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ABSTRACT

Despite their excellent performance on various multimodal learning tasks, deep
neural networks (DNNs) are often characterized as “black boxes”. Some tech-
niques aid in designing explainable DNNs. For instance, sparse modeling limits
the sparsity while preserving key features, and the Shapley value from game the-
ory quantifies the true contribution of each component, both of which are recog-
nized for their strong explainability. However, designing explainable multimodal
DNNs by manually designing unimodal backbones and multimodal feature fu-
sion models requires substantial expertise and time. This paper proposes a novel
multimodal neural architecture search (NAS) method, termed Shapley-Enhanced
Multimodal Neural Architecture Search via Sparse Modeling (SM-ShapNAS), for
automating the design of appropriate and explainable multimodal DNNs. SM-
ShapNAS incorporates sparse attention and sparse convolutional operations within
a predefined search space, and uses the Shapley value approximated by group pol-
icy to evaluate the true contribution of each operation in the fusion cells. By com-
bining sparse modeling and the Shapley value, the proposed SM-ShapNAS au-
tomatically generates efficient and explainable multimodal DNNs. Experimental
results on three multimodal datasets demonstrate that the SM-ShapNAS achieves
competitive performance compared to the state-of-the-art multimodal NAS meth-
ods, particularly in noisy environments.

1 INTRODUCTION

With the rapid development of multimodal learning, designing efficient networks to integrate hetero-
geneous data modalities has become a research focus, such as action recognition (Bruce et al., [2022)
and cross-modal retrieval (Hu et al.,[2021; |Wang et al., 2024)). While deep neural networks (DNNs)
has made remarkable success in designing high-performance models, it has been increasingly real-
ized and criticized that many DNNs lack theoretical support. Different from “interpretability” which
refers to a model to be understood due to its inherent simplicity or transparent structure, we focus
on “explainability”, which emphasizes techniques to generate comprehensible rationales for black
box” models. For example, the goal of layer operations such as convolution, pooling, and normal-
ization is to minimize the training loss, which results in unreasonable middle layers for DNNs. The
lack of explainability hinders enhancing learning systems for noisy data (Xua & Yang|,2024). Most
existing multimodal DNNs only focus on model performance, which makes it difficult to discover
internal relationships between different modalities and make reasonable decisions.

However, manually designing explainable and efficient architectures for multimodal tasks remains
challenging, as it requires significant expertise to balance modality-specific processing, cross-modal
fusion, and computational efficiency. This limitation has stimulated the rise of neural architecture
search (NAS), which has emerged to automate the design of efficient neural networks. NAS is an
automatic method for searching the optimal neural architecture within a predefined search space
(Bello et al., |2017). Some works apply NAS to multimodal learning, for example, MFAS (Pérez-
Rua et al 2019) proposes a sequence model-based adaptive search method, with the challenge
that the single fusion operation leads to a limited combination for feature fusion strategies when
dealing with multiple modalities. BM-NAS (Yin et al.,|2022) adopts an efficient bilevel multimodal
architecture search scheme. However, the magnitude of architecture parameters fails to reflect the
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Figure 1: A feature fusion cell in SM-ShapNAS. Two inputs are selected from unimodal features
and preceding outputs. The inner-cell operations are chosen from normal operations and sparse
operations in the search space. Then we employ the Shapley value via group policy to evaluate the
true contribution of operations according to the validation accuracy difference.

true contribution of each operation (Wang et al.l 2021} [Zhou et al.| 2021)), thereby hindering the
performance of derived architectures. DC-NAS (Liang et al.|[2024) exchanges knowledge from two
small knowledge bases, but it may lead to information loss on large datasets.

