
Riemannian Accelerated Zeroth-order Algorithm:
Improved Robustness and Lower Query Complexity

Chang He 1 Zhaoye Pan 1 Xiao Wang 1 2 Bo Jiang 1 2 3

Abstract

Optimization problems with access to only zeroth-
order information of the objective function on Rie-
mannian manifolds arise in various applications,
spanning from statistical learning to robot learn-
ing. While various zeroth-order algorithms have
been proposed in Euclidean space, they are not
inherently designed to handle the challenging con-
straints imposed by Riemannian manifolds. The
proper adaptation of zeroth-order techniques to
Riemannian manifolds remained unknown until
the pioneering work of (Li et al., 2023a). How-
ever, zeroth-order algorithms are widely observed
to converge slowly and be unstable in practice. To
alleviate these issues, we propose a Riemannian
accelerated zeroth-order algorithm with improved
robustness. Regarding efficiency, our acceler-
ated algorithm has the function query complexity
of O(ϵ−7/4d) for finding an ϵ-approximate first-
order stationary point. By introducing a small per-
turbation, it exhibits a function query complexity
of Õ(ϵ−7/4d) for seeking a second-order station-
ary point with a high probability, matching state-
of-the-art result in Euclidean space. Moreover, we
further establish the almost sure convergence in
the asymptotic sense through the Stable Manifold
Theorem. Regarding robustness, our algorithm
requires larger smoothing parameters in the order
of Õ(ϵ7/8d−1/2), improving the existing result by
a factor of Õ(ϵ3/4).

1School of Information Management and Engineering, Shang-
hai University of Finance and Economics 2Key Laboratory of
Interdisciplinary Research of Computation and Economics, Shang-
hai University of Finance and Economics, Ministry of Education
3Dishui Lake Advanced Finance Institute, Shanghai University
of Finance and Economics. Correspondence to: Chang He <is-
changhe@gmail.com>, Bo Jiang <isyebojiang@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Many machine learning problems frequently encounter sit-
uations where computing function gradients is costly or
even infeasible. For instance, the tasks such as optimal lin-
ear combination prediction (Das et al., 2022) and Bayesian
optimization in robot learning (Jaquier et al., 2018; 2020)
involve objective functions, lacking analytical forms, only
observable through point-wise evaluations. Furthermore, the
design space of interest is also complicated, involving con-
straints such as the unit sphere, probability simplex, and pos-
itive definite matrices. The limited function information and
inherent constraints render these problems challenging to
solve. One potent strategy for dealing with these constraints
is re-expressing them through the lens of Riemannian man-
ifolds (Absil et al., 2009; Boumal, 2023). Mathematically,
we can formulate the problem in consideration as follows:

min
x∈M

f(x), (1)

where M represents the Riemannian manifold, and f(·) is
a nonconvex objective function with only zeroth-order infor-
mation (i.e. function value) available. For ease of discussion,
we assume f(·) is lower bounded, i.e. f(x) ≥ flow for all
x ∈ M. Recently, a pioneering work by Li et al. (2023a)
introduced several Riemannian zeroth-order algorithms to
tackle problem (1), relying solely on the query of function
values. It is well known that the function query complex-
ity is a key to measure the efficiency of the zeroth-order
algorithms, whereas these algorithms only exhibit inferior
complexity to the one in Euclidean space. This raises a
natural question: Is it possible to develop a Riemannian ac-
celerated zeroth-order algorithm with lower function query
complexity?

The development of accelerated algorithms is a prominent
and active topic within both machine learning and optimiza-
tion communities. It traces back to the seminal breakthrough
by Nesterov (1983), which paved the way for subsequent
advancements in acceleration techniques. Since then, nu-
merous fruitful results have emerged in various scenarios,
such as accelerated first-order algorithms (Beck & Teboulle,
2009; Lin et al., 2015; Carmon et al., 2017; 2018; Jin et al.,
2018; Li & Lin, 2022) and accelerated second-order algo-
rithms (Nesterov, 2008; Bubeck et al., 2019; Jiang et al.,

1

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Table 1. Comparison of zeroth-order algorithms in terms of the ability to handle Riemannian manifolds, value of smoothing parameter,
and function query complexity for nonconvex objective function. The symbol † is used to indicate that this algorithm converges to
ϵ-approximate first-order stationary points; otherwise, it converges to ϵ-approximate second-order stationary points.

Algorithms Riemanian Manifolds Smoothing parameter µ Function query complexity

PAGD (Vlatakis-Gkaragkounis et al., 2019) % O
(

ϵ3/2√
d

)
Õ

(
d
ϵ2

)
ZO-GD (Bai et al., 2020) % O

(
ϵ3

d2

)
Õ

(
d2

ϵ8

)
ZO-GD-NCF (Zhang et al., 2022) % O

(
ϵ1/2

d1/4

)
Õ

(
d
ϵ2

)
ZO-PAGD (Zhang & Gu, 2022) % Õ

(
ϵ13/8√

d

)
Õ

(
d

ϵ7/4

)
ZOPGD (Ren et al., 2023) % Õ

(
ϵ1/2

d

)
Õ

(
d
ϵ2

)
ZO-RGD (Li et al., 2023a) ! O

(
ϵ

d3/2

)
O

(
d
ϵ2

)†
RAZGD with Option I (ours) ! O

(
ϵ5/8

d1/4

)
O

(
d

ϵ7/4

)†

Perturbed RAZGD with Option I (ours) ! Õ
(

ϵ7/8√
d

)
Õ

(
d

ϵ7/4

)

2021). Notably, Zhang & Gu (2022) demonstrated that
zeroth-order algorithms can also benefit from acceleration
and exhibit an improved complexity. Regarding the opti-
mization problem over Riemannian manifolds, there has
also been a growing interest in developing accelerated algo-
rithms (Liu et al., 2017; Zhang & Sra, 2018; Criscitiello &
Boumal, 2022), to name a few. Due to the space limitation,
a detailed discussion is deferred to Appendix A. Despite
significant efforts in designing accelerated algorithms, none
of them is applicable to problem (1).

To design an algorithm in a gradient-free manner, construct-
ing zeroth-order estimators through function value evalua-
tions becomes necessary. The accuracy of this approxima-
tion is tied to the smoothing parameter (see Definition 3.1,
for example). Although the smaller value of the parame-
ter improves the precision, it may also introduce instabil-
ity in practical applications (Lian et al., 2016; Liu et al.,
2018; 2020). Regrettably, integrating acceleration tech-
niques into zeroth-order algorithms (Zhang & Gu, 2022)
requires smaller smoothing parameters compared to the
standard ones (Vlatakis-Gkaragkounis et al., 2019; Zhang
et al., 2022). In response to these challenges, we introduce a
novel Riemannian accelerated zeroth-order algorithm. Sur-
prisingly, while maintaining the same function query com-
plexity, our algorithm allows the use of a larger smoothing
parameter, compared to the Euclidean counterpart (Zhang
& Gu, 2022). This, in turn, ensures the robust and stable
performance of our accelerated zeroth-order algorithm.

Contributions. In this paper, we delve into a comprehen-
sive study of Riemannian zeroth-order optimization. Our
main contributions are given as follows:

• By leveraging the basis of the tangent space, we extend
the classical finite-difference gradient approximation
to Riemannian manifolds (Definition 3.1). Based on
this estimator, we develop a Riemannian accelerated
zeroth-order gradient descent (RAZGD) in Algorithm
1, which alternates between the Riemannian zeroth-
order gradient descent step (Subroutine 1) and the tan-
gent space step (Subroutine 2 and 3).

• Under some mild assumptions and by setting the ini-
tial point as zero in the tangent space step (Subrou-
tine 2), we prove that the RAZGD with Option I has
the function query complexity of O(ϵ−7/4d) for find-
ing a Riemannian ϵ-approximate first-order stationary
point, which improves the existing result by a factor of
O(ϵ−1/4) in (Li et al., 2023a). For a fair comparison,
we present selected zeroth-order algorithms in Table 1.

• By introducing a small perturbation to the initial point
in the tangent space step (Subroutine 2), the perturbed
RAZGD with Option I seeks a second-order stationary
point with a high probability under Õ(ϵ−7/4d) query
complexity guarantee, matching state-of-the-art com-
plexity in Euclidean zeroth-order optimization (Zhang
& Gu, 2022). To get an almost sure convergence re-
sult, we further prove that the RAZGD with Option II
converges to strict Riemannian second-order stationary
points gradually.

• Beyond the function query complexity, the perturbed
RAZGD with Option I showcases resilience in choos-
ing the smoothing parameter—an essential factor ensur-
ing the robustness of zeroth-order algorithms. With the
same function query complexity guarantee, we estab-

2

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

lish that the RAZGD only requires the smoothing pa-
rameter µ = Õ(ϵ7/8d−1/2) for seeking ϵ-approximate
second-order stationary points, sharpening the existing
best result Õ(ϵ13/8d−1/2) in Zhang & Gu (2022).

2. Preliminaries: Optimization over manifolds
In this section, we present the basic setup and mathematical
tools for optimization over manifolds. For more details,
we refer readers to see (Absil et al., 2009; Boumal, 2023).
Throughout this paper, we use the convention O(·) and Ω(·)
to denote lower and upper bounds with a universal con-
stant, respectively. Õ(·) ignores the polylogarithmic terms.
We use d to denote both the dimension of the Riemannian
manifold M (i.e., dim(M) = d) and the dimension of the
Euclidean space Rd.

A d-dimensional manifold M is a topological space
where each point has a neighborhood homomorphic to d-
dimensional Euclidean space, as illustrated in Figure 1.
A Riemannian manifold M is a real, smooth manifold
equipped with a Riemannian metric. Each x ∈ M is associ-
ated with a d-dimensional real vector space Tx M, referred
to as the tangent space at x. The Riemannian metric defines
an inner product ⟨·, ·⟩x on the tangent space Tx M. The
inner metric induces a corresponding norm ∥·∥x. We denote
these by ⟨·, ·⟩ and ∥·∥ when there is no confusion for x from
the context. A vector in the tangent space is known as a tan-
gent vector. The set of pairs (x, sx) for x ∈ M, sx ∈ Tx M
is called the tangent bundle TM. On the tangent space, we
define Bx,r(s) = {z ∈ Tx M : ∥z − s∥x ≤ r}, represent-
ing the closed ball of radius r centered at s ∈ Tx M. Then
we use Uni(Bx,r(s)) to define the uniform distribution over
the ball Bx,r(s).

Figure 1. A 2-dimensional manifold

Given a smooth function f(·), the Riemannian gradient
grad f(x) of f at x ∈ M is the unique vector in Tx M that
satisfies D f(x)[s] = ⟨grad f(x), s⟩x for all s ∈ Tx M,
where D f(x)[s] is the directional derivative of f at x
along s. The Riemannian metric gives rise to a well-
defined notion of the derivative of vector fields, known
as the Levi–Civita connection ∇. The Riemannian Hes-

sian of f is the derivative of the gradient vector field:
Hess f(x)[u] = ∇u grad f(x), which is a symmetric linear
operator on Tx M. For the smooth curve γ : [0, 1] → M,
the velocity of the curve is defined as dγ

dt = γ′(t). The
intrinsic acceleration γ′′ of γ is the covariant derivative of
the velocity of γ′: γ′′ = D

dtγ
′ induced by the Levi–Civita

connection.

We proceed to introduce the ϵ-approximate stationary point
on Riemannian manifolds.
Definition 2.1. For any ϵ > 0, a point x ∈ M
is an ϵ-approximate Riemannian first-order stationary
point (RFOSP) of the smooth function f(·) if it satis-
fies ∥ grad f(x)∥ ≤ O(ϵ). Furthermore, if it addition-
ally satisfies λmin (Hess f(x)) ≥ Ω(−

√
ϵ), then x is an

ϵ-approximate Riemannian second-order stationary point
(RSOSP), where λmin(·) denotes the the smallest eigenvalue
of the symmetric operator.

We also present the definition of strict Riemannian saddle
points and second-order stationary points:
Definition 2.2. A point x ∈ M is a strict Riemannian
saddle point of the smooth function f(·) if it satisfies
grad f(x) = 0 and λmin (Hess f(x)) < 0. Otherwise, it
is a strict Riemannian second-order stationary point when
grad f(x) = 0 and λmin (Hess f(x)) ≥ 0.

To optimize over Riemannian manifolds, a key concept is
the retraction (Figure 2)—a mapping enabling movement
along the manifold from a point x in the direction of a
tangent vector s ∈ Tx M. This is formalized as follows:
Definition 2.3. A retraction mapping Retrx : Tx M → M
is a smooth mapping satisfies Retrx(0) = x, where 0 is the
zero vector in Tx M. Moreover, for x ∈ M and s ∈ Tx M,
let

Tx,s = DRetrx(s) : Tx M → TRetrx(s) M

denote the differential of Retrx at s (a linear operator). The
differential of Retrx at 0, i.e. Tx,0, is the identity map.

For instance, we employ Retrx(s) = x + s when M =
Rd. On the unit sphere Sd−1 :=

{
x ∈ Rd : ∥x∥2 = 1

}
,

the retraction mapping is typically defined as Retrx(s) =
(x+ s)/∥x+ s∥2.

Figure 2. Retraction

3

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Following a similar manner in (Criscitiello & Boumal, 2019;
2022), in this paper, our analysis is based on the pullback
function defined as follows.

Definition 2.4. For any x ∈ M, the pullback function f̂x(·)
is a composite function of f and the retraction mapping,
that is

f̂x = f ◦ Retrx : Tx M → R.

Specifically, as the differential of Retrx at 0 is the identity
map, it implies that

f̂x(0) = f(x).

Note that the pullback function f̂x(·) is a real function de-
fined on the tangent space Tx M, which is locally homomor-
phic to Euclidean space. With a slight abuse of notation, we
can define the usual gradient and Hessian of f̂x(·) as ∇f̂x(·)
and ∇2f̂x(·) (mind the overloaded notation of Levi–Civita
connection ∇), respectively.

3. Riemannian Accelerated Zeroth-order
Gradient Descent Algorithm

3.1. Review of Riemannian gradient descent algorithm

We begin with an ideal situation in which the gradient infor-
mation is feasible, and consequently the simplest Rieman-
nian gradient descent (Boumal et al., 2019)

xt+1 = Retrxt(−ηt grad f(xt)), t = 0, 1,

is applicable to problem (1). For the nonconvex objective
function, the basic idea behind the convergence analysis of
Riemannian gradient descent revolves around a two-case
discussion based on the magnitude of the gradient at the
current iterate. If the norm of Riemannian gradient satis-
fies ∥ grad f(xt)∥ ≥ Ω(ϵ), Riemannian gradient descent
is shown to result in a decrease in the function value of
O(ϵ2). On the other hand, if the gradient norm is below this
threshold, the current point is already an ϵ-approximate Rie-
mannian first-order stationary point. Thus, the Riemannian
gradient descent algorithm requires at most O(ϵ−2) steps to
find a first-order stationary point.

3.2. The algorithm design

Inspired by the Riemannian gradient descent algorithm, we
employ an unconventional strategy, aiming for a more ag-
gressive function value decrease at each update—a crucial
element in designing a faster Riemannian algorithm. Given
the inaccessibility of the Riemannian gradient, we carefully
examine the value of the zeroth-order estimator. When the
Riemannian zeroth-order estimator at the current iterate
xt exceeds Ω (

√
ϵ)—deviating from the standard value of

Ω (ϵ)—we choose to proceed with the Riemannian zeroth-
order gradient descent step (Subroutine 1), resulting in the
function value decrease of O(ϵ).

For the iterate xt with a small Riemannian zeroth-order
estimator, we choose the tangent space step (Subroutine 2),
which involves the accelerated zeroth-order gradient descent
update in the tangent space Txt

M, as depicted in Figure
3. In the tangent space step, we set a similar termination
criterion as (Li & Lin, 2022), ensuring that the tangent space
step either results in the function value decrease of O(ϵ3/2)
or returns a stationary point. Therefore, after a single update
from xt to xt+1, the function value takes a decrease at
least O(ϵ3/2), which is larger compared to the standard
case. Combining all these components, we introduce the
Riemannian accelerated zeroth-order gradient descent in
Algorithm 1. By always selecting Option I, it achieves lower
query complexity in the non-asymptotic analysis. Moreover,
with a slightly modified tangent space step (Subroutine 3),
the RAZGD with Option II almost surely avoids strict saddle
points asymptotically.

