

AN EFFICIENT STRUCTURAL PRUNING FOR SPIKING NEURAL NETWORKS BY BALANCING ACCURACY AND SPARSIFICATION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing scale of spiking neural networks (SNNs) poses significant challenges for deployment on resource-constrained neuromorphic hardware, necessitating lightweight and learnable structural solutions. Interestingly, biological neural systems employ an efficient organizational strategy—hierarchical structural reorganization around functional clusters, where new connections grow orthogonally to existing ones to expand representational capacity. Inspired by this mechanism, we propose a dynamic pruning and regrowth framework with channel-level orthogonality for SNNs (DPRC-SNNs) to enable scalable and efficient structural learning for SNNs. DPRC-SNNs introduce the spiking column subset selection mechanism for SNNs, which integrates channel-level pruning with orthogonality-driven regrowth, selectively restoring diverse and complementary channels to minimize information loss from aggressive pruning. Through iteratively pruning redundant channels and regrowing orthogonal ones, DPRC-SNNs preserve functional diversity while enhancing sparsity at the channel level. Extensive evaluations on CIFAR10, DVS-Gesture, and DVS-CIFAR10 demonstrate that DPRC-SNNs achieve high compression rates and computational efficiency without compromising accuracy, showing strong potential for neuromorphic deployment.

1 INTRODUCTION

Spiking neural networks (SNNs) have demonstrated significant potential in replicating the biological efficiency and event-driven processing capabilities of the human brain. Unlike conventional artificial neural networks (ANNs), which rely on continuous activations, SNNs transmit information using discrete spike events to update neuronal membrane potentials over time. This approach makes SNNs particularly well-suited for energy-efficient neuromorphic hardware (Maass, 1997; Indiveri et al., 2011; Davies et al., 2018). As SNNs achieve higher performance, their architectures have become deeper and more complex, with increasing numbers of parameters to address large-scale benchmarks. However, the added depth and complexity result in greater computational demands and memory usage (Roy et al., 2019; Zhu et al., 2022). This trend stands in contrast to biological systems, where neurons and synapses operate under strict resource constraints. In the brain, synaptic connections are limited and continuously pruned and reorganized to maintain efficiency and adapt to evolving requirements. Considering the hardware limitations of neuromorphic chips, specifically the finite number of neurons and synapses available (Indiveri et al., 2011; Davies et al., 2018), there is an increasing need to optimize SNN architectures. Such optimization seeks to reduce network size and power consumption, thereby enhancing the suitability of SNNs for edge computing applications with limited computational resources.

Recent studies have explored structural learning for SNNs, particularly focusing on weight-level optimization. These approaches have demonstrated that SNNs can achieve competitive accuracy with significantly fewer parameters. For instance, inspired by the synapse rewiring mechanism in the brain, (Chen et al., 2021) proposed a method to jointly optimize both the network structure and weights by redefining gradients to manage connectivity. Similarly, (Shen et al., 2023) introduced sparse structural learning for SNNs by employing evolutionary strategies that combine pruning and regrowth of synapses based on the momentum and magnitudes of synaptic connections. Although these weight-level structural learning techniques result in sparse networks, they often require specialized hardware to efficiently support the sparsity of the SNNs. In response to these hardware limitations, recent attention has shifted towards channel-level structural learning for SNNs, which offers more hardware-friendly properties. (Li et al., 2024a) proposes a method that iteratively prunes and regrows channels, achieving sparse yet accurate SNN architectures. Additionally, (Li et al., 2024b) focuses on removing redundancies and regenerating specific convolutional kernels based on spiking activity levels. Despite these advancements, existing channel-level structural learning methods often overlook the fea-

ture representation relationships among different channels, which could potentially limit their effectiveness in further enhancing model performance.

In biological neural systems, structural reorganization does not occur randomly at isolated synapses but is hierarchically organized around functional clusters, which can be regarded as relatively independent feature-processing channels (Fu et al., 2012; Poirazi & Mel, 2001; Houweling & Brecht, 2008). A key mechanism in this process is the orthogonalized growth of new functional clusters—new connections tend to form adjacent to existing strong connections yet remain functionally independent, effectively expanding the neural representation space along new orthogonal dimensions, thereby enhancing network efficiency and capacity (Poirazi & Mel, 2001; Fiete et al., 2004). Inspired by this mechanism, we propose a data-driven channel-level structural learning method for SNNs. Mimicking the biological process, our approach prunes redundant channels and then introduces new ones following an orthogonality principle, thereby compressing network scale while expanding its representational power. This strategy not only maintains performance but also significantly improves energy efficiency, offering a new pathway for deploying high-efficiency SNN models on neuromorphic hardware and edge computing platforms.

