
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN EFFICIENT STRUCTURAL PRUNING FOR SPIKING NEURAL
NETWORKS BY BALANCING ACCURACY AND SPARSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing scale of spiking neural networks (SNNs) poses significant challenges for deploy-
ment on resource-constrained neuromorphic hardware, necessitating lightweight and learnable struc-
tural solutions. Interestingly, biological neural systems employ an efficient organizational strat-
egy—hierarchical structural reorganization around functional clusters, where new connections grow
orthogonally to existing ones to expand representational capacity. Inspired by this mechanism, we
propose a dynamic pruning and regrowth framework with channel-level orthogonality for SNNs
(DPRC-SNNs) to enable scalable and efficient structural learning for SNNs. DPRC-SNNs introduce
the spiking column subset selection mechanism for SNNs, which integrates channel-level pruning
with orthogonality-driven regrowth, selectively restoring diverse and complementary channels to
minimize information loss from aggressive pruning. Through iteratively pruning redundant chan-
nels and regrowing orthogonal ones, DPRC-SNNs preserve functional diversity while enhancing
sparsity at the channel level. Extensive evaluations on CIFAR10, DVS-Gesture, and DVS-CIFAR10
demonstrate that DPRC-SNNs achieve high compression rates and computational efficiency without
compromising accuracy, showing strong potential for neuromorphic deployment.

1 INTRODUCTION

Spiking neural networks (SNNs) have demonstrated significant potential in replicating the biological efficiency and
event-driven processing capabilities of the human brain. Unlike conventional artificial neural networks (ANNs), which
rely on continuous activations, SNNs transmit information using discrete spike events to update neuronal membrane
potentials over time. This approach makes SNNs particularly well-suited for energy-efficient neuromorphic hardware
(Maass, 1997; Indiveri et al., 2011; Davies et al., 2018). As SNNs achieve higher performance, their architectures
have become deeper and more complex, with increasing numbers of parameters to address large-scale benchmarks.
However, the added depth and complexity result in greater computational demands and memory usage (Roy et al.,
2019; Zhu et al., 2022). This trend stands in contrast to biological systems, where neurons and synapses operate under
strict resource constraints. In the brain, synaptic connections are limited and continuously pruned and reorganized
to maintain efficiency and adapt to evolving requirements. Considering the hardware limitations of neuromorphic
chips, specifically the finite number of neurons and synapses available (Indiveri et al., 2011; Davies et al., 2018),
there is an increasing need to optimize SNN architectures. Such optimization seeks to reduce network size and power
consumption, thereby enhancing the suitability of SNNs for edge computing applications with limited computational
resources.

Recent studies have explored structural learning for SNNs, particularly focusing on weight-level optimization. These
approaches have demonstrated that SNNs can achieve competitive accuracy with significantly fewer parameters. For
instance, inspired by the synapse rewiring mechanism in the brain, (Chen et al., 2021) proposed a method to jointly op-
timize both the network structure and weights by redefining gradients to manage connectivity. Similarly, (Shen et al.,
2023) introduced sparse structural learning for SNNs by employing evolutionary strategies that combine pruning and
regrowth of synapses based on the momentum and magnitudes of synaptic connections. Although these weight-level
structural learning techniques result in sparse networks, they often require specialized hardware to efficiently support
the sparsity of the SNNs. In response to these hardware limitations, recent attention has shifted towards channel-
level structural learning for SNNs, which offers more hardware-friendly properties. (Li et al., 2024a) proposes a
method that iteratively prunes and regrows channels, achieving sparse yet accurate SNN architectures. Additionally,
(Li et al., 2024b) focuses on removing redundancies and regenerating specific convolutional kernels based on spiking
activity levels. Despite these advancements, existing channel-level structural learning methods often overlook the fea-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ture representation relationships among different channels, which could potentially limit their effectiveness in further
enhancing model performance.

In biological neural systems, structural reorganization does not occur randomly at isolated synapses but is hierar-
chically organized around functional clusters, which can be regarded as relatively independent feature-processing
channels (Fu et al., 2012; Poirazi & Mel, 2001; Houweling & Brecht, 2008). A key mechanism in this process
is the orthogonalized growth of new functional clusters—new connections tend to form adjacent to existing strong
connections yet remain functionally independent, effectively expanding the neural representation space along new
orthogonal dimensions, thereby enhancing network efficiency and capacity (Poirazi & Mel, 2001; Fiete et al., 2004).
Inspired by this mechanism, we propose a data-driven channel-level structural learning method for SNNs. Mimicking
the biological process, our approach prunes redundant channels and then introduces new ones following an orthog-
onality principle, thereby compressing network scale while expanding its representational power. This strategy not
only maintains performance but also significantly improves energy efficiency, offering a new pathway for deploying
high-efficiency SNN models on neuromorphic hardware and edge computing platforms.

In this work, we propose a dynamic channel pruning and regrowth framework for SNNs, inspired by the adaptive
structural reorganization of functional clusters in biological neural circuits. As illustrated in Figure 1, the proposed
framework achieves network efficiency at the channel granularity, analogous to the selective activation and reorgani-
zation of synaptic connection clusters in the brain. The method operates at the channel level, enabling coarse-grained
structural learning that is more hardware-friendly and efficient than unstructured sparsity approaches. The main con-
tributions of this paper are summarized as follows:

• The dynamic structural learning framework, the channel level is proposed for SNNs, which employs dynamic
pruning and regrowth with channel-orthogonality based on spatiotemporal patterns in SNNs.

• The framework introduces the spiking column subset selection mechanism for SNNs, which integrates
channel-level pruning with orthogonality-driven regrowth, selectively restoring diverse and complementary
channels to minimize information loss from aggressive pruning.

• Extensive experiments on CIFAR10, DVS-Gesture and DVS-CIFAR10 demonstrate that DPRC-SNNs
achieve significant efficiency gains in both storage and computation while maintaining competitive accu-
racy. Moreover, the channel-level structured sparsity enhances hardware efficiency and facilitates flexible
deployment.

