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Improving the Transparency of Robot Policies Using
Demonstrations and Reward Communication

MICHAEL S. LEE, REID SIMMONS, and HENNY ADMONI, Robotics Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA

Demonstrations are a powerful way to teach robot decision-making to humans. Although informative demon-
strations may be selected a priori using the machine teaching framework, student learning may deviate
from the pre-selected curriculum in situ. This article thus explores augmenting a curriculum of pre-selected
demonstrations with a closed-loop teaching framework inspired by principles from the education literature,
such as the zone of proximal development and the testing effect. We utilize tests accordingly to close the loop
and maintain a novel particle filter model of human beliefs throughout the learning process, allowing us to
provide demonstrations that are targeted at the human’s current understanding in real time. A user study finds
that our proposed closed-loop teaching framework reduces the regret (i.e., the suboptimality) of human test
responses by 43% over an open-loop baseline. We also compare our closed-loop teaching framework against
another baseline of directly communicating the robot’s reward function in a second user study. We find that
our closed-loop teaching outperforms direct reward communication by 64%, but we also observe synergies
from the use of both teaching forms. Finally, we observe strong interaction effects between the teaching form
and the domains considered in both user studies, seeing increased learning outcomes from well-designed
demonstration-based teaching in the more challenging domain.
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1 Introduction

Much progress has been made in obtaining complex and capable robot policies through Reinforce-
ment Learning (RL) (e.g., [2]). Ensuring the transparency (i.e., understandability and predictability
[15]) of these policies in all scenarios is key to calibrating the expectations of developers and end-
users toward proper usage; however, this remains a challenge [64].
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Fig. 1. (a) Previous works aim to improve robot policy transparency via a set of demonstrations selected a
priori, but student learning may deviate from the expected trajectory. (b) We propose a closed-loop teaching
framework using tests and feedback to detect and correct for such deviations in situ.

One effective way to increase policy transparency is through demonstrations of the policy, which
can be selected through a machine teaching [69] paradigm that selects the minimal set of examples
(e.g., demonstrations) that will help a student comprehend a concept (e.g., a policy) given their
learning model (e.g., Inverse Reinforcement Learning (IRL)). Although machine teaching can
help select a principled curriculum of demonstrations a priori, student learning can deviate from
the modeled learning trajectory in situ. In our previous work [35], machine teaching-selected
demonstrations improved human performance on post hoc tests assessing later-demonstrated
concepts but decreased performance on post hoc tests assessing early-demonstrated concepts,
suggesting perhaps that the curriculum moved too quickly past the early concepts without in situ
testing to provide additional instruction as necessary.

Thus, our key idea is to complement a curriculum of machine teaching-selected demonstrations with a
closed-loop teaching framework inspired by the education literature to provide tailored instruction in real
time (Figure 1). A guiding educational concept is teaching in the Zone of Proximal Development
(ZPD) or “Goldilocks zone” [21, 63], which suggests that the examples provided to the learner
should not be too easy nor too difficult, given their current understanding. However, the ZPD
often changes at different rates for different students according to their personal learning rate,
which must be periodically assessed by testing. We inform the testing cadence with the educational
concept of the testing effect [56], which predicts an increase in learning outcomes when a portion of
the teaching budget is devoted to testing the student (using testing not only as a tool for assessment
but also for teaching). And by incorporating tests and feedback in a closed teaching loop, we
maintain an up-to-date model of human beliefs and promote demonstrations that are provided at
the right level of difficulty in situ.

To illustrate the utility of our closed-loop teaching framework, consider a robot that increases
the transparency of its reward function and subsequent policy to a human using demonstrations,
tests, and feedback (Figure 2). The robot’s objective is to deliver a package to the destination,
whose reward function balances traveling through difficult terrain, such as mud, and reducing the
number of actions it takes. To convey its reward function, the robot first provides a human with the
demonstration in Figure 2(a). Because the robot takes a two-action detour to avoid the mud instead
of going through it, the human may infer that the robot associates mud with a negative reward.
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Fig. 2. Sample teaching sequence for a batch of knowledge components (KCs) on mud cost. (a) First demon-
stration (green) contrasts with a counterfactual alternative likely considered by a human (orange), which
conveys that mud is costly. (b) Second demonstration lower-bounds mud cost. (c) Human is asked to predict
the robot’s behavior in a test. (d) Incorrect response suggests that the demonstration was not understood.
(e) Human is given the correct response as feedback. (f) Remedial demonstration is provided to target the
misunderstanding. (g) Human is given a remedial test. (h) Correct answer suggests understanding.

The robot considers what to demonstrate next to convey more information regarding its reward
function. Importantly, it knows that the human is likely to consider mud as costly from the first
demonstration, but does not know how costly. For example, the human may counterfactually
believe that the robot would take a four-action detour when faced with two mud patches (Figure
2(b)). However, the robot knows that its ratio of reward for mud to action is —3 to —1 and that,
consequently, it would simply go through the mud in Figure 2(b) to maximize its reward. Seeing
how its direct path meaningfully differs from the human’s likely detouring counterfactual (i.e., an
alternative, potentially suboptimal behavior), the robot considers this to be an informative next
demonstration to provide that targets the human’s ZPD—providing a meaningful yet incremental
update to the human belief through an additional unit of information that upper-bounds the cost
of mud.

The robot then follows the two demonstrations with a diagnostic test that simultaneously
challenges the human to apply their learned knowledge and reveals whether the robot’s current
model of the human’s beliefs needs to be corrected (Figure 2(c)). If the human answers incorrectly
(Figure 2(d)), the robot may provide feedback, a remedial demonstration, then a sequence of
remedial tests and feedback until the human demonstrates concept mastery, inspired by the testing
effect (Figure 2(e)-(h)). Importantly, the robot continues to update its model of the human’s
beliefs according to test answers and throughout the remedial interactions to consider the right
counterfactuals when estimating the informativeness of future demonstrations. The above teaching
sequence demonstrates the importance of maintaining a calibrated model of the human’s beliefs
through closed-loop testing, which can help select demonstrations that are within the human’s
ZPD in situ.

And while this article focuses primarily on teaching robot decision-making through demon-
strations, teaching can take other forms, e.g., directly conveying weights of reward features [57],
saliency maps highlighting where the agent is attending to [19], and reward decomposition bars
that group future rewards into semantically meaningful categories [6]. Interestingly, Sanneman
and Shah [57] found that directly communicating weights of reward features performed the best
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objectively and subjectively in their two domains compared to HIGHLIGHTS (a teaching form that
communicates an agent’s reward function via demonstrations from states with maximal difference
between the Q-values for the best and worst actions [3]). We wondered whether direct reward
communication would also outperform our closed-loop teaching method in our domains, and
also whether there would be synergy in conveying both. We thus ran a second online user study
exploring whether direct reward communication could improve the transparency of robot policies
in the grid world domains considered in this article.

Our contributions are thus as follows. First, a closed-loop teaching framework that provides
demonstrations, tests, and feedback based on insights from the education literature. Second, a
particle filter-model of human beliefs that supports iterative updates and a calibrated prediction of
the counterfactuals likely considered by the human for each demonstration that could be provided.
Third, a user study that finds that our framework reduces the regret of human test responses
by 43% over a baseline. And fourth, a second user study that compares our closed-loop teaching
framework against directly communicating the robot’s reward function, finding that closed-loop
teaching outperforms direct reward communication alone by 64% but also observing synergies
from leveraging both teaching forms. We observe a strong interaction effect in both user studies,
seeing increased learning outcomes from well-designed demonstration-based teaching in more
challenging domains. This article builds on our prior work [34-36] and is derived from Chapter 6
of the first author’s PhD thesis [33]; we include shared content from the aforementioned sources.

2 Related Work
2.1 RLandIRL

RL is a framework for learning a policy (i.e., a behavior) that maximizes a given reward function.
Classical RL methods such as Q-Learning and SARSA have traditionally been limited to low-
dimensional state and action spaces [62]. Recent advances in deep learning have enabled deep RL
algorithms such as Deep Q Networks [44], Soft Actor-Critic [20], and Proximal Policy Optimization
[58] to scale to high-dimensional domains, including Atari games [44], Go [61], and robot control
for manipulation and locomotion [2, 54]. Despite these advancements, a key challenge remains: the
resulting policies are often opaque and difficult for humans to understand.

IRL, on the contrary, focuses on inferring the reward function that underlies a policy from
observed demonstrations. This framework was introduced by Ng and Russell [45], who provided
an approach for extracting constraints on the reward function from demonstrations. Subsequent
advancements, such Bayesian IRL [55], maximum entropy IRL [70], deep maximum entropy IRL
[65], and adversarial IRL [17], improved robustness and scalability. In this work, we build on
previous efforts that use IRL to model human learning from demonstrations [25, 32, 34, 35], to help
humans better understand the underlying reward functions of agents and robots (these two terms
are interchangeable for the purposes of this work), and their subsequent policies.

