
Utilizing Explainability Techniques for Reinforcement
Learning Model Assurance

Alexander Tapley∗ Kyle Gatesman Luis Robaina Brett Bissey Joseph Weissman
The MITRE Corporation - AI Security and Perception

{atapley, kjgatesman, lrobaina, bbissey, weissmanj}@mitre.org

Abstract

Explainable Reinforcement Learning (XRL) can provide transparency into the
decision-making process of a Deep Reinforcement Learning (DRL) model and
increase user trust and adoption in real-world use cases. By utilizing XRL tech-
niques, researchers can identify potential vulnerabilities within a trained DRL
model prior to deployment, therefore limiting the potential for mission failure or
mistakes by the system. This paper introduces the ARLIN (Assured RL Model
Interrogation) Toolkit, an open-source Python library that identifies potential
vulnerabilities and critical points within trained DRL models through detailed,
human-interpretable explainability outputs. To illustrate ARLIN’s effectiveness,
we provide explainability visualizations and vulnerability analysis for a publicly
available DRL model. The open-source code repository is available for download
at https://github.com/mitre/arlin.

1 Introduction

Over the last decade, reinforcement learning has increased in popularity due to its ability to achieve
superhuman performance on a variety of classic board [1] and video game [2] environments. This gain
in popularity has sparked an interest in using DRL for both decision support and autonomous operation
within safety-critical scenarios such as air-to-air combat [3], nuclear power plant optimization [4],
and ballistic missile guidance [5]. These use-cases are considered high-risk as even small mistakes
can result in large losses of monetary value, equipment, and life. Before DRL models can safely
be deployed within real-world safety critical environments, their associated vulnerabilities need to
be identified and understood so effective training enhancements and verification guardrails can be
implemented.

In this paper, we present the ARLIN Toolkit, an open-source research library written in Python that
provides explainability outputs and vulnerability detection for DRL models, specifically designed
to increase model assurance and identify potential points of failure within a trained model. To
our knowledge, ARLIN is the first open-sourced Python toolkit focused on utilizing explainability
techniques to assure RL models prior to deployment. ARLIN utilizes matplotlib [6] and networkx [7]
to visualize a trained DRL model’s decision making process and provide meaningful vulnerability
identification and analysis to researchers. The modular library is structured to support custom
architectures, algorithms, DRL frameworks, and analytics; and provides a well-documented and
tested API for XRL research development and model assurance. The ARLIN repository is available
for download at https://github.com/mitre/arlin.

∗Corresponding author.

XAI in Action: Past, Present, and Future Applications @ NeurIPS 2023. Copyright © 2023 The MITRE
Corporation. ALL RIGHTS RESERVED. Approved for Public Release; Distribution Unlimited. Public Release
Case Number 23-3095



2 Background and Preliminaries

2.1 Reinforcement Learning

Reinforcement learning is an area of machine learning that focuses on teaching an intelligent agent
how to interact within an environment in order to optimize a reward function and achieve a specified
goal [8]. As the agent interacts with the environment, it receives scaled rewards to indicate good
and bad actions. Through trial and error, the agent is able to identify the optimal policy in order to
maximize the cumulative reward received and solve the given task.

In DRL, the environment is defined as a Markov Decision Process, MDP, M =
(S,A, P, ρ0, R, γ, T ), where S is the state space, A is the action space, P : S×A×S → [0, 1] is the
state transition probability, ρ0 : S×A → [0, 1] is the initial state probability, R : S×A is the reward
function, γ is the discount factor, and T is the maximum episode length. The policy πθ : S × A
assigns a probability value to an action given a state.

During training, the agent observes the current state of the environment st ∈ S and performs an
action at ∈ A according to its policy πθ. The agent then receives a next state s′t ∈ S and reward rt
from R within the environment. The agent’s goal is to find a policy that optimizes R. Due to the
large state space S, neural networks are commonly used as function approximators in DRL tasks.
While this helps the agent to generalize to continuous or large state spaces, it reduces transparency
into the decision making process of the model.

