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Abstract

This paper aims to overcome the “lost-in-the-middle” challenge of large language
models (LLMs). While recent advancements have successfully enabled LLMs
to perform stable language modeling with up to 4 million tokens, the persistent
difficulty faced by most LLMs in identifying relevant information situated in the
middle of the context has not been adequately tackled. To address this problem,
this paper introduces Multi-scale Positional Encoding (Ms-PoE) which is a simple
yet effective plug-and-play approach to enhance the capacity of LLMs to handle
the relevant information located in the middle of the context, without fine-tuning or
introducing any additional overhead. Ms-PoE leverages the position indice rescal-
ing to relieve the long-term decay effect introduced by RoPE, while meticulously
assigning distinct scaling ratios to different attention heads to preserve essential
knowledge learned during the pre-training step, forming a multi-scale context fu-
sion from short to long distance. Extensive experiments with a wide range of LLMs
demonstrate the efficacy of our approach. Notably, Ms-PoE achieves an average
accuracy gain of up to 3.8 on the Zero-SCROLLS benchmark over the original
LLMs. Code are available at https://github.com/VITA-Group/Ms-PoE.

1 Introduction

Effective long-sequence reasoning in large language models (LLMs) is crucial for a wide range of
applications [1, 2], from understanding extensive texts [3, 4] and managing day-long conversations [5,
6] to code generation [7, 8] and science discoveries [9, 10]. Recent system support advancements [11,
12] have enabled training transformers for any L sequence length even with O(L2) computational
complexity. This is exemplified by models such as MPT [13] and Mistral [14] pre-trained with
sequence lengths 16k and 32k respectively.

Nevertheless, emerging research reveals the constrained efficacy of LLMs in managing tasks requiring
long contextual understanding. Particularly, [15] demonstrated a substantial degradation in LLMs’
performance when crucial information is positioned amidst a lengthy context, a phenomenon they
refer to as “lost-in-the-middle". One explanation is about the use of rotary positional embedding
(RoPE) [16], a prevalent positional encoding technique used in open-source LLMs. As a relative
position embedding, RoPE incorporates a long-term decay property, predisposing the model to
prioritize current/nearby tokens while paying less attention to further ones. [17] identified a surprising
trend attributed to the Softmax operation where attention scores are disproportionately allocated into
initial tokens, irrespective of their relevance to the language modeling task. Despite the presence
of considerable redundancy in long-context inputs [18], crucial information may be located across
different positions. The inclination of LLMs to overlook the middle section presents a challenge
for their applications, particularly in the context of long-context reasoning. Several approaches
successfully extend pre-trained LLMs with context up to extreme token length, either through sparse
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selection of crucial tokens during generation [17, 18, 19] or by modifying positional encoding [20, 21].
Nevertheless, these approaches primarily aim to extend the context length of LLMs and, consequently,
fall short in addressing the “lost-in-the-middle” problem when applied out-of-the-box.

Figure 1: The x-axis illustrates the placement of essen-
tial information within the prompt, ranging from start
to end. The green bar serves as a standard baseline,
illustrating the “lost-in-the-middle" phenomenon. We
introduce our method, Multi-scale Position Encoding
(Ms-PoE), which requires neither additional fine-tuning
nor increased memory usage. Instead, it involves a sim-
ple remapping of the position embedding depicted in
Figure 2, which enables the important information in
the middle to be detected effectively (brown bars). For
more details, see Section 4.2 and Figure 5.

Efforts have been made to enhance LLMs’
capacity to capture vital information lo-
cated within the middle of the context.
These include extra memory bank [22], re-
ordering the input context based on rele-
vance [23, 24], enhancing the information
searching and reflection ability via atten-
tion strengthening tasks [25, 26], splitting
the input into short segments and applying
short-text models [27]. For example, [23]
empirically discovered that LLMs tend to
emphasize more on the current window
while still paying more attention to the rel-
evant text than distracting content. They
subsequently introduced “attention sorting"
where the main idea is iteratively sorting
documents based on their attention scores,
such that critical information will likely be
placed at the end, to fit the position-biased
nature of RoPE. [24] conducted parallel
runs of LLMs with different RoPE angles,
thereby mitigating the risk of overlooking
crucial information through a weighted sum of the outputs. These approaches usually require
additional memory or multiple inference runs, which can be expensive for LLMs.