2 RELATED WORK

Structure Learning in ANNs. In recent years, structured pruning has become an effective strategy for compressing
ANNs by removing entire components such as filters, channels, or layers, rather than pruning individual weights
(Cheng et al., 2024; Ling et al., 2024). This technique enhances computational efficiency and reduces memory usage
while maintaining high model accuracy. A key advantage of structured pruning over unstructured pruning lies in
its ability to work efficiently with hardware optimizations, as it avoids sparse matrices and takes full advantage of
parallel processing capabilities. Recent advances in structured pruning have introduced several powerful methods,
such as Gradual Pruning (He et al., 2022), which gradually prunes filters in convolutional networks, ensuring
minimal performance loss while achieving significant compression. Another notable method is Group Lasso Pruning
(Hoefler et al., 2021), which leverages group sparsity to simultaneously prune entire groups of weights, leading
to more structured, efficient models. Moreover, channel pruning (Li et al., 2022) evaluates the importance of
individual channels and removes those with minimal contribution to the network’s performance, yielding faster and
more memory-efficient models. Filter Pruning (He et al., 2022) takes a similar approach but focuses on pruning
entire filters within convolutional layers, thereby enhancing computational performance. Recent innovations in
automated pruning strategies, such as AutoPrune (Fan et al., 2022), combine reinforcement learning with neural
architecture search to autonomously discover optimal pruning strategies, achieving high compression with minimal
performance degradation. These advancements represent a significant shift towards more efficient and automated
pruning techniques in the field of ANNs model optimization (Hou et al., 2025).

Structure Learning in SNN. SNNs offer distinct advantages regarding low energy consumption due to their
event-driven nature and sparse temporal activations. Combined with the sparse structure learning methods, SNNs
have the potential to implement energy-efficient computing. (Han et al., 2025) introduces a method inspired by
biological dendritic spine plasticity, combining neuronal pruning, synaptic constraint, and regeneration to compress
SNNs without severely damaging accuracy. (Chen et al., 2021) proposes a training-time method that jointly learns
structure and weights by redefining gradients to manage connectivity and enable both pruning and regrowth during
training. (Chen et al., 2023) defines a neuron criticality metric inspired by the “critical brain hypothesis” and uses

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

random initiailized
channel

pruned channel

important channel

levarage score
pruned channel

regrow

regrow channel

levarage score
pruned channel

regrow

iterration=t

training

select
growth

....

....

orthogonality
growth

orthogonality
growth

output

Filter Pruning leverage score

active channel

candidate channel

orthogonality score

ℓ�� = ||[��]�,:||22

��� = ���(Ωjl) j’∈[��] ���(��‘�)
��l ((���)����)†(���)�

Figure 1: This schematic illustrates our DPRC-SNNs method, which simultaneously optimizes the weights and ex-
plores the sub-model structure within a single training process from scratch. In DPRC-SNNs, both the preserved
channels and the regrown channels remain active, jointly participating in the training iterations.

it to guide both structured and unstructured pruning, with regeneration mechanisms to maintain performance even
under large pruning ratios. (Li et al., 2024b) constructs a structured pruning framework based on convolutional
kernel activity levels; during training, kernels with low activity are pruned, and structure is refined with periodic
regeneration to adapt channel counts within layers. (Lew et al., 2023) rocessor design proposes pruning neurons
based on their temporal behavior (e.g., membrane voltage thresholds over time), effectively skipping computation
for less important neurons in later time steps; this leads to structured neuron pruning that aligns well with temporal
redundancy in SNNs. (Li et al., 2024a), which iteratively prunes and regrows channels to obtain sparse yet accurate
SNN architectures, achieving significant parameter reduction with minimal accuracy loss. Similarly, (Shen et al.,
2023) introduces Evolutionary Structure Learning for SNNs (ESL-SNNs), a dynamic strategy that prunes and regrows
synaptic connections during training, enabling the model to learn highly sparse structures from scratch while main-
taining competitive performance. These methods demonstrate that structured sparsity can be effectively incorporated
into SNNs without relying on large pretrained models, aligning with the goal of efficient and scalable spiking networks.

Unstructure Learning in SNN. Existing pruning approaches for spiking neural networks (SNNs) are predom-
inantly unstructured, operating at the individual synapse or weight level. (Chen et al., 2021) introduce Gradient
Rewiring, which dynamically removes and regrows single connections based on synaptic gradients. (Shi et al., 2024)
further explore energy-oriented synaptic sparsity by jointly pruning weights and neurons to reduce firing activity.
More recently, (Shi et al., 2025) propose OSBC, a one-shot post–training compression scheme that prunes and
quantizes weights based on membrane-potential sensitivity. While these methods achieve high parameter sparsity,
their irregular fine-grained patterns incur indexing overhead, offer limited acceleration on general-purpose hardware,
and do not explicitly capture the spatiotemporal activation dynamics characteristic of SNNs. In contrast, our work
adopts a structured, channel-level pruning strategy. By estimating channel importance from spatiotemporal sensitivity
and restoring complementary feature channels via orthogonality-driven regrowth, the proposed framework produces
hardware-friendly sparsity while preserving temporal representation diversity. This structured formulation directly
reduces tensor dimensions, thereby lowering SynOps and memory footprint, improving deployment efficiency, and
avoiding the instability commonly observed in highly unstructured SNN pruning.

3 PRELIMINARY

3.1 SPIKING NEURAL NETWORK

The event-driven computation in SNNs not only makes SNNs biologically plausible but also provides the potential
for energy-efficient processing on neuromorphic hardware. A core component of SNNs is the spiking neuron model,
which governs how membrane potentials evolve and when spikes are emitted. The Leaky Integrate-and-Fire (LIF)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

model is one of the most widely used (Wu et al., 2018);(Xiao et al., 2022) due to its simplicity and biological plausi-
bility. The dynamics of the membrane potential u(t) of a LIF neuron can be described by the following differential
equation:

τm
du(t)

dt
= −u(t) +RI(t), (1)

where τm is the membrane time constant, R is the membrane resistance, and I(t) denotes the synaptic input current at
time t. Intuitively, the membrane potential integrates incoming currents and simultaneously leaks over time, mimicking
the biophysics of biological neurons.