2.2 Explainable Reinforcement Learning

The "black-box" nature of deep neural networks make verifying and understanding their underlying
reasoning very difficult. A lot of work has been done in the field of Explainable AI (XAI) in recent
years [9]. However, most of these works focus on supervised learning or unsupervised learning tasks
that deal with non-sequential input data which do not directly transfer in the case of DRL due to
the sequential nature of the task. The lack of transparency into the decision making process of an
DRL model decreases user and public trust and introduces potentially catastrophic unknowns into the
model performance, therefore increasing the potential for mission failure.

Explainable RL (XRL) is a field of RL that focuses on increasing DRL model transparency to give
users insight into a model’s decision making process. The information gained from XRL techniques
can help researchers identify why agents are making certain decisions and increase user trust in the
model. Milani [10] buckets current XRL works into 3 main categories: feature importance, learning
process and MDP, and policy-level. These categories look into different aspects of the agent’s decision
making process including the importance of different features on the policy’s chosen action, training
examples that affect the policy outputs, and overall policy behavior analysis. This interpretability
information can be labeled as local or global, where local explanations focus on interpreting the
predictions of a single action at a point in time and global explanations give a holistic view of the
policy’s behavior overall [10]. Our work focuses on the global interpretability of an DRL model as
we aim to analyze the overarching policy to identify potential critical points that may affect a policy’s
success.

2.3 Related Works

To our knowledge, ARLIN is the first open-sourced Python library focusing on global explainability
and vulnerability detection through human-interpretable analysis visualizations. InterestingnessXRL
[11] similarly provides explainability outputs for users, but focuses primarily on identifying interesting
interactions between the agent and the environment called highlights and returns video-samples of the
highlights along with analytics about the interaction itself. While vulnerabilities and critical points
may be diagnosed as a highlight, this work does not explicitly focus on these areas. While other
repositories linked to XRL are publicly available such as [12], these are providing XRL algorithms
themselves as opposed to visualizations and analytics for trained DRL models.

2



3 Key Features

The ARLIN Toolkit provides three main explainability analysis components to users: latent space
analysis, datapoint cluster analysis, and semi-aggregated Markov decision process (SAMDP) [13]
analysis.

• Latent space analysis uses dimensionality reduction techniques to generate embeddings
from user-specified datapoint metadata and plot them in 2-D space. Additional policy
metadata can be overlaid onto the embeddings to visualize the relationship between the
policy embeddings and the policy metadata.

• Datapoint cluster analysis uses unsupervised clustering methods to cluster datapoints
based on user-defined policy metadata and provide analysis on each state cluster. Average
metrics for each cluster can be plotted for comparison to identify potential outliers and gain
information about what is happening in a specific area of the environment or point in time,
such as failure states and critical points.

• SAMDP analysis transforms the identified state clusters into an SAMDP to provide a
holistic overview of how the policy moves through the environment over an entire episode.
The analysis uses graph theory to identify paths between nodes along with the actions needed
to bring the policy from A to B. Paired with the cluster state analysis, users can identify the
paths and actions required for a policy to reach an identified failure state or mistake-prone
area.

4 Structure and Customizations

The following is a conceptual overview of the ARLIN library structure along with instructions for
adding additional custom components. A practical example usage of the library’s methods can be
found in Appendix A 1.1.

4.1 Conceptual Structure

Figure 1: Conceptual structure diagram of the ARLIN library.

4.2 Code Structure

A conceptual diagram of the library structure and relationships between components is shown in
Figure 1. At a high-level, ARLIN has 4 main components: dataset, generation, analysis,
and SAMDP. The dataset component is used to create an XRL dataset, a collection of datapoints
containing transition data and internal policy metadata collected at every episode step while running a
policy within an environment. generation uses the XRL dataset to create embeddings and clusters,
of which analysis provides meaningful analysis and visualizations. The cluster data and XRL

3



dataset can also be provided to SAMDP to generate and visualize different SAMDP graphs of the
agent’s policy along with available paths between given clusters.