In this paper, we aim to address the “lost-in-the-middle” problem by reintroducing the concept of
multi-scale features from computer vision into the context of Transformer-based LLMs. Multi-
scale features, well-established in Inception-style models [28, 29, 30], utilize parallel employment
of kernels with different sizes to fuse multi-scale information, spanning short to long distances.
Introducing multi-scale operations into LLMs intuitively can help compensate for crucial information
located in the middle, which might be easily overlooked by full attention operation. Unlike modifying
the attention module to form multi-scale attention, we choose to re-scale the indices of positional
encoding. This decision is grounded not only in its effectiveness in easily adjusting the scale of the
context window by simply changing the position indices [20] but also in the potential of down-scaling
the position indices to relieve the long-term decay property introduced by RoPE. However, this
approach was initially introduced to extend context windows, and its performance regarding the “lost-
in-the-middle” problem remains uncertain for several reasons: (i) Indice re-scaling forces position
embeddings of original context window to reside in a narrower region, leading to performance
degradation in the original context window as shown in [20]. (ii) Uniformly applying the same
scaling ratio throughout the entire model might be sub-optimal to preserve essential knowledge
learned during pre-training; (ii) Fine-tuning is necessary for the original approach, albeit minimal.
The impact without fine-tuning remains unknown.

To this end, we systematically visit the position indices scaling regarding the “lost-in-the-middle”
problem and counter-intuitively discover that it is possible to slightly mitigate the “lost-in-the-middle”
issue if we carefully choose the scaling ratio to be around 1.5-2. Additionally, we observe that different
attention heads exhibit varying sensitivity to the position shift of the relevant document. Some
attention heads are “position-aware”, consistently capturing relevant information even with position
shifts, while others may occasionally capture position changes, and some heads are completely
insensitive to position changes. This highlights the need to treat attention heads separately when
re-scaling position indices.

Contribution. Inspired by the above observations, we introduce Multi-scale Positional Encoding
(Ms-PoE), a simple yet effective plug-and-play approach that can enhance the long-context reasoning
capability of pre-trained LLMs without requiring fine-tuning or introducing any additional overhead.
Ms-PoE meticulously assigns distinct scaling ratios to different attention heads, with the scaling factor
monotonically increasing from “position-aware” heads to “position-unaware” heads. This enables
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us to improve long-context ability by re-scaling position indices to shorter values while preserving
essential knowledge acquired during the pre-training phase. The efficacy of Ms-PoE is substantiated
through extensive experiments. By simply re-scaling the indices of positional encoding, Ms-PoE
consistently enhances the performance of various LLMs including Llama-2 [31], StableBeluga [32]
and Vicuna [33] on the ZeroSCROLLS [34], achieving a notable accuracy gain of up to 3.8.

2 Background and Related Works

In this section, we provide a concise overview of the background knowledge and recent literature about
the generative inference process of Large Language Models (LLMs), their abilities for long-context
reasoning, and details of positional encoding.

2.1 Generative Inference of LLMs

The generative inference process in LLMs can be categorized into two distinct phases: ① Prefilling
Stage: In this initial phase, LLMs receive an input sequence containing detailed instructions that
define a specific generation goal. Throughout this stage, intermediate Key and Value embeddings
are generated at each layer and stored in memory, commonly referred to as the KV cache. ②
Decoding Stage: This phase involves retrieving embeddings from the KV cache to generate new
tokens. The decoding process is inherently iterative, where each newly generated token serves as
input for the subsequent token generation. In real-world LLM deployment, the cumulative length of
input sequences and the subsequently generated text can reach several thousand or even millions of
tokens, presenting significant challenges for the LLMs’ long-context reasoning capability.

2.2 Long Context Reasoning

Two challenges for LLMs in handling long-context reasoning tasks. One is to extend the context
window to process sentences that exceed the pre-trained window length. Another is the “lost-in-the-
window” issue where LLMs likely overlook the information located in the middle of the sentences.

