discussed in Ap-
pendix D, the boundedness can be ensured with a potential additional projection at each
iteration. This is just a theoretical guarantee, as we observed that such a projection is never
activated in practice.

G BACKTRACKING AND PROOF OF PROPOSITION 1

Before giving the proof of Proposition 1, we first point out that our backtracking line search is
a classical Armijo-type backtracking strategy, already used for nonconvex optimization in (Beck,
2017, Chapter 10) or Ochs et al. (2014). Other procedures could be investigated in future work.
For instance, Li & Lin (2015) uses a Barzilai-Borwein rule to initialize the backtracking line search.
Scheinberg et al. (2014) and Calatroni & Chambolle (2019) have also proposed a backtracking
strategy that allows for both decreasing and increasing of the stepsize.

We now give the proof of Proposition 1.

Proof. For a given stepsize τ , we showed in Appendix C, equation (33) that

F (xk)− F (Tτ (xk)) ≥ 1

2

(
1

τ
− L

)
||Tτ (xk)− xk||2. (41)

Taking τ < 1−2γ
L , we get 1

2 ( 1
τ − L) > γ

τ so that

F (xk)− F (Tτ (xk)) >
γ

τ
||Tτ (xk)− xk||2. (42)

Hence, when τ < 1−2γ
L , the sufficient decrease condition equation (42) is satisfied and the back-

tracking procedure (τ ←− ητ ) must end.

In the proof of Theorem 1, we can replace the sufficient decrease (33) by (42) and finish the proof
with the same arguments. In the same way, in the proof of Theorem 2 given in (Attouch et al., 2013,
Theorem 5.1), our sufficient decrease (42) replaces (Attouch et al., 2013, Equation (52)).
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H DRUNET light ARCHITECTURE

The architecture of the DRUNet light denoiser of (Zhang et al. (2021)) is given in Figure 4.

Figure 4: Architecture of the DRUNet light denoiser (Zhang et al. (2021)) used to parameterize Nσ .

I EXPANSIVENESS OF THE DENOISER

As gσ is not necessarily convex, our GS-DRUNet denoiser Dσ = Id−∇gσ is not necessarily non-
expansive and neither is the gradient step Id−λτ∇gσ . This is not an issue as, unlike previous the-
oretical PnP studies (Terris et al., 2020; Reehorst & Schniter, 2018), our convergence results do not
require a nonexpansive denoising step. To advocate that our method converges without this assump-
tion, we show in Figure 5 the evolution of ||Dσ(xk+1)−Dσ(xk)||

||xk+1−xk|| along the algorithm that was run to
obtain the super-resolution results of Figure 7. In this experiment, backtracking did not get activated
and stayed fixed at λτ = 1. The gradient step in the PGD algorithm was thus simply a denoising
step Dσ = Id−λτ∇gσ . Note that the Lipschitz constant of Dσ goes above 1 but convergence is
still observed as shown by the two convergence curves in Figure 7.

Figure 5: Lipschitz constant of Dσ along the iterates of the algorithm when performing the super-
resolution experiments presented Figure 7. Note that the Lipschitz constant goes above 1 i.e. Dσ is
not nonexpansive, but we still empirically verified convergence (see convergence curves Figure 7).

J ADDITIONAL EXPERIMENTS

J.1 DEBLURRING

We give here additional image deblurring experiments. We first present the PSNR performance
comparison on the Set3c dataset in Table 4. We also provide an evaluation of the 3 best methods
(GS-PnP, DPIR and IRCNN) on the full CBSD68 dataset in Table 5. For fair comparison with
RED, we also display in Table 6 the PSNR calculated on the Y channel only. An additional visual
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comparison is finally shown in Figure 6. Details and comments are given in the corresponding
captions.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

ν Method Avg

0.
01

EPLL 23.83 24.14 24.83 19.85 26.08 21.77 21.53 21.57 22.43 21.36 22.74
RED 29.21 28.58 29.52 24.54 30.45 25.34 26.06 26.07 25.11 28.50 27.34

IRCNN 33.36 33.06 33.11 32.87 34.24 34.08 33.25 32.87 27.78 29.67 32.45
MMO 32.84 32.29 32.76 31.85 34.08 33.76 33.11 32.38 26.31 29.91 31.93
DPIR 34.94 34.46 34.25 34.34 35.57 35.53 34.49 34.21 28.14 29.63 33.56

GS-PnP 34.58 34.13 34.04 33.93 35.45 35.25 34.30 33.97 28.16 29.78 33.34

0.
03

EPLL 21.21 21.10 22.65 18.78 24.12 20.77 20.42 19.89 20.61 20.60 21.02
RED 25.42 24.89 25.69 22.67 26.86 23.84 24.06 23.87 21.49 25.45 24.43