To address these challenges, this paper proposes a novel explainable multimodal NAS framework
that integrates sparse modeling and the grouped Shapley value. We design sparse attention and
sparse convolution operations in the predefined search space, to improve the feature fusion capabil-
ity and improve search efficiency. A cell in the search process in SM-ShapNAS is shown in Fig.
Each cell has two inputs and one output. They choose intra-cell and inner-cell operations to discover
proper architectures by evaluating the operation contribution. In multimodal NAS, the function of
a single operation is often non-independent, and its efficiency is highly dependent on the dynamic
coupling and context collaboration between modalities. For example, the feature extraction of vi-
sual modality may adjust the weight distribution due to semantic constraints of text modality, while
the design of the cross-modal fusion layer needs to be optimized synchronously to match different
modalities. We apply grouped Shapley value instead of the magnitude of the gradient descent archi-
tecture parameter when evaluating the contribution of operations to the architectures. Furthermore,
since directly calculating Shapley value is an NP-hard problem, we employ group policy to estimate
the Shapley value, enabling the evaluation of the true contribution of each operation.

The main contributions of this paper are four-fold.

1. We design a search space, including normal and sparse operations (sparse attention and
sparse convolution operations), which improves the feature extraction capability.

2. To efficiently determine the true contribution of each operation, we estimate the Shapley
value using group policy to evaluate candidate operations.

3. We propose a novel multimodal NAS framework, termed SM-ShapNAS, to automatically
design explainable multimodal DNNs.

4. Experiments on three multimodal benchmarks demonstrate that SM-ShapNAS outperforms
state-of-the-art peer methods, particularly in noisy environments.

2 RELATED WORKS

2.1 EXPLAINABLE MULTIMODAL NAS

Recently, several multimodal NAS methods have attracted significant attention due to their ability to
automatically identify the optimal architectures. MFAS (Pérez-Rua et al., |2019) treats multimodal
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fusion as a NAS problem, it proposes a new search space and employs sequential model-based
optimization (SMBO) algorithm. BM-NAS (Yin et al.,|2022) introduces a bilevel scheme to search
for both the unimodal feature selection strategy and the fusion strategy. However, its narrow search
space leads to suboptimal results. DC-NAS (Liang et al.,[2024) utilizes the small knowledge bases
to improve search efficiency. CoMO-NAS (Fu et al.,2024) applys core structures to guide the Pareto
Frontier search. These methods all suffer from the problem of lack of explainability, which makes
it difficult for researchers to understand their working principle and decision-making basis.

Some strategies have attracted researchers’ attention due to their strong theoretical explainability.
Sparse modeling has emerged as an important technique for enhancing the explainability of networks
(L1 et al.| |2022). In multimodal learning, sparse modeling has been widely applied in various tasks,
such as image fusion (Veshki & Vorobyov, [2022), finger recognition (Li et al.,[2021)) and so on (Wu
et al., 2013} [Scetbon et al., 2021 [Lecouat et al., 2020). CCFL (Veshki & Vorobyov, |2022) uses
separate convolutional sparse coding to approximate shared and indenpendent features. SDMFC (L1
et al., 2021) constructs an overcomplete dictionary on which the extracted multimodal features are
sparsely encoded. Recently, the DeepSeek-Al team (Yuan et al., [2025) proposed the native sparse
attention, has greatly increased research interest. Notably, in noise imaging scenarios, sparse design
reduce interference from corrupted regions while providing explainability through their sparsity.

2.2 SHAPLEY VALUE

The Shapley value (Shapley et al.| [1953]; |(Ghorbani & Zou, |2019) which rooted in cooperative game
theory, have been adapted to explain model predictions by attributing contributions to input fea-
tures. (Lundberg & Lee, [2017) proposes a unified framework SHAP, which unifies several feature
attribution methods under a theoretical framework and uses the Shapley value to assign the contri-
bution of each feature to the model prediction. It ensures the consistency and local accuracy of the
interpretation, and provides a theoretical basis for model interpretation. (Shanbhag et al.l2021) in-
troduces a model-agnostic framework to quantify the contribution of input features to the prediction
drift. Shapley-NAS (Xiao et al., [2022)) first employs the Shapley value into unimodal NAS, how-
ever, calculating the Shapley value for only normal operations is difficult to effectively reduce the
computational cost and does not perform well enough in noisy environment.

This paper designs an efficient and explainable multimodal NAS method that uses sparse modeling
in the predefined search space and grouped Shapley value to evaluate the true performance of each
operation. The proposed SM-ShapNAS follows the alternating optimization paradigm in differen-
tiable architecture search (Liu et al., [2019).