2.2 Explainable RL

The field of explainable RL focuses on helping humans understand the decision-making of RL agents.
Recent surveys [43, 51, 64] highlight a variety of approaches, such as approximating a black-box
RL policy via an interpretable model (e.g., a decision tree [60]), using saliency maps to highlight
features of a state used for decision-making [19], visualizing minimally different counterfactual
states that would have yielded a different action [46], and identification of critical training points
(e.g., for estimating Q-values [18]). The most recent survey by Milani et al. [43] divides the work in
this field into three categories of methods: feature importance methods that highlight the features
that influenced the agent’s decision-making, learning process and Markov Decision Process (MDP)
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methods that highlight relevant past experiences or MDP components that lead to the agent’s
current action, and policy-level methods that convey the agent’s general long-term behavior.

Explainable RL methods can also differ in the modality used to communicate information, e.g.
demonstrations (see works in Section 2.3), natural language [13, 14], direct numerical values (e.g.,
of reward weights [57], decomposition of action Q-values into semantically meaningful reward
types [27]). In this article, we contribute a policy-level method that conveys an understanding of an
agent’s overall behavior to a human through representative demonstrations.

2.3 Policy Summarization

Policy summarization aims to provide a global understanding of a policy to a human through
example state-action pairs [4], which can aid in transparency. One approach relies on heuristics
such as communicating states with a large difference between the best and the worst (or average)
Q-values [3, 24], or communicating an agent’s second-best trajectory as a counterfactual [5]. We
instead build on the second approach based on machine teaching [69], which we highlight below.

Our previous works model human learning from robot demonstrations as resembling IRL and
leverage human teaching techniques such as scaffolding [34] and principles from cognitive science
such as counterfactual reasoning [35] to provide demonstrations that incrementally provide in-
formation on the robot’s underlying reward function. However, these methods model the human
learner as using exact IRL [45], which is unable to gracefully handle conflicting information (e.g.,
knowledge assumed to be learned but failed to be demonstrated during testing). Furthermore, they
utilize tests for assessment only after having provided demonstrations. We build on this line of
work by proposing a Bayesian model of human beliefs in the form of a particle filter and also
utilizing intermittent testing to simultaneously maintain an up-to-date model of human beliefs and
provide targeted instruction.

Huang et al. [25] also use Bayesian IRL [55] to model human learning from robot demonstrations,
but only update the relative probabilities of a static set of reward beliefs with each additional
demonstration. We instead allow for resampling [40] of the beliefs within our particle filter to
more efficiently approximate the posterior distribution of human beliefs. Furthermore, Huang
et al. note an equivalence of Bayesian IRL and maximum entropy IRL under select noise models
and explore a variety of exponential likelihood functions for updating a model of human beliefs
given an observed robot demonstration, e.g. based on the reward, trajectory, or strategy difference
between the observed and expected behavior. While our proposed likelihood function is also
based on the difference between the reward of the robot’s observed and expected behavior, our
formalism more flexibly allows each observed robot demonstration to provide multiple updates to
the model of human beliefs based on the number of counterfactual trajectories that the human may
consider.

Finally, a line of work by Qian and Unhelkar also explores interactive policy summarization.
In [53], they allow humans to request specific demonstrations from an agent and find that a
hybrid strategy of agent-selected and human-selected demonstrations yields the best objective and
subjective results. Our proposed approach for modeling human beliefs and subsequently selecting
informative demonstrations could provide the agent-selected demonstrations in their framework.
In close proximity to our work, they also propose personalized policy summarization [52], a method
that also utilizes intermittent testing to maintain a model of human beliefs and provide tailored
demonstrations. But while personalized policy summarization provides tests in predetermined
batch sizes only for assessment, we are inspired by the testing effect to also utilize tests for teaching.
When a misunderstanding is identified by a test, we continue to provide tests with corresponding
feedback on each received answer in a tight loop until the observed misunderstanding is remedied.
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3 Technical Background

This section provides the background for selecting informative demonstrations for a (human)
learner using IRL-like reasoning to infer a reward function underlying demonstrations. We first
introduce the MDP, a common framework for formalizing RL problems and the policies derived
from them.

MDP. The robot models its world as an instance (indexed by i) of an MDP, MDP;, composed of
sets of states S; and actions A, a transition function T;, a reward function R, a discount factor y, and
the initial state distribution S?. We refer to a group of related MDP instances as a domain (described
below) and § : |J; S; is the union over all their states. An optimal trajectory & is a sequence of
(si, a, s7) tuples that follow the optimal policy of the robot 7. In line with prior work [1], reward R
is represented as a weighted linear combination of reward features ¢: R = w* "¢ (s, a,s’). Finally,
we assume that the human is aware of the full MDP apart from weights w™.

A domain is a group of MDPs that share R, A, and y but differ in T;, S;, and S?. For example,
all MDPs in the delivery domain share the same R, even though they may contain different mud
patches (Figure 2(a) and (b)). Thus through IRL, all demonstrations within a domain will support
inference over a common w"*. We simplify the notation such that z* refers to any optimal policy
within a domain, and &* refers to a demonstration (dropping the corresponding MDP).

Machine Teaching for Policies. Our objective in selecting an informative curriculum of demon-
strations to convey 7™ is captured by the machine teaching framework for policies [32]. We aim to
select a set of demonstrations that helps a human, who is assumed to use IRL-like reasoning [26],
approximate w*, and then perhaps use planning [59] to recover z*. Thus, the objective reduces
to selecting demonstrations that are informative in conveying w*, which can be measured using
Behavior Equivalence Classes (BECs).

BEC. The BEC of a demonstration is the set of reward functions under which the demonstration
is still optimal.

For a reward function that is a weighted linear combination of features, the BEC of a demonstra-
tion & of 7™ is defined as the half-space [35] formed by the exact IRL equation [45]

BEC(&|7*, mw) :=w*" (5. — 415 ) > 0,5 = &(0), 1)

where 5, = E [Z;io Y (st) | m,s0 = s] is the vector of reward feature counts accrued from starting
in s and following r after (7 is the optimal policy under reward weight w) and £*(0) is the first
state of £*. Any demonstration can be converted into a constraint on w* using Equation (1) and a
candidate belief w. Importantly, each constraint can be considered a Knowledge Component (KC)
[30] that captures a characteristic of the reward function (e.g., a tradeoff between the underlying
reward feature weights).

Consider again the delivery domain, which has binary reward features ¢ = [traversed mud,
battery recharged, action taken], w* o [-3,3.5,—1].! We assume that the human begins with a
prior that the weight of the “action taken” feature is negative (e.g., a bias toward the shortest
path, Figure 3(a)). The demonstration in Figure 3(b) yields the constraint (or KC) in Figure 3(c),
which indicates that w; < 2w (i.e,, mud is at least twice as costly as an action), since two actions
were taken to detour around the mud rather than counterfactually going through it (the optimal
trajectory for a candidate belief that considers mud to be slightly negative, neutral, or slightly
positive).

n practice, we require ||w*||, = 1 to bypass both the scale invariance of IRL and the degenerate all-zero reward function
without loss of generality.
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Fig. 3. Example sequence on how a demonstration updates a particle filter model of human beliefs. The robot
reward function is shown as a red dot, and the constraint consistent with the demonstration is shown in
all plots for reference. (a) Particles before demonstration (prior). (b) Demonstration shown to the human,
alongside a counterfactual that considers mud to be slightly negative, slightly positive, or neutral. (c) The
constraint (Equation (1)) consistent with the demonstration that conveys that mud must be at least twice as
costly as an action, visualized with the uniform distribution portion of the custom distribution (Figure 4)
used to update particle weights. (d) Particles after demonstration (posterior).

4 Methods

The example of the delivery robot in Section 1 highlights the importance of maintaining an up-to-
date model of human beliefs and likely counterfactuals when selecting a demonstration. In this
section, we propose a particle filter-based model of human beliefs amenable to iterative Bayesian
updates and sampling for counterfactual reasoning, where each particle represents a potential
human belief regarding the robot’s reward function. We then leverage this model in a closed-loop
teaching framework that uses insights from the education literature to select demonstrations that
target gaps in human understanding identified through testing.

4.1 Particle Filter Human Model

A particle filter is a sequential Monte Carlo method that can flexibly model the progression of
arbitrary posterior distributions (e.g., non-Gaussian, multimodal) given new observations and a
likelihood function [12]. Given its feasibility for the domains considered in this article and its
prior use in modeling various human states and behaviors, such as body tracking [7, 10], sentence
comprehension [38], and bandit-like gameplay [66], we model the human’s beliefs over a robot’s
reward function as a set of particles, defined by their positions and associated weights {x;, ¥ }.
Each particle represents a possible reward function that the human could believe the robot to have,
and the associated particle weight captures the strength of that belief.

4.1.1  Updating Particle Positions and Weights. Without loss of generality, assume that a demon-
stration or test response is provided at each timestep ¢. Each demonstration generates multiple
constraints by comparing the demonstration against possible counterfactual trajectories, and each
incorrectly answered test will generate a single constraint by comparing the true test answer against
the incorrect answer, both through Equation (1). Each constraint generated via a demonstration or
a test response is a half-space constraint, with one side being consistent with the demonstration or
test response and the other side being inconsistent.