The reason for the former challenge is that open-source LLMs are usually pre-trained with fixed
sequence lengths, such as 4096 for Llama-2 [31]. When the sequence length surpasses the predefined
context length used in pre-training, LLMs often suffer from performance collapses and thus generate
incoherent or fragmented text. Recent efforts to address this issue can be broadly categorized into
two streams. Recently, several works have been proposed to address this issue, which can be broadly
categorized into two streams. The first one explores from the expansion of positional encoding, with
notable contributions including PI [20], CLEX [35], YaRN [36], Self-Extend [21]. On the other
hand, some works modify the attention mechanism, such as StreamingLLM [17], LM-Inifinite [19],
H2O [18], TOVA [37], Zebra [38], and Activation Beacon [39]. These approaches have successfully
expanded the contextual window with minimal or no additional training overhead.

Despite the extended context window, LLMs still face a significant challenge in long-context inference
due to the uneven utilization of lengthy inputs. [15] conducted a pivotal investigation, revealing
that LLMs tend to overlook the middle portion of the input. This bias compromises the practical
application of LLMs, as critical information may be located in the middle part of the input, leading to
unreliable outputs. To tackle this issue, [23] introduced ‘attention sorting’ to reorder inputs, placing
critical information at the end. However, this method’s reliance on potentially biased attention scores
to identify crucial content may compromise its reliability, and the prerequisite knowledge of document
count in inputs may affect its effectiveness. [24] utilize Attention Buckets, an ensemble approach
that combines multiple forward processes with positional modifications. However, this technique
necessitates a considerably higher computational cost. Other general approaches for enhancing
long-context reasoning include prompt compression [40], retrieval augmentation [26], and inference
refinement by constructing memory trees [41] while these approaches typically necessitate extra
LLMs’ assistance or bring extra computational cost.

2.3 Positional Encoding

For effective processing of long contexts, LLMs necessitate the explicit encoding of positional
information. Common techniques include absolute positional embedding and relative positional
encoding. Absolute positional embedding integrates word embeddings with an additional positional
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vector based on the token’s absolute position, which can be either fixed [42] or learnable [43, 44,
45, 46, 47]. In contrast, relative positional encoding, increasingly popular in contemporary LLMs,
encodes the relative distances between tokens instead of their absolute positions. Notable among these
are Rotary Position Embedding (RoPE) [16] that widely implemented in models like Llama [31],
Falcon [48], Mistral [49], and ALiBi [50], which used in MPT [13].

RoPE. The primary goal of RoPE [16] is to encode positional information such that the inner
product of the query and key embeddings inherently contains the relative position information:

f(qm,m)T f(kn, n) = g(qm,kn,m− n)

Here, f is the positional encoding function applied to the query and key embeddings at positions m
and n, respectively. To satisfy this condition, the function f is defined as a vector-valued complex
function, as follows:

f(x,m) = xeimθ

= [(x1 + ix2)e
imθ1 , (x3 + ix4)e

imθ2 ,

..., (xl−1 + ixl)e
imθl/2 ]T

In this equation, l represents the dimension of the embeddings, θk = 10000−2k/l, and i is the
imaginary unit. For calculating the attention score, RoPE considers the real part of the product,
specifically Re(f(qm,m)T f(kn, n)). This approach allows RoPE to effectively integrate relative
positional information into the attention mechanism of transformer models.

3 Methodology

In this section, we present the details of our Multi-Scale Positional Encoding (Ms-PoE) approach.
Section 3.1 demonstrates that the context utilization of LLMs can be directly enhanced by re-scaling
the positional information without incurring extra training costs. Then, Section 3.2 analyzes the
properties of various attention heads in LLMs. Section 3.3 outlines the detailed pipeline of Ms-PoE.

3.1 Positional Re-scaling Improves Context Utilization
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Figure 2: Illustration of our Multi-scale Positional En-
coding (Ms-PoE) framework. The top figure demon-
strates the implementation of Ms-PoE with various scal-
ing ratios in different attention heads, marked with dif-
ferent colors. The bottom figure shows the position
details of each head, in which the first matrix (ri = 1)
represents the original RoPE.

