
Distinguishing probabilistic from non-probabilistic
neural representations

Ishan Kalburge
Department of Engineering
University of Cambridge
ik437@cam.ac.uk

Máté Lengyel
Department of Engineering Department of Cognitive Science

University of Cambridge Central European University
m.lengyel@eng.cam.ac.uk

Abstract

The precise neural mechanisms of probabilistic computation remain unknown
despite growing evidence that humans track their uncertainty. Recent work has
proposed that probabilistic representations arise naturally in task-optimized neural
networks. However, previous decoding approaches only tested sufficiency—
whether posteriors were decodable from neural activity—without testing
whether these representations were minimal—whether they filter irrelevant input
information. This limitation makes it difficult to distinguish genuine probabilistic
representations from trivial input recoding. We introduce the functional information
bottleneck (fIB) framework, which evaluates neural representations based on both
sufficiency (posterior decodability) and minimality (invariance to irrelevant inputs).
Using this novel approach, we show networks trained to perform cue combination,
coordinate transformation, and Kalman filtering without probabilistic objectives
encode Bayesian posteriors in their hidden layer activities, but these networks fail
to compress their inputs in a task-optimal way, instead performing heuristic compu-
tations akin to input re-representation. Therefore, it remains an open question under
what conditions truly probabilistic representations emerge in neural networks.
More generally, our work provides a stringent framework for identifying probabilis-
tic codes, and lays the foundation for systematically examining whether, how, and
which posteriors are represented in neural circuits during complex decision-making.

1 Introduction

Under a particular generative model of the world that prescribes how latent variables generate
observations, the human brain may employ one of two broad classes of recognition models to
estimate those latent variables [1]: probabilistic models that employ Bayesian inference [2], and
non-probabilistic models that compute intermediate values that do not necessarily correspond to
posteriors over latent variables, such as function-approximating neural networks [3]. Although
behavioral evidence suggests that human and non-human primates are uncertainty-aware in perceptual
judgements [4–6], it remains unclear whether uncertainty is represented probabilistically—i.e., that
neural circuits themselves compute with probabilities—or heuristically through dedicated channels
for processing uncertainty [7, 8].

Recent work has suggested that neural networks develop robust internal representations of posteriors
even without explicit probabilistic inductive biases [9], suggesting that probabilistic representation is
an emergent phenomenon of near-optimal behavior. However, previous decoding approaches [9, 10]
did not distinguish truly probabilistic representations from trivial re-representations of inputs.

Here, we seek to define what aspect of the neural code distinguishes a probabilistic representation
from a non-probabilistic one. Recent debates in probabilistic neural coding have clarified that defining
probabilistic representation ultimately depends on how we define representation itself [8, 7, 11].

Preprint.

Building on this view, we link general criteria for representation to an information bottleneck
perspective on probabilistic inference. From this perspective, probabilistic neural coding can be
meaningfully identified only when neural activity forms approximately minimal sufficient codes—
codes that preserve exactly the information needed for behavior and generalization, and nothing more.
This reflects a long-standing idea that inference is a form of compression [2], but one that has rarely
been applied to distinguish neural representations of uncertainty. Here, we demonstrate how this
compression-based view can sharpen our understanding of probabilistic neural coding.

To circumvent challenges with existing information bottleneck analyses [12–14], we leverage linear
and nonlinear probing, widely used in machine learning and mechanistic interpretability [15, 16], to
assess information content in networks optimized to perform probabilistic tasks. Using our novel
approach, we study a variety of task-optimized neural networks that had been suggested to develop
probabilistic representations in earlier work [9]: networks trained to perform static inference tasks
(such as cue combination and coordinate transformation) or dynamic state estimation tasks (Kalman
filtering). While these tasks and their corresponding networks are relatively simple, we chose them
because 1) they have tractable and analytic generative models, which are crucial for the validating
the fIB framework and 2) they have been studied extensively in neuroscience and are tasks in which
human (and other animal) behavior has been shown to be uncertainty-aware in a Bayesian manner
[4, 17–19]. Crucially, the minimality criterion inherent in our fIB approach reveals that, contrary to the
findings of [9], task-optimized neural networks do not generically form probabilistic representations.