Each constraint y; can then be translated into a probability distribution p(x¢|y;) that can be used
to update the weights of each particle (Figure 3). We propose a custom probability distribution
p(x¢|y,) that translates each constraint into a combination of a uniform distribution that aligns with
the consistent half-space of the constraint and the von Mises—Fisher distribution (a generalization
of the Gaussian distribution on a sphere [11]) whose mean direction aligns with the inconsistent
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Consistent side
of constraint

von
Mises-Fisher Uniform
distribution distribution

Fig. 4. A cross-section of the spherical pdf used to update particle weights given a constraint generated from
a demonstration (Equation (1)).

w;: Action

Fig. 5. Human counterfactuals are generated by sampling beliefs from the particle filter model. As nearby
particles are likely to generate similar counterfactuals, we rely on the 2-approximation algorithm for the
k-center problem to sample k beliefs (marked by red crosses) that are spread out.

half-space (Figure 4). The uniform distribution asserts that any particle lying on the consistent
half-space is equally valid for that demonstration, whereas the von Mises-Fisher distribution asserts
that a particle is exponentially less likely to have generated that demonstration as you move away
from the consistent side of the constraint. Please find the Probability Density Function (pdf)
of the custom distribution in Appendix A.1 and the routine for updating the particle filter given
new demonstrations or tests in Algorithm 1. And to maintain the conciseness of the main script,
please find practical tips on how to resample the particle filter to combat sample degeneracy and
impoverishment (line 13 of Algorithm 1), as well as how to reset the particle filter if it receives
heavily conflicting information (line 8 of Algorithm 1) in Appendix A.2.

4.1.2  Sampling Human Beliefs. Given a running particle filter model, we may sample human
beliefs in order to do counterfactual reasoning over how the human may interpret each demon-
stration that could be shown. We first run systematic resampling [39] on a copy of the particles
to downselect to a candidate set, favoring those that are higher weighted. We then rely on the
2-approximation algorithm [23] to greedily select k distributed samples such that the maximum
distance from any particle in the candidate set to one of the k samples is minimized (Figure 5). The
algorithm iteratively picks the particle with the largest distance to the already selected samples as
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Algorithm 1: Particle Filter for Modeling Human Beliefs

1: Initialize particles xéi) ~ p(xp) fori=1,...,N
2: fort=1,...,T do

3: // Update filter given new demonstration or test at ¢
4: fori=1,...,Ndo

5: Compute weight w (l) X (')1 - p(x¢ (@) ly:)

6: end for

7 if ZNI Wt'l) < wthreshold then

8: Perform a particle filter reset

9: end if
10: Normalize weights w(” wﬁ "

2 g - Z ﬁ\]1 Wt( ])
: 1
11 Compute effective sample size neg = m
12: if neff < Nihreshold then
13: Resample xt( D with probabilities wlf ) using
KLD resampling

14: end if
15: end for

the next sample; this heuristic ensures that the maximum distance from any particle to any of the
selected samples is never worse than twice the optimal solution. As nearby particles are likely to
generate similar counterfactuals, we sample beliefs that are approximately spread out.

For our experiments, we set k to 25. To support real-time counterfactual reasoning, we also
sampled 2500 beliefs from the surface of the 2-sphere (the space of possible human beliefs regarding
the robot’s reward function in our domains) for which we pre-computed the optimal policies. Each
particle in the particle filter was then mapped to the closest precomputed belief during experiments
toward efficient selection of additional demonstrations and tests.

4.2 Closed-Loop Teaching

With a particle-filter model of human beliefs that is amenable to iterative updates, we now formulate
a closed-loop teaching framework for conveying a robot’s reward function to a human using
demonstrations and tests. As we walk through the framework conceptualized in Figure 6, we
highlight the principles from the education literature that guide the design. A sample rollout of a
teaching sequence is shown in Figure 2, which serves as a visual correspondence to the algorithmic
characterization of the framework provided in Algorithm 2.

We first leverage feature and counterfactual scaffolding from our prior work [35] to select KCs
(see Equation (1)) that incrementally increase in information across an increasing subset of features
(e.g., mud vs. action cost, recharging vs action cost, then tradeoffs between all three). This set of
KCs guides the machine teaching selection of the curriculum of demonstrations that can be used to
teach the robot reward function to a human.

We begin the teaching loop by taking a single batch of related KCs that define a lesson (e.g.,
bounds on mud cost) and providing it to the demonstrator (Figure 6) to select demonstrations
from the curriculum that convey these KCs. Specifically, we utilize counterfactual reasoning [35] to
select demonstrations that are informative with respect to the counterfactuals likely considered
by the human. We simultaneously leverage the educational principles of the ZPD [63] to provide
a sequence of demonstrations that provide information incrementally, i.e., demonstrations that
convey one new constraint at a time (such as first providing a lower-bound on the mud cost, then
later an upper-bound). And when given a choice between two equally informative demonstrations
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Fig. 6. Proposed closed-loop teaching framework. Knowledge components (KCs) are passed to the robot
teacher as a lesson. The demonstrator generates demonstrations that convey the KCs, the tester provides
test(s), and the evaluator analyzes the test response(s), provides feedback on its correctness, and updates
the model of human knowledge. If the human fails to learn a KC through two rounds of demonstrations and
tests, the switch (labeled “S”) flips such that only tests and feedback are provided until an understanding of
the remaining KCs is demonstrated through correct responses.

Algorithm 2: Closed-Loop Teaching Framework
1: Group related knowledge components (KC) into batches using counterfactual scaffolding
2: for each batch of KCs (i.e. lesson) do
3 Provide initial demonstrations and diagnostic tests
4 Evaluate diagnostic test responses
5 if diagnostic test responses are incorrect then
6: Provide corrective feedback, remedial demo, and a remedial test
7
8
9

Evaluate remedial test response
while remedial test response is incorrect do
Provide corrective feedback and provide new remedial test

10: Evaluate remedial test response
11: end while

12: end if

13: end for

that could be shown next to convey the desired KC, we optimize for visual similarity and visual
simplicity as suggested by our previous work [34], selecting the one that looks most similar to the
previously shown demonstration (e.g., location of mud patches) and has the fewest visual clutter
(e.g., number of mud patches).

After the demonstrations have been provided, the tester selects diagnostic tests that will verify
whether the human has learned the KCs in the lesson. These diagnostic tests optimize for visual
dissimilarity to the teaching demonstrations and visual complexity (i.e., increasing distracting
visual clutter) [35] to challenge the learner.

For each diagnostic test answered incorrectly, the evaluator will provide immediate feedback
to the learner, highlighting how their answer differs from the correct one. This approach is inspired
by research indicating that immediate feedback on errors improves learning outcomes [29]. In
addition, a remedial demonstration that visually simplifies [34] the missed KC will be provided to
reinforce the concept being taught, along with a remedial test featuring greater visual complexity to
challenge the learner in demonstrating the missed KC. The selection of the remedial demonstration
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or test is achieved through greedy sequential optimization, focusing on minimizing the distance
between the constraint of the missed KC and a constraint conveyed by a candidate demonstration
or test: we first minimize the number of mismatched feature counts between the two constraints,
then minimize the Manhattan distance between the constraints. It is important to note that the
missed KC is determined by comparing the human’s test answer with the optimal test answer;
while it may not correspond directly to one of the KCs originally included in the lesson, it best
addresses the learner’s current misunderstanding.

If the human also gets the remedial test wrong, the switch in Figure 6 (labeled “S”) flips, and
the tester and evaluator will continue to provide only visually dissimilar and complex remedial
tests with corresponding feedback (but no additional demonstrations) until the human shows
understanding of each iteration’s missed KC. This is motivated by the testing effect [56], which
supports the use of tests not only for assessment but also for teaching and increasing learning
outcomes. Note that for each demonstration provided or test response received throughout this
learning process, we update the particle filter model of the human’s beliefs. And we utilize the
particle filter model to consider the counterfactuals the human is likely to consider for each potential
remedial demonstration or remedial test in order to select the one that will best convey or test the
missed KC for the human. Once all of the missed KCs for this lesson have been demonstrated via
correct remedial test responses, a fresh batch of KCs (i.e., a new lesson) is pulled from the KC bank
and the switch flips upward to provide demonstrations again.

Alternatively, if all diagnostic tests in this lesson had been correctly answered initially, a fresh
batch of KCs would have been pulled from the KC bank to begin the next lesson directly without
remedial instruction.

When all lessons have been taught, the human’s subsequent knowledge can be evaluated on a
held-out set of tests in which they predict the robot’s policy in previously unseen environments.

5 User Study on Open-Loop vs. Closed-Loop Teaching

We conducted an online user study? exploring whether our proposed closed-loop teaching method
improves the transparency of a robot’s policy to a human. The study involved participants learning
about the robot policy in two domains through a combination of demonstrations, tests, and feedback
and predicting the robot’s behavior in new test environments.

5.1 Study Design

We followed a mixed study design. The between-subjects variable was feedback loop with the
following three conditions. Open feedback loop followed our prior work [35] in utilizing coun-
terfactual reasoning to select a set of informative demonstrations a priori that monotonically
decreased in cumulative BEC area (i.e., a model of human beliefs), one KC at a time. Partial feedback
loop additionally provided a diagnostic test after each lesson and provided feedback as necessary,
while the full feedback loop additionally provided a remedial demonstration and remedial tests
until the KC in question was correctly applied in a remedial test. For a fair comparison, each
condition showed the same median number of demonstrations and tests (11 for delivery and 22 for
skateboard).