3 METHOD

The overall framework of the proposed SM-ShapNAS is shown in Fig. |2| The features are extracted
using predefined unimodal backbone. Then we search for feature fusion cells in the search space
including normal operations and sparse operations, and employ grouped Shapley value to evaluate
the contribution. Each feature fusion cell represented by a directed acyclic graph (DAG) has two
inputs that are selected from the unimodal features and the preceding outputs. We estimate the
Shapley value to identify true contribution of each operation by group policy, which determines the
contribution based on the validation accuracy change.

Algorithm 1 shows the search process, which follows DARTS to alternatively optimize architecture
parameters and model weights, and update the architecture according to grouped Shapley value. The
proposed multimodal NAS method involves two core concepts: sparse coding and grouped Shapley
value, which are closely integrated.

3.1 SPARSE MODELING

To address noise in sequential data and improve model explainability, we introduce a 1-dimensional
sparse convolution that extends the principles of sparse feature learning to 1-dimensional sequence.
For input vector x = (21,%3,...,2.) € RE*L, and the convolution dictionary A € RE*Cxk,
where C'is the number of channels, L is the sequence length, k is the 1-dimensional kernel length.
Then sparse output vector can be expressed as z € RE*L.
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Figure 2: Overall framework of the proposed SM-ShapNAS.

Algorithm 1 Pseudocode of the proposed SM-ShapNAS.

Require: The search space O.
Ensure: The optimal fusion architecture architecture_best.
1: Initialize architecture parameters o and model weights w
2: Initialize architecture_best based on « and w in the predefined search space O
3: Evaluate individuals in P by training architectures encoded by the individuals for M epochs
and compute the fitness;
while not converged do
w <— Update w by optimizing L,in
a <— Update o by optimizing Ly,
¢ < Calculate current grouped Shapley value ¢
Construct architecture based on ¢ and w in the predefined search space O
architecture_best <— Update architecture_best using the architecture
end while
return P;

TeYReIUNR

—

As a sparse coding layer, it is used to perform an inverse mapping to a preferably sparse output
vector z = (21, 22, ..., 2.). The convolution dictionary A € RE*E*L can be expressed in the
following form:

«11 O 13 ... OqcC
Q21 Q2 Qg3 ... OoC

A= ) ; ) ) ] c IRCXCX]C7
ac1 Qg2 Oac3 ... O¢C

where o represents 1-dimensional kernel of length k. Then input vector x is

C
CE:A(Z) :Z(auzi,...,aw“zi) GRCXL 0
i=1

To accelerate convergence and achieve end-to-end sparsity, we use fast iterative shrinkage-
thresholding algorithm (FISTA) for forward propagation. For the sparse convolutional layer, we
learn the sparse coding to minimize the following loss:

1
L= Sle— A5+ Mzl + dall=]3 @)

where \; and ), are regularity coefficients, A is the convolutional dictionary. A1 ||; and Az|| |3
are /1 and /5 regularization terms respectively.
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3.2 SEARCH SPACE

Inter-cell. By adopting the continuous relaxation mechanism in DARTS, all predecessors of cells
are dynamically connected through a fully directed supernet. For any two nodes n(9),n9) (i < 7),
the output of edge (4, j) is defined as:

exp a(i’j) )
( f(a?j;j)) - f (I(Z)> (3)
(4.9)

where a F is the architecture parameter of edge (4, j), operation f is selected from function set F.
Specifically, f(x) = x preserves the edge, whereas f(z) = 0 removes the edge.

=3 %

i—j fEF D preF €XP

In the search process, the architecture parameters « of the candidate operations are alternately opti-
mized through gradient descent in conjunction with the network weights w, with the goal of mini-
mizing validation loss:

min Ly (w*(a),a), st w*(«a)=arg min Lyin (w, a) 4

In the evaluation process, the final architecture is determined through discretization. The operation
with the highest weight on edge (¢, j) is retained:

* (4,5) 5

7 =arg maxay 5)

Intra-cell. As the scheme in DARTS, Each cell represents a DAG that comprises a set of inner
nodes, namely two input nodes, one output node, and several middle nodes. Operations of these

nodes are selected from the predefined search space in Table 1. We set z, y as two inputs, and z as
one output. The different operations are described in detail in Appendix A.