2 An information bottleneck approach to probabilistic representation

For a function, r = f(X), to be a probabilistic representation, where X denotes the inputs to the
system and pz = p(z|X) is some target posterior over a relevant latent variable z, we expect r
to exhibit sufficiency for y and invariance to nuisances n [20, 11]. Sufficiency is expressed as
I(r; pz) = I(X; pz), or that the representation r is maximally informative about pz. Invariance
enforces that r filters out nuisance variables ν, i.e., I(pz;ν) ≈ 0.

Figure 1: Extension of the task transfer setting
from [9]. To assess whether a neural representation
is probabilistic, it is necessaryt ot test minimality
in order to rule out trivial ’copycat’ strategies.

Invariance is often tested by holding specific
nuisance variables fixed [10] or by designing
tasks where optimal performance should be inde-
pendent of nuisance variation and then evaluat-
ing out-of-distribution generalization [9]. While
compelling, these approaches make it difficult to
exhaustively cover all possible nuisances or dis-
tributional shifts. Moreover, they do not address
in-distribution redundancy: from a Bayesian
perspective, compression arises not only from
marginalizing over nuisance variables but also
from eliminating redundant information in X
about y. This redundancy reduction ensures that
downstream readouts remain robust to distribu-
tional changes and that Bayesian modules can
transfer flexibly across inference architectures
without heavy fine-tuning.

Therefore, a simpler—and stronger—test of in-
variance is minimality (or compression): a code
that is minimal with respect to input information
but sufficient with respect to task-relevant inference variables is necessarily invariant to all nuisance
variation [20]. Thus, probabilistic representation—sufficiency and invariance— can be viewed as a
relaxation of minimal sufficiency similar to an information-bottleneck-style criterion:

argmax
r

I(r; pz) subject to I(X; r) ≤ α.

A central advantage of probabilistic representations is their potential for flexible reuse across tasks.
[1] For example, an agent trained to estimate the latent stimulus z driving two cues X = (x1, x2)
should be able to reuse its internal representation if it needs to perform such cue combination with
access to a third cue x3. This is implicitly a test for whether a representation of X is sufficient
for representing pz. Indeed, [9] shows that when a network trained on X to estimate z is frozen

2

and its hidden representation rperf is grafted onto another network with a third cue x3, this modular
network optimally performs three-cue combination (Figure 1A, top). However, the same three-cue
network performs equally well if rperf simply encodes X itself (Figure 1A, bottom). In other words,
X itself is trivially a sufficient statistics for pz. Thus, only testing whether the task-relevant posterior
is decodable from rperf is insufficient in assessing probabilistic representation because a sufficiently
expressive decoder can trivially decode the optimal posterior if rperf encodes X instead of p(z|X).
Instead, a specific probabilistic representation—one that is identifiable and nontrivial—must also
compress away spurious correlations in X that would otherwise interfere with downstream inference
and flexible reuse.

Figure 2: All tasks and probes used in our analysis. Networks
were trained to invert the generative models shown in A). B) The
hidden representations of these networks were probed for minimal
sufficiency using our fIB framework.

It is necessary to point out a few
key distinctions here between our
framework and the classical in-
formation bottleneck literature
[21–23]. First, we do not assume
r is a stochastic encoding of X
[24]. Two, we do not explicitly
train any of our task-optimized
networks with an IB objective, as
has been proposed in [25], so we
do not choose α; our analyses are
all post-hoc. Third, we do not
attempt to estimate mutual infor-
mation directly (i.e., using prob-
lematic methods such as those
in [26, 12], especially given that
mutual information is a vacuous
quantity for deterministic neu-
ral networks [13, 14]. We in-
stead rely on probing decoders
to approximate information con-
tent in the hidden layers of task-
optimized networks.