The within-subject variable was domain, which consisted of the following two conditions. In the
delivery domain, the robot is penalized for moving out of mud and rewarded for recharging. In
the skateboard domain, the robot is rewarded each time it moves with the skateboard (e.g., riding
is efficient) or traverses through a designated path (Figure 7). Thus, each domain consists of two

2Code for the methods, domains, and relevant hyper-parameters used in this study can be found at https://github.com/
SUCCESS-MURI/closed_loop_teaching_study.
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Fig. 7. Two domains designed for user study, (a) delivery, (b) skateboard. The semantics of the objects were
hidden using arbitrary shapes and colors.

unique reward features and one shared feature that penalizes each action. The skateboard domain
was designed to be more challenging than the delivery domain, as the value of the skateboard
depends both on the distance to the skateboard and subsequent distance to the goal. Considering
the possibility of interaction effects between the between-subjects variable of feedback loop and
domains of varying difficulties, we subsequently also provide hypotheses that relate to domain
difficulty at the end of this section. The order of the domains shown to the user was counterbalanced
in the study.

The user study consisted of two trials, with each trial comprising a teaching portion and a
testing portion in one domain. During teaching, participants were first explicitly informed of the
reward features of the domain. Then, they inferred the corresponding reward weights by watching
demonstrations and perhaps undergoing diagnostic tests, corrective feedback, and additional
remedial instruction depending on their assigned feedback loop condition. For every interaction,
participants indicated whether it improved their understanding of the robot’s policy via a Likert
scale. At the end of the teaching session, participants were asked to rate their level of focused
attention, the perceived usability of their assigned teaching condition, and their understanding of
the robot’s policy via Likert scales. During testing, participants were tasked with predicting the
robot’s optimal trajectory in six unseen test environments in random order, which were selected
according to prior work [35] to comprise two low, medium, and high difficulty environments each.

We tested the following hypotheses (H1-H4) using the measures (M1-M4) below. The Likert
scales corresponding to M2 and M4 were provided after the teaching portion but before the testing
portion, and Likert scales corresponding to M3 were provided after each demonstration and test in
the teaching portion.

HT1: (a) The test responses will be best for full feedback loop, then partial, then open. (b) Delivery
will result in better test responses over skateboard.

Hz2: (a) Focused attention and perceived usability will be highest for full feedback loop, then
partial, then open. (b) Delivery will result in higher focused attention and perceived usability over
skateboard.

H3: (a) Improvement ratings will be highest for full feedback loop, then partial, then open. (b)
Delivery will result in higher improvement ratings over skateboard.

H4: (a) Understanding ratings will be highest for full feedback loop, then partial, then open. (b)
Delivery will result in higher understanding ratings over skateboard.
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M1. Test Response: The reward of the human’s test response, measuring the human’s ability to
predict the robot’s policy.

M2. Focused Attention and Perceived Usability: We adapted the User Engagement Scale short form
[48] to ask six questions targeting focused attention and perceived usability, each answered with a
5-point Likert scale. Please find the corresponding questions in Appendix A.3.

M3. Improvement: “Did this interaction improve your understanding of the game strategy [i.e.
robot policy]?”, answered with a 5-point Likert scale.

M4. Understanding: “Do you feel that you now understand the game strategy?”, answered with a
5-point Likert scale.

5.2 Results

We collected data from 206 participants using Prolific [49]. The participants were approximately
70% male, 28% female, 1% non-binary, and 1% preferred not to disclose, and the ages ranged from 18
to 67 (M =32.49, SD = 11.15). The recruitment process and study were approved by the Carnegie
Mellon University Institutional Review Board. In the full feedback loop condition, we removed
data from one participant who did not miss any diagnostic tests during teaching (thus did not
see any remedial instruction in either domain) and an outlier participant whose total number of
interactions exceeded 3 standard deviations of the mean number of interactions in this condition
(since repeated failures of similar remedial tests suggested lack of attention). This left 68 participants
in each between-subjects condition.

We present the results below with the caveat that two bugs in the user study code were discovered
post hoc. First, only the positions of the particles, and not their weights, were considered when
sampling human beliefs from the particle filter (Section 4.1.2). Second, remedial demonstrations and
remedial tests that did not minimize the distance to a missed KC were sporadically selected (Section
4.2). Correcting both bugs post hoc reveals that while approximately 2.59% of the interactions in
the full feedback loop condition could have been different, the vast majority of interactions in this
condition would have remained unchanged. Furthermore, since these bugs sporadically produced
off-target remedial instruction, we hypothesize that these results represent a lower bound on the
efficacy of the full feedback loop condition.

H1: We considered analyzing test responses in two ways: binary scores measuring the optimality
of human test responses, and regret measuring the degree of suboptimality of human test responses
(i.e., the difference between rewards of human and optimal test responses). The former analysis
was coarse and did not yield any significant results, so we opted for the latter, which provides a
finer resolution. We also considered normalizing the regret by the optimal test response reward but
decided against it to prevent identical mistakes from being penalized differently based on different
trajectory lengths and optimal rewards (please find further elaboration in Section 5.3). A two-way
mixed ANOVA indicated a significant effect of feedback loop on regret (F(2,201) = 3.65, p = 0.028).
Tukey analyses revealed that full (M = 0.24) had 43% lower regret over open (M = 0.42, p = 0.027),
with partial sitting in between with no significant difference to either (M = 0.29, Figure 8(a)).
The ANOVA also indicated a significant effect of domain on regret (F(1,201) = 50.75,p < .001),
where a t-test revealed a significant difference between the regret between delivery (M = 0.18) and
skateboard (M = 0.45), t(406) = —5.792, p < 0.001.

The ANOVA also indicated an interaction effect (F(2,201) = 3.45, p = 0.03) between feedback
loop and domain. In the skateboard domain, Tukey analyses revealed that full (M = 0.33) had
significantly lower regret over open (M = 0.62, p = 0.014),

3 Although one participant had only 11/12 test responses recorded, we note that this does not significantly impact the
reported results as responses were averaged for each participant and 2,447 total test responses were recorded.
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Fig. 8. (a) Full closed-loop teaching yields lower regret for human tests responses than open across domains
(lower is better). (b) Partial yields lower ratings on perceived usability (higher is better) than open in the
skateboard domain. Error bars indicate 95% confidence intervals.

H1a is partially supported. Although the regret for partial sat in between full and open as expected
(being an intermediary between those two levels), it was not significantly different from either.
However, full did indeed significantly outperform open. The interaction effect reveals that the
difference between full and open on regret is driven by results in the skateboard domain. H1b is
supported. Delivery resulted in a significantly lower regret over skateboard, as expected.

H2: We ran a Cronbach’s alpha to verify the reliability of the corresponding Likert scales for
measuring focused attention and perceived usability. For focused attention, we observed that the
value rose from a = 0.58 to = 0.65 without the second item (which asked for a response to the
question “The time I spent learning the game strategy passed by quickly.” on a 5-point scale), and
we remove this item from the analysis accordingly. For perceived usability, we keep all items for
the analysis below as removing any of them did not increase the & = 0.86 that was obtained using
all items.

A two-way mixed ANOVA did not find a significant effect of feedback loop (F(2,201) = 1.56,p =
0.21), nor domain (F(1,201) = 0.38, p = 0.54) on focused attention, nor an interaction effect between
feedback loop and domain on focused attention (F(2,201) = 1.90,p = 0.15). A two-way mixed
ANOVA found a significant effect of domain on perceived usability (F(1,201) = 85.77, p < 0.001).
A t-test revealed a significant difference in the perceived usability ratings of delivery (M = 3.57)
and skateboard (M = 2.89), t(406) = 6.562,p < 0.001. Finally, a two-way mixed ANOVA also
found an interaction effect between feedback loop and domain on perceived usability (F(2, 201) =
6.17, p = 0.003), where Tukey revealed a significant difference between partial (M = 2.64) and open
(M = 3.21) for skateboard (p = 0.006, Figure 8(b)). A main effect of feedback loop on perceived
usability was not found (F(2, 201) = 2.06,p = 0.13).
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Table 1. Correctness of the Signs of Reward Weight Estimates
from Participants

Delivery Domain  Skateboard Domain

Correct Incorrect Correct Incorrect

Open loop 52% 48% 55% 45%
Partial closed loop 54% 46% 52% 48%
Full closed loop 59% 41% 54% 46%

H2a is not supported. Although no main effects were found for feedback loop on focused attention
or perceived usability, the interaction effects with the skateboard domain reveal that partial feedback
loop is less usable than open loop. H2b is partially supported. The trend of the domain differences
continues with delivery yielding significantly higher ratings of perceived usability over skateboard,
although no difference was found between the domains for focused attention.

H3: As participants gave an improvement rating for each interaction (e.g., demonstration, feed-
back), a mean is more descriptive than a median for each participant and for each domain and
we use parametric analyses accordingly. A two-way mixed ANOVA indicated a significant effect
of domain on improvement (F(1,201) = 32.17,p < 0.001). A t-test revealed that the teaching
in delivery (M = 3.38) was rated to yield higher improvement than in skateboard (M = 3.12),
£(406) = 3.001,p = 0.003). The ANOVA did not indicate a significant effect of feedback loop
(F(2,201) = 1.54, p = 0.22) nor a significant interaction effect (F(2,201) = 1.23, p = 0.29) between
feedback loop and domain.