Figure 3. Tangent space step

Algorithm 1 Riemannian Accelerated Zeroth-order
Gradient Descent Algorithm (RAZGD)

1: input: parameters η, θ, B, K and r
2: initialize: x0 ∈ M, t = 0

3: for t = 0, 1, · · · ,∞ do
4: Compute estimator gxt

(0;µ)

5: if ∥gxt
(0;µ)∥ ≥ lB then

6: xt+1 = RZGDS(xt, η, gxt
(0;µ))

7: else
8: Option I: xt+1 = TSS(xt, η, θ, B,K, r)
9: Option II: xt+1 = TSSA(xt, η, θ, B)

10: end if
11: end for

As demonstrated in both tangent space steps, multiple
zeroth-order updates are performed in the tangent space.
To ensure the well-definiteness of the tangent space step,

4

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Subroutine 1 Riemannian Zeroth-order Gradient Descent
Step (RZGDS)

1: input: x, η, and gx(0;µ)
2: if η∥gx(0;µ)∥ ≤ b then
3: Return Retrx(−ηgx(0;µ))
4: else
5: Compute α ∈ (0, 1) such that αη∥gx(0;µ)∥ = b

6: Return Retrx(−αηgx(0;µ))
7: end if

Subroutine 2 Tangent Space Step (TSS)
1: input: x, η, θ, B, K and r
2: initialize: s−1

x = s0x = ξ ∼ Uni(Bx,r(0)), k = 0

3: while k < K do
4: ykx = skx + (1− θ)(skx − sk−1

x)

5: Compute estimator gx(ykx;µ)
6: sk+1

x = ykx − ηgx(y
k
x;µ)

7: k = k + 1

8: if k
∑k−1

j=0 ∥sj+1
x − sjx∥2 > B2 then

9: Return Retrx(s
k
x) and break

10: end if
11: end while
12: K0 = argmin⌊K

2 ⌋≤k≤K−1∥sk+1
x − skx∥

13: y∗x = 1
K0+1

∑K0

k=0 y
k
x

14: Return Retrx(y
∗
x)

we define the zeroth-order estimator for every pair (x, sx)
in the tangent bundle TM, where sx is the point in the
tangent space Tx M. In the algorithm and its subroutines,
the notation gx(sx;µ) represents the zeroth-order estimator
for the gradient of the pullback function ∇f̂x(sx) at the
pair (x, sx) ∈ TM, incorporating a smoothing parameter
µ. The formal definition is shown as follows, which gener-
alizes the classic finite difference gradient approximation in
Euclidean space (Scheinberg, 2022).
Definition 3.1. Given a smoothing parameter µ > 0 and a
point x ∈ M, the Riemannian coordinate-wise zeroth-order
estimator at the point sx ∈ Tx M is defined as

gx(sx;µ) =

d∑
i=1

f̂x(sx + µei)− f̂x(sx − µei)

2µ
ei,

where {e1, e2, . . . , ed} is the basis of the tangent space
Tx M.

For compactness, the approximation error of the Rieman-
nian coordinate zeroth-order estimator is deferred to Ap-
pendix D.

Subroutine 3 Tangent Space Step Asymptotic (TSSA)
1: input: x, η, θ and B
2: initialize: s−1

x = s0x = 0, k = 0, and constant β < 1,
or βk = 1− 1

k+2

3: while k
∑k−1

j=0 ∥sj+1
x − sjx∥2 ≤ B2 do

4: ykx = skx + (1− θ)(skx − sk−1
x)

5: Compute estimator gx(ykx;µ)
6: sk+1

x = ykx − ηgx(y
k
x;µ)

7: k = k + 1

8: µ = βµ (or µ = βkµ)
9: end while

10: K0 = argmin⌊K
2 ⌋≤k≤K−1∥sk+1

x − skx∥
11: y∗x = 1

K0+1

∑K0

k=0 y
k
x

12: Return Retrx(y
∗
x)

4. Convergence Analysis
4.1. Mild assumptions

We start with the following assumptions on the Rieman-
nian manifold and objective function, which will be used
throughout our analysis. Due to the space limit, we have left
a discussion of these assumptions in Appendix B. Firstly,
generalizing from the Euclidean case, we assume the Lips-
chitz continuity of the gradient and Hessian of the pullback
function f̂x(·). However, it is worth noting that Lipschitz
continuity holds only locally due to the nonlinear structure
of Riemannian manifolds (Criscitiello & Boumal, 2022).
Assumption 4.1. There exists constants b > 0 and l > 0
and ρ > 0 such that for all x ∈ M and s, t ∈ Bx,b(0), the
pullback function f̂x(·) satisfies

∥∇f̂x(s)−∇f̂x(t)∥ ≤ l∥s− t∥.

Assumption 4.2. There exists constants b > 0 and ρ > 0
such that for all x ∈ M and and s, t ∈ Bx,b(0), the pullback
function f̂x(·) satisfies

∥∇2f̂x(s)−∇2f̂x(t)∥ ≤ ρ∥s− t∥.

The next assumption requires that the retraction is well-
behaved.
Assumption 4.3. For any x ∈ M and s ∈ Tx M satisfying
∥s∥ ≤ b, the singular value of the operator Tx,s in Defi-
nition 2.3 is bounded, that is, there exists σmax, σmin > 0
such that

σmin ≤ σmin(Tx,s) ≤ σmax(Tx,s) ≤ σmax.

Furthermore, there exists τ ≥ 0 such that the initial accel-
eration of the the curve γx,s(t) = Retrx(ts) with ∥s∥ = 1
is bounded by τ :

∥∥γ′′x,s(0)∥∥ ≤ τ .

5

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

4.2. Non-asymptotic convergence

In this subsection, we aim to find ϵ-approximate station-
ary points, which is achieved by always choosing Option
I in RAZGD. Our theoretical findings yield different con-
vergence results based on the choice of the initial point ξ
in the tangent space step 2. When setting ξ to zero, the
RAZGD converges to a first-order Riemannian stationary
point. Introducing a small perturbation to ξ, the perturbed
RAZGD seeks a second-order Riemannian stationary point
with high probability. The results are presented below, and
the associated proofs are deferred to Appendix E.

Theorem 4.1. Suppose that Assumption 4.1, 4.2 and 4.3
hold. Set the parameters in Algorithm 1 as follows

η =
1

4l
, B =

1

8

√
ϵ

ρ
, θ =

ρ
7
4 ϵ

1
4

l
, r = 0, K =

ρ
5
4

4ϵ
1
4

.

For any x0 ∈ M and sufficiently small ϵ > 0, choose µ =

O
(

ϵ1/4

d1/4

)
in Lines 3 of Algorithm 1, and µ = O

(
ϵ5/8

d1/4

)
in Line 5 of Subroutine 2. Then Algorithm 1 with Option I
outputs an ϵ-approximate first-order stationary point. The
total number of function value evaluations is no more than

O
(
(f(x0)− flow)d

ϵ
7
4

)
.

Theorem 4.2. Suppose that Assumption 4.1, 4.2 and 4.3
hold. Set the parameters in Algorithm 1 as follows

η =
1

4l
, θ =

ρ
7
4 ϵ

1
4

l
, χ = O

(
log

d

δϵ

)
≥ 1,

K =
χρ

5
4

4ϵ
1
4

, B =
1

8χ2

√
ϵ

ρ
, r =

θB

6K
.

For any x0 ∈ M and sufficiently small ϵ > 0, choose
µ = O

(
ϵ1/4

d1/4χ

)
= Õ

(
ϵ1/4

d1/4

)
in Lines 3 of Algorithm 1,

and µ = min
{
O
(

ϵ5/8

d1/4χ2

)
,O
(

ϵ7/8

χ3
√
d

)}
= Õ

(
ϵ7/8√

d

)
in

Line 5 of Subroutine 2. Then perturbed Algorithm 1 with
Option I outputs an ϵ-approximate second-order stationary
point with a probability of at least 1− δ. The total number
of function value evaluations is no more than

O

(
(f(x0)− flow)d

ϵ
7
4

log6
(
d

δϵ

))
.

In dealing with the unavailability of the first-order informa-
tion, we carefully choose the smoothing parameter µ in the
construction of its zeroth-order estimators. On the one hand,
a small value of µ reduces the approximation error, yielding
a sufficient decrease in the function value. On the other
hand, an excessively small µ can cause practical instability.
Consequently, a trade-off arises in selecting the smoothing
parameter, requiring a careful balance between maintaining

the decrease in the function value and ensuring practical
robustness. In our proofs, we frequently use Young’s in-
equality to guarantee this balance, leading to a better choice
of the smoothing parameter compared to the corresponding
choice in the Euclidean counterpart (Zhang & Gu, 2022).

Remark 4.1. For the special case of M = Rd and
Retrx(s) = x + s, Theorem 4.2 reveals that the func-
tion query complexity of perturbed RAZGD with Option
I matches the state-of-the-art result in Euclidean space
(Zhang & Gu, 2022). However, to attain the lower function
query complexity, the accelerated zeroth-order algorithms
in Zhang & Gu (2022) demand the smoothing parameter
µ = Õ(ϵ13/8d−1/2). In contrast, our perturbed RAZGD
relaxes this requirement to µ = Õ(ϵ7/8d−1/2), providing a
more robust selection guarantee.

Why smoothing parameter µ is important? Compared
to first-order algorithms, the notable distinction of zeroth-
order algorithms lies in the necessity to construct zeroth-
order estimates through function value evaluations. Among
these zeroth-order estimates, the smoothing parameter plays
a crucial role as an indicator. The efficiency of zeroth-order
algorithms is measured by the total number of function value
evaluations, while the value of the smoothing parameter de-
termines its robustness. Generally, a smaller smoothing
parameter improves the approximation quality of the zeroth-
order estimator, see Lemma D.1, for example. Nevertheless,
in practical systems, an excessively small µmight induce the
dominance of system noise in function differences, causing
the failure to represent the function differential (Lian et al.,
2016; Liu et al., 2018; 2020; Nguyen & Balasubramanian,
2023). Therefore, maintaining a relatively large smoothing
parameter is paramount to the robustness of zeroth-order
algorithms. In the realm of randomized zeroth-order estima-
tors, Ren et al. (2023) improved the value of the smoothing
parameter from O(ϵ3d−2) in (Bai et al., 2020) to a more effi-
cient choice O(ϵ1/2d−1) for finding second-order stationary
points in Euclidean space. When dealing with Riemannian
manifolds, Wang et al. (2021) demonstrated that choosing
random vectors uniformly from the unit sphere enables a
less restrictive smoothing parameter. The selection of the
smoothing parameter can be improved from O(ϵ(d+3)−3/2)
to O(ϵd−3/2) for seeking Riemannian first-order stationary
points.

4.3. Asymptotic convergence

Now we turn to investigate the asymptotic convergence of
Algorithm 1, which can be proven to avoid Riemannian
strict saddle points almost surely by employing Option II,
i.e. tangent space step asymptotic. In contrast to Subrou-
tine 2, where the smoothing parameter maintains the same
value during the update, in Subroutine 3, we initialize the
smoothing parameter µ with an appropriate constant value,

6

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

and then make µ gradually decay by multiplying it with the
contraction parameter β. Previous results have established
non-asymptotic convergence to ϵ-approximate second-order
stationary points, indicating that, with high probability, Al-
gorithm 1 with Option I will output a point satisfying the
specified threshold. However, there is a gap between high
probability and probability 1 for convergencing to second-
order stationary points. We close this gap by providing the
following result asserting that the set of initial points that
can be iterated to Riemannian saddle points has measure
(the volume induced by Riemannian metric) zero.

Theorem 4.3. Suppose that Assumption 4.1, 4.2 and 4.3
hold. For any x0 ∈ M and sufficiently small ϵ > 0, set

θ

(2− θ)λ∗
< η ≤ 1

4l
, θ =

ρ
7
4 ϵ

1
4

l
≤ min

{
−2λ∗
4l − λ∗

, 1

}

where λ∗ is the negative eigenvalue of Hessian at saddle
points with the greatest magnitude. Choose the smooth-
ing parameter µ with a reasonable constant magnitude
in both Line 4 of Algorithm 1 and during the initializa-
tion of Subroutine 3. Choose constant β < 1 or a se-
quence βk =

(
1− 1

k+2

)
, and the rest parameters follow

the choices of Theorem 4.1. Then Algorithm 1 with Op-
tion II avoids strict Riemannian saddle points almost surely.
Furthermore, this implies that the Algorithm 1 with Option
II asymptotically converges to a strict Riemannian second-
order stationary point.

Remark 4.2. In the tangent space step TSSA, the smooth-
ing parameter µ decreases in exponential rate, which makes
the zeroth-order method almost identical to a first-order
method. Despite this setting being convenient for theoreti-
cal analysis, the rapid decaying of smoothing parameters
makes the algorithm less attractive from the zeroth-order
optimization perspective. To reduce the rate of decaying
of the smoothing parameter, we propose an alternating ap-
proach with a time-varying contracting factor, i.e., multi-
plying by a factor of

(
1− 1

k+2

)
. It is obvious that the rate

of decaying of the smoothing parameter in TSSA stage is
µk+1 = 1

3(k+2)µ, which is much slower than the exponen-
tial decaying given by µk+1 = βkµ. Fortunately, the asymp-
totic avoidance of saddle points holds with βk = 1− 1

k+2 .

5. Numerical Experiments
In this section, we conduct experiments to demonstrate the
robustness and efficiency of RAZGD. Specifically, we im-
plement the tangent space step (Subroutine 2) due to its
non-asymptotic complexity guarantee. All experiments
are performed on a computer with a 24-core Intel Core
i9-13900HX processor.

5.1. Improved robustness

To verify the robust performance, we consider the following
quartic function (Lucchi et al., 2021; Zhang & Gu, 2022)
on Euclidean space Rd:

f (x1, x2, . . . , xd, y) =
1

4

d∑
i=1

x4i − y

d∑
i=1

xi +
d

2
y2

which has a strict saddle point at x0 = (0, . . . , 0)⊤ and two
global minima at (1, . . . , 1)⊤ and (−1, . . . ,−1)⊤.

In this experiment, we test Algorithm 1 with perturbation
in the tangent space step (Perturbed-RAZGD) along with
two Euclidean accelerated zeroth-order algorithms, ZO-
Perturbed-AGD, and ZO-Perturbed-AGD-ANCF in (Zhang
& Gu, 2022). We choose the retraction as Retrx(s) = x+s.
The basic parameters for all three algorithms follow respec-
tive theorems. The smoothing parameter µ is set to 0.01 for
each algorithm, and notably, we run an additional choice
of µ = 0.3 for our algorithm. The initial point is set as the
saddle point x0. Due to the inherent randomness in these
algorithms, each algorithm is executed 10 times and we
report the averaged function value versus the averaged num-
ber of function queries in Figure 4. Figure 4 demonstrates
that the variance of our algorithm (indicated by the width
of the shadow) is smaller than the other two with the same
smoothing parameter µ = 0.01. Furthermore, our algorithm
still convergences even with a larger smoothing parameter
µ = 0.3. The two aspects visually showcase the robustness
of our accelerated zeroth-order algorithm.

5.2. Lower function queries

In this part, we assess the acceleration effectiveness of the
non-perturbed RAZGD with Option I by comparing it with
Riemannian zeroth-order gradient descent (RZGD) and Eu-
clidean projected zeroth-order gradient descent (PZGD).
The corresponding pseudocodes are left in Appendix G.

We first consider the simplex constrained least-square prob-
lem (Li et al., 2023c)

min ∥Ax− b∥22
s.t. x ∈ ∆d−1,

where ∆d−1 = {x ∈ Rd :
∑d

i=1 xi = 1 and x ≥ 0},
A ∈ Rm×d and b ∈ Rm. Since the positive orthant is
a Riemannian manifold with the Shahshahani metric, the
simplex has a natural submanifold structure (Shahshahani,
1979). For any point x in the interior of ∆d−1, the tangent
space is the hyperplane passing through 0 and parallel to
x ∈ ∆d−1, i.e. Tx ∆

d−1 = {s ∈ Rd :
∑d

j=1 sj = 0}. We
use the exponential map on the Shahshahani manifold as the
retraction (Feng et al., 2022). A detailed discussion of Rie-
mannian geometry of the simplex is deferred to Appendix

7

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

(a) d=20 (b) d=100 (c) d=200

Figure 4. Performance of different zeroth-order accelerated algorithms to minimize the quartic function with growing dimensions.
Confidence intervals show mini-max intervals over ten runs.

H. In the experiment, the feature matrix A is drawn from
a standard Gaussian distribution, and the label vector b is
generated using the expression Aζ + µ. Here, ζ and µ are
randomly sampled from a Gaussian distribution, with the
additional constraint that the sum of all elements equals 1
for ζ. For PZGD, we apply the projection in (Chen & Ye,
2011). The results are reported in Figure 5, showing that
RAZGD requires lower function queries.

(a) m=200,d=20 (b) m=300,d=30

Figure 5. Performance on linear least-squares over the unit simplex
with different problem sizes.

(a) Category:3 Dimension:10 (b) Category:2 Dimension:20

Figure 6. Performance on empirical hypervolume under the sphere
manifold with different categories and dimensions.

To further demonstrate the efficiency, we consider a real-
world application: the optimal linear combination of con-
tinuous predictors in the context of a binary classification

problem (Das et al., 2022). For multi-category responses,
the optimal predictor combination can be obtained by maxi-
mization of the empirical hypervolume under the manifold,
with the following form

max f(x)

s.t.
d∑

i=1

x2i = 1, x ∈ Rd,

where the objective function f(·) takes no analytic form.
We test algorithms on both two disease categories and
three disease categories, and results are shown in Figure
6. For the unit sphere Sd−1, the tangent space is defined
as Tx Sd−1 := {s ∈ Rd :

∑d
j=1 xjsj = 0}. In the ex-

periment, the process of biomarker data generation is con-
sistent with (Das et al., 2022). The retraction is chosen as
Retrx(s) = (x+ s)/∥x+ s∥2. For PZGD, we use x/∥x∥2
as the projection to the unit sphere. It is worth mention-
ing that in practical scenarios, the lower function queries
lead to less running time. Thus, RAZGD reaches the tar-
get accuracy within 30 seconds in both cases, while PZGD
needs more than 300 seconds to achieve the same accu-
racy, indicating the effective performance of our accelerated
algorithm.