2.1 A relaxation of strict representational compression

Representations need not always delete input information to be probabilistic. Animals often do not
have information a priori that task-irrelevant input features for a particular task might not become
relevant for a different task, so it would be suboptimal to compress away that information. Therefore,
we propose a second metric, called decoder-specific compression: instead of requiring performers
to delete all irrelevant input information, truly probabilistic representations need only represent
posterior information in a way that irrelevant variability can be easily projected to the nullspace of
a downstream readout. Then, rather than deleting information, a probabilistic representation could
simply cluster features into orthogonal and non-overlapping subspaces, and a fixed decoder would
merely require a fixed rotation in order to extract the task-relevant posterior. Formally, we can test
this by assessing whether task-relevant posteriors are linearly decodable from neural activity–if they
are, there exists a subspace in which only that posterior is represented and nothing more.

3 Methods

Our approach requires training two types of neural networks: “performers” and probes. Performers
are recognition models trained to perform a particular inference task. Probes are trained on the hidden
activations of the performers to evaluate whether their internal representations are probabilistic.

3.1 Performer training

Following [9], we trained feedforward “performer” networks to optimally perform cue combination
and coordinate transformation; these networks are referred to as task-optimized performers. In both
tasks, the inputs to the performer network consisted of two neural populations x1,x2, each with 50

3

independent Poisson neurons that had Gaussian tuning curves. The height of the neural population
responses was modulated by a gain νi, which was population-dependent and varied trial-by-trial. The
activities of the input populations constituted the observations (“cues”) based on which the performer
networks needed to compute their outputs. In cue combination, both populations were driven by the
same latent stimulus z, which the network had to estimate based on input layer activities (Figure 2A).
In coordinate transformation, each population was driven by a different zi, and the performer had to
optimally estimate the sum of the two latent stimuli z = z1 + z2—a more difficult task considering
the network must marginalize out z1 and z2 [27, 28]. The gains νi for each input population were
considered nuisance variables akin to psychophysical variables like contrast that the performers
needed to marginalize out.

To study probabilistic representations in dynamic inference tasks, we trained recurrent performer
networks on the simplest form of dynamic state estimation: a 1-D linear dynamical system defined
by the equations shown in Figure 2, third panel. Here, xt and zt denote the observation and latent
state at time t, respectively. Q denotes the process noise variance, which directly modulates the true
state, whereas ν is the measurement noise variance, which has no impact on the true state but makes
inference harder. We were interested in evaluating whether recurrent performers trained to perform
Kalman filtering would implicitly understand how to weight incoming measurements based on their
relative uncertainties. This is especially interesting under resource-constrained conditions where the
number of hidden neurons is an order of magnitude smaller than the total number of observations (or
total number of time steps T) because the network does not have enough capacity to memorize the
entire sequence trajectory. For additional details on the generative details for the Kalman filtering
experiments, see Appendix.

Testing generalization We evaluated network generalization on unseen nuisance conditions. In
the “all nuisances” condition, stationary inference performers were trained and tested on all pair-
wise nuisance combinations (ν1, ν2) ∈ V = {0.25, 0.5, 0.75, 1, 1.25}. For the “interpolation” and
“extrapolation” conditions, networks were trained on a subset of V (ν1, ν2 ∈ {0.25, 1.25} and
ν1, ν2 ∈ {0.25, 0.5}, respectively) and tested on the remainder. For Kalman filtering, we used the
same train/test splits over ν ∈ V .

Baseline performers To compare information content in the internal representations of task-
optimized performers, we selected two suitable baseline performers. The first was a copycat network,
which trivially copied inputs to its hidden layer. Such a network is sufficient but almost never minimal,
making it a natural lower bound on compression. For the static inference tasks, the copycat’s input-
to-hidden weight matrix was the identity matrix (with zero-padding) and only the hidden-to-output
weights were trained. See Appendix for the copycat design in the Kalman filtering task.