H3a is not supported. Feedback loop did not impact ratings of improvement. H3b is supported.
The ratings suggest that participants learned more overall about the delivery domain than the
skateboard domain.

H4: The Kruskal-Wallis H test did not reveal a statistically significant effect of feedback loop on
ratings of understanding (p = 0.41). However, the Wilcoxon signed-rank test showed a statistically
significant difference in ratings of understanding between delivery and skateboard domains (Z =
—6.474,p < 0.001). Although the median ratings on understanding of both domains were 4, the
mean for delivery was 3.90 and the mean for skateboard was 3.34.

H4a is not supported. Feedback loop did not impact ratings of understanding. H4b is supported.
The ratings support a difference in the difficulty of the two domains.

Finally, as an exploratory measure, we asked participants at the end of each domain in the user
study (having gone through the respective teaching and testing portions) to provide their best
estimate as to the weights of the domain’s reward features. We evaluated whether the signs of each
of the estimated weights were correct as a coarse, first-pass analysis, which can be found in Table 1
as percentages. We note that estimated weights for up to 2 individuals (out of 68) were not recorded
for each condition due to technical difficulties.

5.3 Discussion

The primary hypothesis of the user study, Hla, was partially supported with full closed-loop
teaching leading to a significantly lower regret in human test responses over open loop teaching.
As partial closed-loop was explicitly designed to incorporate only a subset of full’s framework (i.e.,
diagnostic tests and feedback, but not additional remedial demonstrations or tests), it predictably led
to regret that sat in between full and open without significant difference to either. Importantly, the
three aforementioned conditions each provided the same median number of interactions (where each
demonstration or test counts as one interaction), highlighting that the content and the interaction
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type matter in instruction. Full closed-loop teaching was designed to detect misunderstandings in
human’s beliefs using diagnostic tests, then address the misunderstanding with tailored remedial
demonstrations and tests until the human exhibits understanding through a correct test response.
Open loop teaching does not provide real-time tailoring of instruction, and partial only provides a
diagnosis of potential misunderstanding and shallow remediation through quick feedback.

Not too surprisingly, the results indicated a clear difference between the two domains across all
measures except focused attention (as the domains were designed to vary in difficulty). Interestingly,
there were interaction effects driven by domain. The results show that the significant improvement
in objective learning outcomes from full closed-loop teaching over open comes primarily from the
skateboard domain, suggesting perhaps that the benefit of the proposed fully closed-loop teaching
scheme is greater for more challenging domains.

Despite the improvement in objective learning outcomes, full is not simultaneously able to
significantly improve usability over open. Similar to the observation made in our prior work [35],
we again see hints of the dual nature of effective learning that requires mental effort to continuously
update one’s knowledge (note that the perceived usability questions in this study address a similar
construct to mental effort). Indeed, one person in the full condition provided the following response
to the open-ended question at the conclusion of the study, “Do you have any general comments
or feedback on the study? Is there anything you wish [the robot] would’ve done to help you
understand the game strategies better?”

“I found it a little confusing. Each time I thought I understood the best strategy I was proved
wrong. Nothing more [the robot] could have done except give more examples. More examples
and more practice might have helped.”

Full closed-loop teaching employs the counterfactual scaffolding technique of [35] to explicitly
select demonstrations for the initial curriculum that the human does not expect to provide maximum
information. Although we detect when the human has failed to successfully incorporate knowledge
from counterfactual scaffolding demonstrations and remedy with remedial demonstrations and
tests, these initial demonstrations can understandably be challenging to grasp. A closed-loop
teaching scheme is thus critical for keeping the human learner in the ZPD with intermittent testing,
feedback, and targeted instruction.

Interestingly, we also saw another interaction effect where partial loop teaching is rated sig-
nificantly less usable than open in the skateboard domain. Several people in partial noted that
they wanted more demonstrations to clear up confusion, e.g., saying “the strategy on the first
game somewhat confused me. Maybe if there were more demonstrations it would be easier to
understand its strategy.” We hypothesize that it can be frustrating to have diagnostic tests highlight
gaps in understanding without providing further instruction (as in the case of full) or not highlight
potential gaps in understanding at all and provide additional instruction instead (as in the case of
open).

We also considered analyzing H1 using normalized regret as previously mentioned in Section
5.2. In debating whether to analyze participant test responses using regret or normalized regret, we
observed a key tradeoff between the two metrics that is highlighted in Figure 9. While normalizing
regret by the reward of the optimal trajectory allows for a fairer comparison between tests of
different domains (each with its own unique reward function), it also necessarily scales the reward
of each individual error according to the reward of the entire trajectory. For example, while one may
argue that the suboptimal test responses that go through mud in Figure 9(a) and (b) are qualitatively
the same and should be penalized identically (indeed the regret for both trajectories is 0.64), the
normalized regrets are different. The normalized regret for Figure 9(a) is 0.60, while the normalized
regret for Figure 9(b) is only 0.43, as mistakenly going through mud comprises a smaller portion
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Fig. 9. Two scenarios exemplifying the difference between regret and normalized regret, where optimal and
suboptimal trajectories are shown in green and red, respectively. The regret in both scenarios is 0.64, but
normalized regret is 0.60 in (a) and 0.43 in (b).

of the longer overall trajectory in Figure 9(b). We note that there are merits to each measure and
advise selecting one over the other depending on context. For example, a 10-minute detour in a
5-hour trip to a conference is arguably negligible, but the same detour for a daily commute from
the hotel to the conference that should only take 10 minutes is arguably worse and better captured
by normalized regret (as regret would be the same). In this article, we are instead interested in
measuring how much someone has learned and thus each mistake should arguably be penalized the
same, regardless of whether it is made once in a shorter trajectory or once in a longer trajectory.
We thus opt for regret as our measure. Interestingly, none of the significant findings change for
H1 when moving from one form of regret to the other—no new results are added nor taken away.
This may be because the sizes of our domains were similar (the delivery and skateboard domains
consisted of 10 and 24 grid squares, respectively) and resulted in reward feature counts of the same
magnitude. Furthermore, the reward feature weights were l,-normalized such that each weight lay
between 0 and 1. For domains of vastly different reward feature counts and reward weights may
subsequently lead to vastly different regret and we suggest normalization for fairer comparison
across domains.

Finally, the results of asking the participants to guess the weights of the reward features in
each domain surprised us (Table 1). Although there were always more, or at least as many, correct
answers as incorrect answers, the number of incorrect answers was higher than expected given
people’s ability to predict the robot’s policy in tests. This suggests that the humans likely did not
perform IRL as we algorithmically modeled in this article. Furthermore, the proportion of correct
answers increases from open, to partial, to full in order of decreasing regret for delivery, but not so
for skateboard. As we observed in our previous work [34], a more difficult and complex domain may
have encouraged participants to utilize a different imitation-based learning style than IRL-based
learning style, which we further discuss in Section 7.

6 User Study on Demonstrations vs. Direct Reward Communication

While this article has focused so far on teaching robot policies in the form of demonstrations, the
teaching can take other forms. Interestingly, Sanneman and Shah [57] found that communicat-
ing weights of reward features directly performed the best objectively and subjectively in their
two domains (waypoints and grid world) compared with HIGHLIGHTS, a policy summarization
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technique that communicates the reward function via demonstrations from states with maximal
difference between the Q-values for the best and worst actions [3].

We wondered whether direct reward communication would also outperform our closed-loop
teaching method in our domains, and also whether there would be synergy in conveying both.
We thus ran a second online user study exploring whether direct reward communication would
improve the transparency of robot policies in the grid world domains considered in this article.

6.1 Study Design

Most of the details of this user study are carried over from the previous user study in Section 5.
The within-subject variable was again domain, which consisted of the same two conditions as the
user study on feedback loop: delivery and skateboard.

The between-subjects variable was teaching form with the following three conditions:

— Direct reward followed the methodology of [57] and directly provided the numerical reward
weights to the participant in a bar graph along with the numerical values.

— Full implemented the full closed-loop teaching framework as described earlier in this article
as a baseline.

— joint provided both direct reward information via bar graphs and numerical values, as well as
the full closed-loop teaching framework.

The user study consisted of two trials, with each trial comprising a teaching portion and a testing
portion in one domain. During teaching, participants were first explicitly informed of the reward
features of the domain through an informational page. In the direct reward or joint conditions, the
participants were also provided the corresponding reward weights in bar graph form as well as
explicit numerical values on this informational page. For these two conditions, the numerical values
of the reward weights were also provided on every subsequent page (e.g., alongside demonstrations
and tests) to remove the confound of memory. Participants in the direct reward condition then
moved straight from the informational page on reward weights and features (which comprised the
teaching portion) to a page of Likert items that queried their level of focused attention, the perceived
usability of their assigned teaching condition, and their subsequent understanding of the robot’s
policy to close out their teaching portion. Participants in the full and joint conditions were instead
provided demonstrations and perhaps diagnostic tests, corrective feedback, and additional remedial
instruction as necessary following the informational page. For every interaction, participants in
these two conditions also indicated whether the interaction improved their understanding of the
policy using a Likert item. Participants in the full and joint conditions also closed out their teaching
portions by responding to Likert items that queried their level of focused attention, the perceived
usability of their assigned teaching condition, and their subsequent understanding of the robot’s
policy. As noted above, direct reward had the shortest teaching portion which we expected to lead
to the highest usability ratings, but we expected joint to foster greater focused attention through
the provision of reward weight and demonstration information that reinforced one another.