6. Conclusions
In the paper, we introduce a Riemannian accelerated zeroth-
order gradient descent based on the deterministic coordinate-
wise zeroth-order estimator. Our accelerated algorithm at-
tains the best-known function query complexity for achiev-
ing both ϵ-approximate first-order and second-order station-
ary points respectively. Notably, it allows a larger smoothing
parameter and thus demonstrates better robustness. Further-
more, we also establish the asymptotic convergence behav-
ior with probability 1. Experimental results are presented,
verifying the superior performance in terms of both function
query complexity and robustness.

8

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Acknowledgement
We thank Huikang Liu (Shanghai Jiao Tong University)
for several helpful discussions at the early stage of this
paper. Xiao Wang acknowledges Grant 202110458 from
Shanghai University of Finance and Economics and support
from the Shanghai Research Center for Data Science and
Decision Technology. This research is partially supported by
the National Natural Science Foundation of China (Grants
72394360, 72394364, 72394365, 72171141) and Natural
Science Foundation of Shanghai (No. 23ZR1445900).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

algorithms on matrix manifolds. In Optimization Algo-
rithms on Matrix Manifolds. Princeton University Press,
2009.

Agarwal, N., Boumal, N., Bullins, B., and Cartis, C. Adap-
tive regularization with cubics on manifolds. Mathemati-
cal Programming, 188:85–134, 2021.

Alimisis, F., Orvieto, A., Becigneul, G., and Lucchi, A. Mo-
mentum improves optimization on riemannian manifolds.
In International conference on artificial intelligence and
statistics, pp. 1351–1359. PMLR, 2021.

Bai, Q., Agarwal, M., and Aggarwal, V. Escaping saddle
points for zeroth-order non-convex optimization using
estimated gradient descent. In 2020 54th Annual Con-
ference on Information Sciences and Systems (CISS), pp.
1–6. IEEE, 2020.

Balasubramanian, K. and Ghadimi, S. Zeroth-order noncon-
vex stochastic optimization: Handling constraints, high
dimensionality, and saddle points. Foundations of Com-
putational Mathematics, pp. 1–42, 2022.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

Bishop, R. L. and O’Neill, B. Manifolds of negative curva-
ture. Transactions of the American Mathematical Society,
145:1–49, 1969.

Boumal, N. An introduction to optimization on smooth
manifolds. Cambridge University Press, 2023.

Boumal, N., Absil, P.-A., and Cartis, C. Global rates of
convergence for nonconvex optimization on manifolds.
IMA Journal of Numerical Analysis, 39(1):1–33, 2019.

Bridson, M. R. and Haefliger, A. Metric spaces of non-
positive curvature, volume 319. Springer Science & Busi-
ness Media, 2013.

Bubeck, S., Jiang, Q., Lee, Y. T., Li, Y., and Sidford, A.
Near-optimal method for highly smooth convex optimiza-
tion. In Conference on Learning Theory, pp. 492–507.
PMLR, 2019.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. “con-
vex until proven guilty”: Dimension-free acceleration
of gradient descent on non-convex functions. In Inter-
national conference on machine learning, pp. 654–663.
PMLR, 2017.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Ac-
celerated methods for nonconvex optimization. SIAM
Journal on Optimization, 28(2):1751–1772, 2018.

Chen, Y. and Ye, X. Projection onto a simplex. arXiv
preprint arXiv:1101.6081, 2011.

Criscitiello, C. and Boumal, N. Efficiently escaping saddle
points on manifolds. Advances in Neural Information
Processing Systems, 32, 2019.

Criscitiello, C. and Boumal, N. An accelerated first-order
method for non-convex optimization on manifolds. Foun-
dations of Computational Mathematics, pp. 1–77, 2022.

Das, P., De, D., Maiti, R., Kamal, M., Hutcheson, K. A.,
Fuller, C. D., Chakraborty, B., and Peterson, C. B. Esti-
mating the optimal linear combination of predictors using
spherically constrained optimization. BMC bioinformat-
ics, 23(3):1–20, 2022.

Fan, X., Gao, Z., Wu, Y., Jia, Y., and Harandi, M. Learning
a gradient-free Riemannian optimizer on tangent spaces.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pp. 7377–7384, 2021.

Feng, Y., Panageas, I., and Wang, X. Accelerated multiplica-
tive weights update avoids saddle points almost always.
arXiv preprint arXiv:2204.11407, 2022.

Flokas, L., Vlatakis-Gkaragkounis, E. V., and Piliouras,
G. Efficiently avoiding saddle points with zero order
methods: No gradients required. In NeurIPS, 2019.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Jaquier, N., Rozo, L. D., Caldwell, D. G., and Calinon, S.
Geometry-aware tracking of manipulability ellipsoids. In
Robotics: Science and Systems, number CONF, 2018.

9

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Jaquier, N., Rozo, L., Calinon, S., and Bürger, M. Bayesian
optimization meets riemannian manifolds in robot learn-
ing. In Conference on Robot Learning, pp. 233–246.
PMLR, 2020.

Jiang, B., Wang, H., and Zhang, S. An optimal high-order
tensor method for convex optimization. Mathematics of
Operations Research, 46(4):1390–1412, 2021.

Jin, C., Netrapalli, P., and Jordan, M. I. Accelerated gra-
dient descent escapes saddle points faster than gradient
descent. In Conference On Learning Theory, pp. 1042–
1085. PMLR, 2018.

Jin, J. and Sra, S. Understanding riemannian acceleration
via a proximal extragradient framework. In Conference
on Learning Theory, pp. 2924–2962. PMLR, 2022.

Kim, J. and Yang, I. Accelerated gradient methods for
geodesically convex optimization: Tractable algorithms
and convergence analysis. In International Conference
on Machine Learning, pp. 11255–11282. PMLR, 2022.

Li, H. and Lin, Z. Restarted nonconvex accelerated gradient
descent: No more polylogarithmic factor in the o(ϵ−7/4)
complexity. In International Conference on Machine
Learning, pp. 12901–12916. PMLR, 2022.

Li, J., Balasubramanian, K., and Ma, S. Stochastic zeroth-
order Riemannian derivative estimation and optimization.
Mathematics of Operations Research, 48(2):1183–1211,
2023a.

Li, J., Balasubramanian, K., and Ma, S. Zeroth-order Rie-
mannian averaging stochastic approximation algorithms.
arXiv preprint arXiv:2309.14506, 2023b.

Li, Q., McKenzie, D., and Yin, W. From the simplex
to the sphere: faster constrained optimization using the
hadamard parametrization. Information and Inference: A
Journal of the IMA, 12(3):iaad017, 2023c.

Lian, X., Zhang, H., Hsieh, C.-J., Huang, Y., and Liu, J. A
comprehensive linear speedup analysis for asynchronous
stochastic parallel optimization from zeroth-order to first-
order. Advances in Neural Information Processing Sys-
tems, 29, 2016.

Lin, H., Mairal, J., and Harchaoui, Z. A universal catalyst
for first-order optimization. Advances in neural informa-
tion processing systems, 28, 2015.

Lin, L., Saparbayeva, B., Zhang, M. M., and Dunson, D. B.
Accelerated algorithms for convex and non-convex opti-
mization on manifolds. arXiv preprint arXiv:2010.08908,
2020.

Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S., and
Amini, L. Zeroth-order stochastic variance reduction for
nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero III,
A. O., and Varshney, P. K. A primer on zeroth-order
optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Sig-
nal Processing Magazine, 37(5):43–54, 2020.

Liu, Y., Shang, F., Cheng, J., Cheng, H., and Jiao, L. Accel-
erated first-order methods for geodesically convex opti-
mization on Riemannian manifolds. Advances in Neural
Information Processing Systems, 30, 2017.

Lucchi, A., Orvieto, A., and Solomou, A. On the second-
order convergence properties of random search methods.
Advances in Neural Information Processing Systems, 34:
25633–25645, 2021.

Maass, A. I., Manzie, C., Nesic, D., Manton, J. H., and
Shames, I. Tracking and regret bounds for online zeroth-
order euclidean and Riemannian optimization. SIAM
Journal on Optimization, 32(2):445–469, 2022.

Mertikopoulos, P. and Sandholm, W. H. Riemannian game
dynamics. Journal of Economic Theory, 2018.

Nesterov, Y. Accelerating the cubic regularization of new-
ton’s method on convex problems. Mathematical Pro-
gramming, 112(1):159–181, 2008.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, 17:527–566, 2017.

Nesterov, Y. E. A method of solving a convex programming
problem with convergence rate o\bigl(kˆ2\bigr). In Dok-
lady Akademii Nauk, volume 269, pp. 543–547. Russian
Academy of Sciences, 1983.

Nguyen, A. and Balasubramanian, K. Stochastic zeroth-
order functional constrained optimization: Oracle com-
plexity and applications. INFORMS Journal on Optimiza-
tion, 5(3):256–272, 2023.

Ostrowski, A. M. On some metrical properties of operator
matrices and matrices partitioned into blocks. Journal of
Mathematical Analysis and Applications, 2(2):161–209,
1961.

Panageas, I., Piliouras, G., and Wang, X. First-order meth-
ods almost always avoid saddle points: The case of van-
ishing step-sizes. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pp. 6471–6480,
2019.

10

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Ren, Z., Tang, Y., and Li, N. Escaping saddle points in
zeroth-order optimization: the power of two-point estima-
tors. In International Conference on Machine Learning,
pp. 28914–28975. PMLR, 2023.

Scheinberg, K. Finite difference gradient approximation:
To randomize or not? INFORMS Journal on Computing,
34(5):2384–2388, 2022.

Shahshahani, S. A New Mathematical Framework for the
Study of linage and Selection, volume 17. American
Mathematical Society, 1979.

Shub, M. Global stability of dynamical systems. Springer
Science & Business Media, 1987.

Vlatakis-Gkaragkounis, E.-V., Flokas, L., and Piliouras,
G. Efficiently avoiding saddle points with zero order
methods: No gradients required. Advances in neural
information processing systems, 32, 2019.

Wang, T. On sharp stochastic zeroth-order hessian esti-
mators over Riemannian manifolds. Information and
Inference: A Journal of the IMA, 12(2):787–813, 2023.

Wang, T., Huang, Y., and Li, D. From the greene–wu convo-
lution to gradient estimation over Riemannian manifolds.
arXiv preprint arXiv:2108.07406, 2021.

Zhang, H. and Gu, B. Faster gradient-free methods for
escaping saddle points. In The Eleventh International
Conference on Learning Representations, 2022.

Zhang, H. and Sra, S. First-order methods for geodesically
convex optimization. In Conference on Learning Theory,
pp. 1617–1638. PMLR, 2016.

Zhang, H. and Sra, S. Towards riemannian accelerated gra-
dient methods. arXiv preprint arXiv:1806.02812, 2018.

Zhang, H., Xiong, H., and Gu, B. Zeroth-order negative cur-
vature finding: Escaping saddle points without gradients.
Advances in Neural Information Processing Systems, 35:
38332–38344, 2022.

11

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

A. Further Related work
Zeroth-order optimization on Riemannian manifolds. Riemannian zeroth-order algorithms typically involve two
key steps: constructing Riemannian zeroth-order estimators and applying them with standard optimization algorithms,
such as Riemannian gradient descent. Through noisy evaluations of the objective function, Li et al. (2023a) studied the
randomized zeroth-order estimators for the Riemannian gradient and Hessian, extending the Gaussian smoothing technique
(Nesterov & Spokoiny, 2017; Balasubramanian & Ghadimi, 2022) onto the Riemannian manifold. Subsequently, Wang
et al. (2021) proposed an alternative zeroth-order gradient estimator based on the Greene–Wu convolution over Riemannian
manifolds, demonstrating superior approximation quality compared to the approach by Li et al. (2023a). When it comes
to the Riemannian Hessian, Wang (2023) introduced a novel Riemannian zeroth-order estimator that relies solely on
constant function evaluations. Turning to Riemannian zeroth-order algorithms, Fan et al. (2021) first proposed a Riemannian
meta-optimization method that learns a gradient-free optimizer without theoretical guarantees. Li et al. (2023a) studied
several zeroth-order algorithms for stochastic Riemannian optimization, presenting the first complexity results. Subsequently,
they improved sample complexities by introducing zeroth-order Riemannian averaging stochastic approximation algorithms
in (Li et al., 2023b). Moreover, Maass et al. (2022) studied the exploration of zeroth-order algorithms in the context of
Riemannian online learning.

Acceleration on Riemannian manifolds. The main challenge in Riemannian optimization arises from the nonlinear
structure of Riemannian manifolds, and two powerful techniques have been developed. The first involves leveraging
trigonometric comparison inequalities (Zhang & Sra, 2016; Alimisis et al., 2021), while the second utilizes the tangent space
step (Criscitiello & Boumal, 2019; 2022). In cases where the objective function is geodesically convex (Bishop & O’Neill,
1969; Bridson & Haefliger, 2013), a recent line of work (Liu et al., 2017; Zhang & Sra, 2018; Lin et al., 2020; Alimisis
et al., 2021; Jin & Sra, 2022; Kim & Yang, 2022) focused on generalizing Nesterov’s accelerated update to Riemannian
optimization, mirroring the well-known convergence result of accelerated gradient descent on Euclidean convex optimization.
Moreover, outside the geodesic convexity, Criscitiello & Boumal (2022) established the extension of Euclidean nonconvex
acceleration techniques (Jin et al., 2018; Carmon et al., 2018) to Riemannian manifolds, improving the convergence rate
compared to Riemannian gradient descent (Boumal et al., 2019; Criscitiello & Boumal, 2019).

B. Discussion of Assumptions
In the paper, the Lipschitz-type continuity of the pullback function follows from previous works (Boumal et al., 2019;
Agarwal et al., 2021; Criscitiello & Boumal, 2019; 2022), and a detailed comparison of the parallel transport based Lipschitz
continuity, such as ∥∥grad f(x)− Γx

y grad f(y)
∥∥ ≤ O(dM(x, y))

is provided in the textbook (Boumal, 2023), where Γx
y : Ty M → Tx M denotes parallel transport from y to x along any

minimizing geodesic, and dM(x, y) is the Riemannian distance. Since our interest is developing Riemannian zeroth-order
algorithms, the Hessian Lipschitz continuity in Assumption 4.2 is stronger compared to those in (Criscitiello & Boumal,
2019) and (Criscitiello & Boumal, 2022). Whereas in the special case where M = Rd and Retrx(s) = x + s, both
Assumptions 4.1 and 4.2 reduce to the standard Lipschitz continuity in Euclidean space.

For the well-behaved retraction mapping (Assumption 4.3), when the sectional curvature and the covariant derivative of the
Riemann curvature endomorphism are both bounded, exponential mapping ensures it holds (Theorem 2.7 in (Criscitiello &
Boumal, 2022)). For more details, readers can refer to (Agarwal et al., 2021; Criscitiello & Boumal, 2022; Boumal, 2023).

C. Auxiliary Lemmas
We first list the concept of the adjoint of a linear operator, which is essential in bridging the differential and Hessian of a
function on a manifold and their counterparts obtained by interplay with retraction map.
Definition C.1. Let E and E′ be two Euclidean spaces, with inner products ⟨, ⟩a and ⟨, ⟩b respectively. Let A : E → E′ be
a linear operator. The adjoint of A is a linear operator A∗ : E′ → E defined by this property:

∀u ∈ E, v ∈ E′, ⟨A(u), v⟩b = ⟨u,A∗(v)⟩a.

In particular, if A maps E to E equipped with an inner product ⟨, ⟩ and

∀u, v ∈ E, ⟨A(u), v⟩ = ⟨u,A(v)⟩,

12

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

this is, if A = A∗, we say A is self-adjoint.

Several useful lemmas and inequalities are presented below.

Lemma C.1 (Lemma 2.5 in (Criscitiello & Boumal, 2022)). For f : M → R twice continuously differentiable, x ∈ M and
s ∈ TxM, with T ∗

x,s denoting the adjoint of Tx,s,

∇f̂x(s) = T ∗
x,s grad f (Retrx(s)) , ∇2f̂x(s) = T ∗

x,s Hess f (Retrx(s))Tx,s +Ws,

where Tx,s si the differential of Retrx at s (a linear operator):

Tx,s = DRetrx(s) : Tx M → TRetrx(s) M,

and Ws is a self-adjoint linear operator on Tx M defined through polarization by

⟨Ws[ṡ], ṡ⟩ =
〈
grad f (Retrx(s)) , γ

′′
x,s(0)

〉
,

with γ′′x,s(0) ∈ TRetrx(s)M the intrinsic acceleration on M of γ(τ) = Retrx(s+ τ ṡ) at τ = 0.

Lemma C.2 (Mechanism in (Li & Lin, 2022)). For the tangent space step (Subroutine 2), denote K to be the iteration
number when the “if condition” on Line 7 triggers, i.e.