A spike is emitted whenever the membrane potential crosses a threshold Vth:

s(t) = H(u(t)− Vth), (2)

where H(·) is the Heaviside step function. After firing, the neuron undergoes a reset process:

u(t)← ureset, if u(t) ≥ Vth, (3)

where ureset is often set to zero or a small constant.

For computational implementations, it is common to use a discrete-time approximation of the LIF dynamics, especially
in neuromorphic simulations or GPU-based training:

ut+1 = αut +RIt − Vth · st, (4)

where α = exp(−∆t/τm) is the decay factor controlling the leak, and st represents the spike at time step t. This
formulation explicitly separates the integration, leakage, and reset mechanisms.

The binary and non-differentiable nature of st poses challenges for training SNNs with gradient-based methods. To
address this, surrogate gradient techniques are widely used, where the derivative of the step function is replaced with
a smooth approximation, thus enabling end-to-end optimization of deep SNNs. These dynamics form the foundation
for building more complex SNN architectures and for applying advanced optimization methods for structure learning.

4 METHODS

Unlike traditional channel pruning methods(Chowdhury et al., 2021);(Lew et al., 2023);(Nguyen et al., 2021), we
dynamically adjust channel strength through a periodic pruning and regrowth process, so that channels that were
pruned early can be restored and the loss of early representation ability during model retraining can be avoided.

4.1 CHANNEL PRUNING STAGE

In SNNs, channel pruning can be framed as a temporal column subset selection problem (Gu & Eisenstat, 1996).
Unlike traditional CNNs, where convolutional features are processed in a single pass, SNNs propagate spike-based
activations across discrete time steps. Given a convolutional layer in an SNN with weight matrix Wl ∈ RKl×Cl ,
where Kl represents the kernel size and Cl is the number of output channels, the feature maps at time step t are given
by:

Yl
t = Wl ∗Xl−1

t , t = 1, . . . , T, (5)

where Xl−1
t ∈ RCl−1×H×W is the input spike tensor at time t. For channel pruning, the goal is to select the most

representative subset of channels that capture the spatiotemporal dynamics of the input spikes. Formally, we define
the desired sparsity for the l-th layer as κl, and aim to retain the most informative channels. The pruned channels are
selected based on their temporal contribution to the layer’s activations.

We introduce a Spiking Column Subset Selection (SCSS) approach for pruning in SNNs. SCSS aims to select a
subset of columns (channels) from the weight matrix Wl that best preserves the spatiotemporal information across all
time steps. The objective is to minimize the Frobenius norm of the reconstruction error:

Wl
c = argmin

Wl
c

T∑
t=1

∥Wl −Wl
c(W

l
c)

†Wl∥2F , (6)

where (·)† denotes the Moore-Penrose pseudo-inverse. This approach accounts for the temporal aspect of SNNs by
considering the reconstruction error over all time steps, ensuring that channels with strong temporal activations are
prioritized for retention.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Next, we compute the leverage scores to quantify the importance of each channel. In SNNs, the weight matrix Wl

operates over T discrete time steps. Thus, the importance of each channel is evaluated not only based on its spatial
contribution but also across the temporal domain. To account for the temporal behavior, we compute the leverage
score for the j-th channel by summing its contribution at each time step, where Ul

t is the matrix of singular vectors
for the l-th layer at time step t. The leverage score for the j-th channel is given by:

ℓlj =

T∑
t=1

∥∥[Ul
t]j,:
∥∥2
2

(7)

where [Ul
t]j,: represents the j-th row of the singular vector matrix Ul

t at time step t, and ∥ · ∥2 denotes the L2 norm.
This formula sums the contribution of each channel across all time steps, capturing its temporal importance in the
context of spiking activity, which is crucial for pruning in SNNs.

In the pruning process, we retain the channels with the highest leverage scores, ensuring that the SNN preserves the
most informative spatiotemporal features. This selective pruning approach not only reduces the number of parameters
but also maintains the critical temporal dynamics of the network, optimizing both performance and computational
efficiency in spike-based processing. For more details on the SCSS formula, please see the Appendix B.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Network Layer Number

100

200

300

400

500

Ch
an

ne
l N

um
be

rs

initial_channels
1th cycle
2th cycle
3th cycle
4th cycle
final_channels

0

5

10

15

20

25

30

35

40

Pr
un

e
Ra

tio
 (%

)

23.4%

33.6%

1.6%

5.5%

21.1%

3.1%

14.8%

0.0%

9.0%

0.0%
2.0%

14.8%

3.9%3.1%2.7%

7.8%

1.4%

6.1%

40.8%

7.2%

Channel Trends and Pruning Ratio Overview

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Network Layer Number

0

100

200

300

400

500

Ch
an

ne
l N

um
be

rs

initial_channels
1th cycle
2th cycle
3th cycle
4th cycle
final_channels

0

20

40

60

80

100

Pr
un

e
Ra

tio
 (%

)

7.8%10.2%11.7%

70.3%

3.1%
10.2%

5.5%

14.1%

3.5%
10.2%

87.9%

10.5%

19.9%

5.1%

18.0%
12.1%

18.0%

98.6%

56.2%

16.6%

Channel Trends and Pruning Ratio Overview

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Network Layer Number

0

100

200

300

400

500

Ch
an

ne
l N

um
be

rs

initial_channels
1th cycle
2th cycle
3th cycle
4th cycle
final_channels

0

20

40

60

80

100

Pr
un

e
Ra

tio
 (%

)

20.3%
24.2%21.9%

95.3%

6.2%

21.9%

7.0%

40.6%

9.0%

31.2%

97.3%

23.8%

49.2%

22.7%

52.0%

39.8%

54.1%

99.8%

73.0%

52.7%

Channel Trends and Pruning Ratio Overview

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Network Layer Number

0

100

200

300

400

500

Ch
an

ne
l N

um
be

rs

initial_channels
1th cycle
2th cycle
3th cycle
4th cycle
final_channels

0

20

40

60

80

100

Pr
un

e
Ra

tio
 (%

)
42.2%

71.9%

79.7%81.2%

70.3%

78.9%

49.2%

57.8%

43.8%
37.1%

95.7%

70.7%

84.4%

53.5%

67.6%

55.9%
62.9%

99.6%

77.0%77.1%

Channel Trends and Pruning Ratio Overview

(d)

Figure 2: Illustration of pruning settings under different pruning ratios. Subfigure (a), (b), (c), and (d) corresponds to
a pruning ratio of 0.1,(b) 0.3, (c) 0.5, and (d) 0.7, showing the layer-wise changes across different training epochs.