Following the teaching portion, participants in all conditions proceeded to the testing portion
where they predicted the robot’s optimal trajectory in six unseen test environments in random
order, which were selected according to prior work [35] to comprise two low, medium, and high
difficulty environments each.

We tested the following hypotheses (H1-H4) using the measures (M1-M4) below (all measures
are shared with the previous user study in Section 5 but are repeated here for convenience). The
Likert scales corresponding to M2 and M4 were provided after the teaching portion but before the
testing portion, and the Likert scales corresponding to M3 were provided after each demonstration
and test in the teaching portion.
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HTI: (a) The test responses will be best for joint, then full, then direct reward. (b) Delivery will
result in better test responses over skateboard.

H2: (a) Focused attention will be highest for joint, then direct reward, then full. Perceived usability
will be highest for direct reward, then joint, then full. (b) Delivery will result in higher focused
attention and perceived usability over skateboard.

H3: (a) Improvement ratings will be highest for joint, then full (no improvement ratings were
queried for direct reward). (b) Delivery will result in higher improvement ratings over skateboard.

H4: (a) Understanding ratings will be highest for joint, then full, then direct reward. (b) Delivery
will result in higher understanding ratings over skateboard.

M1. Test Response: The reward of the human’s test response, measuring the human’s ability to
predict the policy.

M2. Focused Attention and Perceived Usability: We adapted the User Engagement Scale short form
[48] to ask three questions targeting focused attention, each answered with a 5-point Likert scale.
Please find the corresponding questions in Appendix A.3.

M3. Improvement: “Did this interaction improve your understanding of the game strategy [robot
policy]?”, answered with a 5-point Likert scale.

M4. Understanding: “Do you feel that you now understand the game strategy?”, answered with a
5-point Likert scale.

6.2 Results

We collected data from 204 participants using Prolific [49]. The participants were approximately
72% male, 26% female, 1% non-binary, and 1% preferred not to disclose, and the ages ranged from
18 to 67 (M =31.54, SD = 9.68). The recruitment process and study were approved by the Carnegie
Mellon University Institutional Review Board. Sixty-eight participants were randomly assigned
to each of the three between-subjects conditions, and the order of the domains in the study was
counterbalanced.

We again present the results below with the caveat that two bugs in the user study code were
discovered post hoc. First, only the positions of the particles, and not their weights, were considered
when sampling human beliefs from the particle filter (Section 4.1.2). Second, remedial demon-
strations and remedial tests that did not minimize the distance to a missed KC were sporadically
selected (Section 4.2). Correcting both bugs post hoc reveals that while approximately 2.11% of
the interactions in the joint teaching form condition could have been different, the vast majority
of interactions in this condition would have remained unchanged. Furthermore, since these bugs
sporadically produced off-target remedial instruction, we hypothesize that these results represent a
lower bound on the efficacy of the joint teaching form condition.

H1: Consistent with the previous user study, we analyze participant test responses using regret
(i.e., the difference between rewards of human and optimal test responses). A two-way mixed
ANOVA indicated a significant effect of feedback loop on regret (F(2,201) = 23.72,p < 0.001).
Tukey analyses revealed that both joint (M = 0.22) and full (M = 0.24) had significantly lower
regret compared to direct reward (M = 0.66), with both at p < 0.001. The ANOVA also indicated
a significant effect of domain on regret (F(1,201) = 51.62, p < 0.001), where a t-test revealed a
significant difference between the regret between delivery (M = 0.18) and skateboard (M = 0.57),
1(406) = —6.378, p < 0.001.

Finally, the ANOVA also indicated an interaction effect (F(2,201) = 14.65, p < 0.001) between
teaching form and domain. In the delivery domain, Tukey revealed that joint (M = 0.12) led to
significantly lower regret compared to direct reward (M = 0.25), at p = 0.005, while full (M = 0.16)
trended toward significantly lower regret than direct reward at p = 0.08. In the skateboard domain,
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Teaching Form on Regret of Human Test Responses
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Fig. 10. (a) Direct reward leads to significantly higher regret in human test responses compared to full and
joint. (b—c) The gap between the regret from direct reward and the other teaching forms is notably bigger in
the skateboard domain than the delivery domain, where the skateboard was objectively and subjectively
deemed by participants to be more challenging.

Table 2. Mean Regret of Human Test Responses across the Five Conditions of
the Two User Studies (Lower is Better)

Openloop Partial Full closed loop Joint Direct reward

Delivery 0.210 0.162 0.160 0.118 0.254
Skateboard 0.624 0.412 0.328 0.320 1.070

Tukey analyses revealed that both joint (M = 0.32) and full (M = 0.33) had significantly lower
regret compared to direct reward (M = 1.07), with both at p < 0.001 (Figure 10).

Hia is partially supported. While joint and full each led to significantly lower regret compared
to direct reward, joint did not lead to significantly lower regret with respect to full as expected.
An exploration of the interaction effect revealed that the differences between direct reward and
either joint or full are larger in the skateboard domain, again suggesting an interesting influence of
domain that will be discussed in more detail in the next section. H1b is supported. Delivery resulted
in a significantly lower regret over skateboard, as expected.

For completeness, Table 2 compares the mean regret of human test responses across the five
conditions comprising the two user studies conducted in this article. Of note are direct reward leading
to the worst performance in both domains, and full and joint performing the best (a statistically
significant difference was not found between these two conditions). We provide similar tables that
compare the results of other measures in the two user studies in subsequent analyses. In Tables
2—-6, the best outcomes across the five conditions of the two user studies are bolded for reference.
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Table 3. Mean Focused Attention Rating across the Five Conditions of the Two
User Studies (Higher is Better)

Openloop Partial Full closed loop Joint Direct reward

Delivery 4.279 4.412 4.272 4.522 4.169
Skateboard 4.309 4.360 4.169 4.397 4.147

Table 4. Mean Perceived Usability Rating across the Five Conditions of the
Two User Studies (Higher is Better)

Openloop Partial Full closed loop Joint Direct reward

Delivery 3.525 3.485 3.686 3.569 3.819
Skateboard 3.211 2.637 2.819 2.873 3.691

Table 5. Mean Improvement Rating across the Five Conditions of the Two User
Studies (Higher is Better)

Openloop Partial Full closed loop Joint Direct reward

Delivery 3.430 3.269 3.440 3.848 N/A
Skateboard 3.270 2.953 3.125 3.729 N/A

Table 6. Mean Understanding Rating across the Five Conditions of the Two
User Studies (Higher is Better)

Openloop Partial Full closed loop Joint Direct reward

Delivery 3.809 3.882 4.015 4.353 4.147
Skateboard 3.589 3.147 3.294 4.029 4.279

H2: We ran a Cronbach’s alpha to verify the reliability of the corresponding Likert scales for
measuring focused attention and perceived usability. For focused attention, we observed that the
value again rose from o = 0.61 to & = 0.67 without the second item (which asked for a response to
the question “The time I spent learning the game strategy passed by quickly.” on a 5-point scale)
and we remove this item from the analysis accordingly. For perceived usability, we keep all items
for the analysis below as removing any of them did not significantly increase the & = 0.85 that was
obtained using all items.

A two-way mixed ANOVA found a significant effect of feedback loop (F(2,201) = 5.63, p = 0.004)
on focused attention. Tukey analyses revealed that joint (M = 4.46) led to significantly higher ratings
over full (M = 4.22) and direct reward (M = 4.16), at p = 0.033 and p = 0.005, respectively. While the
ANOVA reported a significant effect of domain on focused attention (F(1,201) = 5.11,p = 0.02), a
post hoc t-test revealed that the difference between focused attention ratings in delivery (M = 4.32)
and skateboard (M = 4.24) was not significant, £(406) = 1.349, p = 0.18. The ANOVA did not find
an interaction effect between teaching form and domain on focused attention (F(2,201) = 0.72,
p = 0.49). For completeness, Table 3 compares the mean focused attention rating across the five
conditions comprising the two user studies conducted in this paper.

A two-way mixed ANOVA also found a significant main effect of teaching form on perceived
usability (F(2,201) = 8.30,p < 0.001), where Tukey revealed that direct reward (M = 3.76) led
to significantly higher ratings over joint (M = 3.22) and full (M = 3.25), at p = 0.001 and p =
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Teaching Form on Perceived Usability
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Fig. 11. (a) Direct reward leads to significantly higher ratings of perceived usability compared to full and
Jjoint. (b—c) The main effect is mostly driven by the skateboard domain.