K = min
k

k : k

k−1∑
j=0

∥sj+1
x − sjx∥2 > B2

 .

Then for each k = 0, 1, · · · ,K − 1, it holds that

∥skx − s0x∥ ≤ B,

∥ykx − s0x∥ ≤ 2B.

When the ”if condition” does not trigger, for all k = 0, 1, · · · ,K, it holds that

∥skx − s0x∥ ≤ B,

∥ykx − s0x∥ ≤ 2B.

Lemma C.3 (Young’s inequality). If a ≥ 0 and b ≥ 0 are nonnegative real numbers and if p > 1 and q > 1 are real
numbers such that 1

p + 1
q = 1, then

ab ≤ ap

p
+
bq

q
.

Equality holds if and only if ap = bq . Specifically, for any ϵ > 0, it holds that

ab ≤ a2

2ε
+
εb2

2
.

Lemma C.4 (Minkowski’s inequality). Given x1, . . . , xn ∈ R and y1, . . . , yn ∈ R, for any p > 0, it holds that(
n∑

k=1

|xk + yk|p
) 1

p

≤

(
n∑

k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

.

D. Approximation Error of the Estimator
Lemma D.1. Suppose that Assumption 4.1 and 4.2 holds For any smoothing parameter µ ∈ (0, b) and (x, sx) ∈ TM
satisfying ∥sx∥ ∈ Bx,b−µ(0), the Riemannian coordinate-wise zeroth-order estimator in Definition 3.1 satisfies

∥∥∥gx(sx;µ)−∇f̂x(sx)
∥∥∥ ≤ min

{
lµ
√
d

2
,
ρµ2

√
d

6

}
.

13

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Proof. First note that∣∣∣f̂x(sx + µei)− f̂x(sx − µei)− 2µ⟨∇f̂x(sx), ei⟩
∣∣∣

=
∣∣∣(f̂x(sx + µei)− f̂x(sx)− µ⟨∇f̂x(sx), ei⟩

)
−
(
f̂x(sx − µei)− f̂x(sx) + µ⟨∇f̂x(sx), ei⟩

)∣∣∣
≤
∣∣∣f̂x(sx + µei)− f̂x(sx)− µ⟨∇f̂x(sx), ei⟩

∣∣∣+ ∣∣∣f̂x(sx − µei)− f̂x(sx) + µ⟨∇f̂x(sx), ei⟩
∣∣∣

≤lµ2,

(2)

where the last inequality holds due to the Lipschitz continuity of ∇f̂x(·) in Assumption 4.1. Consequently, we have∥∥∥gx(sx;µ)− ∇̂fx(s)
∥∥∥

=

∥∥∥∥∥
d∑

i=1

f̂x(sx + µei)− fx(sx − µei)

2µ
ei −

d∑
i=1

⟨∇f̂x(sx), ei⟩ei

∥∥∥∥∥
=

1

2µ

∥∥∥∥∥
d∑

i=1

(
f̂x(sx + µei)− f̂x(sx − µei)− 2µ⟨∇f̂x(sx), ei⟩

)
ei

∥∥∥∥∥
=

1

2µ

√√√√ d∑
i=1

(
f̂x(sx + µei)− f̂x(sx − µei)− 2µ⟨∇f̂x(sx), ei⟩

)2
≤ 1

2µ

√
dl2µ4

=
lµ
√
d

2
.

Note that it also holds that

f̂x(sx + µei)− f̂x(sx − µei)− 2µ⟨∇f̂x(sx), ei⟩

=

(
f̂x(sx + µei)− f̂x(sx)− µ⟨∇f̂x(sx), ei⟩ −

µ2

2
⟨∇2f̂x(sx)ei, ei⟩

)
−
(
f̂x(sx − µei)− f̂x(sx) + µ⟨∇f̂x(sx), ei⟩ −

µ2

2
⟨∇2f̂x(sx)ei, ei⟩

)
,

and thus the same argument in (2) gives∣∣∣f̂x(sx + µei)− f̂x(sx − µei)− 2µ⟨∇f̂x(sx), ei⟩
∣∣∣ ≤ ρµ3

3
.

Similarly, we establish ∥∥∥gx(sx;µ)− ∇̂fx(s)
∥∥∥ ≤ 1

2µ

√
d

(
ρµ3

3

)2

=
ρµ2

√
d

6
.

Therefore, we can conclude ∥∥∥gx(sx;µ)−∇f̂x(sx)
∥∥∥ ≤ min

{
lµ
√
d

2
,
ρµ2

√
d

6

}
.

For simplicity, we use E(µ) = min
{

lµ
√
d

2 , ρµ
2
√
d

6

}
to represent the upper bound of approximation error of the Riemannian

coordinate-wise zeroth-order estimator. This notation is widely used throughout the non-asymptotic convergence analysis.

14

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

E. Proofs of Non-asymptotic Convergence Analysis
In the following non-asymptotic analysis, the magnitudes of parameters in RAZGD (Algorithm 1) are set as:

η =
1

4l
, B = Õ

(
ϵ

1
2

)
, θ = O

(
ϵ

1
4

)
, r = O(ϵ), K = Õ

(
ϵ−

1
4

)
. (3)

E.1. Riemannian zeroth-order gradient descent step

For the iterate xt with a relatively large zeroth-order estimator, i.e. ∥gxt(0;µ)∥ ≥ lB, we show that the Riemannian
zeroth-order gradient descent step (Subroutine 1) results in the function value decrease of O(B2).

Lemma E.1. Suppose that Assumption 4.1 and 4.2 hold. Under the parameter setting (3), choose a reasonably small µ
such that E(µ) ≤ lB

2 in Algorithm 1. Then, for the iterate xt satisfying ∥gxt
(0;µ)∥ ≥ lB, we have:

f(xt+1) ≤ f(xt)−min

{
lB2

16
, lb2

}
.

Proof. First, consider the scenario where ∥gxt
(0;µ)∥ ≤ b

η ; thus, ηgxt
(0;µ) ∈ Bxt,b(0), ensuring that local Lipschitz

continuity holds. Based on Assumption 4.1, we have

f(xt+1)

=f(Retrxt
(−ηgxt

(0;µ)))

=f̂xt
(−ηgxt

(0;µ))

≤f̂xt
(0)− η⟨∇f̂xt

(0), gxt
(0;µ)⟩+ lη2

2
∥gxt

(0;µ)∥2

=f(xt)−
η

2

(
∥∇f̂xt(0)∥2 + ∥gxt(0;µ)∥2 − ∥∇f̂xt(0)− gxt(0;µ)∥2

)
+
lη2

2
∥gxt(0;µ)∥2

≤f(xt)−
η

2
(1− lη) ∥gxt

(0;µ)∥2 + η

2
E(µ)2.

Substituting η = 1
4l , E(µ) ≤ lB

2 and ∥gxt
(0;µ)∥ ≥ lB gives that

f(xt+1) ≤ f(xt)−
lB2

16
.

For the extremely large estimator ∥gxt
(0;µ)∥ ≥ b

η , similarly, it holds that

f(xt+1)

=f̂xt
(−αηgxt

(0;µ))

≤f̂xt
(0)− αη⟨∇f̂xt

(0), gxt
(0;µ)⟩+ lα2η2

2
∥gxt

(0;µ)∥2

=f(xt)−
αη

2

(
∥∇f̂xt

(0)∥2 + ∥gxt
(0;µ)∥2 − ∥∇f̂xt

(0)− gxt
(0;µ)∥2

)
+
lα2η2

2
∥gxt

(0;µ)∥2

≤f(xt)−
4lb2

2α
+
αη

2
E(µ)2 +

lb2

2
(5a)

≤f(xt)− lb2, (5b)

where we use α∥gxt
(0;µ)∥ = b

η and η = 1
4l in (5a), and (5b) holds because α < 1 and E(µ)2 ≤ l2B2

4 ≤ lb2

2 . Therefore,
we conclude

f(xt+1) ≤ f(xt)−min

{
lB2

16
, lb2

}
.

15

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

E.2. Tangent space step: function value decrease

In this subsection, we establish that the tangent space step results in the function value decrease for the case when the ”if
condition” (Line 8 of Subroutine 2) triggers. According to Lemma C.2, we know that when the ”if condition” triggers, for
each k = 0, 1, . . . ,K − 1, skxt

∈ Bxt,b(0) and ykxt
∈ Bxt,b(0). The following lemma states that sKxt

stays within the ball
Bxt,b(0) as well, and thus, the local Lipschitz continuity holds for all iterates in the tangent space step.

Lemma E.2. Suppose that Assumption 4.1 and 4.2 hold. Under the parameter setting (3), choose a reasonably small µ such
that E(µ) ≤ lB

2 holds in Algorithm 1. Then, for the tangent space step at iterate xt, when “if condition” triggers, we have:

∥∇f̂xt
(yK−1

xt
)∥ ≤ 4lB, and ∥sKxt

− s0xt
∥ ≤ 4B.

Proof. By the mechanism of Algorithm 1, we know that the zeroth-order estimator gxt(0;µ) satisfies ∥gxt(0;µ)∥ ≤ lB.
Recall s0xt

= ξt ∼ Uni (Bxt,r(0)), we have

∥∇f̂xt
(s0xt

)∥

≤∥∇f̂xt(s
0
xt
)−∇f̂xt(0)∥+ ∥∇f̂xt(0)− gxt(0;µ)∥+ ∥gxt(0;µ)∥

≤l · ∥ξt∥+E(µ) + lB

≤2lB,

where the last inequality uses ∥ξt∥ = r = O(ϵ) ≤ B
2 . Therefore, we could upper bound ∥∇f̂xt

(yK−1
xt

)∥ as

∥∇f̂xt(y
K−1
xt

)∥ ≤ ∥∇f̂xt
(yK−1

xt
)−∇f̂xt

(s0xt
)∥+ ∥∇f̂xt

(s0xt
)∥ ≤ l∥yK−1

xt
− s0xt

∥+ 2lB ≤ 4lB.

Since sKxt
= yK−1

xt
− ηgxt(y

K−1
xt

;µ), it follows that

∥sKxt
− s0xt

∥
≤∥sKxt

− yK−1
xt

∥+ ∥yK−1
xt

− s0xt
∥

≤η∥gxt
(yK−1

xt
;µ)∥+ 2B

≤η∥gxt
(yK−1

xt
;µ)−∇f̂xt

(yK−1
xt

)∥+ η∥∇f̂xt
(yK−1

xt
)∥+ 2B

≤ηE(µ) + η · 4lB + 2B

≤4B,

where the last inequality holds due to that η = 1
4l and E(µ) ≤ lB

2 .

To establish the function value decrease in the tangent space step, we mimic the proof strategy in (Li & Lin, 2022). First
note that ∇2f̂xt

(s0t) is self-adjoint, there exists a basis of eigenvectors {uj}dj=1 satisfying

∇2f̂xt(s
0
t)uj = λjuj ,

where λ1, · · · , λd are associated eigenvalues. Based on the basis {uj}dj=1 and local coordinate {ej}dj=1 of tangent space
Txt

M, we introduce the following notations for any given sxt
,∇f̂xt

(·) ∈ Txt
M:

s̃xt,j = ⟨sxt
, uj⟩, sxt,j = ⟨sxt

, ej⟩, j = 1, · · · , d,

∇̃j f̂xt
(·) = ⟨∇f̂xt

(·), uj⟩, ∇j f̂xt
(·) = ⟨∇f̂xt

(·), ej⟩, j = 1, · · · , d.

16

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Therefore, it holds that

sxt =

d∑
j=1

s̃xt,juj =

d∑
j=1

sxt,jej ,

∥sxt
∥2 =

d∑
j=1

|s̃xt,j |2 =

d∑
j=1

|sxt,j |2,

f̂xt
(·) =

d∑
j=1

∇̃j f̂xt
(·)uj =

d∑
j=1

∇j f̂xt
(·)ej ,

∥f̂xt
(·)∥2 =

d∑
j=1

|∇̃j f̂xt
(·)|2 =

d∑
j=1

|∇j f̂xt
(·)|2.

Lemma E.3. Suppose that Assumption 4.1 and 4.2 hold. Under the parameter setting (3), choose a reasonably small µ such
that E(µ) ≤ lB

2 in Algorithm 1. Then, for the tangent space step at iterate xt, when the “if condition” triggers, we have

f̂xt
(sKxt

) ≤ f̂xt
(s0xt

) +
32ρB3

3
+

d∑
j=1

hj(s̃
K
xt,j),

where
hj(z) = ⟨∇̃j f̂xt

(s0xt
), z − s̃0xt,j⟩+

λj
2
(z − s̃0xt,j)

2, j = 1, . . . , d.

are one-dimensional quadratic functions.

Proof. From the Hessian Lipschitz continuity (Assumption 4.2), we have

f̂xt
(sKxt

)

≤f̂xt
(s0xt

) + ⟨∇f̂xt
(s0xt

), sKxt
− s0xt

⟩+ 1

2
⟨∇2f̂xt

(s0xt
)(sKxt

− s0xt
), sKxt

− s0xt
⟩+ ρ

6
∥sKxt

− s0xt
∥3

≤f̂xt
(s0xt

) + ⟨∇f̂xt
(s0xt

), sKxt
− s0xt

⟩+ 1

2
⟨∇2f̂xt

(s0xt
)(sKxt

− s0xt
), sKxt

− s0xt
⟩+ 32ρB3

3
, (8a)

=f̂xt
(s0xt

) +
32ρB3

3
+

d∑
j=1

⟨∇̃j f̂xt
(s0xt

), s̃Kxt,j − s̃0xt,j⟩+
λj
2
(s̃Kxt,j − s̃0xt,j)

2 (8b)

=f̂xt
(s0xt

) +
32ρB3

3
+

d∑
j=1

hj(s̃
K
xt,j),

where (8a) comes from Lemma E.2, and (8b) holds because {uj}dj=1 forms a standard basis of the tangent space Txt M.

The above lemma indicates that it is sufficient to analyze the behavior of one-dimensional quadratic functions hj(s̃Kxt,j
),

j = 1, . . . , d. Recall the k-th update in the tangent space step at iterate xt:

ykxt
= skxt

+ (1− θ)(skxt
− sk−1

xt
),

sk+1
xt

= ykxt
− ηgxt

(ykxt
;µ).

It equivalents as
ỹkxt,j = s̃kxt,j + (1− θ)(s̃kxt,j − s̃k−1

xt,j
),

s̃k+1
xt,j

= ỹkxt,j − η∇hj(ỹkxt,j)− ηEk
xt,j ,

(9)

where

Ek
xt,j = ⟨gxt

(ykxt
;µ), uj⟩ − ∇hj(ỹkxt,j) := g̃xt,j(y

k
xt
;µ)−∇hj(ỹkxt,j).

17

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

for all j = 1, · · · , d. As Li & Lin (2022) pointed out, the k-th update in the tangent space step can be viewed as applying
inexact accelerated gradient descent to hj(·) with the error Ek

xt,j
. The following lemma describes the error that could be

controlled.
Lemma E.4. Suppose that Assumption 4.1 and 4.2 hold. Under the parameter setting (3), choose a reasonably small µ
such that E(µ) ≤ lB

2 in Algorithm 1. Then, for the tangent space step at iterate xt, the error Ek
xt,j

in update (9) satisfies

d∑
j=1

|E0
xt,j |

2 ≤ E(µ)2, and
d∑

j=1

|Ek
xt,j |

2 ≤ 2E(µ)2 + 8ρ2B4, ∀k ≥ 1.

Proof. For any j = 1, · · · , d, since y0xt
= s0xt

, it holds that

E0
xt,j = g̃xt,j(y

0
xt
;µ)−∇hj(ỹ0xt,j) = g̃xt,j(y

0
xt
;µ)− ∇̃j f̂xt

(ỹ0xt
).

Summing over j gives

d∑
j=1

|E0
xt,j |

2 =

d∑
j=1

|g̃xt,j(y
0
xt
;µ)− ∇̃j f̂xt

(y0xt
)|2

=∥gxt
(y0xt

;µ)−∇f̂xt
(y0xt

)∥2

≤E(µ)2.

For any k ≥ 1, by the definition of Ek
xt,j

, it follows

d∑
j=1

|Ek
xt,j |

2 =

d∑
j=1

|g̃xt,j(y
k
xt
;µ)−∇hj(ỹkxt,j)|

2

≤2

d∑
j=1

|g̃xt,j(y
k
xt
;µ)− ∇̃j f̂xt

(ykxt
)|2 + 2

d∑
j=1

|∇̃j f̂xt
(ykxt

)−∇hj(ỹkxt,j)|
2.

For the first term, we have
d∑

j=1

|g̃xt,j(y
k
xt
;µ)− ∇̃j f̂xt

(ykxt
)|2 = ∥gxt

(ykxt
;µ)−∇f̂xt

(ykxt
)∥2 ≤ E(µ)2.