4.2 CHANNEL REGROWING STAGE

Channel Regrowth in SNNs. To mitigate the sub-optimality of early pruning decisions in SNNs, we introduce a
regrowth mechanism that periodically reactivates a subset of previously pruned channels. Let Wl ∈ RK×Cl denote
the weight matrix of layer l and Ml ∈ {0, 1}Cl the corresponding channel mask. After pruning, a subset of channels
is deactivated, and for each pruned channel j we store a snapshot Ŵl,j of its last active state.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

A critical step in regrowth is how to assign weights to the reactivated channels. A naive solution is zero initialization,
which ensures no immediate change to the network’s output. However, in SNNs such channels rarely fire due to
their membrane potentials staying below threshold, and thus they receive vanishing surrogate gradients in subsequent
training. This makes them unable to recover effectively.

To address this issue, we restore the most recently used parameters of the pruned channels:

W
(t+1)
l,j ← Ŵl,j , j ∈ Rl, (8)

whereRl denotes the set of reactivated channels. By resuming from their last informative state, the regrown channels
can actively contribute to spatiotemporal feature encoding across time steps and be properly evaluated in subsequent
pruning stages.
Moreover, to progressively stabilize the pruning–regrowth process, we employ a cosine-decayed regrowth factor that
gradually reduces the number of reactivated channels as training proceeds. At the t-th pruning step, the regrowth factor
is given by:

δt = δ0 ·
1

2

(
1 + cos

(
πt

Tmax/∆T

))
, (9)

where δ0 is the initial regrowth budget, Tmax denotes the total exploration steps, and ∆T controls the frequency of
pruning–regrowth cycles. This schedule ensures that the sub-model gradually converges toward the target channel
sparsity, while still allowing sufficient exploration in the early training stages.

Table 1: The performance comparison between DPRC-SNNs and other SNNs models

Dataset Method Architecture Acc Acc Connection
Network (%) Loss(%) Density(%)

CIFAR10

ADMM-base (Deng et al., 2021) 7Conv+2FC 89.53 -3.85 10

Grad R (Chen et al., 2021) 6Conv+2FC 92.84 -0.34 12

TET1 (Deng et al., 2022) ResNet-19 92.79 - -

ESL-SNN (Shen et al., 2023) Sparse-ResNet19 91.09 -1.70 50.00

SCA-based (Li et al., 2024b) VGG16 91.14 -0.88 9.31

Neuron Pruning (Li et al., 2024a) Resnet18 92.91 -0.01 89.36

Channel Pruning (Li et al., 2024a) VGG16 91.24 -0.47 77.17

PQ-SNN (Shen et al., 2025) ResNet19 92.38 +0.11 29.72

DPRC-SNNs ResNet19-SNN 93.29 +0.24 70
92.64 -0.41 50

DVS-Gesturte

Neuron Pruning (Li et al., 2024a) VGG13 94.44 - 50

Grad R (Chen et al., 2021) 2Conv+2FC 84.12 0.00 50.00

DPRC-SNNs Resnet19-SNN 96.88 +1.05 49.80

DVS-CIFAR10

ELS-SNN (Shen et al., 2023) VGG8 78.3 -0.28 10

SCA-based (Li et al., 2024b) 5Conv+1FC 72.8 +0.9 21.73

TET (Deng et al., 2022) VGGSNN 83.17 - -

PQ-SNN (Shen et al., 2025) VGGSNN 78.4 -1.4 4.46

DPRC-SNNs ResNet19-SNN 81.50 -0.80 50
82.10 -0.20 70

We compare our pruning method with TET because it is a strong and widely adopted training paradigm for improving SNN
accuracy. Using TET as the baseline ensures a fair comparison.

Channel Regrowth via Orthogonality. In previous studies on SNNS pruning with regeneration mechanisms (Han
et al., 2025);(Han et al., 2024), the regrowth of pruned synaptic connections was often implemented through simple
activity-based heuristics or a uniform random sampling of candidate connections. While such strategies can partially

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

restore network capacity, they inherently suffer from two major drawbacks. First, they do not explicitly consider the
redundancy among regrown channels, which may lead to reintroducing connections that are highly correlated with
the already preserved ones. This results in a limited contribution to improving the diversity of feature representations.
Second, in the temporal domain of SNNs, such naive regrowth fails to guarantee the recovery of cross-time-step feature
propagation, thereby risking the loss of important temporal dynamics.

To address these limitations, we propose a regrowth mechanism based on orthogonal projection, which is inspired
by the biological principle of synaptic competition and decorrelation in cortical circuits. In order to incorporate the
temporal dynamics of SNNs, we compute the orthogonality score of a candidate channel wl

j with respect to the active
channel subspace W l

T over T discrete time steps as

Ωl
j =

1

T

T∑
t=1

∥∥∥(I −W l
T

(
(W l

T)
⊤W l

T

)†
(W l

T)
⊤
) (

wl
j ·X l−1(t)

)∥∥∥2
2
, (10)

where X l−1(t) denotes the input spikes at time step t, · is the convolution or linear transformation, and † represents
the Moore–Penrose pseudoinverse. This formulation measures the novelty of the candidate channel in the temporal
dimension of the SNN.

Next, we define an importance sampling distribution over the pruned channels based on the orthogonality scores:

plj =
exp(Ωl

j)∑
j′∈[Cl]\Tl

exp(Ωl
j′)

, j ∈ [Cl] \ Tl. (11)

The set of channels to regrow is then sampled without replacement according to a multinomial distribution:

Rl ∼ Multinomial
(
{plj}j∈[Cl]\Tl

; ⌊δtCl⌋
)
, (12)

where δt is the regrowth factor at iteration t, controlling the fraction of channels to be reactivated.