In this work, we propose a dynamic channel pruning and regrowth framework for SNNs, inspired by the adaptive structural reorganization of functional clusters in biological neural circuits. As illustrated in Figure 1, the proposed framework achieves network efficiency at the channel granularity, analogous to the selective activation and reorganization of synaptic connection clusters in the brain. The method operates at the channel level, enabling coarse-grained structural learning that is more hardware-friendly and efficient than unstructured sparsity approaches. The main contributions of this paper are summarized as follows:

- The dynamic structural learning framework, the channel level is proposed for SNNs, which employs dynamic pruning and regrowth with channel-orthogonality based on spatiotemporal patterns in SNNs.
- The framework introduces the spiking column subset selection mechanism for SNNs, which integrates channel-level pruning with orthogonality-driven regrowth, selectively restoring diverse and complementary channels to minimize information loss from aggressive pruning.
- Extensive experiments on CIFAR10, DVS-Gesture and DVS-CIFAR10 demonstrate that DPRC-SNNs achieve significant efficiency gains in both storage and computation while maintaining competitive accuracy. Moreover, the channel-level structured sparsity enhances hardware efficiency and facilitates flexible deployment.

2 RELATED WORK

Structure Learning in ANNs. In recent years, structured pruning has become an effective strategy for compressing ANNs by removing entire components such as filters, channels, or layers, rather than pruning individual weights (Cheng et al., 2024; Ling et al., 2024). This technique enhances computational efficiency and reduces memory usage while maintaining high model accuracy. A key advantage of structured pruning over unstructured pruning lies in its ability to work efficiently with hardware optimizations, as it avoids sparse matrices and takes full advantage of parallel processing capabilities. Recent advances in structured pruning have introduced several powerful methods, such as Gradual Pruning (He et al., 2022), which gradually prunes filters in convolutional networks, ensuring minimal performance loss while achieving significant compression. Another notable method is Group Lasso Pruning (Hoefler et al., 2021), which leverages group sparsity to simultaneously prune entire groups of weights, leading to more structured, efficient models. Moreover, channel pruning (Li et al., 2022) evaluates the importance of individual channels and removes those with minimal contribution to the network’s performance, yielding faster and more memory-efficient models. Filter Pruning (He et al., 2022) takes a similar approach but focuses on pruning entire filters within convolutional layers, thereby enhancing computational performance. Recent innovations in automated pruning strategies, such as AutoPrune (Fan et al., 2022), combine reinforcement learning with neural architecture search to autonomously discover optimal pruning strategies, achieving high compression with minimal performance degradation. These advancements represent a significant shift towards more efficient and automated pruning techniques in the field of ANNs model optimization (Hou et al., 2025).

Structure Learning in SNN. SNNs offer distinct advantages regarding low energy consumption due to their event-driven nature and sparse temporal activations. Combined with the sparse structure learning methods, SNNs have the potential to implement energy-efficient computing. (Han et al., 2025) introduces a method inspired by biological dendritic spine plasticity, combining neuronal pruning, synaptic constraint, and regeneration to compress SNNs without severely damaging accuracy. (Chen et al., 2021) proposes a training-time method that jointly learns structure and weights by redefining gradients to manage connectivity and enable both pruning and regrowth during training. (Chen et al., 2023) defines a neuron criticality metric inspired by the “critical brain hypothesis” and uses