Current LLMs tend to neglect information
located in the middle of the context, de-
spite its potential relevance. This “lost in
the middle” phenomenon likely arises from
two contributing factors: (i) Casual Atten-
tion, where preceding tokens undergo a
higher number of attention processes, lead-
ing LLMs to disproportionately favor ini-
tial tokens. This phenomenon has been
demonstrated in recent research which
highlights the pivotal role of the initial to-
kens in model generation [19, 17], with
these starting tokens consistently accumu-
lating higher attention scores [18]. (ii) The
utilization of RoPE [16] introduces a long-
term decay effect, diminishing the attention
score of distantly positioned yet semanti-
cally meaningful tokens. The combination
of these factors contributes to LLMs ne-
glecting the context in the middle part. To
tackle this issue and improve the context
utilization of LLMs, a seemingly unreason-
able yet remarkably effective strategy is
to down-scale positional information [38].
Formally, RoPE encodes the position as
f(x,m) = xeimθ. By substituting the position m with m

r , we can force the long-distance tokens to
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reside in the shorted range, which can potentially alleviate the long-term decay effects by a factor
of r. In the following sections, we conduct experiments to evaluate how LLMs’ context utilization
responds to varying re-scaling ratios r.

Details. Experiments are conducted using Llama-2-7B-Chat [31] and Vicuna-7B [33] on the Multi-
Document Question Answering (MDQA) task [15]. Each question includes ten documents, with only
one relevant to the question. By varying the position of the relevant document, we can evaluate LLMs’
context utilization properties. For each position of the key document, we calculate the accuracy over
500 samples. And results show in Figure 3 include both the Average accuracy over the 10 documents
as well as Gap accuracy, i.e., the difference between the best and worst accuracy when varying the
positions of the relevant document.

Llama-2-7B-Chat Vicuna-7B

A
cc

ur
ac

y 
(%

)

Figure 3: Results of the relationship between positional re-scaling
and context utilization. The upper curve illustrates the average ac-
curacy when placing the key document in various positions. The
bottom curve indicates the gap between the best and worst accuracy.

Results. Figure 3 demon-
strates that the gap accuracy
can be alleviated via appro-
priate positional re-scaling.
Particularly, we see that the
Gap between the best and the
worst accuracy is greatly re-
duced when increasing the re-
scaling ratio. An enhanced
average accuracy can be ob-
served with a scaling ratio
equals near 1.5. Additionally,
changing the scaling ratio also
affects the favored zone of
LLMs. With a small scaling
ratio (e.g., 0.5), LLMs tend to
focus more on the most recent part of the context, while with a large ratio (e.g., 2.5), LLMs favour
the beginning part.

Improving context reasoning via positional re-scaling. Building upon this, we introduce a plug-
and-play treatment for RoPE by re-scaling the position of each token. This approach seamlessly
enhances the context utilization of LLMs without requiring additional training or inference overhead.
However, there is a trade-off in terms of LLMs favoring certain context regions. For instance, when
r = 0.5, LLMs achieve peak accuracy when the relevant document is located at the end of the input,
while at the beginning for r = 1.5. It remains challenging to decide which re-scaling ratio to use,
given that we lack prior knowledge of the location of relevant information in real-world applications.
Moreover, as the re-scaling ratio increases, LLMs may face the positional out-of-distribution (O.O.D)
issue [21, 20], where many position values do not directly exist during pretraining (e.g., using
0.1, 0.2, ..., 0.9 for position when LLMs only recognize 1, 2, ..., 9 during pretraining), potentially
reducing their average reasoning ability. To tackle these challenges, we investigate the head-wise
properties of LLMs and propose a multi-scale positional encoding approach.

3.2 Position-Aware Head-Wise Re-scaling Ratio

Inspired by recent works that leverage attention patterns to identify most crucial tokens and optimize
inference efficiency [37, 18, 51], we carry out a preliminary study to investigate the interaction
between attention patterns and token positions.

Details. We visualize the attention patterns of the most recent query with results collected from
Vicuna-7B on the MDQA task, following [37]. In the same input sample, we manually switch the
position of the relevant document from the beginning to the end and illustrate the attention scores
across different positions.
Observation. We observe the presence of “position-aware" attention heads capable of capturing
relevant information even when its position is shifted. As an example, we select the eighth attention
head in the fifteenth layer, depicted in the bottom of Figure 4, while consistent observations can be
drawn across different layers and input samples. Firstly, most attention scores are near zero and can
be ignored, consistent with other studies highlighting high sparsity in attention blocks [18, 52, 53].
For the remaining positions, these “position-aware" attention heads can capture important information
across positions, with attention patterns shifting as the position of relevant tokens changes. However,
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Figure 4: Visualization of attention pattern of the most recent query within two different attention
heads. Top: Results of the 12th attention head in the 15th layer. Bottom: Results of the 8th attention
head in the 15th layer. The most recent query remains unchanged while varying the position of the
crucial document. More examples are reported in Figure 6 in the appendix.

for other attention heads (upper subfigure in Figure 4), they fail to capture relevant tokens and only
attend to the beginning and end words, contributing to the “lost-in-the-middle" issue.