4.3 DYNAMIC CHANNEL REGROWTH AND STRUCTURE EXPLORATION

The initial architecture of SNNs may not exhibit a balanced channel distribution across layers. Some layers contribute
more critically to the spatiotemporal feature representation, while others contain redundant channels. To preserve ac-
curacy under pruning, we perform dynamic sub-model structure exploration, which reallocates surviving channels
across layers based on both batch normalization (BN) scaling factors and spiking activity, where the temporal nature
of the spikes is leveraged.

Specifically, we define a spike-aware importance score for each layer, which captures the spiking activity in conjunc-
tion with the static scaling factors from BN:

ϕl = ∥γl∥1 · ρl, (13)
where γl denotes the BN scaling factors of layer l (Liu et al., 2017), and ρl represents the average spike firing rate of
the layer, which is computed based on the temporal spike activity:

ρl =
1

T

T∑
t=1

1

HlWl

∑
i,j

Yl
t,i,j , (14)

where T is the number of time steps, Hl and Wl are the height and width of the feature map, and Yl
t,i,j denotes the

spike output of the i-th and j-th neurons at time step t in layer l.

This formulation integrates the static scaling information from BN with the dynamic temporal activity of spiking
neurons, ensuring that layers with both strong scaling responses and rich spiking dynamics are prioritized for retaining
channels.

Given an overall target sparsity S, the layer-wise pruning ratio κl is then computed as:

κl = 1− ϕl∑L
j=1 ϕj

· (1− S), (15)

where L is the total number of layers. Intuitively, layers with higher ϕl values, which reflect both strong spiking
activity and significant scaling responses, retain a larger portion of their channels, while less important layers are
pruned more aggressively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pruned Channels Ratio

87

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y
(%
)

93.05 93.09 93.07
93.29 93.13

92.64

91.96

90.34

87.19

Baseline (93.05%)
Test Accuracy (%)

Total Channels(%) Parameters (M)

30

40

50

60

70

80

90

100

To
ta
l C
ha
nn
el
s(
%
)

0

2

4

6

8

10

12

Pa
ra
m
et
er
s (
M
)

12.79

9.76

8.00

6.32

4.96

3.09
2.29

1.35
0.57

SNN Resnet19 on Cifar10 dataset

(a) Resnet19 on dataset CIFAR10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Pruned Channels Ratio

80.5

81.0

81.5

82.0

82.5

Te
st
 A
cc
ur
ac
y
(%

)

82.30
82.40

82.30

82.10

81.20

81.50

81.00

Baseline (82.30%)
Test Accuracy (%)

Total Channels(%) Parameters (M)

40

50

60

70

80

90

100

To
ta
l C

ha
nn
el
s(
%
)

2

4

6

8

10

12

Pa
ra
m
et
er
s (
M
)

12.79

10.66

8.81

6.61

4.61

3.01

1.94

SNN Resnet19 on DVS-Cifar10 dataset

(b) Resnet19 on dataset DVS-CIFAR10

Figure 3: The performance of the DPRC-SNNs structure learning framework.

Figure 4: The spike intensity emitted by the orthogonal growth channel and candidate channel of the DPRC-SNNs
during the regrowth process is represented.

During training, this reallocation is performed iteratively in tandem with regrowth. The regrowth stage enlarges the
candidate set of channels, while the exploration stage dynamically redistributes them across layers to adapt to the
spatiotemporal nature of the spikes. This synergy allows the model to preserve critical spiking neurons while pruning
redundant features, optimizing both temporal and spatial dynamics for efficient SNNs pruning. A detailed stability
and convergence analysis of this mechanism, including the smoothness of importance scores, Lipschitz continuity of
pruning ratios, and contraction bounds on pruning–regrowth iterations, is provided in Appendix C.

5 EXPERIMENTS

We evaluate the proposed DPRC-SNNs algorithm on both static and neuromorphic datasets and compare it with
existing methods. CIFAR10 is a widely used benchmark for static image classification, containing 10 classes. All
images are 32 × 32 RGB images, which need to be encoded before being fed into the SNN. For the neuromorphic
benchmark, we use DVS-CIFAR10, splitting it into 9,000 training samples and 1,000 testing samples. We set the
initial regrowth factor and the interval as ∆T = 20 training epochs, where the cycle is fixed to 4 throughout the
experiments. Here, δ0 denotes the pruning ratio, while ∆T represents the number of training iterations between two
consecutive pruning–regrowth steps. For simplicity and generality, these hyperparameters are kept constant throughout
all experiments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.1 EFFECTIVENESS ANALYSIS

Performance Comparison. Table 1 summarizes the performance of DPRC-SNNs across multiple datasets. Different
channel pruning ratios are applied, maintaining a fixed sparsity level during training. After training, a new sparse SNN
structure is obtained and evaluated. Model efficiency is assessed in terms of parameter count and spike operations
(SOPs), both of which serve as proxies for memory footprint and energy consumption. On CIFAR10, we train for
only 200 epochs and successfully compress the model to a 30% connection ratio. Remarkably, this configuration not
only achieves a 0.24% accuracy improvement over the full model (baseline accuracy: 93.05%), but also yields an
extremely low computational cost of 66.49K SOPs. This is orders of magnitude lower than the SOPs reported by
current state-of-the-art structured sparsity methods—e.g., the SCA-based approach (Li et al., 2024b), which requires
90.82K SOPs under comparable accuracy levels. These results highlight the superior computational efficiency of our
DPRC-SNNs under spatiotemporal sparsity.

This clearly demonstrates the effectiveness of our method in static image recognition. Furthermore, we validate DPRC-
SNNs on the challenging DVS-CIFAR10 dataset, where the model achieves an impressive 82.10% accuracy under
30% connection pruning, outperforming all existing methods to date and once again confirming the superiority of our
approach. Additionally, when evaluated on the DVS-Gesture dataset, a highly challenging neuromorphic benchmark,
our method achieves an impressive accuracy of 96.88% even under 49.8% pruning, further showcasing the robustness
and effectiveness of DPRC-SNNs across diverse neuromorphic datasets.