dataset The dataset directory contains all code necessary for creating an XRL dataset from a
trained RL model. loaders handle the loading of a trained model while collectors are responsible
for collecting the internal data from the RL model. datapoints outline the specific data that the
dataset will be storing. The XRLDataset stores all traditional RL transition data (observation,
action, reward, done, step) along with the model-specific metadata (Datapoint) gathered
by the Collector. Custom loaders, collectors, and datapoints can be added to load custom
models and work with custom architectures and algorithms for the collection of user-defined metadata,
as outlined in section 4.3.

generation The generation.py file contains the code necessary for datapoint embedding and
cluster generation. Metadata from the XRL dataset chosen by the user is reduced to two dimensions
via t-SNE [14] to generate latent space embeddings. The datapoints within the XRL dataset are
clustered based on user-specified metadata using MeanShift [15] and K-Means [16]. Each cluster
represents an area of the policy’s latent space where the policy’s decision making is affected in similar
ways, such as clusters with similar input features or similar output action results.

analysis The analysis directory contains methods for running analysis on both the embeddings
as well as the clusters. This includes cluster state representation analysis which analyzes and visualizes
the states within the cluster for insight into what states fall into each cluster. The visualization sub-
directory contains methods for visualizing the generated analytics using matplotlib [6]. Example
latent analysis and cluster analysis visualizations can be found in Appendices A and B, respectively.

samdp The samdp.py file includes the SAMDP class and associated methods. The SAMDP class is a
semi-aggregated Markov decision process representation of the policy within its training environment.
The SAMDP methods visualize the connections between clusters as well as available paths and
actions required to travel to specific target clusters. Available SAMDP methods and visualizations
are attached in Appendix C.

4.3 Custom Component Creation

The modular architecture of ARLIN provides support for user customization with no changes to the
main library code. Requirements for creating custom components for common aspects of the library
are detailed below:

Loaders: The addition of new loaders does not require any inheritance and can be created as a
separate method specific to the model that is being loaded. A custom loader must return a trained
model with which a user can run inference within the training environment.

Datapoints: To create a new datapoint, the user must inherit from BaseDatapoint and add any
additional metadata that the XRLDataset will be storing for the user-specific use case. A datapoint
holds information gathered at a single episode step and can store model-specific internal metadata
gathered during the model’s decision making process.

Collectors: Custom collectors must inherit from BaseDataCollector and implement the required
methods. The collector is responsible for collecting the data needed to fill the datapoint, and therefore
is specific to the model architecture as the collector needs to understand where to find the necessary
metadata to store.

Latent and Cluster Analytics: To create new analysis visualizations, users can simply create a
custom method that produces the wanted metric and return a GraphData object for input into the
provided visualization methods.

5 Usage

ARLIN is designed to provide users with explainability outputs that can be analyzed to identify
potential vulnerabilities and critical points within a trained policy. An example workflow for using
ARLIN is shown in Figure 2.

4



Figure 2: Example workflow to generate vulnerability analysis visualizations using the ARLIN
Toolkit.

To illustrate ARLIN’s effectiveness, we provide explainability outputs and corresponding vulnerability
analysis for a publicly available DRL model - a model trained using Stable Baselines3 [17] with
PPO [18] on OpenAI gym’s Lunarlander-v2 environment [19], pulled from Huggingface.com - by
following the steps outlined in Figure 2. The output visualizations and analysis can be found in
Appendix A (latent analysis), Appendix B (cluster analysis), and Appendix C (SAMDP analysis).

6 Discussion and Future Work

We believe that ARLIN can accelerate research in the XRL field by providing a modular research
library with an easy-to-use API for generating explainability visualizations for vulnerability and
critical point identification and analysis. This work can be applied to practical use domains such as
RL-assisted autonomous vehicle verification and validation and the field of adversarial RL. We hope
that the library can expand to include additional analytics, metrics, and visualizations as well as add
support for new algorithms and frameworks out of the box through continued author maintenance
and community development.

Acknowledgments and Disclosure of Funding

The authors thank Walker Dimon and Guido Zarrella for helpful discussions throughout the develop-
ment process. This work was funded by the 2023 MITRE Independent Research and Development
Program’s Early Career Research Program.