IRCNN 29.08 28.62 29.03 28.46 30.51 30.06 29.23 28.74 24.39 27.39 28.55
DPIR 30.33 29.74 29.87 29.67 31.27 31.08 30.21 29.72 25.02 27.84 29.48

GS-PnP 30.29 29.84 30.14 29.58 31.53 31.24 30.41 29.96 26.13 28.56 29.77

0.
0
5

EPLL 19.84 19.60 21.40 17.71 22.77 19.68 19.02 18.24 19.81 20.12 19.82
RED 21.93 21.27 22.79 20.32 24.01 22.05 22.06 21.41 19.79 23.21 21.88

IRCNN 26.85 26.33 27.04 26.10 28.46 27.90 27.05 26.56 22.90 26.16 26.54
DPIR 27.96 27.37 28.07 27.44 29.42 29.04 28.32 27.56 23.57 26.93 27.57

GS-PnP 28.08 27.75 28.35 27.56 29.60 29.17 28.49 28.01 24.67 27.47 27.91

Table 4: PSNR(dB) comparison of image deblurring methods on set3C with various blur kernels k
and noise levels ν. Best and second best results are displayed in bold and underlined. Similar to
Table 2, for all kinds of kernels, the proposed method outperforms all competing methods at noise
levels 0.03 and 0.05 and follows DPIR at lower noise level 0.01.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

ν Method Avg

0
.0

1 IRCNN 32.47 32.14 31.94 31.97 32.94 33.13 31.92 31.62 27.57 28.45 31.42
DPIR 33.26 32.82 32.48 32.65 33.57 33.85 32.49 32.22 27.65 28.26 31.93

GS-PnP 32.95 32.54 32.26 32.31 33.41 33.71 32.29 31.92 27.43 28.17 31.70

0
.0

3 IRCNN 28.43 28.11 28.28 27.87 29.42 29.21 28.37 27.97 25.52 26.96 28.01
DPIR 28.88 28.53 28.55 28.30 29.58 29.62 28.69 28.28 25.60 26.96 28.30

GS-PnP 28.64 28.32 28.55 28.06 29.71 29.60 28.69 28.31 25.79 27.10 28.28

0
.0

5 IRCNN 26.73 26.42 26.73 26.13 27.69 27.39 26.69 26.33 24.68 26.18 26.40
DPIR 27.04 26.80 27.07 26.53 28.00 27.85 27.17 26.72 24.75 26.32 26.82

GS-PnP 26.93 26.72 27.07 26.45 28.09 27.87 27.21 26.82 25.02 26.45 26.86

Table 5: PSNR(dB) performance of the fastest method (IRCNN/DPIR/GS-PnP) for image deblur-
ring on the full CBSD68 dataset with various blur kernels k and noise levels ν, in the same conditions
as Table 2. On CBSD10 (Table 2) or on CBSD68 (Table 5), we observed very similar performance
gaps between the compared methods, which confirms that CBSD10 is large enough to compare
accurately the PnP methods.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

ν Method Avg
√

2/255
REDY 35.19 34.78 34.58 34.64 35.49 35.65 34.70 34.37 30.15 31.15 34.07

GS-PnPY 36.20 35.76 35.21 35.55 36.33 36.87 35.16 34.79 29.21 29.48 34.45

0.01
REDY 33.52 33.20 33.20 33.05 34.20 34.21 33.22 32.90 28.77 30.44 32.67

GS-PnPY 33.88 33.39 33.15 33.15 34.35 34.58 33.22 32.81 28.23 29.12 32.59

0.03
REDY 29.26 28.83 29.28 28.53 30.64 30.48 29.50 29.06 26.18 28.78 29.05

GS-PnPY 29.45 29.11 29.39 28.82 30.55 30.46 29.55 29.14 26.50 28.02 29.01

0.05
REDY 26.91 26.54 27.52 26.23 28.68 28.25 27.67 27.07 25.36 27.98 27.22

GS-PnPY 27.65 27.48 27.88 27.19 28.90 28.67 28.03 27.59 25.62 27.29 27.63

Table 6: PSNR(dB) performance, evaluated on the luminance channel in YcbCr color space, of
RED and GS-PnP for image deblurring on CBSD10. Remind that our method treats the RGB image
as a whole before being evaluated on the Y channel while RED treats the Y channel independently.
Compared to Table 2, we add the case ν =

√
2/255 as in RED original paper (Romano et al. (2017)).