Table 1: The proposed search space contains normal operations and sparse operations.

Type Unimodal Backbone
Normal Sum Gated Linear Units Concat SELayer
Sparse | Sparse-Attention Sparse-GLU Sparse-Concat ~ Sparse-SELayer

Similar to the inter-cell continuous relaxation mechanism, the output z(*) at node ¢ can be repre-
sented as below.

L0 — Z exp (ag)) <o (x(i)’y(j)> )

(t
0€0 Eofeo exXp (040/

where (V) and 3y) are the input z at preceding node 7, the input y at preceding node j respectively,
operation o is selected from the predefined search space O.

3.3 GROUPED SHAPLEY VALUE

Differentiable NAS couples architecture parameter o with weights w during the joint optimization
process, and « fails to reflect true contribution of the operations. We address this by applying
grouped Shapley value, a solution based on fair distribution from cooperative game theory, to eval-
uate the component contribution. We map NAS as a cooperative game where players are candidate
inter-cell and intra-cell operations, coalition forms architecture, payoff function corresponds to val-
idation performance, and payoff allocation quantifies contribution. In the cooperative game, players
setis N = {1,2,...,n},n = Ops; e - ODSintra» feature value function v : 2V — R represents per-
formance metric for each any subset of players S C N, and the goal is to find the payoff allocation

vector ¢ € R™: n
> b =uv(N) (7)
i=1
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The Shapley value is the fairest payoff allocation scheme in the cooperative game, which calculates
the expected value of the true contribution of operation o;:

Ky _ _ _
¢FZM > |S|!(n — |S] UI[U(SU{oi})—v(S)] )

mp n!
kg=1 SCN\{o;}

where S is the set of predecessors of operation o in a given permutation. k, is the operation group.
my, is the initial samples for group k. In this paper, we utilize the change in validation accuracy
as the feature value function to evaluate the operations. Considering that the feature value function
v(+) needs to be evaluated exactly for each subnetwork, and the computational complexity O(2") is
too high, the Shapley value is approximated by means of group policy and Monte Carlo sampling.
This way, the calculation complexity reduces from O(N - 2V) to O(mN'), where m is the number
of samples. Then the estimated Shapley value can be expressed as below.

$i =Erun [v(SriU{0;}) — v (Sri)] &)

where 11 is the set of all operation permutations, Sy ; is the set of all operations before operation o;
in permutation 7.

The grouped Shapley value in NAS is to represent the contribution of each operation, and the search
target is modified to:

a X ¢ (L (W', a)) st w*=argmin L (w, ) (10)

where « is architecture parameter, w is network weight, ¢ is grouped Shapley value. Then we update
« based on Shapley value estimated by group policy and Monte-Carlo sampling.

St
[[stll
o (ACCval (wt—h at—l))

— 12
% = 11 (Aco (wr—1, 1), (12

where o is the architecture parameter of step ¢, € is the step size, s, is grouped Shapley value at step
t, and |||, is £2 norm. Note that my, is only for initialization, and the number of samples changes
proportionally according to the architecture parameters for each operation after warmup.

(1)

p = Q41 + €~

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the proposed SM-ShapNAS across
three multimodal tasks. We use the multilabel movie genre classification dataset MM-IMDB
(Arevalo et al.l 2017), the multimodal action recognition dataset NTU RGB+D (Shahroudy et al.,
2016), and the multimodal gesture recognition dataset EgoGesture (Zhang et al.l 2018)).

4.1 DATASETS AND TRAINING SETTINGS

MM-IMDB is a multilabel classification dataset containing 25,959 movies. We adopt VGG Transfer
(Simonyan & Zisserman, [2014) and Maxout MLP (Goodfellow et al., 2013) as the backbones for
image modality and text modality, respectively. NTU RGB+D is a large-scale multimodal dataset
for human action recognition. It contains 56,880 motion samples from 40 subjects covering 60
classes of movements. We use Inflated ResNet-50 (Baradel et al., 2018) for the video modality, and
Co-occurrence (Chen et al., [2020) for the skeleton modality. EgoGesture contains 2,081 RGB-D
videos, 24,161 gesture samples, and 2,953,224 frames collected from 50 distinct subjects across 83
classes for gesture recognition. ResNeXt-101 (Kopiiklii et al., 2019) serves as the backbones for
both RGB and depth video modalities.