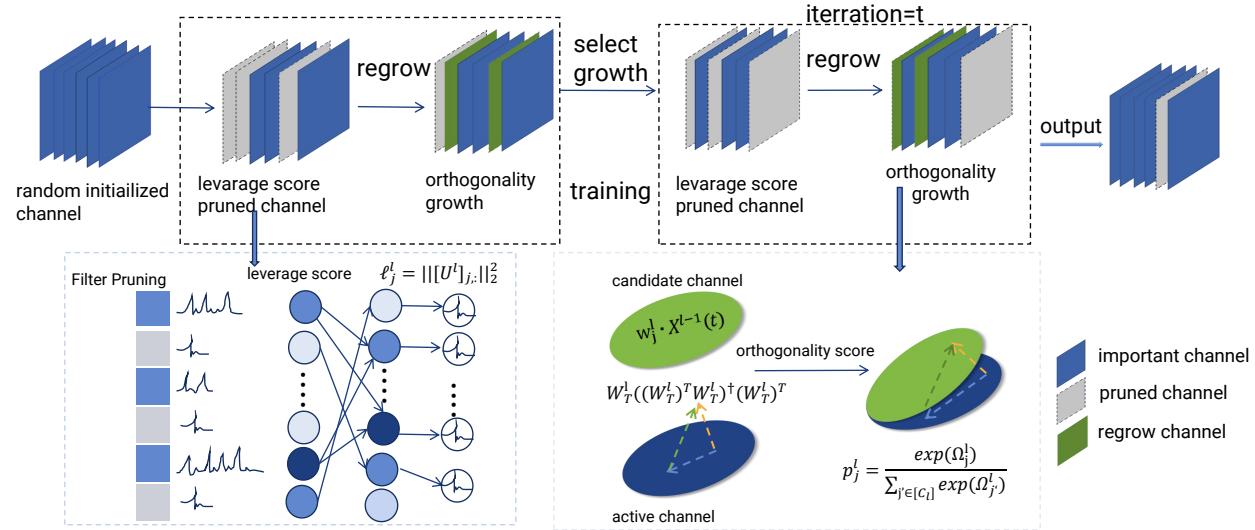


Figure 1: This schematic illustrates our DPRC-SNNs method, which simultaneously optimizes the weights and explores the sub-model structure within a single training process from scratch. In DPRC-SNNs, both the preserved channels and the regrown channels remain active, jointly participating in the training iterations.

it to guide both structured and unstructured pruning, with regeneration mechanisms to maintain performance even under large pruning ratios. (Li et al., 2024b) constructs a structured pruning framework based on convolutional kernel activity levels; during training, kernels with low activity are pruned, and structure is refined with periodic regeneration to adapt channel counts within layers. (Lew et al., 2023) processor design proposes pruning neurons based on their temporal behavior (e.g., membrane voltage thresholds over time), effectively skipping computation for less important neurons in later time steps; this leads to structured neuron pruning that aligns well with temporal redundancy in SNNs. (Li et al., 2024a), which iteratively prunes and regrows channels to obtain sparse yet accurate SNN architectures, achieving significant parameter reduction with minimal accuracy loss. Similarly, (Shen et al., 2023) introduces Evolutionary Structure Learning for SNNs (ESL-SNNs), a dynamic strategy that prunes and regrows synaptic connections during training, enabling the model to learn highly sparse structures from scratch while maintaining competitive performance. These methods demonstrate that structured sparsity can be effectively incorporated into SNNs without relying on large pretrained models, aligning with the goal of efficient and scalable spiking networks.

Unstructure Learning in SNN. Existing pruning approaches for spiking neural networks (SNNs) are predominantly *unstructured*, operating at the individual synapse or weight level. (Chen et al., 2021) introduce Gradient Rewiring, which dynamically removes and regrows single connections based on synaptic gradients. (Shi et al., 2024) further explore energy-oriented synaptic sparsity by jointly pruning weights and neurons to reduce firing activity. More recently, (Shi et al., 2025) propose OSBC, a one-shot post-training compression scheme that prunes and quantizes weights based on membrane-potential sensitivity. While these methods achieve high parameter sparsity, their irregular fine-grained patterns incur indexing overhead, offer limited acceleration on general-purpose hardware, and do not explicitly capture the spatiotemporal activation dynamics characteristic of SNNs. In contrast, our work adopts a *structured, channel-level* pruning strategy. By estimating channel importance from spatiotemporal sensitivity and restoring complementary feature channels via orthogonality-driven regrowth, the proposed framework produces hardware-friendly sparsity while preserving temporal representation diversity. This structured formulation directly reduces tensor dimensions, thereby lowering SynOps and memory footprint, improving deployment efficiency, and avoiding the instability commonly observed in highly unstructured SNN pruning.