3.2 Approximating information content via the fIB framework

Classical information bottleneck approaches are critically limited by their reliance on estimating
mutual information. To circumvent this, we measure functional information use (rather than mutual
information) by training linear and nonlinear posterior (i.e., sufficiency) probes and nonlinear
input (i.e., minimality) probes on the hidden activations of fully trained networks (Figure 2B);
crucially, while we want posterior probes to perform well, we want input probes to perform poorly
in neural representations that are probabilistic (minimal). Posterior probes (nonlinear MLP and
linear) were trained to minimize the Kullback–Leibler divergence between predicted and optimal
discretized posteriors. For stationary inference tasks, input probes were trained with Poisson
negative log-likelihood to reconstruct the full Poisson input population. In Kalman filtering, the
input probes were trained with MSE loss on individual input lags (labeled accordingly in Figure
3B). See Appendix for further details about probe training.

4 Results

The fIB framework reveals a clear dissociation between probabilistic and heuristic neural repre-
sentations (Figure 3). Probabilistic population codes (PPC) combine high posterior decodability
(ordinate) with strong input compression (abscissa: input decodability), indicating a true posterior
representation. In contrast, copycat networks (COPY) also show high posterior decodability but no
compression, since they simply pass inputs through to the hidden layer. Task-optimized performers

4

in stationary inference tasks consistently remain in an input recoding regime: they achieve decent
posterior decodability but compress inputs no more than the copycat, even across generalization
conditions (columns in Figure 3A). Recurrent performer networks also fail to develop probabilistic
internal representations, despite performing state estimation accurately under nuisance generalization.
Although they demonstrate some compression deeper in the sequence history (Figure 3B, successive
rows), this degree of compression remains well below that of the PPC and follows (qualitatively) the
expected exponential memory decay of RNNs. Importantly, posterior decodability is considerably
lower than both benchmark performers, and both posterior decodability and input compression worsen
during training in all generalization conditions. Training checkpoints are color-coded from early (red)
to late (blue) learning (in all panels).

Figure 3: fIB results for A) static inference tasks, and B) dynamic
inference tasks. Networks do not learn to optimally compress inputs.

We determined the repre-
sentational simplicity (lin-
earity) of posterior repre-
sentations using the relative
performance between non-
linear and linear posterior
probes (supplementary fig-
ure 4). In cue combina-
tion, linearity is trivial be-
cause both a probabilistic
population code (PPC) and
a copycat network (COPY)
are guaranteed to be able to
construct the log-posterior
linearly if neural variabil-
ity is in the exponential
family of distributions [27].
Accordingly, the network
also maintains a linear code
throughout learning. More
interestingly, in coordinate
transformation and Kalman
filtering, the copycat net-
work is not able to lin-
early construct the log-
posterior. Here, the task-
optimized networks do not
seem to converge on a linear
representation of the log-
posterior, suggesting that
learned representations are
not invariant to nuisances
even in a linear subspace.

These results suggest that neural networks trained with non-probabilistic objectives do not generically
develop probabilistic representations. In simple settings, they fail to develop invariant codes that
extract minimal sufficient statistics from input observations. We note that applying these methods to
neural data remains an open challenge, especially because we cannot always assume the structure of
X, r, or even y in neural data. Nevertheless, we contend that task-optimal compression is a powerful
hallmark of probabilistic computation that can be instrumental in distinguishing probabilistic and
non-probabilistic representations in neural networks and uncovering the structure of neural codes of
uncertainty. This framework will also be useful in identifying the exact inductive biases that promote
probabilistic representation and generalization in artificial networks.

5

References
[1] Ádám Koblinger, József Fiser, and Máté Lengyel. Representations of uncertainty: Where art

thou? Current Opinion in Behavioral Sciences, 38:150–162, 2021.

[2] David J C MacKay. Information Theory, Inference, and Learning Algorithms. 2005.

[3] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[4] Marc O. Ernst and Martin S. Banks. Humans integrate visual and haptic information in a
statistically optimal fashion. Nature, 415(6870):429–433, 2002.