We set the regularity coefficients Ay = 0.1, Ay = 0 in sparse operations. We use the Adam (Kingma
& Ba, 2014) optimizer, learning rate 3e-4, and /5 weight decay le-4 for architecture parameter
optimization. We use the Adam optimizer with Cosine Annealing scheduler, maximum learning rate
le-3, minimum learning rate le-6, and /5 weight decay le-4 for network parameters. For estimating



Under review as a conference paper at ICLR 2026

grouped Shapley value, initial normal samples m,, = 20, initial sparse samples ms = 60, and step
size is € = 0.1. The experimental details are placed in Appendix B.

Notably, the proposed method focuses on the feature fusion process and relies on unimodal back-
bones. It prioritizes computational efficiency and task-specific feature extraction but inherently
restricts the layer visualization. In particular, the proposed method only requires 0.08 GPU days and
0.80 GPU days respectively on MM-IMDB and EgoGesture to search for the optimal architecture.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 2, Table 3 and Table 4 show the performance of the proposed SM-ShapNAS on the three
datasets respectively. The proposed method adopts the average of 10 results.

Table 2: Multilabel genre classification results on MM-IMDB dataset. F1-Weighted (F1-W) and
F1-Macro (F1-M) are reported.

Method | Modality | FI-W(%) | FI-M(%)
Unimodal Backbone
VGG Transfer (ICLR15) Image 49.21 33.50
Maxout MLP (ICML13) Text 57.54 45.98
Multimodal Methods
MFAS (CVPR19) Image + Text 62.50 55.68
BM-NAS (AAAI22) Image + Text 62.40 54.34
DC-NAS (AAAI24) Image + Text 63.70 -
CoMO-NAS (MM24) Image + Text 63.84 -
SM-ShapNAS (Ours) Image + Text | 65.54 + 0.10 | 59.37 &+ 0.16

In MM-IMDB, we compare SM-ShapNAS with some state-of-the-art peer methods. F1-Weighted
calculates the F1-score for each class separately and then takes a weighted average based on true
instances counts. It is suitable for imbalanced datasets. F1-Macro calculates the F1-score for each
class separately and then averages them equally. It is used when evaluating performance across
all classes without bias toward dominant classes. As shown in Table 2, the proposed method has
competitive performance in both the F1-W and F1-M metrics.

Table 3: Multimodal action recognition accuracy on NTU RGB+D dataset.

Method | Modality | Accuracy(%)
Unimodal Backbone
Inflated ResNet-50 (CVPR18) Video 83.91
Co-occurrence (IJCAI18) Pose 85.24
Multimodal Methods
MFAS (CVPR19) Video + Pose 89.50
BM-NAS (AAAI22) Video + Pose 90.48
DC-NAS (AAAI24) Video + Pose 90.85
CoMO-NAS (MM24) Video + Pose 90.94
SM-ShapNAS (Ours) Video + Pose | 92.76 + 0.04

In Table 3 and Table 4, the optimal architecture searched by the proposed method achieves an accu-
racy of 91.35% on NTU RGB+D and 95.49% on EgoGesture, which demonstrates the effectiveness
of the proposed SM-ShapNAS. We further analyze all the optimal architectures on three datasets in
the Appendix C.

4.3 DISCUSSION

Moreover, the proposed SM-ShapNAS performs well under varying severity levels of noise. Table 5
shows the results under a Gaussian noise environment on three multimodal datasets. We use only the
F1-W score as the metric for MM-IMDB because of the imbalanced classes. By simulating physical
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Table 4: Multimodal gesture recognition accuracy on EgoGesture dataset.

Method |  Modality [ Accuracy(%)
Unimodal Backbone
ResNeXt-101 (FG19) RGB 93.75
ResNeXt-101 (FG19) Depth 94.03
Multimodal Methods
BM-NAS (AAAI22) | RGB + Depth 94.96
DC-NAS (AAAI24) | RGB + Depth 95.22
CoMO-NAS (MM24) | RGB + Depth 95.25
SM-ShapNAS (Ours) | RGB + Depth | 96.46 + 0.05

Table 5: Results under different Gaussian noise levels on three multimodal datasets.