Note that RED was optimized for kernels (i) and (j) and ν =
√

2/255, and outperforms our method
in this set of conditions. However, over the variety of kernels and noise levels, and in particular for
motion blur, our method generally outperforms RED.

(a) Observed (18.31dB) (b) RED (28.43dB) (c) IRCNN (30.61dB) (d) MMO (30.23dB)

(e) DPIR (30.85dB) (f) GS-PnP (30.74dB) (g) F (xk) (h) γk (log scale)

Figure 6: Deblurring with various methods of an image from CSBD10 degraded with the indicated
blur kernel and input noise level ν = 0.01. In (g) and (h), we show the evolution of F (xk) and
γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 along our algorithm. Note that GS-PnP and DPIR both re-
cover fine textures while other methods tend to smooth details.
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J.2 SUPER-RESOLUTION

We also present additional super-resolution experiments. We realize a full PSNR performance
comparison on the Set3c dataset Table 7. We show additional visual comparisons between methods
Figure 7 and Figure 8. Details and comments are given in the corresponding captions.

Kernels Method s = 2 s = 3 Avg
ν = 0.01 ν = 0.03 ν = 0.05 ν = 0.01 ν = 0.03 ν = 0.05

Bicubic 21.92 21.54 20.90 19.76 19.53 19.11 20.46
RED 28.22 25.62 23.61 24.91 23.38 21.82 24.59

IRCNN 28.35 26.40 25.27 25.61 24.45 23.37 25.58
DPIR 29.08 27.27 26.21 26.55 25.33 24.41 26.48

GS-PnP 29.24 28.03 26.65 25.90 25.56 24.60 27.00

Bicubic 19.82 19.58 19.16 18.95 18.76 18.40 19.11
RED 24.72 22.55 21.10 22.82 21.64 20.19 22.17

IRCNN 25.10 23.44 22.52 24.25 22.60 21.58 23.25
DPIR 26.22 24.52 23.56 25.34 23.57 22.50 24.29

GS-PnP 25.45 24.84 23.80 24.53 23.73 22.71 24.18

Table 7: PSNR(dB) comparison of image super-resolution methods on set3C with various scales s,
blur kernels k and noise levels ν. Similar to Table 3, for isotropic and anisotropic kernels, the
proposed method outperforms all competing methods at noise levels 0.03 and 0.05 and follows
DPIR at lower noise level 0.01.

Kernels Method s = 2 s = 3 Avg
ν = 0.01 ν = 0.03 ν = 0.05 ν = 0.01 ν = 0.03 ν = 0.05

IRCNN 26.97 25.86 25.45 25.60 24.72 24.38 25.50
DPIR 27.79 26.58 25.83 26.05 25.27 24.66 26.03

GS-PnP 27.88 26.81 26.01 25.97 25.35 24.74 26.13

IRCNN 25.41 24.52 24.18 24.94 24.04 23.61 24.45
DPIR 26.08 24.99 24.39 25.53 24.46 23.80 24.88

GS-PnP 25.98 25.07 24.53 25.47 24.56 23.92 24.92

Table 8: PSNR(dB) performance of the fastest method (IRCNN/DPIR/GS-PnP) for image super-
resolution on the full CBSD68 dataset with various blur kernels k and noise levels ν, in the same
conditions as Table 3. Once again, on CBSD10 (Table 2) or on CBSD68 (Table 5), we observed
very similar performance gaps between the compared methods, which again confirms that CBSD10
is large enough to compare accurately the PnP methods.
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(a) Clean (b) Observed (c) RED (21.28dB) (d) IRCNN (23.15dB)

(e) DPIR (23.33dB) (f) GS-PnP (23.47dB) (g) F (xk) (h) γk (log scale)

Figure 7: Super-resolution with various methods on a CBSD10 image degraded with the indicated
blur kernel, s = 2 and input noise level ν = 0.05. In (g) and (h), we show the evolution of F (xk)
and γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 along our algorithm. One can notice that the proposed
method GS-PnP manages to extract more structure in the zoomed area than the competing methods.