For the second term, since ∇2f̂xt(s
0
t)uj = λjuj , ∀j, we have

d∑
j=1

|∇̃j f̂xt
(ykxt

)−∇hj(ỹkxt,j)|
2

=

d∑
j=1

|∇̃j f̂xt
(ykxt

)− ∇̃j f̂xt(s0xt
)− λj(ỹ

k
xt

− s̃0xt
)|2

=

d∑
j=1

|⟨∇f̂xt(y
k
xt
)−∇f̂xt(s

0
xt
)− λj(y

k
xt,j − s0xt

), uj⟩|2

=

d∑
j=1

|⟨∇f̂xt
(ykxt

)−∇f̂xt
(s0xt

)−∇2f̂xt
(s0t)(y

k
xt

− s0xt
), uj⟩|2

=∥∇f̂xt(y
k
xt
)−∇f̂xt(s

0
xt
)−∇2f̂xt

(s0t)(y
k
xt

− s0xt
)∥2

≤ρ
2

4
∥ykxt

− s0xt
∥4 (11a)

≤4ρ2B4, (11b)

where (11a) is due to the Lipschitz continuity of ∇2f̂xt(·), and (11b) follows from the Fact (C.2). Combining all the above
inequalities completes the proof.

18

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Now we proceed to analyze the value of
∑d

j=1 hj(s̃
K
xt,j

). We split it into the following two cases:

S1 :=

{
j : λj ≥ −θ

η

}
and S2 :=

{
j : λj < −θ

η

}
.

Lemma E.5. Suppose that Assumption 4.1 and 4.2 hold. Under the parameter setting (3), choose a reasonably small µ such
that E(µ) ≤ lB

2 in Algorithm 1. Then, for the tangent space step at iterate xt, when the “if condition” triggers, we have:

∑
j∈S1

hj(s̃
K
xt,j) ≤ −3θ

8η

∑
j∈S1

K−1∑
k=0

|s̃k+1
xt,j

− s̃kxt,j |
2 +

4ηK
θ

E(µ)2 +
16ηKρ2B4

θ
.

The following proof follows the proof of Lemma 3.2 in (Li & Lin, 2022). We only list the sketch for simplicity.

Proof. For any k = 0, 1, · · · ,K − 1 and j ∈ S1, as hj(·) is a one-dimensional quadratic function

hj(s̃
k+1
xt,j

)− hj(s̃
k
xt,j)

=⟨∇hj(s̃kxt,j), s̃
k+1
xt,j

− s̃kxt,j⟩+
λj
2
|s̃k+1

xt,j
− s̃kxt,j |

2

=⟨∇hj(s̃kxt,j)−∇hj(ỹkxt,j), s̃
k+1
xt,j

− s̃kxt,j⟩+ ⟨∇hj(ỹkxt,j), s̃
k+1
xt,j

− s̃kxt,j⟩+
λj
2
|s̃k+1

xt,j
− s̃kxt,j |

2

=λj⟨s̃kxt,j − ỹkxt,j , s̃
k+1
xt,j

− s̃kxt,j⟩ −
1

η
⟨s̃k+1

xt,j
− ỹkxt,j + ηEk

xt,j , s̃
k+1
xt,j

− s̃kxt,j⟩+
λj
2
|s̃k+1

xt,j
− s̃kxt,j |

2

=λj⟨s̃kxt,j − ỹkxt,j , s̃
k+1
xt,j

− s̃kxt,j⟩ −
1

η
⟨s̃k+1

xt,j
− ỹkxt,j , s̃

k+1
xt,j

− s̃kxt,j⟩ − ⟨Ek
xt,j , s̃

k+1
xt,j

− s̃kxt,j⟩+
λj
2
|s̃k+1

xt,j
− s̃kxt,j |

2

=
λj
2
(|s̃k+1

xt,j
− ỹkxt,j |

2 − |s̃kxt,j − ỹkxt,j |
2 − |s̃k+1

xt,j
− s̃kxt,j |

2)− ⟨Ek
xt,j , s̃

k+1
xt,j

− s̃kxt,j⟩

+
λj
2
|s̃k+1

xt,j
− s̃kxt,j |

2 +
1

2η
(|s̃kxt,j − ỹkxt,j |

2 − |s̃k+1
xt,j

− ỹkxt,j |
2 − |s̃k+1

xt,j
− s̃kxt,j |

2)

≤λj
2
(|s̃k+1

xt,j
− ỹkxt,j |

2 − |s̃kxt,j − ỹkxt,j |
2) +

2η

θ
|Ek

xt,j |
2 +

θ

8η
|s̃k+1

xt,j
− s̃kxt,j |

2

+
1

2η
(|s̃kxt,j − ỹkxt,j |

2 − |s̃k+1
xt,j

− ỹkxt,j |
2 − |s̃k+1

xt,j
− s̃kxt,j |

2),

where the last inequality is due to −⟨Ek
xt,j

, s̃k+1
xt,j

− s̃kxt,j
⟩ ≤ |Ek

xt,j
| · |s̃k+1

xt,j
− s̃kxt,j

| ≤ 2η
θ |Ek

xt,j
|2 + θ

8η |s̃
k+1
xt,j

− s̃kxt,j
|2 by

applying Young’s inequality. Since l ≥ λj ≥ − θ
η holds, it follows

(− 1

2η
+
λj
2
)|s̃k+1

xt,j
− ỹkxt,j |

2 ≤ (−2l +
l

2
)|s̃k+1

xt,j
− ỹkxt,j |

2 ≤ 0,

− λj
2
|s̃kxt,j − ỹkxt,j |

2 ≤ θ

2η
|s̃kxt,j − ỹkxt,j |

2.

Combing the above inequalities implies that

hj(s̃
k+1
xt,j

)− hj(s̃
k
xt,j)

≤ 1

2η
(|s̃kxt,j − ỹkxt,j |

2 − |s̃k+1
xt,j

− s̃kxt,j |
2) +

2η

θ
|Ek

xt,j |
2 +

θ

8η
|s̃k+1

xt,j
− s̃kxt,j |

2 +
θ

2η
|s̃kxt,j − ỹkxt,j |

2

=
(1− θ)2

2η
|s̃kxt,j − s̃k−1

xt,j
|2 − (

1

2η
− θ

8η
)|s̃k+1

xt,j
− s̃kxt,j |

2 +
2η

θ
|Ek

xt,j |
2 +

θ(1− θ)2

2η
|s̃kxt,j − s̃k−1

xt,j
|2

=
(1 + θ)(1− θ)2

2η
|s̃kxt,j − s̃k−1

xt,j
|2 − (

1

2η
− θ

8η
)|s̃k+1

xt,j
− s̃kxt,j |

2 +
2η

θ
|Ek

xt,j |
2.

To proceed, we define the potential function

lkxt,j = hj(s̃
k
xt,j) +

(1 + θ)(1− θ)2

2η
|s̃kxt,j − s̃k−1

xt,j
|2,

19

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

and it gives

lk+1
xt,j

− lkxt,j

≤− (
1

2η
− θ

8η
− (1 + θ)(1− θ)2

2η
)|s̃k+1

xt,j
− s̃kxt,j |

2 +
2η

θ
|Ek

xt,j |
2

≤− 3θ

8η
|s̃k+1

xt,j
− s̃kxt,j |

2 +
2η

θ
|Ek

xt,j |
2.

Summing over k = 0, 1, · · · ,K − 1 and j ∈ S1, and using s0xt
= s−1

xt
, we conclude

∑
j∈S1

hj(s̃
K
xt,j)

≤
∑
j∈S1

lKxt,j

=
∑
j∈S1

K−1∑
k=0

(lk+1
xt,j

− lkxt,j) + l0xt,j

=
∑
j∈S1

K−1∑
k=0

(lk+1
xt,j

− lkxt,j)

≤− 3θ

8η

∑
j∈S1

K−1∑
k=0

|s̃k+1
xt,j

− s̃kxt,j |
2 +

2η

θ

∑
j∈S1

K−1∑
k=0

|Ek
xt,j |

2

≤− 3θ

8η

∑
j∈S1

K−1∑
k=0

|s̃k+1
xt,j

− s̃kxt,j |
2 +

4ηK
θ

E(µ)2 +
16ηKρ2B4

θ
,

where the last inequality is due to Lemma (E.4).

Lemma E.6. Suppose that Assumption 4.1 and 4.2 hold. Under the parameter setting (3), choose a reasonably small µ such
that E(µ) ≤ lB

2 in Algorithm 1. Then, for the tangent space step at iterate xt, when the “if condition” triggers, we have:

∑
j∈S2

hj(s̃
K
xt,j) ≤ − θ

2η

∑
j∈S2

K−1∑
k=0

|s̃k+1
xt,j

− s̃kxt,j |
2 + ηKE(µ)2 +

K
2B

3
2

E(µ)2 +
KB 7

2

2
+
ηKE(µ)2

θ
+

4ηKρ2B4

θ
.

Proof. Let vxt,j = s̃0xt,j
− 1

λj
∇̃j f̂xt

(s0xt
), the one-dimensional quadratic function hj(·) can be rewritten as

hj(z) =
λj
2
(z − vxt,j)

2 − 1

2λj
|∇̃j f̂xt

(s0xt
)|2.

Consequently, for any k = 0, 1, · · · ,K − 1 and j ∈ S2, we have

hj(s̃
k+1
xt,j

)− hj(s̃
k
xt,j)

=
λj
2
|s̃k+1

j − vxt,j |2 −
λj
2
|s̃kxt,j − vxt,j |2

=
λj
2
|s̃k+1

xt,j
− s̃kxt,j |

2 + λj⟨s̃k+1
xt,j

− s̃kxt,j , s̃
k
xt,j − vxt,j⟩

≤ − θ

2η
|s̃k+1

xt,j
− s̃kxt,j |

2 + λj⟨s̃k+1
xt,j

− s̃kxt,j , s̃
k
xt,j − vxt,j⟩.

(16)

20

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Recall the update in (9), it holds that

s̃k+1
xt,j

− s̃kxt,j

=ỹkxt,j − η∇hj(ỹkxt,j)− ηEk
xt,j − s̃kxt,j

=(1− θ)(s̃kxt,j − s̃k−1
xt,j

)− η∇hj(ỹkxt,j)− ηEk
xt,j

=(1− θ)(s̃kxt,j − s̃k−1
xt,j

)− ηλj(ỹ
k
xt,j − vj)− ηEk

xt,j

=(1− θ)(s̃kxt,j − s̃k−1
xt,j

)− ηλj(s̃
k
xt,j − vxt,j + (1− θ)(s̃kxt,j − s̃k−1

xt,j
))− ηEk

xt,j .

Substituting the above equality into the term ⟨s̃k+1
xt,j

− s̃kxt,j
, s̃kxt,j

− vxt,j⟩ gives

⟨s̃k+1
xt,j

− s̃kxt,j , s̃
k
xt,j − vxt,j⟩

=(1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃kxt,j − vxt,j⟩ − ηλj |s̃kxt,j − vxt,j |2

−ηλj(1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃kxt,j − vxt,j⟩ − η⟨Ek
xt,j , s̃

k
xt,j − vxt,j⟩︸ ︷︷ ︸

♣

.
(18)

We first provide a lower bound for the term ♣ in (18):

− ηλj(1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃kxt,j − vxt,j⟩ − η⟨Ek
xt,j , s̃

k
xt,j − vxt,j⟩

=
ηλj(1− θ)

2
(|s̃kxt,j − s̃k−1

xt,j
|2 + |vxt,j − s̃kxt,j |

2 − |s̃k−1
xt,j

− vxt,j |2)− η⟨Ek
xt,j , s̃

k
xt,j − vxt,j⟩

≥ηλj(1− θ)

2
(|s̃kxt,j − s̃k−1

xt,j
|2 + |s̃kxt,j − vxt,j |2) +

η

2λj(1 + θ)
|Ek

xt,j |
2 +

ηλj(1 + θ)

2
|s̃kxt,j − vxt,j |2 (19a)

=
ηλj(1− θ)

2
|s̃kxt,j − s̃k−1

xt,j
|2 + ηλj |s̃kxt,j − vxt,j |2 +

η

2λj(1 + θ)
|Ek

xt,j |
2,

where (19a) holds because λj < 0 and −⟨Ek
xt,j

, s̃kxt,j
− vxt,j⟩ ≥ 1

2λj(1+θ) |E
k
xt,j

|2 +
λj(1+θ)

2 |s̃kxt,j
− vxt,j |2 due to the

Young’s inequality. Plugging the above inequality back into (18) gives

⟨s̃k+1
xt,j

− s̃kxt,j , s̃
k
xt,j − vxt,j⟩

≥(1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃kxt,j − vxt,j⟩+
ηλj(1− θ)

2
|s̃kxt,j − s̃k−1

xt,j
|2 + η

2λj(1 + θ)
|Ek

xt,j |
2

=(1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃kxt,j − s̃k−1
xt,j

⟩+ (1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃k−1
xt,j

− vxt,j⟩

+
ηλj(1− θ)

2
|s̃kxt,j − s̃k−1

xt,j
|2 + η

2λj(1 + θ)
|Ek

xt,j |
2

=(1 +
ηλj
2

)(1− θ)|s̃kxt,j − s̃k−1
xt,j

|2 + (1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃k−1
xt,j

− vxt,j⟩+
η

2λj(1 + θ)
|Ek

xt,j |
2

≥(1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃k−1
xt,j

− vxt,j⟩+
η

2λj
|Ek

xt,j |
2,

21

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

where the last inequality comes from (1 +
ηλj

2)(1− θ) ≥ (1− ηl
2)(1− θ) = (1− 1

8)(1− θ) > 0. Hence, it implies that

⟨s̃k+1
xt,j

− s̃kxt,j , s̃
k
xt,j − vxt,j⟩

≥(1− θ)⟨s̃kxt,j − s̃k−1
xt,j

, s̃k−1
xt,j

− vxt,j⟩+
η

2λj
|Ek

xt,j |
2

≥(1− θ)k⟨s̃1xt,j − s̃0xt,j , s̃
0
xt,j − vxt,j⟩+

η

2λj

k∑
t=1

(1− θ)k−t|Et
xt,j |

2

=(1− θ)kη⟨−∇hj(ỹ0xt,j)− E0
xt,j , ỹ

0
xt,j − vxt,j⟩+

η

2λj

k∑
t=1

(1− θ)k−t|Et
xt,j |

2 (20a)

=(1− θ)kη⟨λj(vxt,j − ỹ0xt,j)− E0
xt,j , ỹ

0
xt,j − vxt,j⟩+

η

2λj

k∑
t=1

(1− θ)k−t|Et
xt,j |

2

=− (1− θ)kηλj |vxt,j − ỹ0xt,j |
2 + (1− θ)kη⟨E0

xt,j , vxt,j − ỹ0xt,j⟩+
η

2λj

k∑
t=1

(1− θ)k−t|Et
xt,j |

2

≥(1− θ)k η⟨E0
xt,j , vxt,j − ỹ0xt,j⟩︸ ︷︷ ︸

♠

+
η

2λj

k∑
t=1

(1− θ)k−t|Et
xt,j |

2, (20b)

where (20a) follows from the update in (9), and (20b) is implied by λj < 0. Recall vxt,j − ỹ0xt,j
= − 1

λj
∇̃j f̂xt

(s0xt
), and

thus the term ♠ can be lower bounded as follows:

η⟨E0
xt,j , vxt,j − ỹ0xt,j⟩

=− η

λj
⟨E0

xt,j , ∇̃j f̂xt
(s0xt

)⟩

=
η

λj
⟨E0

xt,j , E
0
xt,j⟩ −

η

λj
⟨E0

xt,j , g̃xt,j(y
0
xt
;µ)⟩ (21a)

=
η

λj
⟨E0

xt,j , E
0
xt,j⟩+

1

λj
⟨E0

xt,j , s̃
1
xt,j − ỹ0xt,j⟩ (21b)

≥ η

λj
|E0

xt,j |
2 +

1

2λjB
3
2

|E0
xt,j |

2 +
B

3
2

2λj
|s̃1xt,j − ỹ0xt,j |

2, (21c)

where (21a) is due to E0
xt,j

= g̃xt,j(y
0
xt
;µ) − ∇hj(ỹ0xt,j

) and ∇hj(ỹ0xt,j
) = ∇̃j f̂xt(s

0
xt
), (21b) follows from s̃1xt,j

=

ỹ0xt,j
− g̃xt,j(y

0
xt
;µ), and (21c) holds because λj < 0 and Young’s inequality. Putting all the above inequalities together

gives

hj(s̃
k+1
xt,j

)− hj(s̃
k
xt,j)

≤− θ

2η
|s̃k+1

xt,j
− s̃kxt,j |

2 + (1− θ)k

(
η|E0

xt,j |
2 +

1

2B
3
2

|E0
xt,j |

2 +
B

3
2

2
|s̃1xt,j − ỹ0xt,j |

2

)
+
η

2

k∑
t=1

(1− θ)k−t|Et
xt,j |

2

≤− θ

2η
|s̃k+1

xt,j
− s̃kxt,j |

2 + η|E0
xt,j |

2 +
1

2B
3
2

|E0
xt,j |

2 +
B

3
2

2
|s̃1xt,j − ỹ0xt,j |

2 +
η

2

k∑
t=1

(1− θ)k−t|Et
xt,j |

2.