MM-IMDB(%) NTU RGB+D(%) EgoGesture(%)
Noise level © “level I level2 level 3 level I level2 level3 level I level2 level 3
BM-NAS 60.11 47.81 28.16 88.33 85.38 84.31 93.92 89.30 82.77
SM-ShapNAS 64.82  60.67 57.01 92.20  90.59 89.55 96.27 9472  93.94

* Level 1, level 2, level 3 correspond to variances of 02 = 0.01, 03 = 0.05, o2 = 0.1, respectively.

perturbation in real scenes, image noise enhancement can directly improve the robustness of the
model. Therefore, we only noise the image modalities. As we can see, the proposed method can deal
with different severities of Gaussian noise well. We employ pretrained backbones for NTU RGB+D
and EgoGesture, while use only the backbone structure for MM-IMDB, which results in a significant
performance drop on MM-IMDB, whereas the performance on NTU RGB+D and EgoGesture are

relatively flat.
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Figure 3: The performance of SM-ShapNAS on MM-IMDB under different additive noises.
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Since additive noise is directly superimposed on the data without altering its original sparsity, we
report the performance of SM-ShapNAS under different additive noises. As Fig. [3] shown, SM-
ShapNAS has good performance under Gaussian, Shot and Impulse noise. We also report the result
under Speckle noise to explore the effect of multiplicative noise.
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Fig. @] shows the architecture parameter « of 4 operations that contribute the most in the first fusion
cell in MM-IMDB. The Sparse-Attn operation is always one of the top two operations. Although
the Sparse-GLU operation performs best in the early stages, the Sum operation exhibits superior
architectural utility in terms of architecture parameters at epoch 5 and remains so until the end. Fur-
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Figure 4: The architecture parameter « in the first fusion cell in MM-IMDB.

thermore, we analyze the results with different backbones and the utilization of different modalities
in the Appendix C.

4.4 ABLATION STUDY

We analyze the effectiveness of sparse modeling and grouped Shapley value are shown in Table 6.

Table 6: Ablation study of different search spaces and grouped Shapley value.

Method Search Space Evaluation MM-IMDB(%) | NTU(%) | Ego(%)
Baseline Normal Arch params 62.42 90.38 94.90
Shapley Normal Grouped Shapley 64.06 91.14 95.68
Sparse Normal + Sparse Arch params 63.12 91.00 94.90
SM-ShapNAS | Normal + Sparse | Grouped Shapley 65.54 92.76 96.46

In Table 6, the search space containing normal and sparse operations performs better than only nor-
mal operations. The result on EgoGesture is not obvious, because there exist some similar features in
RGB and Depth modalities. We also compare grouped Shapley value strategy with gradient descent
updating architecture parameters, and the results show the effectiveness of grouped Shapley value.
Note that the sparse operations can greatly improve model performance on MM-IMDB, grouped
Shapley value contributes more to the performance on EgoGesture, because more complex fusion
process and higher model performance make it more important to evaluate true contributions.

5 CONCLUSION

This paper proposes an explainable multimodal NAS method that integrates sparse modeling and
grouped Shapley value from game theory to search explainable neural architectures automatically.
To the best of our knowledge, SM-ShapNAS fills the gap in explainable multimodal NAS. Specifi-
cally, we design sparse attention and sparse convolution operations to improve the feature extraction
capability. To efficiently evaluate the potential architectures, we adapt group policy to estimate
grouped Shapley value to evaluate the contribution of each operation, thus allowing architecture
parameters to be directly updated with true contribution. We experimentally demonstrate the ef-
fectiveness of SM-ShapNAS on three multimodal datasets. The optimal architectures searched by
SM-ShapNAS provide competitive results on these datasets.
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A INTRA-CELL OPERATIONS

The normal operations and sparse operations are described below.
1) Sum:
z=x+y (13)

Sum represents element-wise addition of input features, which is the same way features are fused in
DARTS.