Based on this observation, we devise a position-aware strategy to adaptively determine the re-scaling
ratio via the inherent properties of different attention heads. For the “position-aware" attention heads,
we assign a re-scaling ratio close to one to avoid changing their functionality significantly, as altering
them too much could degrade performance due to the positional O.O.D issue. On the other heads,
we condense their position indices to a higher degree, providing more opportunity to alleviate the
persistent bias toward the beginning and recent tokens. To identify the properties of nh attention
heads, we introduce a Position-Awareness Score SP ∈ Rnh formulated as:

SP =
1

l

l∑
i=1

(Ai ≥ α
1

l

l∑
i=1

Ai) (1)

In Equation 1, A represents the attention score vector of the most recent query, and α is a hyper-
parameter determining the threshold of effective attention scores. In all experiments, we default to
using α = 3, and the corresponding important tokens are highlighted in Figure 4, which are shown in
red. In the spirit of numerous studies that investigate the outlier properties in LLMs [17, 54, 55], we
utilize SP to evaluate the ratio of effective attention tokens, where a larger SP value implies better
positional awareness.

3.3 Inference with Multi-Scale Positional Encoding

The pipeline for utilizing Multi-Scale Positional Encoding (Ms-PoE) in LLM inference is: Given
a pre-trained LLM, we initially replace the original rotary positional encoding with Ms-PoE. As
illustrated in Figure 2, Ms-PoE condenses the positional indices of RoPE and employs different
re-scaling ratios for each attention head. The re-scaling ratios are assigned during the prefilling stage,
where we first calculate the distribution of attention scores for the most recent query and obtain
the corresponding position-awareness score for each attention head. Larger re-scaling ratios are
subsequently allocated to attention heads exhibiting smaller position-awareness scores. And the set
of re-scaling ratios r defaults to a linear range from Rmin to Rmax. For example, the ith sorted-head
would be using re-scaling ratio

ri = Rmin + (i− 1)(Rmax −Rmin)/(nh − 1) (2)

Once the re-scaling ratios are assigned, they remain fixed in the subsequent decoding stage. We
consistently using Rmin = 1.2 and Rmax = 1.8 is our experiments.

4 Experiments

The goal of this section is to demonstrate Ms-PoE, a plug-and-play positional encoding capable of
enhancing the context utilization of LLMs, and consequently improving the quality of generation
across diverse models and downstream reasoning tasks. Our main results can be summarized below.
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Table 1: Comparsion results on ZeroSCROLLS [34] benchmarks. The evaluation metrics for various
tasks are tailored as follows: GovReport, SummScreenFD, QMSum, and SQuALITY utilize the
geometric mean of Rouge-1/2/L scores. Qasper and NarrativeQA are assessed through the F1 score,
while BookSumSort employs the concordance index.

Models Methods GovReport SummScreenFD QMSum SQuALITY Qasper NarrativeQA BookSumSort Average

Llama-2-7B-Chat Baseline 16.8 14.1 15.2 19.5 21.9 14.4 3.1 15.0
Llama-2-7B-Chat Ours 17.7 (+0.9) 14.2 (+0.1) 15.8 (+0.6) 19.9 (+0.4) 25.1 (+3.2) 17.7 (+3.3) 5.8 (+2.7) 16.6 (+1.6)

Llama-2-13B-Chat Baseline 15.4 12.3 15.1 18.9 19.0 15.0 5.7 14.5
Llama-2-13B-Chat Ours 16.5 (+1.1) 13.1 (+0.8) 15.5 (+0.4) 19.2 (+0.3) 20.8 (+1.8) 17.0 (+2.0) 5.9 (+0.2) 15.4 (+0.9)
StableBeluga-7B Baseline 14.9 13.8 14.7 17.9 28.1 16.8 9.2 16.5
StableBeluga-7B Ours 16.6 (+1.7) 14.2 (+0.4) 15.2 (+0.5) 18.7 (+0.8) 36.9 (+8.8) 18.0 (+1.2) 14.2 (+5.0) 19.1 (+2.6)