[5] Konrad P. Körding and Daniel M. Wolpert. Bayesian integration in sensorimotor learning.
Nature, 427(6971):244–247, 2004.

[6] Zoe M. Boundy-Singer, Corey M. Ziemba, and Robbe L. T. Goris. Sensory population activity
reveals confidence computations in the primate visual system, 2024.

[7] Samuel Lippl, Raphael Gerraty, John Morrison, and Nikolaus Kriegeskorte. Source Invariance
and Probabilistic Transfer: A Testable Theory of Probabilistic Neural Representations, 2024.

[8] Dobromir Rahnev, Ned Block, Rachel N. Denison, and Janneke Jehee. Is perception probabilis-
tic? Clarifying the definitions, 2021.

[9] A. Emin Orhan and Wei Ji Ma. Efficient probabilistic inference in generic neural networks
trained with non-probabilistic feedback. Nature Communications, 8(1):138, 2017.

[10] Edgar Y. Walker, R. James Cotton, Wei Ji Ma, and Andreas S. Tolias. A neural basis of
probabilistic computation in visual cortex. Nature Neuroscience, 23(1):122–129, 2020.

[11] Edgar Y. Walker, Stephan Pohl, Rachel N. Denison, David L. Barack, Jennifer Lee, Ned Block,
Wei Ji Ma, and Florent Meyniel. Studying the neural representations of uncertainty. Nature
Neuroscience, 26(11):1857–1867, 2023.

[12] Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning*. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

[13] Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian
Kingsbury, and Yury Polyanskiy. Estimating Information Flow in Deep Neural Networks, 2019.

[14] Ziv Goldfeld and Yury Polyanskiy. The Information Bottleneck Problem and its Applications in
Machine Learning. IEEE Journal on Selected Areas in Information Theory, 1(1):19–38, 2020.

[15] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes, 2018.

[16] Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent World Representations: Exploring a Sequence Model Trained on a
Synthetic Task, 2024.

[17] Daniel M. Wolpert and Zoubin Ghahramani. Computational principles of movement neuro-
science. Nature Neuroscience, 3(S11):1212–1217, 2000.

[18] Erik J. Schlicht and Paul R. Schrater. Impact of Coordinate Transformation Uncertainty on
Human Sensorimotor Control. Journal of Neurophysiology, 97(6):4203–4214, 2007.

[19] Wei Wu, Yun Gao, Elie Bienenstock, John P. Donoghue, and Michael J. Black. Bayesian
Population Decoding of Motor Cortical Activity Using a Kalman Filter. Neural Computation,
18(1):80–118, 2006.

[20] Alessandro Achille and Stefano Soatto. Emergence of Invariance and Disentanglement in Deep
Representations, 2018.

6

[21] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method,
2000.

[22] Noam Slonim. The Information Bottleneck: Theory and Applications. 2002.

[23] Gal Chechik, Amir Globerson, , Naftali Tishby, , and Yair Weiss. Information Bottleneck for
Gaussian Variables. 2005.

[24] D. J. Strouse and David J. Schwab. The deterministic information bottleneck, 2016.

[25] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep Variational
Information Bottleneck, 2019.

[26] Ravid Shwartz-Ziv and Naftali Tishby. Opening the Black Box of Deep Neural Networks via
Information, 2017.

[27] Wei Ji Ma, Jeffrey M Beck, Peter E Latham, and Alexandre Pouget. Bayesian inference with
probabilistic population codes. Nature Neuroscience, 9(11):1432–1438, 2006.

[28] Jeffrey M. Beck, Peter E. Latham, and Alexandre Pouget. Marginalization in neural circuits
with divisive normalization. The Journal of Neuroscience, 31(43):15310–15319, 2011.