0.002, respectively. The ANOVA also revealed a significant effect of domain on perceived usability
(F(1,201) = 78.51, p < 0.001), and a post hoc t-test revealed that a significant difference between
ratings in delivery (M = 3.70) and skateboard (M = 3.13), t(406) = 5.641,p < 0.001. Finally,
the ANOVA also found an interaction effect between teaching form and domain on perceived
usability (F(2,201) = 12.36,p < 0.001), where Tukey revealed that direct reward (M = 3.70) led
to significantly higher ratings over joint (M = 2.87) and full (M = 2.82), at p < 0.001 for both,
only for skateboard (no significant differences were found for the delivery domain—Figure 11).
For completeness, Table 4 compares the mean perceived usability rating across the five conditions
comprising the two user studies conducted in this paper.

H2a is partially supported. Joint resulted in significantly higher focused attention ratings over
full and direct reward as expected. However, there was no difference in the focused attention
ratings between full and direct reward. Direct reward resulted in significantly higher perceived
usability ratings over joint and full as expected, but there was no difference in perceived usability
ratings between joint and full. Interestingly, post hoc analyses of the interaction effect between
domain and usability find that the significant main effects are entirely driven by skateboard. H2b is
partially supported. The trend of domain differences continues with delivery yielding significantly
higher ratings of perceived usability over skateboard, although no difference was found between
the domains for focused attention.

H3: As participants gave an improvement rating for each interaction in joint and full (e.g.,
demonstration, feedback), a mean is more descriptive than a median for each participant and for each
domain and we again use parametric analyses accordingly.* A two-way mixed ANOVA indicated a

“Due to technical difficulties, the improvement ratings of 2 out of 68 participants in the joint condition were not recorded.
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significant effect of teaching form on improvement (F(1, 132) = 11.85,p = 0.001). A t-test revealed
that joint (M = 3.77) yielded significantly higher ratings on improvement over full (M = 3.23),
t(134) = 3.613, p = 0.001. The ANOVA also indicated a significant effect of domain on improvement
(F(1,132) = 18.23,p < 0.001). A t-test revealed that the teaching in delivery (M = 3.64) was
rated to yield higher improvement than in skateboard (M = 3.43), t(270) = 1.900,p = 0.058).
The ANOVA did not indicate a significant interaction effect between teaching form and domain
(F(1,134) = 3.36,p = 0.06). For completness, Table 5 compares the mean improvement rating
across the five conditions comprising the two user studies conducted in this paper.

H3a is supported. As expected, joint lead to higher ratings on improvement over full. H3b is
supported. The ratings also suggest that participants learned more overall about the delivery domain
than the skateboard domain.

H4: The Kruskal-Wallis H test revealed that full (M = 3.65) yielded significantly lower ratings
of understanding compared to joint (M = 4.19) as well as direct reward (M = 4.21), at p < 0.001
for both. The Wilcoxon signed-rank test also showed a statistically significant change in ratings
of understanding between delivery and skateboard domains (Z = —4.83, p < 0.001). Although the
median ratings on understanding for both domains were 4, the mean for delivery was 4.17 and the
mean for skateboard was 3.87. For completness, Table 6 compares the mean understanding rating
across the five conditions comprising the two user studies conducted in this paper.

H4a partially supported. While ratings on understanding were higher for joint over full as
expected, ratings on understanding were also higher for direct reward over full. H4b is supported.
The ratings on understanding were higher in delivery than skateboard as expected.

6.3 Discussion

We first observe that the best reward communication method is likely domain-dependent, and we
specifically hypothesize that conveying numerical reward weights alone is increasingly insufficient
as a teaching form as domain complexity increases. Not only does direct reward lead to significantly
higher regret than joint and full, the gap is larger in skateboard over delivery—where we consider
the former domain more complex than the latter. In our study, delivery and skateboard each had
three reward features, but both objective and subjective results strongly indicated that the latter
domain was more challenging for participants. First, delivery often supports more “local” planning
around individual mud patches and batteries, whereas skateboard requires more “global” planning
that considers the distance to the skateboard and the subsequent distance to the goal to determine
whether it is worth detouring to pick up the skateboard on the way to the goal. In this, we would
argue that the skateboard domain has an implicit dependence between the action and skateboard
reward features that must be carefully considered in advance before selecting between a path that
detours to pick up a skateboard along the way and a path that does not. Furthermore, the grid size
of the delivery domain was smaller than skateboard and the reward weights were more coarse (the
reward weights for delivery were —3, 3.5, and 1 for moving out of mud, picking up the battery, and
for each action, respectively, whereas the reward weights for skateboard were 0.825, 0.4875, and
—1 for moving with the skateboard, moving on the path, and for each action, respectively). This
allowed for more subtle tradeoffs to be made in the skateboard domain such that the difference in
reward between a trajectory that detoured to pick up the skateboard first, a trajectory that detoured
to go on the path instead, and a trajectory that went straight toward the goal could differ by only
minute amounts.

Given our domain-dependent results, we argue that domain characterization is an open and
important topic that can help us infer which results may be generalized to other domains. One such
characterization is domain complexity, which is difficult to define. Sanneman and Shah [57] offer a
definition for the related concept of reward complexity as the number of features that comprise the
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reward function. Although the number of reward features is a reasonable starting point for domain
complexity, our observations in the delivery and skateboard domains suggest that one must also
consider the degree of interaction between features and the subtleties of the tradeoffs that result
from the reward features. And though we do not test this in our user study, another consideration
when considering domain complexity could be the degree of familiarity in addition to the size
of the state space. As Qian and Unhelkar [53] note, their navigation domain had a much smaller
state space of 400 over other domains that had a state space of 3,200 and 80,000, but it was the
most challenging for their participants to grasp due to some of the navigation robot’s less intuitive
movements.

Second, we observe a potential synergy between different teaching forms where they can help
reinforce each other’s information. Although we did not find any difference in regret, joint has
significantly higher ratings on improvement and focused attention than full. Interestingly, a few
qualitative quotes from the direct reward or full conditions suggest that participants wanted the
information that was outside the purview of their condition. In response to the open-ended question
at the conclusion of the study, “Do you have any general comments or feedback on the study? Is
there anything you wish [the robot] would’ve done to help you understand the game strategies
better?”, two participants in the direct reward condition replied:

“a demonstration instead of written rules might have helped a bit more,” and
“Maybe an example puzzle with optimal moves demonstrated,”
indicating a desire for demonstrations as well. And one participant in the full condition replied:

“If [the robot] told me the implication of moving into yellow or purple boxes, it would have
helped me a lot,

indicating a desire for direct information regarding the effect of various reward features (e.g.,
perhaps in the form of numerical weights). And people who received both numerical weights and
demonstrations in the joint condition, replied:

“This demonstration reinforced to me the importance of obtaining the orange rectangle as
moving with it results in a + 0.825% energy change,” and

“T already knew to avoid the yellow square, and would have moved the same way as demon-
strated,”

which reveal the dual possibility for different teaching forms to be helpfully reinforcing or unhelp-
fully redundant. To the latter point, one must be mindful of cognitive overload when providing
too much information at once, which can lead to a worse understanding of model decision-
making [50].

Third, we have defined transparency as understandability and predictability, borrowing from
the work of Endsley [16], a leading expert in human situational awareness involving intelligent
agents. One can easily imagine how understandability and predictability can be correlated to
one another: high understandability could improve predictability through forward simulation,
and high predictability could improve understanding through the generation of data that could
support model building. However, we observe that high self-reports of understanding do not always
translate to corresponding performance. While direct reward led to significantly higher levels of
reported understanding® over full, as well as significantly higher ratings on usability over full, direct

SWe note that we queried participants for their perceived understanding right after the conclusion of the teaching portion
of the user study, and before the testing portion. We hypothesize that perceptions of understanding may have changed
when queried after the testing portion.

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 4, Article 72. Publication date: August 2025.



Improving the Transparency of Robot Policies 72:25

reward also led to significantly worse objective performance. Our results raise the possibility that
people may believe that their knowledge is sufficient and may terminate learning early (especially
since effective learning often requires significant mental effort as previous results in this article
and our prior work [35] have shown), even when tests would likely reveal significant gaps in
their knowledge. All in all, our results point to a need for a closed-loop, robot-driven teaching
that provides tests and additional instruction as needed to discover and reconcile gaps in the
human’s understanding. And though our results support robot-driven teaching, Qian and Unhelkar
[53] found that a hybrid strategy where participants could choose between agent-selected and
user-requested examples outperformed only agent-selected examples and was also subjectively
preferred. However, we note that they fixed the teaching budget, and an interesting direction for
future work may be in exploring how to balance agent-driven and user-driven learning given
a flexible teaching budget (e.g., the human may be feeling unmotivated and wish to terminate
learning after a few insufficient examples).

Finally, understandability is a multifaceted concept that can be difficult to measure in practice.
While the accuracy of a person’s prediction of a robot’s behavior is arguably the most common
submeasure of understandability (e.g., [6, 25, 31, 57]), other measures include coding responses to an
open-ended question regarding robot decision-making (e.g., [6, 57]), agent preference elicitation and
feature subselection [57], and verification of agent response and counterfactual reasoning [31]. Our
user studies that tested participants’ abilities to predict robot behavior and our single Likert-scale
item querying gross understanding are incomplete measures, and we also leave how one may
query and measure a human’s understanding of robot decision-making more comprehensively
for future work. We consider other limitations and opportunities for follow-on work in the next
section.