(a) Clean (b) Observed (c) RED (25.40dB) (d) IRCNN (25.42dB)

(e) DPIR (25.41dB) (f) GS-PnP (25.46dB) (g) F (xk) (h) γk (log scale)

Figure 8: Super-resolution with various methods on a CBSD10 image degraded with the indicated
blur kernel, s = 3 and input noise level ν = 0.01. In (g) and (h), we show the evolution of F (xk)
and γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 along our algorithm.
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J.3 INPAINTING (WITH NON-DIFFERENTIABLE DATA-FIDELITY TERM)

We now propose to apply our PnP scheme to image inpainting with the degradation model

y = Ax (43)

whereA is a diagonal matrix with values in {0, 1}. For inpainting, no noise is added to the degraded
image. In this context, the data-fidelity term is the indicator function of A−1({y}) = {x | Ax =
y}: f(x) = ıA−1({y}) (which, by definition, equals 0 on A−1({y}) and +∞ elsewhere). Despite
being non differentiable, f still verifies the assumptions of Theorems 1 and 2 and convergence is
theoretically ensured. The proximal map becomes the orthogonal projection ΠA−1({y})

Proxτf (x) = ΠA−1({y})(x) = Ay −Ax+ x (44)

In our experiments, the diagonal of A is filled with Bernoulli random variables with parameter
p = 0.5. We run our PnP algorithm with σ = 10/255. Given the form of f , we do not use
the backtracking strategy and keep a fixed stepsize. Even if we do not exactly know the Lipschitz
constant of ∇gσ , we observed in Figure 5 that, for small noise, it was almost always estimated as
slightly larger than 1. We thus choose λτ = 1 and empirically confirm convergence with this choice
in follow-up experiments (see Figure 9). The algorithm is initialized with x0 = y + 0.5(Id−A)y
(masked pixels with value 0.5) and terminates when the number of iterations exceeds K = 100. We
found it useful to run the first 10 iterations of the algorithm at larger noise level σ = 50/255. As y
does not have noise, we found preferable not to run the last extra gradient pass from Algorithm 1.

We show inpainting results on set3C images Figure 9. Our PnP restores the input images with
high accuracy, including its small details. Furthermore, convergence of the residual at rate O( 1

k ) is
empirically confirmed.

Clean Observed GS-PnP (31.65dB) (a) γk (log scale)

Clean Observed GS-PnP (33.65dB) γk (log scale)

Clean Observed GS-PnP (33.71dB) γk (log scale)

Figure 9: Inpainting results on set3C with pixels randomly masked with probability p = 0.5. In the
last colomn, we show the evolution of γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 along the iterations.
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J.4 PSNR CONVERGENCE CURVES

We first plot Figure 10 the evolution of the PSNR along the iterations of the PnP algorithm during
the experiments of Figure 1 and Figure 2. This illustrates that the minimization of F coincides with
the maximization of the PSNR, which supports the interest of the optimized functional F = f+λgσ .

(a) Deblurring (b) Super-resolution

Figure 10: Evolution of the PSNR along the iterations of the algorithm, during (a) the deblurring ex-
periment of Figure 1 and (b) the super-resolution experiment of Figure 2. Note that the convergence
in PSNR follows the convergence in function value (represented in Figures 1(g) and 2(g)).

J.5 INFLUENCE OF THE PARAMETERS

In this section we study more deeply the influence of the parameters involved in the GS-PnP algo-
rithm. Three parameters are involved: the stepsize τ , the denoiser level σ and the regularization
parameter λ.

• The stepsize τ is automatically tuned with backtracking and is not tweaked heuristically,
contrary to other competing methods based on PnP-HQS.

• The first regularization parameter σ is linked to the used denoiser.
• The second regularization parameter λ is introduced so as to target the objective function
f + λgσ , which is the main purpose of our method. It is a classical formulation of inverse
problems, and the trade-off parameter λ is usually tuned manually.

Thus, like PnP-HQS, we have two parameters that we are free to tune manually. One additional mo-
tivation for keeping both λ and σ as regularization parameters is to be able to use our PnP algorithm
with noise-blind denoisers like DnCNN that are independent on σ. In practice, in our experiments,
we first roughly estimated σ proportionally to the input noise level ν and tweaked λ more precisely.
Note that, for each inverse problem, our parameters λ and σ are fixed for a large variety of kernels,
images and noise levels ν. The parameters are not optimized for each image.

Figure 11 and Figure 12 respectively plot the average PSNR when deblurring the CBSD10 images
with different values λν and σ/ν, and fixed ν = 0.03. Both parameters control the strength of the
regularization. We observe that λν and σ have a similar influence on the output: for small λν or
small σ, the regularization involved by the denoising pass is not sufficient to counteract the noise
amplification done by the proximal steps with large τ (recall that when τ → ∞, Proxτf tends to
the pseudo-inverse of A). On the contrary, as expected, increasing λ and σ tends to over-smooth the
output result.