2) Sparse-Attention:

z = Softmax (S) - A, (y) (14)
Aq(@) - Ar(y) "

S =29 TR\ 15

vy (4

where S denotes the attention score function, x is regarded as Query, y as Key and Value, dj, is the
dimension of  and y, L is the sequence length. A,, Ay, A, represents the sparse weight matrices of
Query, Key and Value, respectively. The Sparse-Attention operation can further optimize the com-
putational complexity of attention operation and enhance the ability to focus on highly correlated
regions.

3) Gated Linear Units(GLU):

z= Wiz +b1) © c(Way + ba) (16)
where W7 and W5 denote the weight matrices of = and y, respectively, while b; and by represent the
bias terms of z and y, respectively. o means Sigmoid function, and ® is hadamard product.
4) Concat:

z = ReLU(W - Concat(z,y) + b) (17
where the weight matrix W is used for dimensionality reduction, and b is the bias term, which is
also the same way features are fused in MFAS.

5) SELayer:
z =W - ([Concat(z,y)] ® o
(W3 - ReLU (W; - AvgPool (Concat(x,y)) + b1) + b2)) + b
SELayer explicitly models dependencies between channels via squeeze, excitation and scale opera-
tion.

6) Sparse-GLU:

(18)

z = (Ai(x) +b1) © o(A2(y) + b2) 19)

7) Sparse-Concat:
z = ReLU(A(Concat(z,y)) + b) (20)
8) Sparse-SELayer:
z=A- ([Concat(x,y)] ©® o
(A2 - ReLU (A; - AvgPool (Concat(x,y)) + b1) + b2)) + b

The Sparse-GLU, Sparse-Concat and Sparse-SELayer operations incorporate sparse convolution in
GLU, Concat, and SELayer operations.

21

B EXPERIMENT CONFIGURATIONS

In MM-IMDB, the search epochs is set to 15, the training epochs is set to 30, batch size is 32, and
dropout of 0.2. We adopt 2 fusion cells and 1 step per cell, channel is 192 and sequence length is 16.
In NTU RGB+D, the search epochs is set to 30, the training epochs is set to 50, batch size is 16, and
dropout of 0.2. We split the 40 subjects, 1, 4, 8, 13, 15, 17, 19 for training, 2, 5, 9, 14 for validation,
other subjects for testing. We adopt 2 fusion cells and 2 steps per cell, channel is 128 and sequence
length is 8. In EgoGesture, the search epochs is set to 15, the training epochs is set to 30, batch size
is 24, and dropout of 0.2. We adopt 2 fusion cells and 3 steps per cell, channel is 128 and sequence
length is 8. The warmup epochs for varying sampling times is 5 for all datasets.
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B.1 REGULARITY COEFFICIENTS

In sparse operations, regularity coefficients A; and A, are often closely related to performance con-
tributions. We set Ay = 0 because ¢; regularization already induces sparsity directly. The addition
of Ay retains more small weights, which may interfere with sparsity. As for adjusting A1, we report
the performance of different A; for the optimal architecture on NTU RGB+D.

Table 7: The contribution of different A; to sparse operations on NTU RGB+D.

A1 | S-Attn | S-GLU | S-Concat | S-SELayer
0.1 | 0.04 0.25 0.08 0.33
02 | 0.06 0.24 0.10 0.29
0.5 | 0.05 0.17 0.11 0.18
1.0 | 0.03 0.12 0.06 0.15
1.5 0.03 0.05 0.03 0.10

In Table [/, we report the contribution of sparse operations. As \; increases, the contribution of
different sparse operations are generally declines, but Sparse-GLU and Sparse-SELayer consistently
outperform other sparse operations. Furthermore, sparse operations contribute less than normal
operations when J; is too large. As Fig. 4 in the main text shown, Sparse-GLU and Sparse-SELayer
contribute more to the architectures on NTU RGB+D. Therefore, \; = 0.1 clearly reflects the
advantages of sparse operations.

B.2 SAMPLING TIMES

Table 8: Effect of the number of initial samples on NTU-RGB+D.