Structural Analysis. To better understand the learning process, we visualize the channel count per layer in ResNet19
across different pruning rounds (Fig 2). Each curve represents the number of channels in a given layer after a pruning
step on CIFAR10. The evolution of channel counts across successive pruning rounds reveals clear and consistent
trends. In the early pruning stages, the initial layers have already learned strong feature representations, so the prun-
ing ratios of the later layers are relatively higher. As the overall pruning ratio increases, all layers progressively
remove redundant channels to meet the target compression. The final layers are pruned more conservatively to pre-
serve high-level semantic features crucial for classification, as excessive pruning here would significantly harm model
performance. Layers 3, 7, and 10 experience the most pruning, as they correspond to downsampling stages with a
large number of channels. Many of these channels are redundant due to reduced spatial resolution, making them
ideal candidates for pruning without significantly impacting the network’s representational capacity. As training and
pruning progress, the model structure gradually stabilizes, indicating that the structural learning framework adaptively
converges to an appropriate architecture over iterative pruning.

To evaluate the model’s regrowth capabilities, we conduct orthogonal analysis on selected channels within specific
layers, as illustrated in (Fig. 4). The orthogonal projection is computed relative to a basis vector (shown in blue)
according to (Eq 10). Channels exhibiting higher orthogonal values demonstrate greater spike intensity and enhanced
feature independence, indicating their necessity for regrowth during the pruning process. Conversely, channels
with lower orthogonal values show reduced independence and can be safely pruned without regrowth. The spike
activation patterns presented in the right panel provide empirical validation of this orthogonality-based channel
selection criterion, where high-activity channels (marked in red) clearly demonstrate distinct firing patterns compared
to low-activity channels (marked in orange), confirming the effectiveness of our orthogonal analysis for identifying
critical channels requiring preservation and regrowth.

5.2 ABLATION STUDY

To further validate the effectiveness of DPRC-SNNs in structure learning, we conduct ablation experiments on CI-
FAR10 and DVS-CIFAR10, as shown in Figure 3. The blue bars represent the test accuracy of SNN Resnet19 on the
datasets CIFAR10 and DVS-CIFAR10, while the orange curves show the number of parameters at different pruning
ratios. The blue curve indicates the accuracy of the unpruned baseline model, and the green curve depicts the num-
ber of channels at different pruning ratios. When the pruning ratio reaches 0.6 on the CIFAR10 dataset, the model
accuracy only drops by 1.09%. On DVS-CIFAR10, pruning 20% of the parameters does not affect accuracy, and
even at 50% pruning, the model accuracy decreases by just 0.80%, with the parameter count reduced to 1/4 of the
previous one. In contrast, pruning-only training shows minimal mask updates after the initial step, highlighting that
the regrowth mechanism in DPRC-SNNs is crucial for reactivating incorrectly pruned channels. These results confirm
that DPRC-SNNs are robust and stable across a wide range of pruning ratios, making them an effective solution for
structured pruning with both high performance and efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

The depth and complexity of SNNs have been expanding across diverse applications, which, in turn, hinders their
potential for low energy efficiency due to parameter redundancy and high memory requirements. In this work, we
introduce DPRC-SNNs, a novel framework designed for training sparse SNNs at the channel level. DPRC-SNNs
implement a spiking column subset selection strategy that integrates channel-level pruning with orthogonality-driven
regeneration. This approach selectively reintroduces diverse and complementary channels to minimize the informa-
tion loss resulting from aggressive pruning. By systematically pruning redundant channels and regenerating orthogonal
ones, DPRC-SNNs preserve functional diversity while promoting greater sparsity at the channel level. Experimental
results demonstrate that DPRC-SNNs successfully learn compact, sparse architectures that achieve competitive accu-
racy with significantly fewer parameters. Moreover, sparse training at the channel level enhances the expressive power
of the learned network, offering substantial benefits for embedded hardware, including reduced power consumption,
lower memory usage, and improved on-chip learning efficiency.

REFERENCES

Shuo Chen, Boxiao Liu, and Haihang You. Criticality-guided efficient pruning in spiking neural networks inspired by
critical brain hypothesis. arXiv preprint arXiv:2311.16141, 2023.

Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking neural networks
through gradient rewiring. arXiv preprint arXiv:2105.04916, 2021.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning: Taxonomy, com-
parison, analysis, and recommendations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-temporal pruning and quantization for low-latency
spiking neural networks. In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE,
2021.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios
Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor with on-chip
learning. Ieee Micro, 38(1):82–99, 2018.

Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie. Comprehensive
snn compression using admm optimization and activity regularization. IEEE transactions on neural networks and
learning systems, 34(6):2791–2805, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural network via
gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. Advances in neural information processing systems, 27, 2014.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices iii: Computing a
compressed approximate matrix decomposition. SIAM Journal on Computing, 36(1):184–206, 2006.

Hanwei Fan, Jiandong Mu, and Wei Zhang. Bayesian optimization with clustering and rollback for cnn auto pruning.
In European Conference on Computer Vision, pp. 494–511. Springer, 2022.

Ila R Fiete, Richard HR Hahnloser, Michale S Fee, and H Sebastian Seung. Temporal sparseness of the premotor
drive is important for rapid learning in a neural network model of birdsong. Journal of neurophysiology, 92(4):
2274–2282, 2004.

Min Fu, Xinzhu Yu, Ju Lu, and Yi Zuo. Repetitive motor learning induces coordinated formation of clustered dendritic
spines in vivo. Nature, 483(7387):92–95, 2012.

Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a strong rank-revealing qr factorization. SIAM
Journal on Scientific Computing, 17(4):848–869, 1996.

Bing Han, Feifei Zhao, Yi Zeng, and Guobin Shen. Developmental plasticity-inspired adaptive pruning for deep
spiking and artificial neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bing Han, Feifei Zhao, Wenxuan Pan, and Yi Zeng. Adaptive sparse structure development with pruning and regener-
ation for spiking neural networks. Information Sciences, 689:121481, 2025.

Yang He, Ping Liu, Linchao Zhu, and Yi Yang. Filter pruning by switching to neighboring cnns with good attributes.
IEEE Transactions on Neural Networks and Learning Systems, 34(10):8044–8056, 2022.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural networks. Journal of Machine Learning Research, 22(241):
1–124, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang. Thinkprune: Pruning
long chain-of-thought of llms via reinforcement learning. arXiv preprint arXiv:2504.01296, 2025.