22

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Summing over j ∈ S2 implies that∑
j∈S2

hj(s̃
k+1
xt,j

)− hj(s̃
k
xt,j)

≤− θ

2η

∑
j∈S2

|s̃k+1
xt,j

− s̃kxt,j |
2 + η

∑
j∈S2

|E0
xt,j |

2 +
1

2B
3
2

∑
j∈S2

|E0
xt,j |

2

+
B

3
2

2

∑
j∈S2

|s̃1xt,j − ỹ0xt,j |
2 +

η

2

k∑
t=1

(1− θ)k−t
∑
j∈S2

|Et
xt,j |

2

≤− θ

2η

∑
j∈S2

|s̃k+1
xt,j

− s̃kxt,j |
2 + ηE(µ)2 +

E(µ)2

2B
3
2

+
B

7
2

2
+
η

2

k∑
t=1

(1− θ)k−t
(
2E(µ)2 + 8ρ2B4

)
, (22a)

≤− θ

2η

∑
j∈S2

|s̃k+1
xt,j

− s̃kxt,j |
2 + ηE(µ)2 +

E(µ)2

2B
3
2

+
B

7
2

2
+
ηE(µ)2

θ
+

4ηρ2B4

θ
,

where we apply
∑

j∈S2
|s̃1xt,j

− ỹ0xt,j
|2 ≤ ∥s1xt

− y0xt
∥2 ≤ B2 and the result of Lemma E.4 in (22a). Finally, we conclude∑

j∈S2

hj(s̃
K
xt,j)

=
∑
j∈S2

K−1∑
k=0

hj(s̃
k+1
xt,j

)− hj(s̃
k
xt,j) + hj(s̃

0
xt,j)

≤− θ

2η

∑
j∈S2

K−1∑
k=0

|s̃k+1
xt,j

− s̃kxt,j |
2 + ηKE(µ)2 +

K
2B

3
2

E(µ)2 +
KB 7

2

2
+
ηKE(µ)2

θ
+

4ηKρ2B4

θ
.

Corollary E.1. Suppose that Assumption 4.1 and 4.2 hold. Under the parameter setting (3), choose a reasonably small µ
such that E(µ) ≤ lB

2 in Algorithm 1. Then, for the tangent space step at iterate xt, when the “if condition” triggers, we
have:

f̂xt
(sKxt

) ≤ f̂xt
(s0xt

)− 3θB2

8ηK
+ ηKE(µ)2 +

K

2B
3
2

E(µ)2 +
KB

7
2

2
+

5ηKE(µ)2

θ
+

20ηKρ2B4

θ
+

32ρB3

3
.

Proof. Putting Lemma E.5 and Lemma E.6 together, we obtain

d∑
j=1

hj(s̃
K
xt,j)

≤− 3θ

8η

K−1∑
k=0

∥s̃k+1
xt

− s̃kxt
∥2 + ηKE(µ)2 +

K
2B

3
2

E(µ)2 +
KB 7

2

2
+

5ηKE(µ)2

θ
+

20ηKρ2B4

θ

≤− 3θB2

8ηK
+ ηKE(µ)2 +

K
2B

3
2

E(µ)2 +
KB 7

2

2
+

5ηKE(µ)2

θ
+

20ηKρ2B4

θ

≤− 3θB2

8ηK
+ ηKE(µ)2 +

K

2B
3
2

E(µ)2 +
KB

7
2

2
+

5ηKE(µ)2

θ
+

20ηKρ2B4

θ
,

combining with Lemma E.3 completes the proof.

23

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

E.3. Tangent space step: small Riemannian gradient

For the scenario that the “if condition” does not trigger in the tangent space step, we establish that the tangent space step
outputs a satisfactory point with a small Riemannian gradient.

Lemma E.7. Suppose that Assumption 4.1, 4.2 and 4.3 hold. Under the parameter setting (3), choose a reasonably small µ
such that E(µ) ≤ lB

2 in Algorithm 1.Then, for the tangent space step at iterate xt, when the “if condition” does not trigger,
we have:

∥ grad f(xt+1)∥ ≤ 1

σmin
· (2ρB2 +

2
√
2B

K2η
+

2θB

Kη
+
(
2E(µ)2 + 8ρ2B4

) 1
2).

Proof. According to Subroutine 2, when the ”if condition” does not trigger, the tangent space step outputs xt+1 =
Retrxt

(y∗xt
), and thus, it holds that:

grad f(xt+1) = grad f(Retrxt(y
∗
xt
)) = (T ∗

xt,y∗
xt
)−1∇f̂xt(y

∗
xt
).

Therefore, it is sufficient to upper bound the term ∥∇f̂xt
(y∗xt

)∥. By applying Minkowski’s inequality, we have

∥∇f̂xt
(y∗xt

)∥ =

 d∑
j=1

|∇̃j f̂xt
(y∗xt

)|2
 1

2

≤

 d∑
j=1

|∇̃j f̂xt
(y∗xt

)−∇hj(ỹ∗xt,j)|
2

 1
2

+

 d∑
j=1

|∇hj(ỹ∗xt,j)|
2

 1
2

.

Note that ∇hj(ỹ∗xt,j
) = ∇̃j f̂xt

(s0xt
) + λj(ỹ

∗
xt,j

− s̃xt,j), using the same argument in the proof of Lemma E.4 gives

 d∑
j=1

|∇̃j f̂xt
(y∗xt

)−∇hj(ỹ∗xt,j)|
2

 1
2

=

 d∑
j=1

|∇̃j f̂xt
(y∗xt

)− ∇̃j f̂xt
(s0xt

)− λj(ỹ
∗
xt,j − s̃xt,j)|2

 1
2

=∥∇f̂xt
(y∗xt

)−∇f̂xt
(s0xt

)−∇2f̂xt
(s0xt

)(y∗xt
− s0xt

)∥

≤ρ
2
∥y∗xt

− s0xt
∥2 (24a)

≤2ρB2, (24b)

where (24a) is due to the Lipschitz continuity of ∇2f̂xt
(·) and the (24b) comes from the following result

∥y∗xt
− s0xt

∥ ≤ 1

K0 + 1

K0∑
k=0

∥ykxt
− s0xt

∥ ≤ 2B.

For the term
(∑d

j=1 |∇hj(ỹ∗xt,j
)|2
) 1

2

, note that ỹ∗xt,j
= 1

K0+1

∑K0

k=0 ỹ
k
xt,j

and ∇hj(·) is a one-dimensional linear function,
it equivalents as d∑

j=1

|∇hj(ỹ∗xt,j)|
2

 1
2

=

 d∑
j=1

∣∣∣∣∣∇hj
(

1

K0 + 1

K0∑
k=0

ỹkxt,j

)∣∣∣∣∣
2
 1

2

=
1

K0 + 1

 d∑
j=1

∣∣∣∣∣
K0∑
k=0

∇hj(ỹkxt,j)

∣∣∣∣∣
2
 1

2

.

Recall the update (9), we have

η∇hj(ỹkxt,j) = s̃k+1
xt,j

− ỹkxt,j + ηEk
xt,j

= s̃k+1
xt,j

− s̃kxt,j − (1− θ)(s̃kxt,j − s̃k−1
xt,j

) + ηEk
xt,j .

24

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Consequently, it holds that d∑
j=1

|∇hj(ỹ∗xt,j)|
2

 1
2

=
1

(K0 + 1)η

 d∑
j=1

∣∣∣∣∣sK0
xt,j

− s̃0xt,j + θ(s̃K0
xt,j

− s̃0xt,j) + η

K0∑
k=0

Ek
xt,j

∣∣∣∣∣
2
 1

2

≤ 1

(K0 + 1)η

 d∑
j=1

∣∣∣s̃K0+1
xt,j

− s̃K0
xt,j

∣∣∣2
 1

2

+
θ

(K0 + 1)η

 d∑
j=1

∣∣∣s̃K0
xt,j

− s̃0xt,j

∣∣∣2
 1

2

+
1

K0 + 1

 d∑
j=1

∣∣∣∣∣
K0∑
k=0

Ek
xt,j

∣∣∣∣∣
2
 1

2

≤ 1

(K0 + 1)η

∥∥sK0+1
xt

− sK0
xt

∥∥+ θ

(K0 + 1)η

∥∥sK0
xt

− s0xt

∥∥+ 1√
K0 + 1

K0∑
k=0

d∑
j=1

|Ek
xt,j |

2

 1
2

(25a)

≤ 2

Kη

∥∥sK0+1
xt

− sK0
xt

∥∥+ 2θB

Kη
+
(
2E(µ)2 + 8ρ2B4

) 1
2 (25b)

where (25a) holds because
∣∣∣∑K0

k=0 Ek
xt,j

∣∣∣2 ≤ (K0 + 1)
∑K0

k=0 |Ek
xt,j

|2, and (25b) follows from the K0 + 1 ≥ K
2 , θ ≤ 1,

Lemma C.2 and E.4. Recall the definition of K0, we obtain∥∥sK0+1
xt

− sK0
xt

∥∥2
≤ 1

K − ⌊K/2⌋

K−1∑
k=⌊K/2⌋

∥sk+1
xt

− skxt
∥2

≤ 1

K − ⌊K/2⌋

K−1∑
k=0

∥sk+1
xt

− skxt
∥2

≤2B2

K2
.

Therefore, combining all the above inequalities gives that

∥ grad f(xt+1)∥

≤∥(T ∗
xt,y∗

xt
)−1∥ · (2ρB2 +

2
√
2B

K2η
+

2B

Kη
+
(
2E(µ)2 + 8ρ2B4

) 1
2)

≤ 1

σmin
· (2ρB2 +

2
√
2B

K2η
+

2θB

Kη
+
(
2E(µ)2 + 8ρ2B4

) 1
2),

where the last inequality comes from Assumption 4.3.

E.4. Proof of Theorem 4.1

Theorem E.1 (Theorem 4.1 restated). Suppose that Assumption 4.1, 4.2 and 4.3 hold. Set the parameters in Algorithm 1 as
follows

η =
1

4l
, B =

1

8

√
ϵ

ρ
, θ =

ρ
7
4 ϵ

1
4

l
, r = 0, K =

ρ
5
4

4ϵ
1
4

. (26)

For any x0 ∈ M and sufficiently small ϵ > 0, choose µ = O
(

ϵ1/4

d1/4

)
in Lines 3 of Algorithm 1, and µ = O

(
ϵ5/8

d1/4

)
in Line

5 of Subroutine 2. Then Algorithm 1 with Option I outputs an ϵ-approximate first-order stationary point. The total number
of function value evaluations is no more than

O
(
(f(x0)− flow)d

ϵ
7
4

)
.

25

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Proof. Given an iterate xt, in the large estimator scenario where ∥gxt(0;µ)∥ ≥ lB, we choose µ = O
(

ϵ1/4

d1/4

)
; combining

this with Lemma D.1 results in E(µ) ≤ O (
√
ϵ). Consequently, Lemma E.1 yields:

f(xt+1)− f(xt) ≤ −min

{
lB2

16
, lb2

}
= − lϵ

1024ρ
.

For the small estimator scenario where ∥gxt(0;µ)∥ ≤ lB, the Algorithm 1 switches to Subroutine 2, i.e. the tangent space
step. Note that r = 0, it implies

f(xt) = f̂xt
(s0xt

).

Moreover, we choose µ = O
(

ϵ5/8

d1/4

)
in Subroutine 2, resulting in E(µ) ≤ O

(
ϵ5/4

)
. Thus, when the “if condition” triggers,

from Corollary E.1, we have

f(xt+1)− f(xt)

=f̂xt(s
K
xt
)− f̂xt(s

0
xt
)

≤− 3θB2

8ηK
+ ηKE(µ)2 +

K

2B
3
2

E(µ)2 +
KB

7
2

2
+

5ηKE(µ)2

θ
+

20ηKρ2B4

θ
+

32ρB3

3

≤− ϵ
3
2

24
√
ρ
+ ηKE(µ)2 +

K

2B
3
2

E(µ)2 +
5ηKE(µ)2

θ

≤− ϵ
3
2

24
√
ρ
+O

(
ϵ

9
4

)
+O

(
ϵ

3
2

)
+O

(
ϵ2
)

≤− ϵ
3
2

32
√
ρ
.

When the “if condition” does not trigger, Lemma E.7 tells

∥ grad f(xt+1)∥

≤ 1

σmin
· (2ρB2 +

2
√
2B

K2η
+

2θB

Kη
+
(
2E(µ)2 + 8ρ2B4

) 1
2)

≤ 1

σmin
· (2ρB2 +

2
√
2B

K2η
+

2θB

Kη
+ 4ρB2) (28a)

≤O(ϵ), (28b)

where (28a) holds because E(µ)2 ≤ O
(
ϵ5/2

)
and 8ρ2B4 = O

(
ϵ2
)
, and (28b) comes from the parameter setting (26).

Therefore, at each iteration t, once ∥gxt(0;µ)∥ ≥ lB holds or the “if condition” does not trigger in the tangent space step,
we observe the following function value decrease:

f(xt+1)− f(xt) ≤ −min

{
lϵ

1024ρ
,
ϵ

3
2

32
√
ρ

}
= − ϵ

3
2

32
√
ρ
.

Otherwise, if the ’if condition’ does not trigger, xt+1 is already an ϵ-approximate first-order stationary point. As the tangent
space step requires at most K = O

(
ϵ−1/4

)
iterations, and each iterate needs 2d function value evaluations to construct the

zeroth-order estimator, the total number of function value evaluations must be less than

O

(
(f(x0)− flow)d

ϵ
7
4

)
.

E.5. Proof of Theorem 4.2

Theorem E.2 (Theorem 4.2 restated). Suppose that Assumption 4.1, 4.2 and 4.3 hold. Set the parameters in Algorithm 1 as
follows

η =
1

4l
, χ = O

(
log

d

δϵ

)
≥ 1, B =

1

8χ2

√
ϵ

ρ
, θ =

ρ
7
4 ϵ

1
4

l
, r =

θB

6K
, K =

χρ
5
4

4ϵ
1
4

. (29)

26

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

For any x0 ∈ M and sufficiently small ϵ > 0, choose µ = O
(

ϵ1/4

d1/4χ

)
= Õ

(
ϵ1/4

d1/4

)
in Lines 3 of Algorithm 1, and

µ = min
{
O
(

ϵ5/8

d1/4χ2

)
,O
(

ϵ7/8

χ3
√
d

)}
= Õ

(
ϵ7/8√

d

)
in Line 5 of Subroutine 2. Then perturbed Algorithm 1 with Option I

outputs an ϵ-approximate second-order stationary point with a probability of at least 1− δ. The total number of function
value evaluations is no more than

O

(
(f(x0)− flow)d

ϵ
7
4

log6
(
d

δϵ

))
.

Proof. By a similar argument, for the scenario ∥gxt(0;µ)∥ ≥ lB at iterate xt, we have

f(xt+1)− f(xt) ≤ −min

{
lB2

16
, lb2

}
= − lϵ

1024χ4ρ
.

For the tangent space step at iterate xt, we start with a perturbed point in Txt
M, that is s0xt

= ξt ∼ Uni(Bxt,r(0)), it
follows

f(xt)− f̂xt
(s0xt

) = f̂xt
(0)− f̂xt

(ξt) ≤ ⟨∇f̂xt
(ξt),−ξt⟩+

l

2
∥ξt∥2 ≤ r · ∥∇f̂xt

(ξt)∥+
lr2

2
.

Recall we choose µ = O
(

ϵ1/4

d1/4χ

)
in Line 3 of Algorithm 1, and thus E(µ) ≤ lB

2 holds. Consequently, the term ∥∇f̂xt(ξt)∥
can be upper bounded as

∥∇f̂xt
(ξt)∥ ≤ ∥∇f̂xt

(ξt)−∇f̂xt
(0)∥+ ∥∇f̂xt

(0)− gxt
(0;µ)∥+ ∥gxt

(0;µ)∥ ≤ l · ∥ξt∥+E(µ) + lB ≤ lr +
3lB

2
.

Substituting r = θB
6K = Õ (ϵ) gives

f(xt)− f̂xt
(s0xt

) ≤ 3lr2

2
+

3lrB

2
≤ Õ

(
ϵ2
)
+

θB2

16ηK
≤ θB2

8ηK
,

combining with the choice of µ ≤ O
(

ϵ5/8

d1/4χ2

)
in Line 5 of Subroutine 2 leads to

f(xt+1)− f(xt)

=f̂xt
(sKxt

)− f̂xt
(s0xt

) + f̂xt
(ξt)− f(xt)

≤− θB2

4ηK
+ ηKE(µ)2 +

K

2B
3
2

E(µ)2 +
KB

7
2

2
+

5ηKE(µ)2

θ
+

20ηKρ2B4

θ
+

32ρB3

3

≤− ϵ
3
2

96χ5√ρ
+ ηKE(µ)2 +

K

2B
3
2

E(µ)2 +
5ηKE(µ)2

θ

≤− ϵ
3
2

96χ5√ρ
+O

(
ϵ

9
4

χ7

)
+O

(
ϵ

3
2

χ9

)
+O

(
ϵ2

χ7

)

≤− ϵ
3
2

192χ5√ρ
.

when the “if condition” triggers. Therefore, in the case of the function value decrease, we have

f(xt+1)− f(xt) ≤ −min

{
lϵ

1024χ4ρ
,

ϵ
3
2

192χ5√ρ

}
= − ϵ

3
2

192χ5√ρ
. (30)

Similarly, since the tangent space step requires at most K = O(χ
ϵ1/4

) iterations and each iterate needs 2d function value
evaluations to construct the zeroth-order estimator, the total number of function value evaluations does not exceed

O

(
(f(x0)− flow)d

ϵ
7
4

log6
(
d

δϵ

))
.