StableBeluga-13B Baseline 5.7 7.1 12.9 13.3 19.2 13.4 4.8 10.9
StableBeluga-13B Ours 7.4 (+1.7) 7.4 (+0.3) 12.8 (-0.1) 13.2 (-0.1) 20.8 (+1.6) 13.4 (+0) 5.6 (+0.8) 11.5 (+0.6)

Vicuna-7B Baseline 16.2 13.7 15.1 18.9 24.3 13.7 3.3 15.0
Vicuna-7B Ours 20.2 (+4.0) 14.5 (+1.8) 15.4 (+0.3) 19.8 (+0.9) 34.7 (+13.4) 16.2 (+2.5) 10.5 (+7.2) 18.8 (+3.8)

Vicuna-7B-16K Baseline 20.2 13.9 16.2 20.1 32.3 18.8 29.9 21.6
Vicuna-7B-16K Ours 21.4 (+1.2) 14.3 (+0.4) 16.2 (+0) 20.2 (+0.1) 37.8 (+5.5) 21.0 (+2.2) 43.3 (+13.4) 24.9 (+3.3)

In Section 4.1, we demonstrate that Ms-PoE consistently enhances reasoning over long contexts for a
range of tasks in the ZeroSCROLLS benchmarks [34], all without the need for additional training.
Additionally, Ms-PoE exhibits superior performance when compared to other methods in the field,
including PI [20] and Self-Extend [21]. Detailed comparison results are shown in Tables 1 and 2.

In section 4.2, we highlight that Ms-PoE improves the context utilization and achieves consistent
improvement when varying the position of critical information, as shown in Figure 1 & 5.

In Section 4.3, we conduct multiple ablation studies to assess the effectiveness of Ms-PoE under
different scaling ratios and selection strategies. Results are reported in Table 3 & 4.

4.1 Enhanced Generation Quality

We empirically validate the ability of Ms-PoE to enhance long-context reasoning with a noteworthy
improvement up to 13.4 without additional training overhead. Notably, our approach surpasses other
competitive baselines, demonstrating improvements from 2.64 to 43.72.

Experimental Setup. In our experiments, we select seven representative LLMs, including Llama-2-
chat-7B and 13B [31], StableBeluga-7B and 13B [32], and Vicuna-7B [33], along with its longer-
context version (Vicuna-7B-16K). To comprehensively evaluate the long-context reasoning abilities
of LLMs, we choose seven tasks from ZeroSCROLLS [34], spanning all four task categories: ① Doc-
ument Summarization (Government and SummScreenFD), ② Query-Based Summarization (QMSum
and SQuALITY), ③ Question Answering (Qasper and NarrativeQA), and ④ Information Aggregation
(BookSumSort). We also compare Ms-PoE with other competitive methods on additional generation
tasks, including Multi-document Question Answering (MDQA) and Key-Value Retrieval [15].

Main Results. Table 1 summarizes the main results, yielding several key observations: (i) By
simply substituting the original positional encoding module with our Ms-PoE, the performance of
LLMs consistently improves across all tasks without additional training, resulting in an average
performance enhancement ranging from 0.6 to 3.8; (ii) These improvements hold consistently across
different model sizes of 7 billion and 13 billion parameters; (iii) The efficacy extends to LLMs with
varying sequence lengths, such as Vicuna-7B and its extended version, Vicuna-7B-16K, both showing
improvements from 3.3 to 3.8.

Outperform other competitive methods. We conduct a thorough comparison between Ms-PoE
and other competitive methods, including Positional Interpolation (PI) [20] and Self-Extend [21],
both of which modify position indices without utilizing head-wise properties. For PI, we employ
the scaling ratio as the average value of our method while for Self-Extend, we set the group size
as 2 with the local window size as 1024. The results presented in Table 2 consistently showcase
the superiority of our approach over other baselines, demonstrating improvements of up to 3.92 and
43.72 for MDQA and Key-Value Retrieval, respectively. Such improvements might come from two
primary factors. Firstly, the incorporation of head-wise properties offers a more adaptive strategy
for positional modification. Secondly, our approach enhances the general context utilization ability.
Notably, our approach demonstrates superiority even when the core document or key is positioned
at the end of the input, surpassing other baselines with improvements ranging from 2.4 to 27.8.
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This performance surpasses the recent work [23], which addresses the “lost-in-the-middle" effect
by reordering key documents and placing them at the end of the input. When the identified core
document is already located at the recent area, such method can not gain further improvements, while
our approach offers a fine-grained strategy to improve context utilization.