Arthur R Houweling and Michael Brecht. Behavioural report of single neuron stimulation in somatosensory cortex.
Nature, 451(7174):65–68, 2008.

Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André van Schaik, Ralph Etienne-Cummings, Tobi
Delbruck, Shih-Chii Liu, Piotr Dudek, Philipp Häfliger, Sylvie Renaud, et al. Neuromorphic silicon neuron circuits.
Frontiers in neuroscience, 5:73, 2011.

Dongwoo Lew, Hoyoung Tang, and Jongsun Park. Neuron pruning in temporal domain for energy efficient snn
processor design. Frontiers in Neuroscience, 17:1285914, 2023.

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisiting random channel
pruning for neural network compression. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 191–201, 2022.

Yaxin Li, Xuanye Fang, Yuyuan Gao, Dongdong Zhou, Jiangrong Shen, Jian K Liu, Gang Pan, and Qi Xu. Efficient
structure slimming for spiking neural networks. IEEE Transactions on Artificial Intelligence, 5(8):3823–3831,
2024a.

Yaxin Li, Qi Xu, Jiangrong Shen, Hongming Xu, Long Chen, and Gang Pan. Towards efficient deep spiking neural
networks construction with spiking activity based pruning. arXiv preprint arXiv:2406.01072, 2024b.

Gui Ling, Ziyang Wang, and Qingwen Liu. Slimgpt: Layer-wise structured pruning for large language models.
Advances in Neural Information Processing Systems, 37:107112–107137, 2024.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient con-
volutional networks through network slimming. In Proceedings of the IEEE international conference on computer
vision, pp. 2736–2744, 2017.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural networks, 10
(9):1659–1671, 1997.

Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved data analysis. Proceedings of the
National Academy of Sciences, 106(3):697–702, 2009.

Thao NN Nguyen, Bharadwaj Veeravalli, and Xuanyao Fong. Connection pruning for deep spiking neural networks
with on-chip learning. In International Conference on Neuromorphic Systems 2021, pp. 1–8, 2021.

Panayiota Poirazi and Bartlett W Mel. Impact of active dendrites and structural plasticity on the memory capacity of
neural tissue. Neuron, 29(3):779–796, 2001.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence with neuromor-
phic computing. Nature, 575(7784):607–617, 2019.

Jiangrong Shen, Qi Xu, Jian K Liu, Yueming Wang, Gang Pan, and Huajin Tang. Esl-snns: An evolutionary structure
learning strategy for spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 86–93, 2023.

Jiangrong Shen, Qi Xu, Gang Pan, and Badong Chen. Improving the sparse structure learning of spiking neural
networks from the view of compression efficiency. arXiv preprint arXiv:2502.13572, 2025.

Lianfeng Shi, Ao Li, and Benjamin Ward-Cherrier. Optimal spiking brain compression: Improving one-shot post-
training pruning and quantization for spiking neural networks. arXiv preprint arXiv:2506.03996, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neural networks: An
unstructured pruning framework. In The Twelfth International Conference on Learning Representations, 2024.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through time for spiking
neural networks. Advances in neural information processing systems, 35:20717–20730, 2022.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan. Spikformer:
When spiking neural network meets transformer. arXiv preprint arXiv:2209.15425, 2022.

Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Timothée Masquelier. Training spiking neural
networks with event-driven backpropagation. Advances in Neural Information Processing Systems, 35:30528–
30541, 2022.

A APPENDIX

A.1 USE OF LLMS

Large Language Models (LLMs) were used solely to assist with polishing the text.

A.2 CODE OF ETHICS AND ETHICS STATEMENT

The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics https://iclr.
cc/public/CodeOfEthics.

A.3 THE SUPPLEMENTARY MATERIALS FOR THE PRELIMINARY OF SNNS

Surrogate Gradient Training. As mentioned above, the major difficulty in training SNNs arises from the non-
differentiability of the spike generation function s(t) = H(u(t) − Vth), since the Heaviside step function H(·) has
zero gradient almost everywhere. This prevents the direct application of gradient-based optimization methods such as
backpropagation.

To address this, surrogate gradient methods approximate the derivative of the spike function with a smooth surrogate
during the backward pass, while keeping the exact binary spike function in the forward pass. Formally, let s(t) =
H(u(t)− Vth). In surrogate gradient training, the forward and backward computations are decoupled:

∂s(t)

∂u(t)
≈ σ′(u(t)− Vth), (16)

where σ(·) is a smooth function, such as a sigmoid, piecewise linear, or exponential function, used only for gradient
computation. For example, a common surrogate is the fast sigmoid derivative:

σ′(x) =
1

(1 + β|x|)2
, (17)

where β controls the slope sharpness. Another popular choice is the piecewise linear approximation:

σ′(x) =

{
1− |x|/γ, |x| < γ,

0, otherwise,
(18)

where γ defines the surrogate window.

These approximations allow error signals to propagate through spiking neurons, enabling end-to-end supervised train-
ing of deep SNNs on large-scale datasets. This surrogate gradient framework has become the standard approach for
modern SNN optimization.