7

5 Appendix

5.1 Additional performer training details

All task-optimized performers were trained with mean squared error loss and stochastic gradient
descent (Adam optimizer) and were trained for 10,001 epochs, which was sufficient for training loss to
plateau. Feedforward (static inference) performers contained a single hidden layer with 200 neurons
(and ReLU activations) and a final linear readout neuron. Recurrent (dynamic inference) performers
consisted of a single gated recurrent unit (GRU) hidden layer, and a final linear readout neuron (since
we consider only a 1-D filtering case). The number of hidden neurons in the recurrent layer (H = 13)
was selected to match the window size of the copycat benchmark network (cf. Section 3.1).

5.2 Probe training details

We trained (also with Adam) two types of “probe” networks, posterior probes and input decoders,
to assess the structure of the internal representations in the task-optimized performers (Figure 2B).
Posterior probes were multilayer ReLU networks (512 hidden neurons) trained (with a KL divergence
loss) to decode a discretized version of the ground-truth posterior distribution (which was analytically
computable from input layer activations) from the hidden layer activations of the task-optimized
networks (rperf). We chose to decode discretized posteriors—rather than the posterior sufficient
statistics (e.g., mean and variance)—because discretization enforces greater structure than simply low-
order moments. Although discretization is lossy, it constrained the probe to output valid probability
distributions rather than arbitrary numbers (as would be the case if regressing sufficient statistics),
which prevented trivial solutions and stabilized training. We then trained a linear posterior probe with
the same objective as the nonlinear posterior probe to assess the simplicity/usability of the neural
representation. This also assessed whether these networks behaved like probabilistic population codes
(á la [27]), which predict that neural activity represents log-posteriors linearly.

Finally, we trained two kinds of input decoders for static versus dynamic inference tasks. For cue
combination and coordinate transformation, the input probe was a two-layer ReLU networks with
200 hidden neurons trained to reconstruct the full input layer activations from its hidden layer, and
these probes were trained with Poisson negative log-likelihood loss.

Given the temporal nature of dynamic inference tasks, decoding the entire input sequence—i.e., a
dynamical system trajectory—at each time step would not be appropriate. Instead, we trained a set
of probes, each tasked with decoding a fixed lag in the sequence. For example, the lag 0 probe was,
at every time step in the sequence, trained to predict the most recent measurement. We used lags
l = 0, 1, 2, 4, and 7, which meant that input probe training began only after a burn-in of 7 time steps
in each trial; without this, comparing the lag 0 and lag 7 probes would be unfair, as the former would
see more measurements. As these probes were each trying to decode only the scalar raw measurement
at lag l, they were trained using mean squared error loss on the true measurement at lag l.

The training objectives for each for the probes is as follows:

Posterior probe

argmin
Wpost,wpost-readout

DKL

ptrue(z|x1,x2)||Softmax(wpost-readout[Wpostrperf]+)︸ ︷︷ ︸
p̃(z|x1,x2)



Linear posterior probe

argmin
wlin

DKL

ptrue(z|x1,x2)||Softmax(wlinrperf)︸ ︷︷ ︸
p̃(z|x1,x2)



Input probe

8

argmin
Winput,winput-readout

LNLL

(x1 x2),Softplus(winput-readout[Winputrperf]+)︸ ︷︷ ︸
=(x̂1 x̂2)


For Kalman filtering, the nonlinear posterior and input probes had an additional ReLU layer (three
in total). However, the nonlinear (and linear) posterior probe otherwise shared the same structure
as those used for the static inference tasks. The input probe, however, was only trained to decode
particular lags. Therefore, one input probe was trained for each lag shown in Figure 3B. The input
probes were trained with mean squared error loss on the true measurement of the appropriate lag l.

Input (lag) probe

argmin
Winput,Whid-input,winput-readout

LMSE

xt−l,winput-readout[Whid-input[Winputrperf]+]+︸ ︷︷ ︸
=x̂t−l


5.3 Constructing the PPC benchmark

We have a log-posterior ρz = log p(z|X). PPC literature suggests that log-posteriors are a linear
function of neural activity, i.e.,

ArPPC + b = ρz,

where rPPC represents the hidden activations of the PPC, A is a matrix of tuning curves, and b is
a bias term. Thus, to construct the PPC hidden layer, we wanted to find the hidden activations r
corresponding to ρz . This is a simple least squares optimization problem that yields the well-known
Moore-Penrose pseudoinverse:

rPPC ≈ (A⊤A)−1A⊤(ρz − b).