Table 2: Comparsion results with other competitive methods on MDQA and Key-Value Retrival.
Results are reported in accuracy.

Models Methods MDQA
1 3 5 7 10 Average

Vicuna-7B

Baseline 64.0 61.0 57.4 58.4 64.8 61.12
PI 65.2 62.4 60.0 60.4 64.0 62.40

Self-Extend 64.7 63.7 61.4 59.8 62.0 62.32
Ms-PoE 65.6 64.2 63.0 65.2 67.2 65.04

Models Methods Key-Value Retrival
1 15 30 40 50 Average

Vicuna-7B

Baseline 92.0 25.8 8.0 25.4 30.0 36.24
PI 96.4 76.4 61.4 64.6 57.8 67.60

Self-Extend 88.6 63.8 76.2 59.4 42.0 66.00
Ms-PoE 97.0 83.4 75.0 86.6 57.8 79.96

4.2 Superior Context Utilization

Figure 5: Comparison results for the multi-document ques-
tion answering (MDQA) and key-value retrieval (KV re-
trieval) tasks. Each subfigure depicts the comparison when
varying the position of critical information from the begin-
ning to the end. For Vicuna-7B, please refer to Figure 1.

We assess the context utilization ability
of our approaches on two tasks, includ-
ing multi-document question answering
(MDQA) and key-value retrieval (KV
retrieval) tasks from [15]. Such tasks
provide a good input structure and of-
fers the flexibility to switch the position
of crucial information, thus evaluate the
context utilization ability of LLMs.

Experimental Setup. In the MDQA
task, each input sample comprises ten
documents and one question, with only
one document being relevant to the ques-
tion. For the KV retrieval tasks, there
are 50 key-value pairs with one question
querying the value of the chosen key. In
both tasks, we systematically switch the
important document or key-value pair
from the beginning to the end and report the accuracy of the generated context. All results are
averaged across 500 samples. The Gap accuracy metric is employed to assess the context utilization
ability of LLMs, defined as the gap between the best and worst accuracy when varying the position
of important information.

Main Results. As depicted in Figure 5 and 1, Ms-PoE demonstrates consistent improvement across
different models, tasks and critical positions. Even when the important information exists in the sweet
region (beginning and end) of the input, Ms-PoE achieves significant performance improvements
ranging from 3% to 6%, highlighting its efficacy in enhancing generation quality. Moreover, the
“lost-in-the-middle" issue is notably alleviated, with Ms-PoE quantitatively reducing the gap accuracy
by approximately 2% to 4%, showcasing improved context utilization.

4.3 Ablation Study and More Investigation

This section conducts a further evaluation of the effectiveness of Ms-PoE by addressing the following
questions: Q1: How does the effectiveness of Ms-PoE relate to the head-wise selection strategy of
the scaling ratio? Q2: How does the model perform with different scaling ratios?
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Table 3: Ablation results of different ordering metrics. Experi-
ments are conducted on Multi-Documents Question Answering
task with the Vicuna-7B model.

Methods Begin Middle End Average

Baseline 64.0 57.4 64.8 62.1

Random 64.5 55.0 65.5 61.7
Sequential 60.5 54.5 58.5 57.8

Entropy 63.5 59.5 64.0 62.3

Position-Awareness 65.6 63.0 67.2 65.3

A1: Positional awareness met-
rics achieve superior perfor-
mance compared to other
strategies. For a set of scaling
ratios r ∈ Rnh , where nh is the
number of attention heads, and
using scaling ratios linearly rang-
ing from 1.2 to 1.8, we evalu-
ate various strategies for assign-
ing these ratios to different at-
tention heads. These strategies
include: ① Random, which ran-
domly assigns the scaling ratios
to each head within each layer;
② Sequential, performing the assignment based on the original head order; ③ Entropy, where
we follow metrics measuring the sparsity level of attention scores [56]. Larger entropy implies less
sparse attention scores, indicating the model attends to more tokens rather than just the beginning and
end words, so we assign a scaling ratio near to 1, and vice versa for larger ratios. Results in Table 3
demonstrate that the proposed position-awareness effectively captures the head-wise properties of
LLMs, enhancing performance when critical information is located at various positions—beginning,
middle, or end. This leads to an average accuracy gain of 3.2 (65.3 v.s. 62.1).