12

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B MORE DETAILS ON SCSS MATRIX APPROXIMATION AND SUBSPACE SELECTIONIN

Below, we clarify how our SCSS formulation relates to classical matrix approximation and subspace-selection tech-
niques, which originated from numerical linear algebra and have been widely used in CNN model compression.
Low-rank decomposition is commonly applied to compress CNN convolution kernels(Denton et al., 2014). Given a
weight matrix:W ∈ RK×C ,its truncated SVD yields: W ≈ UrΣrV

⊤
r ,where τ is the target rank. Although optimal

in Frobenius norm, this method does not select actual channels (columns of w), making it unsuitable for channel
pruning.
The classical column subset selection (Gu & Eisenstat, 1996) seeks a subset of columns C of W that best reconstruct
the full matrix:

C⋆ = argmin
C

∥∥W − CC†W
∥∥2
F

(19)

CUR decomposition (Mahoney & Drineas, 2009) expresses:W ≈ CUR , where C contains a subset of real columns
of W , directly corresponding to selected CNN channels.
Leverage scores are widely used to approximate column subset selection (Drineas et al., 2006). For truncated SVD
W ≈ UrΣrV

⊤
r

ℓj = ∥Vr(j, :)∥22 (20)
This represents the energy of each channel within the dominant subspace. However, CNNs compute such importance
only once, since their activation is purely spatial and static (single-pass).
Unlike CNNs, SNNs propagate information across T discrete time steps, and the importance of a channel depends

Figure 5: Grad-CAM comparison of pruned (left) and unpruned (right) models. The pruned model focuses on the
most discriminative regions, while the unpruned model shows more diffuse, less representative attention.

on its contribution to the spatiotemporal evolution of membrane potentials and spikes. Directly applying CNN-style
column subset selection or leverage scores ignores this temporal dynamics. Let Wl be the weight matrix reused at each
time step t = 1, . . . , T . We extend classical column subset selection by minimizing the reconstruction error across all
time steps:

W ⋆
l,c = argmin

Wl,c

T∑
t=1

∥∥Wl −Wl,c(Wl,c)
†Wl

∥∥2
F
. (21)

This temporal objective is unique to SNNs, since CNNs do not maintain time-varying activations. At each time step,
compute the left singular vectors:

Wl ≈ Ul,tΣl,tV
⊤
l,t . (22)

We then define the temporal leverage score for channel j as:

ℓj =

T∑
t=1

∥Ul,t(j, :)∥22. (23)

This score measures how consistently a channel contributes to the dominant temporal subspaces, highlighting channels
with strong and stable activations across all T steps. CNNs cannot obtain this score because they lack a temporal
dimension.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C STABILITY AND CONVERGENCE ANALYSIS OF THE ADAPTIVE SPARSITY MECHANISM

The proposed adaptive sparsity mechanism relies on both batch normalization (BN) scaling factors and the temporal
spiking activity of SNNs. We show that the interaction of these two signals leads to stable pruning dynamics and does
not introduce optimization instability.

Table 2: Testing on more architectures or datasets

Dataset Method Architecture Acc Acc Connection
Network (%) Loss(%) Density(%)

Tiny-Imagenet

Attention-base (Deng et al., 2021) VGG16 51.92 +0.78 40

SCA-based (Li et al., 2024b) VGG16 49.33 -0.19 30.60

DPRC-SNNs VGGSNN 62.33 -0.01 70
60.92 -1.42 50

CIFAR100

ELS-SNN (Shen et al., 2023) Sparse ResNet-19 73.48 -0.99 50

SCA-based (Li et al., 2024b) VGG16 64.89 +0.64 23.52

ANN ResNet-19 75.35 - -

TET (Deng et al., 2022) ResNet-19 74.47 - -

DPRC-SNNs ResNet19-SNN 77.21 +0.02 77.9
75.12 -2.07 58.7

CIFAR10

Spikeformer (Zhou et al., 2022) Spikeformer-4-384 95.19 - -

ANN Transformer-4-384 96.73 - -

DPRC-SNNs Spikeformer-4-384 94.98 -0.21 50

Recall the spike-aware importance score Eq. 13 used in the main text, where γl is the BN scaling vector and ρl is the
average firing rate defined in Eq. 14. These two terms evolve smoothly during training due to their distinct update
characteristics in SNNs. BN scales γl follow gradient descent with Lipschitz-continuous updates, while the firing rate
is a bounded empirical average of spike trains, i.e.,

0 ≤ ρl ≤ 1, |ρ(k+1)
l − ρ

(k)
l | ≤ Cρη, (24)

where the constant Cρ depends on the surrogate gradient used in backpropagation through spikes. Because both
components vary smoothly, the importance score also changes smoothly:

|ϕ(k+1)
l − ϕ

(k)
l | ≤ ∥γl∥1|∆ρl|+ ρl∥∆γl∥1 = O(η), (25)

which means that SNN-specific temporal dynamics do not introduce abrupt jumps in layer importance. The pruning
ratio is obtained by normalizing {ϕl}:

κl = 1− ϕl∑L
j=1 ϕj

. (26)

Differentiating with respect to ϕ gives bounded Jacobian entries:∣∣∣∣∣ ∂κl

∂ϕm

∣∣∣∣∣ = O
(

1

(
∑

j ϕj)2

)
, (27)

implying that the mapping from spike-driven importance scores to pruning ratios is Lipschitz-continuous. Thus, the
temporal fluctuations of spikes influence pruning smoothly, ensuring that sparsity allocation does not oscillate across
training iterations. We further consider the interaction between pruning masks and optimization. For masked SGD
updates

θt+1 = θt − η(mt ⊙ gt), (28)
The stability depends on how quickly the masks change. Since κl and hence the masks evolve smoothly (due to the
bounded updates of ϕl), we have

∥mt+1 −mt∥2 = O(η), (29)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

which keeps the effective gradient energy nearly unchanged and avoids destructive resets of temporal membrane
potentials—an SNN-specific risk during pruning. Finally, over pruning-regrowth cycles indexed by k, the sparse
modelM(k) satisfies

∥M(k+1) −M(k)∥ = O(η), (30)
leading to a contraction-like convergence:

∥M(k+1) −M⋆∥ ≤ α∥M(k) −M⋆∥+O(η), α < 1. (31)

This shows that the adaptive sparsity mechanism—driven jointly by BN scaling and spike dynamics—preserves train-
ing stability and converges reliably, while dynamically selecting the most informative temporal-spatial channels in
SNNs.

15

	Introduction
	Related Work
	Preliminary
	Spiking Neural Network

	Methods
	Channel Pruning Stage
	Channel Regrowing Stage
	Dynamic Channel Regrowth and Structure Exploration

	Experiments
	Effectiveness Analysis
	Ablation Study

	Conclusion
	Appendix
	Use of LLMs
	Code of Ethics and Ethics statement
	The supplementary materials for the preliminary of SNNs

	More details on SCSS matrix approximation and subspace selectionin
	Stability and Convergence Analysis of the Adaptive Sparsity Mechanism