5



References

[1] D. Silver, A. Huang, C. Maddison et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, p. 484–489, 2016. [Online]. Available:
https://doi.org/10.1038/nature16961

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing atari with deep reinforcement learning,” 2013.

[3] A. P. Pope, J. S. Ide, D. Micovic, H. Diaz, D. Rosenbluth, L. Ritholtz, J. C. Twedt, T. T. Walker,
K. Alcedo, and D. Javorsek, “Hierarchical reinforcement learning for air-to-air combat,” 2021.

[4] J. Degrave, F. Felici, J. Buchli et al., “Magnetic control of tokamak plasmas through
deep reinforcement learning,” Nature, vol. 602, p. 414–419, 2022. [Online]. Available:
https://doi.org/10.1038/s41586-021-04301-9

[5] B. Gaudet and R. Furfaro, “Terminal adaptive guidance for autonomous hypersonic strike
weapons via reinforcement learning,” 2021.

[6] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering,
vol. 9, no. 3, pp. 90–95, 2007.

[7] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and func-
tion using networkx,” in Proceedings of the 7th Python in Science Conference, G. Varoquaux,
T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. The MIT
Press, 2018. [Online]. Available: http://incompleteideas.net/book/the-book-2nd.html

[9] S. R. Islam, W. Eberle, S. K. Ghafoor, and M. Ahmed, “Explainable artificial intelligence
approaches: A survey,” 2021.

[10] S. Milani, N. Topin, M. Veloso, and F. Fang, “A survey of explainable reinforcement learning,”
2022.

[11] P. Sequeira and M. Gervasio, “Interestingness elements for explainable reinforcement learning:
Understanding agents’ capabilities and limitations,” Artificial Intelligence, vol. 288, p. 103367,
2020.

[12] Y. Lan, X. Xu, Q. Fang, Y. Zeng, X. Liu, and X. Zhang, “Transfer reinforcement learning via
meta-knowledge extraction using auto-pruned decision trees,” Knowledge-Based Systems, vol.
242, p. 108221, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950705122000624

[13] N. Baram, T. Zahavy, and S. Mannor, “Deep reinforcement learning discovers internal models,”
2016.

[14] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available:
http://jmlr.org/papers/v9/vandermaaten08a.html

[15] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[16] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” in Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’07.
Society for Industrial and Applied Mathematics, 2007, p. 1027–1035.

[17] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3:
Reliable reinforcement learning implementations,” Journal of Machine Learning Research,
vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.html

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” 2017.

[19] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão,
A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J.
Tai, A. T. J. Shen, and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

6

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/s41586-021-04301-9
http://incompleteideas.net/book/the-book-2nd.html
https://www.sciencedirect.com/science/article/pii/S0950705122000624
https://www.sciencedirect.com/science/article/pii/S0950705122000624
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v22/20-1364.html
https://zenodo.org/record/8127025


A Latent Analysis Examples

ARLIN’s latent analysis methods make use of the embeddings generated by ARLIN’s generation
component by overlaying user-defined policy metadata over the generated embeddings to visualize
how the metadata relates to location within the embedding space. This information can be helpful
when working examining the latent space of a policy. Future work can make use of the latent space to
identify similar datapoints or regions, or identify ways to traverse the latent space to reach specific
outcomes determined by the metadata, such as actions to take.

Figure 3: Example outputs from ARLIN’s Latent Analysis methods. Graphics show policy metadata
overlaid onto embeddings generated from ARLIN’s generation component. Overlaid policy metadata

overlaid onto embeddings from left to right: episode step that the datapoint was taken at, highest
probability from the datapoint’s action distribution, action taken at the given datapoint

B Cluster Analysis Examples

ARLIN’s cluster analysis methods make use of the clusters generated by ARLIN’s generation
component by computing the average values of different policy metadata for each identified cluster.
This information gives insight into vulnerable clusters and states within the environment that are
reached by the policy.