Normal samples m,, | Sparse samples m, | Accuracy | Search cost (GPU Days)
10 20 91.28% 1.95
20 20 92.00% 2.24
20 40 92.67% 2.50
20 60 92.76% 2.69
30 60 92.81% 3.08

Table 8 presents the accuracy and search cost with different number of samples on NTU-RGB+D.
We initialize m,, = 20 and m; = 60 to balance accuracy and search cost.

B.3 CELLS AND STEPS

As the key hyperparameters, cells and steps have a great impact on the performance of SM-
ShapNAS. For each of the three datasets, we used 2 fusion cells. This is because the proposed
method needs to handle low-level feature interactions while capturing global semantic associations
across modalities. As the number of cells increases, the performance is not significantly improved,
but the search cost is greatly increased. In MM-IMDB, we set 1 step per cell because the multilabel
classification task requires less cross-modal interaction between Image and Text, and it is sufficient
to complete the basic feature fusion. In NTU RGB+D, Video and Pose sequences are temporally
related, and the combined semantics of local action segments (e.g., “wave” + “walk”) need to be
modeled. 2 steps per cell allows for hierarchical feature fusion. In EgoGesture, RGB and Depth
modalities are highly correlated, and require fine-grained alignment. SM-ShapNAS needs to distin-
guish small differences between categories, and 3 steps per cell is employed to support multistage
fusion. Meanwhile, the sparse operations and grouped Shapley value can ensure the explainability
of the architectures and reduce the risk of overfitting. Additionally, the number of cells and steps is
the same as in BM-NAS, thus better reflecting the advantages of SM-ShapNAS.

14



Under review as a conference paper at ICLR 2026

Reduction
Output

Sum

C2 S1
Sparse-Attn
‘ . Cl S1 ‘ .

(a) The best architecture on MM-IMDB.
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Figure 5: Best architecture of SM-ShapNAS on three multimodal datasets.

C EXTENDED ANALYSIS

In Table[9] we use better performing backbone for RGB data and multimodal data. The performance
is not significant only when the accuracy of one modality is much higher than the other. In fact,
the proposed method focuses on multimodal fusion process whose inputs are features generated by
unimodal training, therefore replacing the backbone does not lead to a decrease in search efficiency.

Fig. [5] shows the optimal architectures on the three multimodal datasets. The sparse operations are
always selected when steps per cell is not less than 2, exhibiting a significantly higher proportion in
the NTU RGB+D dataset. This indicates that sparse operations are more suitable for large datasets

and complex modal fusion.
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Table 9: Performance changes with different backbones on EgoGesture.

Backbone RGB (%) | Multimodal (%)
ResNeXt-101 + ResNeXt-101 93.75 96.46
Swin-B + Swin-B 95.38 97.54
Swin-B + ResNeXt-101 95.38 97.13

We also test the performance with different probabilities py of dropping random modality in Table
SM-ShapNAS still performs well when p; = 0.1. As pg increases, the accuracy decreases

rapidly. The performance of the proposed method approximates that of using the Depth modality
alone.

Table 10: Results with different p; on EgoGesture.

pa_| Acc (%)
0.0 | 96.46
0.1 | 95.83
0.2 | 95.33
0.3 | 94.05

Table 11: Modality contribution under varying severity levels of Gaussian noise.

Noise Modality MM-IMDB(%) | NTU RGB+D(%) | EgoGesture(%)

Pure Image/Video/RGB | 60.52 (1.717) 53.89 (1.591) 70.99 (0.891)
Level 1 | Image/Video/RGB | 57.67 (14.631) 51.64 (2.961) 66.20 (5.957)
Level 2 | Image/Video/RGB | 25.83 (23.911) 43.00 (7.7171) 51.62 (12.9071)
Level 3 | Image/Video/RGB | 14.94 (29.491) 37.50 (11.367) 42.91 (17.347)

The contribution of each modality is shown in Table[TT] 1 represents the proposed method achieves
higher results than baseline on three multimodal datasets. As the noise level increases, the utilization
of the chosen modality in baseline exhibits a sharp decline, especially in MM-IMDB which does not
use pretrained backbone. SM-ShapNAS maintains a stable utilization of the image modality under
the same noise conditions. This trend provides evidence that the proposed method has superior
capability to extract effective features from degraded inputs.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper did not use LLMs in paper writing.
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