7 Limitations and Future Work

In this work, we focused on teaching a low-dimensional reward of a robot that specifically took
the form of a weighted linear combination of reward features. For more high-dimensional reward
functions, recent work has begun leveraging such abstractions, or often referred to as concepts, to
increase the interpretability of policies learned through RL [8, 57, 68]. However, these methods
require the human to hand-specify the concepts. Automatically distilling high-dimensional reward
features into low-dimensional and semantically meaningful concepts and selecting demonstrations
that convey both the concepts and the weighting will be an important direction moving forward.
Furthermore, we constrained ourselves to grid worlds of limited size and diversity (e.g., the number
and locations of possible mud and path patches in the delivery and skateboard domains were
decided a priori) that could support exhaustive enumeration. In moving to continuous domains that
may not afford an exhaustive enumeration of all possible demonstrations, we may potentially take
inspiration from work like goal recognition design [28], which aims to find a domain instance that
forces a robot to reveal its objective as early as possible, to formulate the real-time enumeration of
demonstrations as a search problem.

In addition to IRL, Imitation Learning (IL) is also a commonly accepted model of human
learning [9, 22, 32], which models humans as learning the optimal behavior directly from demon-
strations (as opposed to through an intermediate reward function like IRL). There are a number
of possible algorithms that support both styles [47], and it is not always obvious which style or
algorithm would best model human learning in a given situation. It is also possible that people
switch between IRL and IL-style reasoning (e.g., depending on the familiarity of the domain [32],
which can even change as a function of the number of demonstrations seen [34]), or perhaps
there is yet another style of learning from demonstrations that humans employ. The findings of
Lage et al. [32] additionally suggest that human learning of the robot’s policy can increase if the
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robot correctly models the human learning style (e.g., IRL vs IL) when generating demonstrations.
Determining when humans employ IRL or IL, and identifying other styles of human learning from
demonstrations will be interesting future endeavors.

Finally, we largely restricted ourselves to increasing the transparency of robot policies through
demonstrations in this article. However, this is just one form that policy and reward teaching can
take. We saw in the follow-up study in Section 6 that direct reward communication integrated
nicely with demonstrations to yield high objective and subjective outcomes nearly across the board.
This highlights the potential synergies that can arise from employing complementary explanation
techniques; e.g., global policy-level techniques that convey an understanding of a robot’s overall
behavior through representative examples can be combined with local feature importance techniques
that highlight the contextual factors that influence a robot’s single decision [43]. Additionally,
language is another common modality for teaching that shares strengths and weaknesses that are
complementary to that of demonstrations (e.g., for explaining agent decision-making [13, 14]).
While language has the ability to convey complex, generalizable concepts more effectively than
demonstrations, language is heavily dependent on shared abstraction between parties (e.g., what a
rook is in the statement “In chess, rooks move along rows and columns”), can suffer from ambiguity,
and may struggle to convey certain physical concepts such as spatial movement, color, and so on.
While demonstrations are inherently grounded, they require the learner to infer the underlying
rules or concepts, some of which may be difficult to demonstrate exhaustively (e.g., it would be
inefficient to demonstrate all the possible ways that the rook can move on a chess board). Recent
work has begun exploring leveraging the complementary strengths of language and demonstrations
for humans to teach robots [42, 67], which we posit will also be effective conversely for robots to
teach their policies and reward functions to humans.

8 Conclusion

As robots increasingly abound in society, it is important that their decision-making is transparent,
e.g., such that the actions taken by robots are predictable and understandable to humans. Trans-
parency is critical for not only developers in reviewing and ensuring proper robot function but also
for end users in having calibrated expectations—preventing undertrust and disuse, or overtrust and
misuse. Machine teaching provides a principled framework for selecting demonstrations a priori
that increases the transparency of robot policies to humans; however, individuals may differ in their
learning trajectories in situ. We thus augment a curriculum of preselected demonstrations with a
novel closed-loop teaching framework inspired by key concepts from the education literature to
provide tailored instruction. A user study finds that our teaching framework consisting of demon-
strations, tests, feedback, and remedial instruction reduces the regret in human test responses by
43% over a baseline.

Furthermore, demonstrations are only one means of improving the transparency of robot policies
and, inspired by results by Sanneman and Shah [57], we also saw how directly conveying the
robot’s underlying reward weights fared in our domains, both as a standalone method as well as
in conjunction with our closed-loop teaching via demonstrations. In contrast to their findings,
we found that directly conveying the robot’s reward weights yielded significantly worse human
test responses, although it led to reports of high understanding and usability as a teaching form.
However, providing both reward weights and demonstrations provided synergy that allowed for
high objective and subjective outcomes nearly across the board, highlighting that different teaching
forms can provide complementary information that can augment one another. Echoing the broader
consensus in the explainable Al literature that there is no one-size-fits-all explainability method,
we leave the exploration of the synergy of various methods in the diversity of possible domains as
an exciting direction for future work.
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A Appendix

Al

Custom Distribution for Updating Weights in Particle Filter

We propose a custom probability distribution for updating the weight of each particle given
constraints from a demonstration or test (please refer back to Section 4.1.1 for more information).
As a summary, the custom distribution is composed of a uniform distribution that aligns with the
consistent half-space of the constraint and the von Mises-Fisher distribution (a generalization of
the Gaussian distribution on a sphere [11]) whose mean direction aligns with the inconsistent
half-space (Figure 4). The uniform distribution asserts that any particle lying on the consistent
half-space is equally valid for that demonstration, whereas the von Mises—Fisher distribution asserts
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that a particle is exponentially less likely to have generated that demonstration as you move away
from the consistent side of the constraint.
The resulting pdf of the custom distribution is

) = {C%M LTx>0 ~
c\X5 H, = coekH X .
c127'2[(e’<—e"<)’ Hx< 0,

with a normalizing constant ¢; that ensures that the pdf sums to 1
1
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and a scaling constant ¢, that matches the probability of the von Mises—Fisher distribution (f,) to
that of the uniform distribution at the meeting point of the two distributions

1
= —
2 anfy(y pmx)

Although the custom distribution naturally generalizes to higher dimensions, the particles in
our two domains each have three reward features and are constrained to the 2-sphere. The pdf
conveyed in Equations (A1)-(A3) is thus specified for the 2-sphere.

In addition to its mean direction, the von Mises—Fisher distribution is described by its concen-
tration parameter k, which, as the name implies, captures how concentrated the distribution is
around its mean. In our experiments, we set « to be 2, which we empirically observed as providing
the desired signal-to-noise ratio during the particle weight updates (x = 0 corresponds to the
uniform distribution and the distribution becomes more peaked around the mean, and less noisy,
as Kk increases).

ys.t.u'y=0. (A3)

A.2 Particle Filter Resampling and Resetting

We address common challenges to using particle filters in practice. Sample degeneracy occurs
when successive updates to the weights of the particles cause only a few particles to have high
weight and the particle filter fails to model regions of interest in the posterior with sufficient detail
[41]. Furthermore, the number of particles (i.e., sample size) should adapt to the complexity of the
distribution being modeled. To address both concerns, we rely on KLD-resampling [40] to obtain the
sample size that bounds the Kullback-Leibler (KL) divergence between the sample-based maximum
likelihood estimate and the true posterior distribution, and simultaneously rely on systematic
resampling [39] to concentrate the sampling near regions of high probability. Finally, measures to
combat sample degeneracy can actually cause sample impoverishment, where the particle filter is
too concentrated and not amenable to future shifts in the posterior. Thus, we resample only when
the effective sample size (a measure of sample degeneracy) drops below a predefined threshold and
also add Gaussian noise when resampling the particles [41]. This limited resampling balances the
risk of running into sample degeneracy or sample impoverishment, which are at opposite extremes.

Finally, the particle filter may converge, then suddenly obtain new information that is heavily
inconsistent with the current distribution. In this case, the filter will struggle to update, as none or
very few of the particle weights would be increased to shift the distribution in a meaningful way.
We thus implement particle filter resetting, taking inspiration from sensor resetting localization
[37] that combats the kidnapped robot problem, where the robot has been moved without being
told and must reinitialize its localization. A reset triggers when the weights of the particles, after
accounting for p(x¢|y;) and before weight normalization, drop below a threshold (Algorithm 1).
We uniformly distribute a set number of particles into the consistent half-space and again rely on
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Fig. A1. When a test response is heavily inconsistent with the current model of human beliefs, we perform a
reset. The constraint consistent with the test response is shown in all panels, with the consistent side shown
with the uniform distribution as a yellow dome in the center panel. The robot reward function is shown as a

red dot.

KLD-resampling [40] to obtain the number of particles that will bound the KL divergence between
the posterior distribution following the reset and its sample-based maximum likelihood estimate.
We then sample that the number of particles directly from the custom distribution corresponding

to p(x¢|y;) and add it to the particle filter (Figure A1).

A.3 User Engagement Questions
We adapted the User Engagement Scale short form [48] to ask six questions targeting focused

attention:

—“I was fully engaged with learning the game strategy.”
— “The time I spent learning the game strategy passed by quickly”
—“I was absorbed in this experience.”

and measure perceived usability:

—“I felt frustrated while learning the game strategy”
—“I found learning the game strategy confusing”
—“Learning the game strategy was taxing.”

each answered with a 5-point Likert scale in the two studies described in the article.
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