27

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

For the scenario that the “if condition” does not trigger in the tangent space step at iterate xt, from the proof of Theorem 4.1,
it holds that

∥ grad f(xt+1)∥ ≤ O(ϵ).

To achieve the ϵ-approximate second-order stationary points, it remains to analyze the value of λmin(Hess f(xt+1)). Suppose
λmin(∇2f̂xt(0)) ≥ −√

ρϵ, then it holds that

λmin(∇2f̂xt(y
∗
xt
))

≥λmin(∇2f̂xt
(0))− |λmin(∇2f̂xt

(y∗xt
))− λmin(∇2f̂xt

(0))|

≥λmin(∇2f̂xt
(0))− ∥∇2f̂xt

(y∗xt
)−∇2f̂xt

(0)∥

≥λmin(∇2f̂xt
(0))− ρ∥y∗xt

− s0xt
∥ − ρ∥s0xt

∥

≥λmin(∇2f̂xt(0))− 2ρB − ρr (31a)
≥− 2

√
ρϵ,

where (31a) follows from ∥y∗xt
− s0xt

∥ ≤ 2B and ∥s0xt
∥ = ∥ξt∥ ≤ r. From Lemma C.1, we have

∇2f̂xt
(y∗xt

) = T ∗
xt,y∗

xt
Hess f(xt+1)Txt,y∗

xt
+Wy∗

xt
,

and it implies that

λmin(Hess f(xt+1))

≥
λmin

(
T ∗
xt,y∗

xt
Hess f(xt+1)Txt,y∗

xt

)
λmax(T ∗

xt,y∗
xt
Txt,y∗

xt
)

(32a)

≥
λmin

(
∇2f̂xt

(y∗xt
)−Wy∗

xt

)
σ2
max

(32b)

≥
λmin

(
∇2f̂xt

(y∗xt
)
)
+ λmin

(
−Wy∗

xt

)
σ2
max

(32c)

≥−
2
√
ρϵ

σ2
max

− 25τ

σ2
maxσmin

ϵ (32d)

≥−
4
√
ρϵ

σ2
max

where (32a) is due to the Ostrowski’s Theorem (Ostrowski, 1961), (32b) comes from Assumption 4.3, (32c) uses Wely’s
inequality (Horn & Johnson, 2012), and (32d) comes from the following inequality

∥Wy∗
xt
∥ = max

ṡxt∈Txt M,∥ṡxt∥=1
⟨Wy∗

xt
ṡxt

, ṡxt
⟩ ≤ ∥γ′′xt,ṡxt

(0)∥∥ grad f(Retrxt
(y∗xt

))∥ ≤ 25τ

σmin
ϵ.

Consider the case λmin(∇2f̂xt
(0)) < −√

ρϵ, we define the following stuck region in the tangent space step at iterate xt:

X stuck
t =


{
sxt

∈ Bxt,r(0) : {skxt
}Kk=1 satisfies s0xt

= sxt
and K

∑K−1
k=0 ∥sk+1

xt
− skxt

∥ ≤ B2
}
, if λmin(∇2f̂xt

(0)) < −√
ρϵ,

∅, otherwise.

From Lemma E.8, we know that the probability of s0xt
= ξt ∈ X stuck

t satisfies Pr
{
ξt ∈ X stuck

t

}
≤ δ. Therefore, once

the ’if condition’ does not trigger in the tangent space step, with a probability of at least 1− δ, xt+1 is an ϵ-approximate
second-order stationary point.

Lemma E.8. Suppose that Assumption 4.1, 4.2 and 4.3 hold. Under the parameter settings in Theorem 4.2, let r0 = δr√
d

.

In cases where λmin(∇2f̂xt(0)) < −√
ρϵ, given s′0xt

, s′′0xt
∈ Bxt, r(0) with sxt′0 − s′′0xt

= r0v1, where v1 is the minimum

28

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

eigen-direction of ∇2f̂xt(0), choose µ = O
(

ϵ7/8

χ3
√
d

)
= Õ

(
ϵ7/8√

d

)
such that E(µ) ≤ ρBθr0

2 . By running the tangent space

step starting at s′0xt
and s′′0xt

respectively we have

max

{
K

K−1∑
k=0

∥∥s′k+1
xt

− s′kxt

∥∥2 ,K K−1∑
k=0

∥∥s′′k+1
xt

− s′′kxt

∥∥2} > B2.

that is, at least one of the iterates triggers the ”if condition”.

The proof of this lemma follows from Lemma 18 in (Jin et al., 2018) and Lemma B.2 in (Li & Lin, 2022), and thus we list
the sketch. The details can be found in (Li & Lin, 2022) and (Jin et al., 2018)

Proof. For any point sxt
∈ Txt

M, we introduce the notation ext
(sxt

;µ) := ∇f̂xt
(sxt

)− gxt
(sxt

;µ), and thus, the update
in tangent space step at iterate xt can be rewritten as

ykxt
= skxt

+ (1− θ)(skxt
− sk−1

xt
)

sk+1
xt

= ykxt
− η∇f̂xt

(ykxt
) + ηext

(ykxt
;µ).

Denoting wk
xt

:= s′kxt
− s′′kxt

, from the above update, we obtain[
wk+1

xt

wk
xt

]
=

[
(2− θ)(I − η∇2f̂xt

(0)) −(1− θ)(I − η∇2f̂xt
(0))

I 0

][
wk

xt

wk−1
xt

]

− η

[
(2− θ)∆k

xt
wk

xt
− (1− θ)∆k

xt
wk−1

xt
+ ext(y

′′k
xt
;µ)− ext(y

′k
xt
;µ)

0

]
,

where ∆k
xt

=
∫ 1

0

(
∇2f̂

(
τy′kxt

+ (1− τ)y′′kxt

)
−∇2f̂xt(0)

)
dτ . For simplicity, let

Axt =

[
(2− θ)(I − η∇2f̂xt

(0)) −(1− θ)(I − η∇2f̂xt
(0))

I 0

]

and ϕkxt
= (2− θ)∆k

xt
wk

xt
− (1− θ)∆k

xt
wk−1

xt
+ ext(y

′′k
xt
;µ)− ext(y

′k
xt
;µ), we further have[

wk+1
xt

wk
xt

]
= Axt

[
wk

xt

wk−1
xt

]
− η

[
ϕkxt

0

]
= Ak+1

xt

[
w0

xt

w0
xt

]
− η

k∑
r=0

Ak−r
xt

[
ϕrxt

0

]
, (33)

To proceed, we prove this lemma by contradiction. Assume that none of the iterates s′0xt
, s′1xt

, . . . , s′Kxt
and s′′0xt

, s′′1xt
, . . . , s′′Kxt

trigger the “if condition”, which implies that

∥s′kxt
− s′0xt

∥ ≤ B, ∥y′kxt
− s′0xt

∥ ≤ 2B, k = 1, . . . ,K,

∥s′′kxt
− s′′0xt

∥ ≤ B, ∥y′′kxt
− s′′0xt

∥ ≤ 2B, k = 1, . . . ,K.

Combining with the fact that ∥s′0xt
∥ ≤ r, ∥s′′0xt

∥ ≤ r and r ≤ B, we have

∥∆k
xt
∥ ≤ ρmax

{
∥y′kxt

∥, ∥y′′kxt
∥
}
≤ ρmax

{
∥y′kxt

− s′0xt
∥+ ∥s′0xt

∥, ∥y′′kxt
− s′′0xt

∥+ ∥s′′0xt
∥
}
≤ 3ρB.

Consequently, the term ∥ϕkxt
∥ can be upper bounded as

∥ϕkxt
∥ ≤ 2∥∆k

xt
∥∥wk

xt
∥+ ∥∆k

xt
∥∥wk−1

xt
∥+ 2E(µ) ≤ 6ρB(∥wk

xt
∥+ ∥wk−1

xt
∥) + 2E(µ).

From the update (33), we see

wk
xt

= [I 0]Ak
xt

[
w0

xt

w0
xt

]
− η[I 0]

k−1∑
r=0

Ak−1−r
xt

[
ϕrxt

0

]
.

29

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Next, we set up an induction on k to show:∥∥∥∥∥η[I 0]

k−1∑
r=0

Ak−1−r
xt

[
ϕrxt

0

]∥∥∥∥∥ ≤ 1

2

∥∥∥∥∥[I 0]Ak
xt

[
w0

xt

w0
xt

]∥∥∥∥∥ .
It is easy to check the base case holds for k = 0 since E(µ) = ρBθr0

2 ≤ 2ηρBr0. Then, assume that for all iterations less
than or equal to k, the induction assumption holds. We have

∥∥wk
xt

∥∥ =

∥∥∥∥∥[I 0]Ak
xt

[
w0

xt

w0
xt

]
− η[I 0]

k−1∑
r=0

Ak−1−r
xt

[
ϕrxt

0

]∥∥∥∥∥ ≤ 2

∥∥∥∥∥[I 0]Ak
xt

[
w0

xt

w0
xt

]∥∥∥∥∥ ,
and it further implies that

∥∥ϕkxt

∥∥ ≤ 12ρB

(∥∥∥∥∥[I 0]Ak
xt

[
w0

xt

w0
xt

]∥∥∥∥∥+
∥∥∥∥∥[I 0]Ak−1

xt

[
w0

xt

w0
xt

]∥∥∥∥∥
)

+ 2E(µ) ≤ 24ρB

∥∥∥∥∥[I 0]Ak
xt

[
w0

xt

w0
xt

]∥∥∥∥∥+ 2E(µ),

where the last inequality is due to the monotonicity of

∥∥∥∥∥[I 0]Ak
xt

[
w0

xt

w0
xt

]∥∥∥∥∥ in k (Lemma 33 in (Jin et al., 2018)). For the

case k + 1, we have ∥∥∥∥∥η[I 0]

k∑
r=0

Ak−r
xt

[
ϕrxt

0

]∥∥∥∥∥
≤η

k∑
r=0

∥∥∥∥∥[I 0]Ak−r
xt

[
I

0

]∥∥∥∥∥∥∥ϕrxt

∥∥
≤η

k∑
r=0

∥∥∥∥∥[I 0]Ak−r
xt

[
I

0

]∥∥∥∥∥
(
24ρB

∥∥∥∥∥[I 0]Ar
xt

[
w0

xt

w0
xt

]∥∥∥∥∥+ 2E(µ)

)

=η

k∑
r=0

|ak−r
xt

|
(
24ρB|arxt

− brxt
|r0 + 2E(µ)

)
(34a)

≤26ηρB

k∑
r=0

|ak−r
xt

||arxt
− brxt

|r0 (34b)

≤26ηρB

k∑
r=0

(
2

θ
+ k + 1

)
|ak+1

xt
− bk+1

xt
|r0 (34c)

≤26ηρBK

(
2

θ
+K

)∥∥∥∥∥[I 0]Ak+1
xt

[
w0

xt

w0
xt

]∥∥∥∥∥
≤1

2

∥∥∥∥∥[I 0]Ak+1
xt

[
w0

xt

w0
xt

]∥∥∥∥∥ , (34d)

where we define [akxt
− bkxt

] = [1 0]Ak
xt,min and

Axt,min =

[
(2− θ)(1− ηλmin(∇2f̂xt

(0))) −(1− θ)(I − ηλmin(∇2f̂xt
(0)))

I 0

]
.

Then, we apply the same argument in the proof of Lemma B.2 in (Li & Lin, 2022) to the inequality (34a), (34b) comes from
|arxt

− brxt
| ≥ θ

2 (Lemma 38 in (Jin et al., 2018)) and E(µ) ≤ ρBθr0
2 , and (34c) uses Lemma 31 in (Jin et al., 2018). From

the parameter settings, we have 26ηρBK
(
2
θ +K

)
≤ 1

2 in (34d). Therefore, the introduction is established, which yields

∥wK
xt
∥ ≥ 1

2

∥∥∥∥∥[I 0]AK
xt

[
w0

xt

w0
xt

]∥∥∥∥∥ =
r0
2
|aKxt

− bKxt
| ≥ θr0

4

(
1 +

θ

2

)K

≥ 5B,

30

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

where we use Lemma 33 in (Jin et al., 2018), ηλmin(∇2f̂xt
(0))) ≤ −θ2 and K ≥ 2

θ log
20B
θr0

. However, for the term ∥wK
xt
∥,

it also holds that
∥wK

xt
∥ ≤ ∥s′Kxt

− s′0xt
∥+ ∥s′0xt

− s′′0xt
∥+ ∥s′′Kxt

− s′′0xt
∥ ≤ 4B,

which leads to a contradiction. Therefore, at least one of the iterates s′0xt
, s′1xt

, . . . , s′Kxt
and s′′0xt

, s′′1xt
, . . . , s′′Kxt

trigger the “if
condition”.

F. Proofs of Non-asymptotic Convergence Analysis
In this section, we prove that non-perturbed RAZGD with Option II converges to second-order stationary points asymptoti-
cally. It follows from that the tangent space step TSS locally avoids saddle points. To prove the local saddle avoidance, it
is helpful to use the augmentation method to extend the update rule in the tangent space to a dynamical system of sk+1

and wk+1 that only depend on sk and wk, i.e., regard yk as an intermediate variable. Despite we are interested in the
zeroth-order method, the stability analysis of the zeroth-order algorithm heavily depends on the structure of its first-order
counterpart. Therefore, we start with the analysis of the first-order tangent space step, which provides the second-order
convergence immediately.

F.1. First-order tangent space step

We use the augmentation method to re-write the tangent space step in the following way,

yk = sk + (1− θ)(sk − wk) (35)

sk+1 = yk − ηg(yk;µ) (36)

wk+1 = sk (37)

where g(y;µ) is the zeroth order approximation of the gradient ∇f(y) with smoothing parameter µ. We will not emphasize
that g is performed at the point x at this stage, just to reduce the complexity of notations. The three steps of the updating
rule can be denoted by three mappings that consist of the mapping of the algorithm that updates sk, wk to sk+1, wk+1. We
denote

F1(s, w) = s+ (1− θ)(s− w)

F2(y) = y − ηg(y;µ)

F3(s) = s,

and then the algorithm can be written compactly as

ψ(s, w) = (F2 ◦ F1(s, w), F3(s))

which is a mapping from TxM × TxM onto itself. The fixed point of the first order accelerated (s∗, w∗) is necessarily a
point such that s∗ = w∗ and the gradient

∇f(y∗) = ∇f(s∗ + (1− θ)(s∗ − w∗)) = 0.

We will investigate the local structure of the zeroth order variant at the point (s∗, w∗). The differential Dψ(s∗, w∗) equals to

Dψ(s∗, w∗) =

[
DF2 ◦DF1(s

∗, w∗)

DF3(s
∗)

]
(38)

As an immediate result and important argument bridging first-order and zeroth-order accelerated gradient descent in the
tangent space, we first prove that the first-order tangent space step avoids saddle points. The following classic result of the
stable manifold theorem will be used to complete the proof for the first-order method.
Theorem F.1 ((Shub, 1987)). Let p be a fixed point for the Cr local diffeomorphism h : U → Rn where U ⊂ Rn is an
open neighborhood of p in Rn and r ≥ 1. Let Es ⊕ Ec ⊕ Eu be the invariant splitting of Rn into generalized eigenspaces
of Dh(p) corresponding to eigenvalues of absolute value less than one, equal to one, and greater than one. To the Dh(p)
invariant subspace Es⊕Ec there is an associated local h invariant embedded discW loc

sc which is the graph of a Cr function
r : Es ⊕ Ec → Eu, and ball B around p such that: h(W loc

sc) ∩B ⊂W loc
sc . If hn(x) ∈ B for all n ≥ 0, then x ∈W loc

sc .

31

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Lemma F.1. Suppose that 0 is a strict saddle point of the pullback function in the tangent space, then the measure of the
local initial points that converge to 0 is zero.

Proof. The structure of ψ gives the expression of its differential. Since

DF2 ◦DF1 = (I − η∇2f(y∗))((2− θ)I,−(1− θ)I) (39)

=
(
(2− θ)(I − η∇2f(y∗)),−(1− θ)(I − η∇2f(y∗))

)
(40)

and

DF3 = (I, 0) ,

we have that

Dψ(s∗, w∗) =

[
(2− θ)(I − η∇2f(y∗)) −(1− θ)(I − η∇2f(y∗))

I 0

]
.

Note that Dψ is similar to [
(2− θ)(I − ηH) −(1− θ)(I − ηH)

I 0

]

provided ∇2f(y∗) is diagonalizable where H is the diagonal matrix consisting of eigenvalues of ∇2f(y∗). We can abuse
the notation by

det(Dψ − λI) = det

([
(2− θ)(I − ηH)− λI −(1− θ)(I − ηH)

I −λI

])
(41)

= det

(
((2− θ)(I − ηH)− λI) + (1− θ)(I − ηH)

(
− 1

λ
I

))
(−λ)n (42)

= det (−λ((2− θ)(I − ηH)− λI) + (1− θ)(I − ηH)) (43)

= det
(
λ2I − λ(2− θ)(I − ηH) + (1− θ)(I − ηH)

)
(44)

Since all matrices involved above are all diagonal, the determinant is nothing but the product of the following polynomials
for i ∈ [n]:

λ2 − (2− θ)(1− ηλi)λ+ (1− θ)(1− ηλi).