On a single image, we also vary the main parameters of both GS-PnP and RED (Figure 13). For
fair comparison, the PSNR is computed on the luminance channel only. This experiment confirms
that, when manually optimizing the parameters for both methods, the PSNR results obtained with
GS-PnP and RED remain close, as already observed in Table 6.
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λν = 0.05 λν = 0.1 λν = 0.5 λν = 10

Figure 11: Influence of the choice of the parameter λν for deblurring. Top: average PSNR when
deblurring the images of CBSD10, blurred with motion blurs or static blurs, for different values
of λν . The other parameters remain unchanged. Bottom: visual results when deblurring “starfish”
with various λν (in the same conditions as Figure 1).

σ/ν = 1 σ/ν = 1.8 σ/ν = 4 σ/ν = 10

Figure 12: Influence of the choice of the parameter σ for deblurring. Top: average PSNR when
deblurring the images of CBSD10, blurred with the 10 kernels, for different values of σ/ν, with
ν = 0.03. The other parameters remain unchanged. Bottom: visual results when deblurring
“starfish” with various σ/ν, with ν = 0.03 (in the same conditions as Figure 1).
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(a) RED (b) GSPnP

Figure 13: Influence of the parameters σ and λ for RED and GS-PnP when deblurring the single
image “starfish” degraded with uniform kernel and ν = 7.65/255. For fair comparison, like in
Table 6, the PSNR is calculated on the Y channel only. Remember that the results of Table 6 were
obtained with σ = 3.25, λ = 0.02 for RED and σ = 2ν, λ = 0.075 for GS-PnP.

J.6 INFLUENCE OF THE INITIALIZATION

In Figure 14, we examine the robustness of the method to the initialization. As can be seen on this
experiment, the output image does not change much even for relatively large perturbation of the
initialization. We thus observe a robustness to the initialization, both in terms of visual aspect and
PSNR. We also observed that initializing with a uniform image does not change the output of the
algorithm. We suggest that this robustness comes from the first proximal steps on the data-fidelity
term (with a large τ ), which prevent the algorithm to be stuck in a poor local minimum. Note that
the use of large τ in the beginning of the algorithm is possible thanks to the backtracking procedure.

σinit = 20/255 σinit = 40/255 σinit = 60/255

Figure 14: Influence of the initialitation z0 on the deblurring result. Instead of initializing with
the blurred image z0 = y as done in Section 5.2.1, we set z0 = y + ξσinit with ξσinit an AWGN
with standard deviation σinit. By increasing the noise level σinit, we investigate the robustness of
the result to changes in the initialization of the algorithm. Top: PSNR values, along with values
of σinit. Bottom: corresponding visual results on “starfish” with various σinit (in the same conditions
as Figure 1). The algorithm is robust to noisy initializations up to a relatively large value of σinit.
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J.7 CONVERGENCE OF DPIR (ZHANG ET AL. (2021))

In this section, we illustrate that, contrary to our method, the DPIR algorithm is not guaranteed to
converge and can even easily diverge. In Figure 15, we plot the convergence curves of both DPIR
and our GS-PnP when deblurring the “starfish” image degraded with a motion kernel and ν = 0.01.
In the original DPIR paper Zhang et al. (2021), only 8 iterations are used with decreasing τ and σ.
More precisely, σ decreases uniformly in log-scale from 49 to the input noise level ν, and τ is
set proportional to σ2. In order to study the asymptotic behaviour of the method, we propose two
strategies to run DPIR with 1000 iterations:

(i) Decreasing σ from 49 to ν over 1000 iterations instead of 8 (Figure 15, row 1).
(ii) Decreasing σ from 49 to ν in 8 iterations, and then keep the last values of σ and τ for the

the remaining iterations (Figure 15, row 2).

As illustrated by the plot of
∑
i≤k ||xi+1 − xi||2 (third column), DPIR fails to converge with both

strategies, even if the residual ||xk+1 − xk||2 tends to decrease with the second strategy. This
divergence also involves a loss of restoration performance in terms of PSNR (first column). On the
other hand, as theoretically shown in this paper, the residual ||xk+1 − xk||2 with GS-PnP tends to 0
(reaches ∼ 10−13 before the activation of backtracking, versus ∼ 10−4 for DPIR) and its series
converges.

D
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P

PSNR(xk) ||xk+1 − xk||2/||x0||2 (log scale)
∑
i≤k ||xi+1 − xi||2/||x0||2

Figure 15: Convergence of the DPIR algorithm versus convergence of GS-PnP when deblurring the
“starfish” image. The two first rows display results obtained with DPIR with two different strategies
used for decreasing σ: in the first row, σ is decreased from 49 to ν over 1000 iterations; in the second
row, σ is decreased in 8 iterations and then kept fixed for the remaining iterations.
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