Table 4: Ablation results of the condensing ratios.
Experiments are conducted on Multi-Documents
Question Answering task with the Vicuna-7B model.

Scaling Ratio Begin Middle End Average

1 64.0 57.4 64.8 62.1

0.5 56.0 51.0 68.0 58.3
1.5 65.2 60.0 64.0 63.1
2 61.5 59.0 62.5 61.0

2.5 59.5 57.5 57.0 58.0

0.8 → 2.2 53.5 59.5 67.5 60.2
1 → 2 61.0 57.0 63.0 60.3

1.2 → 1.8 65.6 63.0 67.2 65.3
1.4 → 1.6 65.5 59.0 63.0 62.5

A2: Ablation study of the scaling ratios.
We first examined the effect of uniform scal-
ing ratios across all heads on model perfor-
mance. Our findings, outlined in Table 4, in-
dicate that adjusting the scaling ratio between
0.5 and 2.5 can significantly enhance genera-
tive performance and mitigate the "lost-in-the-
middle" effect by 1.0% (63.1% v.s. 62.1%),
particularly with a ratio of 1.5. Further test-
ing with an average ratio of 1.5 across all
heads revealed that an optimal range exists
between 1.2 and 1.8, leading to an additional
2.2% (65.3% v.s. 63.1%) accuracy improve-
ment with our approach, Ms-PoE. Based on
these results, we established these ratios as
our experimental standard.

5 Conclusion

In this paper, we present a plug-and-play strategy designed to address the “lost-in-the-middle"
challenge observed in LLMs. This challenge stems from the persistent bias exhibited by LLMs
towards the beginning and local content within the input, leading to the neglect of crucial information
in the middle. Our investigation reveals the effects of position indice rescaling and the head-wise
position-awareness property, leading to the introduction of Multi-scale Positional Encoding (Ms-PoE).
This approach enhances the capability of LLMs to effectively capture information in the middle
of the context without the need for additional fine-tuning. Comprehensive experiments conducted
on Zero-SCROLLS benchmarks, multi-document question-answering tasks, and key-value retrieval
tasks confirm the effectiveness of Ms-PoE.
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A More Experiment Results

A.1 Position-Aware Attention Heads

Figure 6: Visualization of "position-aware" attention heads. Each row contains the attention pattern
for the same heads when varying the key documents within the inputs.

Figure 6 illustrates the attention patterns of "position-aware" heads. Each row represents the attention
pattern of the same head. As the key document is positioned from the beginning to the end, the
attention peak gradually shifts, indicating robust positional awareness. It’s important to note that we
randomly selected 9 attention heads with these "position-aware" properties, and these results were
validated with different input samples and layers.

14



Table 5: Comparison results of Ms-PoE on LongBench-EN benchmark with Llama-2-7B-Chat.
Methods MultiFieldQA-en LCC GovReport HotpotQA Passage Count Qasper MultiNews SAMSum TriviaQA PassageRetrieval-en RepoBench-P TREC 2WikiMQA Average

Baseline 33.51 59.77 27.97 30.10 3.74 19.27 24.36 39.45 82.81 10.00 49.22 57.33 28.14 35.82

Ours 37.33 62.03 29.87 34.08 4.60 20.96 24.69 39.79 85.28 16.67 50.11 58.67 30.19 38.02

A.2 Results on LongBench-EN Benchmark

We further evaluate Ms-PoE on the LongBench-EN benchmark [57] that contains 13 tasks aims for
long context understanding. Results are reported in Table 5. We can observe that Ms-PoE achieves
consistent performance improvement without any finetuning.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: We describe sufficient details about the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The primary limitation of our work remains limited exploration for only RoPE
based models.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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Justification: This paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the necessary ratios for MS-PoE settings and made the
relevant code publicly available in a GitHub repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All the models and datasets used in this paper are openly accessible on
Huggingface. We made the relevant code publicly available in a GitHub repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All primary hyperparameters are presented.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The majority of our results are significantly outperforming the baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All our experiments are conducted using 1 × A6000 GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: NeurIPS Code of Ethics is followed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Answer: [NA]
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Justification: All assets are in public domain.
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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