Suppose λi is a negative eigenvalue (existence is guaranteed by assuming y∗ is a saddle point), the eigenvalue of Dψ must
contain the following one

λ =
(2− θ)(1− ηλi) +

√
(2− θ)2(1− ηλi)2 − 4(1− θ)(1− ηλi)

2
.

Since we can choose θ and η so that

η >
2

2−θ − 1

−λi

which guarantees that

(2− θ)(1− ηλi) > 2,

thus λ > 1 (unstable fixed point). The step η can be arbitrarily small (so that ψ is a diffeomorphism) by taking θ as small as
possible. Applying the center-stable manifold theorem F.1, we complete the proof.

32

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

F.2. Zeroth-order tangent space step with constant contraction

In this subsection, we show the asymptotic convergence for the zeroth-order tangent space step with constant contracting
parameter β. The zeroth order tangent space step can be extended with the smoothing parameter to a new mapping ψ̃(s, w, µ)
with a contraction factor β as follows,

ψ̃(s, w, µ) = (ψ(s, w, µ), βµ) (45)

where ψ(s, w, µ) considers the smoothing parameter as a proper variable such that ψ is a mapping defined on TxM×TxM×
R → TxM × TxM . Note that the zeroth order approximation g(y;µ) may not provide a fixed point of the gradient descent,
in order to asymptotically output a fixed point the gradient descent, it is necessary to contract the smoothing parameter so
that the zeroth order approximation algorithm has the same set of fixed points as the gradient descent. Motivated by the
zeroth order approximation scheme of (Flokas et al., 2019). The tangent space mapping requires a contracting smoothing
parameter βµ for the whole tangent space step TSSA. Another observation on the tangent space step TSSA from the
asymptotic perspective, is the condition in the while loop. Since the asymptotic convergence empirically works well and
is more convenient in the parameter settings, there is no need to use finite step K in TSS mapping, but the condition
k
∑k

j=0 ∥s
j+1
k − sjx∥2 > B2 suffices to control the process of the while loop. The next lemma shows that the TSSA step is

almost impossible to converge to a saddle point.

Lemma F.2. Consider mapping ψ̃ is defined as (45). The set of initial condition in the tangent space that converges to
saddle point, i.e., 0 in this setting, has measure zero.

Proof. The differential of ψ̃ can be computed in the following way,

Dψ̃ =

[
Dsψ Dwψ Dµψ

0 0 β

]
.

Recall that in the zeroth order approximation, ψ is a mapping consisting of the approximated gradient g(y;µ), which is
different from the first order method. The differential of g(y;µ) gives the differential of ψ̃ and ψ, so we compute Dg(y;µ)
concretely, since 0 is the only fixed point for the µ component, we need to compute the Taylor expansion at (y∗, 0) where y∗

is the fixed point of the first order counterpart of the algorithm. Thus, we have Ds,wψ(y
∗, 0) coincide with the differential

computed in the first order method, and Dµψ is (−ηDµg(y;µ), 0)
⊤, where

Dµg(y;µ) =


∂g1(y;µ)

∂µ
...

∂gd(y;µ)
∂µ

 =


∂
∂µ

(
f(y+µe1)−f(y)

µ

)
...

∂
∂µ

(
f(y+µed)−f(y)

µ

)
 . (46)

Since the block matrix [Dsψ,Dwψ] computed at (y∗, 0) is the same as that has been computed in the first order method,
and we have shown that the determinant of the block matrix is not zero, therefore, we are ready to obtain the determinant of
Dψ̃ at the fixed point (y∗, 0). It is obvious that

det
(
Dψ̃(s∗, w∗, 0)

)
= det (Dψ(s∗, w∗, 0)) · β

and
det
(
Dψ̃(s∗, w∗, 0)− λI

)
= det (Dψ(s∗, w∗, 0)− λI) (β − λ).

Based on the spectral analysis of the first order tangent step, we conclude that the escaping direction the zeroth order
approximation tangent space step is provided by the unstable direction of the first order method. In the end, applying the
stable manifold theorem (Shub, 1987), we conclude that the set of initial points that converge to saddle point in the asymptotic
variant of tangent space step is of measure zero since these initial points belong to a lower dimensional manifold.

F.3. Zeroth-order tangent space step with time-varying contraction

We next prove the asymptotic saddle avoidance of the tangent space step TSSA when the smoothing parameter reduces in a
slower rate, which is more practical from a zeroth-order perspective.

33

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Lemma F.3. Suppose TSSA is executed with the update rule on the smoothing parameter µ given by

µk+1 =

(
1− 1

k + 2

)
µk

, then the probability of TSSA converging to a saddle point is zero.

Proof. The dynamical system augmented by µ is the following,

yk = sk + (1− θ)(sk − wk) (47)

sk+1 = yk − ηg(yk;µk) (48)

wk+1 = sk (49)

µk+1 = (1− 1

k + 2
)µk (50)

which is an augmentation with the smoothing parameter µ Following the previous arguments, we can write the mapping on
the parameters (s, w, µ) as follows,

ψ̃k(s, w, µ) =

(
ψ(s, w, µ),

(
1− 1

k + 2

)
µ

)
and the differential of ψ̃ is

Dψ̃k =

[
Dsψ Dwψ Dµψ

0 0 1− 1
k+2

]
Since the zeroth order method with contraction factor converges to stationary points of the corresponding first-order method,
we can investigate the same Taylor expansion and differential of the algorithm expanded at the stationary point, especially at
saddle point. The eigenvalues of the operator Dψ̃(s∗, w∗, 0) can be analyzed by the characteristic polynomial

det
(
Dψ̃k(s

∗, w∗, 0)− λI
)
= det (Dψ(s∗, w∗, 0)− λI)

(
1− 1

k + 2
− λ

)
.

Note that except for the eigenvalue 1 − 1
k+2 , all the other eigenvalues are the same as the case whose the contraction

parameter is a constant β. Therefore, there is an (2d+ 1)× (2d+ 1) invertible matrix Ck for each k such that

Ak = C−1
k Dψ̃k(s

∗, w∗, 0)Ck =

[
Pk

Qk

]

where the eigenvalues λ1, ..., λs of Pk have magnitude less than 1, and the eigenvalues λs+1, ..., λ2d+1 of the matrix Qk

have magnitude greater than 1 (guaranteed by the property of a saddle point). Since the algorithm now is time dependent,
i.e., the update rule ψ̃k contains a time dependent term 1− 1

k+2 and thus the Jordan block is also time dependent, the time
independent argument that directly follows the stable manifold theorem is not valid in this time dependent setting. To show
the same result as what holds for constant contraction case, we need to investigate the structure of the dynamical system in
detail. Denote A(m,n) the successive product of the nth till the mth matrices, i.e., A(m,n) = Am · ... ·An. With the help
of this notation, we can express the product

A(m,n) =

[
Pm...Pn

Qm...Qn

]
=

[
P (m,n)

Q(m,n)

]
.

Recall that the dynamical system induced by the tangent space step is
sk+1

wk+1

µk+1

 = ψ̃(sk, wk, µk).

34

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

Assuming that the saddle point is (s∗, w∗, 0) = (0, 0, 0), and the above dynamical system has the following expression
obtained from the Taylor expansion around (0, 0, 0),

sk+1

wk+1

µk+1

 = Dψ̃k(0, 0, 0)


sk

wk

µk

+ ξk(s
k, wk, µk)

where ξk(·, ·, ·) is the remainder of ψ̃k. Starting from the initial condition (s0, w0, µ0), the dynamical system can be
represented by

zk+1 =

[
P (k, 0)

Q(k, 0)

]
z0 +

k∑
i=0

[
P (k, i+ 1)

Q(k, i+ 1)

]
ξi(zi),

where zk is the dynamical system topologically conjugated to (sk, wk, µk). Splitting zk and ξi(zi) into contracting and
expanding components according to P (k, 0) and Q(k, 0), i.e., this decomposition is actually based on the magnitudes of the
eigenvalues of Dψ̃k which is determined by the Hessian of the objective function f at saddle points. Further information of
the Jordan matrix Pk and Qk can be inferred. The expanding matrix Qk contains only constant eigenvalues with magnitude
greater than 1. The contracting matrix Pk contains constant eigenvalues and one eigenvalue that is exactly 1− 1

k+2 . The
stable-unstable decomposition of zk can be further refined into stable with constant eigenvalues less than 1, stable with
eigenvalue 1− 1

k+2 , and unstable with constant eigenvalues greater than 1. Specifically, we decompose zk into

zk =


z+k

zµk

z−k

 ,
and ξi(zi) into

ξi(zi) =


ξ+i (zi)

0

ξ−i (zi)


where the remainder with respect to zµk is zero because the update rule of µ is a linear function. Based on this decomposition,
we can refine the formulation of the dynamical system of zk in the following way,

z+k+1 = P (k, 0)z+0 +

k∑
i=0

P (k, i+ 1)ξ+i (zi)

zµk+1 =

(
1− 1

k + 2

)
zµk

z−k+1 = Q(k, 0)z−0 +

k∑
i=0

Q(k, i+ 1)ξ−i (zi)

where we still use P as the Jordan block of stable component without distinguishing from the one containing 1 − 1
k+2 .

Letting k → ∞, we have formally the unstable component z−0 of the initial condition z0 satisfying

z−0 = −
∞∑
i=1

Q(i− 1, 0)−1ξ−i−1(zi−1),

and then the updated term zk+1 can be written as

zk+1 = z+k+1 ⊕ zµk+1 ⊕ z−k+1

=

(
P (k, 0)z+0 +

k∑
i=0

P (k, i+ 1)ξ+i (zi)

)
⊕
(
1− 1

k + 2

)
zµk ⊕

(
Q(k, 0)z−0 +

k∑
i=0

Q(k, i+ 1)ξ−i (zi)

)

35

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

where the last summand can be further written as

−
∞∑
i=0

Q(k + 1 + i, k + 1)−1ξ−k+1+i(zk+1+i).

The update rule can be understood as an operator acting on the space of bounded sequences converging to zero. Since
P (k, 0) and Q(k, 0) are matrices only involving constant eigenvalues, there exists constants K1,K2 < 1 such that

∥P (m,n)∥2 ≤ Km−n+1
1 (51)

∥Q(m,n)−1∥2 ≤ Km−n+1
2 . (52)

The Lyapunov-Perron argument (Panageas et al., 2019) asserts that there exists a small neighborhood around the saddle
point, such that T is an contraction map on the space of sequences converging to zero, and consequently, the initial point
that can be carried to the saddle point (the zero) by the algorithm must lie on a lower dimensional manifold. To make this
point precise, we investigate the norm of the difference of two sequences T acting on. Let u = {un}n∈N and v = {vn}n∈N,

(Tu− Tv)k+1 = (Tu)k+1 − (Tv)k+1 (53)

=

(
Q(k, 0)(u+0 − v+0) +

k∑
i=0

P (t, i+ 1)(ξ+i (ui)− ξ+i (vi))

)
(54)

⊕ 1

3(k + 2)
(uµ0 − vµ0) (55)

⊕

(
−

∞∑
i=0

Q(k + 1 + i, k + 1)−1(ξ−k+1+i(uk+1+i)− ξ−k+1+i(vk+1+i))

)
(56)

where the coefficient of the middle component comes from the product

1

3(k + 2)
=

k∏
i=0

(
1− 1

i+ 2

)
.

Let d(u, v) be the metric defined by the supremum norm of the sequence {ui − vi}i∈N. Since it has been proven by (Feng
et al., 2022) that T is a contracting map without the component of 1

3(k+2) (u
µ
0 − vµ0), i.e., there exists a constant K < 1 such

that
d(Tu, Tv) ≤ Kd(u, v),

and 1
3(k+2) ≤

1
6 < 1, it guarantees a new constant K ′ < 1, so that T acting on the space of the considered sequence with

µ-component is an contracting map. Thus, the existence and uniqueness of the stable manifold in a neighborhood of the
saddle point follow from the existence and uniqueness of the fixed point of T . So the probability of the initial condition
lying on such lower dimensional manifold so that the iterates converge to saddle point is zeor.

Now we are able to finalize the proof of Theorem 4.3.

proof of Theorem 4.3. It has been established that the probability of TSSA staying in a neighborhood of a saddle point is
zero, for any TSSA stage.

Pr

 lim
k→∞

k

k−1∑
j=0

∥sj+1
x − sjx∥2 ≤ B2

 = 0

and then the probability for the iterations to stay in a neighborhood of a second-order stationary point is 1. Since the
zeroth-order acceleration with contracting parameter β < 1 converges to stationary point, it follows that the probability for
TSSA output a second-order stationary point is 1. Together with the above Lemma F.3 for the case when the contracting
parameter decreases in a slower manner (which slows the decreasing of smoothing parameter µ in the TSSA stage), we
complete the proof of the theorem.

36

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

G. Implementation of RZGD and PZGD
For Riemannian zeroth-order gradient descent (RZGD), it iteratively utilizes the Riemannian zeroth-order gradient descent
step (Subroutine 1) until convergence. In the case of Euclidean projected zeroth-order gradient descent (PZGD), we first
compute the Euclidean zeroth-order estimator (denoted by gE(·)), take a Euclidean zeroth-order gradient descent step, and
then project onto the Riemannian manifold. The pseudocodes of both algorithms are presented below.

Algorithm 2 Riemannian Zeroth-order Gradient Descent
Algorithm (RZGD)

1: input: parameters η, and B
2: initialize: x0 ∈ M, t = 0

3: for t = 0, 1, · · · ,∞ do
4: Compute estimator gxt

(0;µ)

5: if ∥gxt
(0;µ)∥ ≥ lB then

6: xt+1 = RZGDS(xt, η, gxt
(0;µ))

7: else
8: Terminate with xt
9: end if

10: end for

Algorithm 3 Euclidean Projected Zeroth-order Gradient
Descent Algorithm (PZGD)

1: input: parameters ηt
2: initialize: x0 ∈ M, t = 0

3: for t = 0, 1, · · · ,∞ do
4: Compute Euclidean estimator gE(xt)
5: xt+1 = projM (xt − ηtgE(xt))

6: end for

For completeness, we establish the function query complexity of RZGD, which serves as a benchmark for demonstrating the
acceleration achieved by our RAZGD.

Theorem G.1. Suppose that Assumptions 4.1, 4.2 and 4.3 hold. Set parameters in Algorithm 2 as follows

η =
1

4l
, B =

ϵ

2l
.

For any x0 ∈ M and sufficiently small ϵ > 0, choose µ = O
(√

ϵ
d1/4

)
in Line 4 of Algorithm 2. Then Algorithm 2 outputs an

ϵ-approximate first-order stationary point. The total number of function value evaluations is no more than

O

(
(f(x0)− flow)d

ϵ2

)
.

Proof. Recall the approximation error of the Riemannian coordinate-wise zeroth-order estimator (Lemma D.1), it holds that

∥gxt
(0;µ)−∇f̂xt

(0)∥ ≤ ϵ

4
=
lB

2

by setting µ = O
(√

ϵ
d1/4

)
. For the scenario where ∥gxt(0;µ)∥ ≥ lB holds, Lemma E.1 gives

f(xt+1)− f(xt) ≤ −min

{
lB2

16
, lb2

}
= − ϵ2

64l
.

Otherwise, we have

∥ grad f(xt)∥ = ∥∇f̂xt
(0)∥ ≤ ∥gxt

(0;µ)−∇f̂xt
(0)∥+ ∥gxt

(0;µ)∥ ≤ 3

4
ϵ,

where the first equality holds as Txt,0 is identity. Therefore, as computing the zeroth-order estimator once requires 2d
function value evaluations, the total number of function value evaluations must be less than

O

(
(f(x0)− flow)d

ϵ2

)
.

37

Riemannian Accelerated Zeroth-order Algorithm: Improved Robustness and Lower Query Complexity

H. Riemannian Geometry of the Simplex
The Riemannian geometry of the positive orthant Rd

+ = {x : xi > 0 for all i ∈ [d]} was studied by researchers from mathe-
matical biology and evolutionary game theory (Shahshahani, 1979; Mertikopoulos & Sandholm, 2018). For completeness,
this section provides missing details of calculation based on the Riemannian geometry of positive orthant and simplex in the
experiment. Formally the positive orthant is Rd

+ is endowed with a Riemannian metric whose metric matrix {gij(x)} is
diagonal with gii(x) =

|x|
xi

where |x| =
∑d

j=1 xj , i.e.,

g(x) =


|x|
x1

0

. . .

0 |x|
xd


Rd

+ is a single chart manifold with a non-Euclidean structure. To compute the pullback function f̂x = f ◦ Retrx on the unit
simplex, we introduce the exponential map on the Shahshahani manifold as the retraction. Given a point x ∈ ∆d−1 and a
vector s ∈ Tx∆

d−1, the exponential map is

Expx(s) =

(
x1e

s1∑
j xje

sj
, ...,

xde
sd∑

j xje
sj

)⊤

∈ Rd.

38