For a well-conditioned and appropriately chosen (but otherwise generic) A, this provides a valid
representation of the optimal log-posterior. In practice, we assume that A consists of Gaussian tuning
curves evaluated at a (sufficiently large) discrete set of latent stimulus values. This choice is natural
because the posteriors in all tasks studied herein are Gaussian (or approximately so), and Gaussian
tuning curves provide a robust basis for representing them. For a fair comparison across experiments,
rPPC was always constructed to match the dimensionality of the hidden layer of the task-optimized
performer.

5.4 Designing a copycat network for Kalman filtering

In the static inference tasks, our copycat directly represented entire input patterns in its hidden
activations. Extending this idea to Kalman filtering required additional care because of the temporal
structure of the inputs. If the copycat were to present the entire input sequence to its hidden layer at
every time step, then the hidden activity would remain identical across time within a trial, making the
probing analysis ill-posed. Another alternative is for the copycat to represent only the observations
revealed up to time t, so that hidden activity evolves with time. However, this raises the complication
of appropriately handling the yet-unobserved future measurements—while zero-padding may be a
natural solution, zero is itself a valid measurement value, so it conflates “unobserved” with “observed
= 0,” potentially leaking spurious information into the hidden representation. Hence, we instead
designed the copycat network as a sliding window of size w that was an order of magnitude smaller
than the total number of time steps T . Window size was chosen by finding the minimum w for
which a sliding-window Kalman filter—a Kalman filter with limited memory horizon—of length w
approximated the full Kalman filter up to a mean squared error cutoff of 10−9 (Supplementary figure
6). Then, during training, the first w time steps of each trial were burnt-in before training for the fIB
probes commenced.

9

5.5 Computing the ‘mean only,’ fixed posterior variance performer benchmark

We want to compare the information content of our performers to a non-probabilistic heuristic model
that assumes fixed trial-to-trial posterior variance but is able to perfectly decode the posterior mean
(a ‘mean-oracle’, shown in Figure 3A as the horizontal dashed lines). This derivation assumes that
the posteriors are Gaussian (or can be well-approximated with Gaussians). This is an appropriate
assumption for our tasks, given that for the static inference tasks, we use Gaussian tuning curves and
Poisson neural variability, which yield approximately Gaussian posteriors [27].

Assume that the true posterior on trial i is pi(z) = N (z|µi, σ
2
i), and we want to approximate this

with our fixed-width mean oracle qi(z) = N (z|µi, σ̂
2). What should σ̂2 be?

⟨DKL(pi||qi)⟩i =
1

2N

[∑
i

(
σ̂2

σ2
i

+ ln
σ2
i

σ̂2

)
−N

]
∂

∂σ̂2
⟨DKL(pi||qi)⟩i =

1

2N

(∑
i

1

σ2
i

− 1

σ̂2

)

0 =
∑
i

1

σ2
i

− N

σ̂2

N

σ̂2
=
∑
i

1

σ2
i

σ̂2 =
N∑
i

1
σ2
i

5.6 Additional Kalman filtering details

The results presented in this paper fix A = 0.75, H = 1.0, Q = 0.5, and T = 40. To mimic
the nuisance “gains” from the PPC-style static inference tasks, we modulated measurement noise
ν ∈ {0.25, 0.5, 0.75, 1.0, 1.25} from trial-to-trial (and fixed it within a trial). Because the performers
were not given explicit information about ν from trial-to-trial, we consider the marginal Kalman
filtering posterior whenever we performed our fIB analysis—that is, the posterior p(zt|x1:t, ν)
marginalized over ν. Therefore, posterior uncertainty reflects not just uncertainty about the state
estimate, which in Kalman filtering is monotonic and independent of the measurements x1:t, but also
uncertainty in ν itself, which makes the optimal posterior variance a function of the measurements
and, thus, causes it to be temporally non-monotonic.