The confidence analysis gives insight into how confident the policy is in the action that it is taking at a
given point in time. Clusters with low confidence indicate areas of the environment where the policy
is not confident in the action that it is taking due to limited training, particularly difficult areas of the
environment, or areas where the policy action has no consequence. Clusters with high confidence are
areas where the policy is sure of the action it is taking, which can be representative of an easy or very
important cluster. A large variance typically represents a cluster where the policy is either very sure
or very unsure of its actions, likely resulting in a higher likelihood for mistakes.

The expected return analysis gives insight into both the stage of the episode the cluster is in (early
vs late) as well as insight into which states the policy thinks have a higher likelihood for mission
success. When looking at initial clusters, a cluster that has a lower expected return is seen as a harder
starting position for the policy. When looking at intermediate clusters, clusters with a higher expected
return represent "early" stage clusters while "late" stage clusters have a lower expected return.

The reward analysis gives insight into how good the actions taken within the cluster are, represented
by the amount of reward received. A higher average reward means the actions are considered better
overall. When analyzing terminal clusters, mission failures can be typically be identified by clusters
with a large negative reward.

7



Figure 4: Example outputs from ARLIN’s Cluster Analysis methods. Cluster analytics give average
metrics for each cluster generated by ARLIN’s generation component. From left to right: average

greedy action confidence per cluster, average expected return per cluster, average reward per cluster.

In Figure 4, we can make a few assumptions about the clusters within our policy. When analyzing
initial clusters, Cluster 21 has a low confidence and low expected return, indicating that the cluster is
seen as a non-optimal starting position. The policy does not expect to get as much reward overall
when starting in Cluster 21 than Cluster 20. When looking at intermediate cluster, Cluster 9 shows a
low received reward but high confidence, indicating that it is likely a corrective maneuver that the
policy feels is important to take. We can assume this is a late-stage maneuver as well given that
the expected return is near 0. For terminal clusters, Cluster 23 has a low expected return and a low
received reward, meaning this is likely an expected failure - the policy was expecting a low reward
and got a low reward. Cluster 24, however, has a high expected reward but a low received reward,
indicating an unexpected failure - the policy was expecting to get more than it received.

Figure 5: Cluster state analysis from ARLIN showing example images from different clusters. From
left to right: Cluster 9 (intermediate), Cluster 23 (terminal), Cluster 24 (terminal).

As seen in Figure 5, our assumptions were correct. Cluster 9 is a late-stage corrective maneuver
in which the agent is attempting to move further left to be inside the landing flags. Cluster 23 is
an expected failure where the policy lands hard into the ground and crashes, and Cluster 24 is an
unexpected failure in which the policy moves off screen, resulting in the end of the episode without a
successful landing or a crash.

C SAMDP Examples

ARLIN’s SAMDP component uses metadata from the XRLDataset along with the generated clusters
to generate a semi-aggregated Markov decision process of the policy to show how the policy moves
between clusters over the course of an episode. This information is useful in identifying paths between
clusters. For vulnerability analysis, this is useful in identifying which actions lead an agent to mission
failure, and which actions lead to mission success as well as identifying the critical points where the
agent can go either way depending on the actions taken. ARLIN provides a variety of methods in
the SAMDP package including holistic views of the entire SAMDP (Figure 6), paths between given
clusters, or paths leading into a terminal state (Figure 8). All SAMDP methods can provide a full
verbose view including the actions necessary for the movement (Figure 6), or a simplified view which
only shows the connections and not the actions required (Figure 7). Some methods provide the option
to only show the most probable connections as well, to avoid connections that are have been taken at
least once, but are not likely to be taken by the policy in general.

8



Figure 6: Fully verbose SAMDP showing connections between clusters and the action value that
creates the movement.

Figure 7: Simplified SAMDP view showing conenctions between clusters regardless of taken action.

Figure 8: SAMDP view to show movements into all terminal clusters and the actions that bring the
agent from a given cluster into the terminal clusters.

9


	Introduction
	Background and Preliminaries
	Reinforcement Learning
	Explainable Reinforcement Learning
	Related Works

	Key Features
	Structure and Customizations
	Conceptual Structure
	Code Structure
	Custom Component Creation

	Usage
	Discussion and Future Work
	Latent Analysis Examples
	Cluster Analysis Examples
	SAMDP Examples