5.6.1 Deriving the marginal Kalman filtering posterior

Here, we take the standard Kalman filter, which is, importantly, conditioned on the parameters θ of
the linear dynamical system, and marginalize out θ. In our case, θ = ν, but this approach can be
applied to any of the parameters in θ = {A,H,Q, ν}.

10

p(zt+1|x1:t+1, θ) =

∫
p(zt+1, zt|xt+1, x1:t, θ)dzt

∝
∫

p(xt+1|zt+1, zt, x1:t, θ)p(zt+1|zt, x1:t, θ)p(zt|x1:t, θ)dzt

=

∫
p(xt+1|zt+1, θ)p(zt+1|zt, θ)p(zt|x1:t)dzt

= p(xt+1|zt+1, θ)

∫
p(zt+1|zt, θ)p(zt|x1:t)dzt

= π(zt+1|x1:t+1, θ)

p(xt+1|x1:t, θ) =

∫
p(xt+1, zt+1|x1:t, θ)dzt+1

=

∫
p(zt+1|x1:t+1, θ)dzt+1

= π̄(x1:t+1, θ)

p(zt+1|x1:t+1, θ) =
π(zt+1|x1:t+1, θ)∫

π(zt+1 = z′|x1:t+1, θ)dz′

=
π(zt+1|x1:t+1, θ)

π̄(x1:t+1, θ)

p(x1:t+1|θ) = p(x1, ..., xt, xt+1|θ)
= p(x1|θ)p(x2|x1, θ)p(x3|x2, x1, θ)...

=

t∏
τ=1

p(xτ+1|x1:τ , θ)

=

t∏
τ=1

π̄(x1:τ+1, θ)

p(θ|x1:t+1) =
p(x1:t+1|θ)p(θ)∫
p(x1:t+1|θ)p(θ)dθ

=
p(θ)

∏t
τ=1 π̄(x1:τ+1, θ)∫ ∏t

τ=1 π̄(x1:τ+1, θ)p(θ)dθ

p(zt+1|x1:t+1) =

∫
p(zt+1|x1:t+1, θ)p(θ|x1:t+1)dθ

5.7 Supplementary figures

11

Figure 4: Task-optimized performers do not form strongly linear representations in general.
Posterior and linear posterior probe loss are plotted against each other for A. cue combination, B.
coordinate transformation, and C. Kalman filtering. Scatter plot and benchmark performer colors
are the same as in Figure 3. The solid line indicates unity of linear and nonlinear posterior probe
performance, signifying a simple linear internal representation.

12

Figure 5: Performers consistently behave in a Bayes-like manner, even under out-of-distribution
nuisance generalization. Performers output Bayes-optimal inferences in A. cue combination, B.,
coordinate transformation, and C. Kalman filtering. For the two nuisance generalization conditions
tested in [9] (“all nuisances” and “interpolation”), performers are robustly Bayesian. Under a third
generalization condition, “extrapolation,” performance degrades mildly across all three tasks but still
remains qualitatively similar to the Bayes-optimal estimates.

13

Figure 6: Number of hidden neurons in the recurrent performer was chosen by comparing a
sliding-window Kalman filter to a full Kalman filter. For each nuisance parameter value ν, we
compared how close a sliding-window Kalman filter was to the full Kalman filter as a function of
the window size for the sliding-window filter. Using a cutoff of 10−9, we selected a window size (or
number of hidden recurrent neurons) of 13 for all performers.

14

	Introduction
	An information bottleneck approach to probabilistic representation
	A relaxation of strict representational compression

	Methods
	Performer training
	Approximating information content via the fIB framework

	Results
	Appendix
	Additional performer training details
	Probe training details
	Constructing the PPC benchmark
	Designing a copycat network for Kalman filtering
	Computing the `mean only,' fixed posterior variance performer benchmark
	Additional Kalman filtering details
	Deriving the marginal Kalman filtering posterior

	Supplementary figures