3 PRELIMINARY

3.1 SPIKING NEURAL NETWORK

The event-driven computation in SNNs not only makes SNNs biologically plausible but also provides the potential for energy-efficient processing on neuromorphic hardware. A core component of SNNs is the spiking neuron model, which governs how membrane potentials evolve and when spikes are emitted. The Leaky Integrate-and-Fire (LIF)

162 model is one of the most widely used (Wu et al., 2018);(Xiao et al., 2022) due to its simplicity and biological plausibility.
 163 The dynamics of the membrane potential $u(t)$ of a LIF neuron can be described by the following differential
 164 equation:

$$165 \quad \tau_m \frac{du(t)}{dt} = -u(t) + RI(t), \quad (1)$$

167 where τ_m is the membrane time constant, R is the membrane resistance, and $I(t)$ denotes the synaptic input current at
 168 time t . Intuitively, the membrane potential integrates incoming currents and simultaneously leaks over time, mimicking
 169 the biophysics of biological neurons.

170 A spike is emitted whenever the membrane potential crosses a threshold V_{th} :

$$172 \quad s(t) = H(u(t) - V_{th}), \quad (2)$$

173 where $H(\cdot)$ is the Heaviside step function. After firing, the neuron undergoes a reset process:

$$175 \quad u(t) \leftarrow u_{reset}, \quad \text{if } u(t) \geq V_{th}, \quad (3)$$

176 where u_{reset} is often set to zero or a small constant.

177 For computational implementations, it is common to use a discrete-time approximation of the LIF dynamics, especially
 178 in neuromorphic simulations or GPU-based training:

$$180 \quad u_{t+1} = \alpha u_t + RI_t - V_{th} \cdot s_t, \quad (4)$$

182 where $\alpha = \exp(-\Delta t/\tau_m)$ is the decay factor controlling the leak, and s_t represents the spike at time step t . This
 183 formulation explicitly separates the integration, leakage, and reset mechanisms.

184 The binary and non-differentiable nature of s_t poses challenges for training SNNs with gradient-based methods. To
 185 address this, surrogate gradient techniques are widely used, where the derivative of the step function is replaced with
 186 a smooth approximation, thus enabling end-to-end optimization of deep SNNs. These dynamics form the foundation
 187 for building more complex SNN architectures and for applying advanced optimization methods for structure learning.

189 4 METHODS

191 Unlike traditional channel pruning methods(Chowdhury et al., 2021);(Lew et al., 2023);(Nguyen et al., 2021), we
 192 dynamically adjust channel strength through a periodic pruning and regrowth process, so that channels that were
 193 pruned early can be restored and the loss of early representation ability during model retraining can be avoided.

195 4.1 CHANNEL PRUNING STAGE

197 In SNNs, channel pruning can be framed as a temporal column subset selection problem (Gu & Eisenstat, 1996).
 198 Unlike traditional CNNs, where convolutional features are processed in a single pass, SNNs propagate spike-based
 199 activations across discrete time steps. Given a convolutional layer in an SNN with weight matrix $\mathbf{W}^l \in \mathbb{R}^{K_l \times C_l}$,
 200 where K_l represents the kernel size and C_l is the number of output channels, the feature maps at time step t are given
 201 by:

$$202 \quad \mathbf{Y}_t^l = \mathbf{W}^l * \mathbf{X}_t^{l-1}, \quad t = 1, \dots, T, \quad (5)$$

203 where $\mathbf{X}_t^{l-1} \in \mathbb{R}^{C_{l-1} \times H \times W}$ is the input spike tensor at time t . For channel pruning, the goal is to select the most
 204 representative subset of channels that capture the spatiotemporal dynamics of the input spikes. Formally, we define
 205 the desired sparsity for the l -th layer as κ_l , and aim to retain the most informative channels. The pruned channels are
 206 selected based on their temporal contribution to the layer's activations.

207 We introduce a **Spiking Column Subset Selection (SCSS)** approach for pruning in SNNs. SCSS aims to select a
 208 subset of columns (channels) from the weight matrix \mathbf{W}^l that best preserves the spatiotemporal information across all
 209 time steps. The objective is to minimize the Frobenius norm of the reconstruction error:

$$211 \quad \mathbf{W}_c^l = \arg \min_{\mathbf{W}_c^l} \sum_{t=1}^T \|\mathbf{W}^l - \mathbf{W}_c^l (\mathbf{W}_c^l)^\dagger \mathbf{W}^l\|_F^2, \quad (6)$$

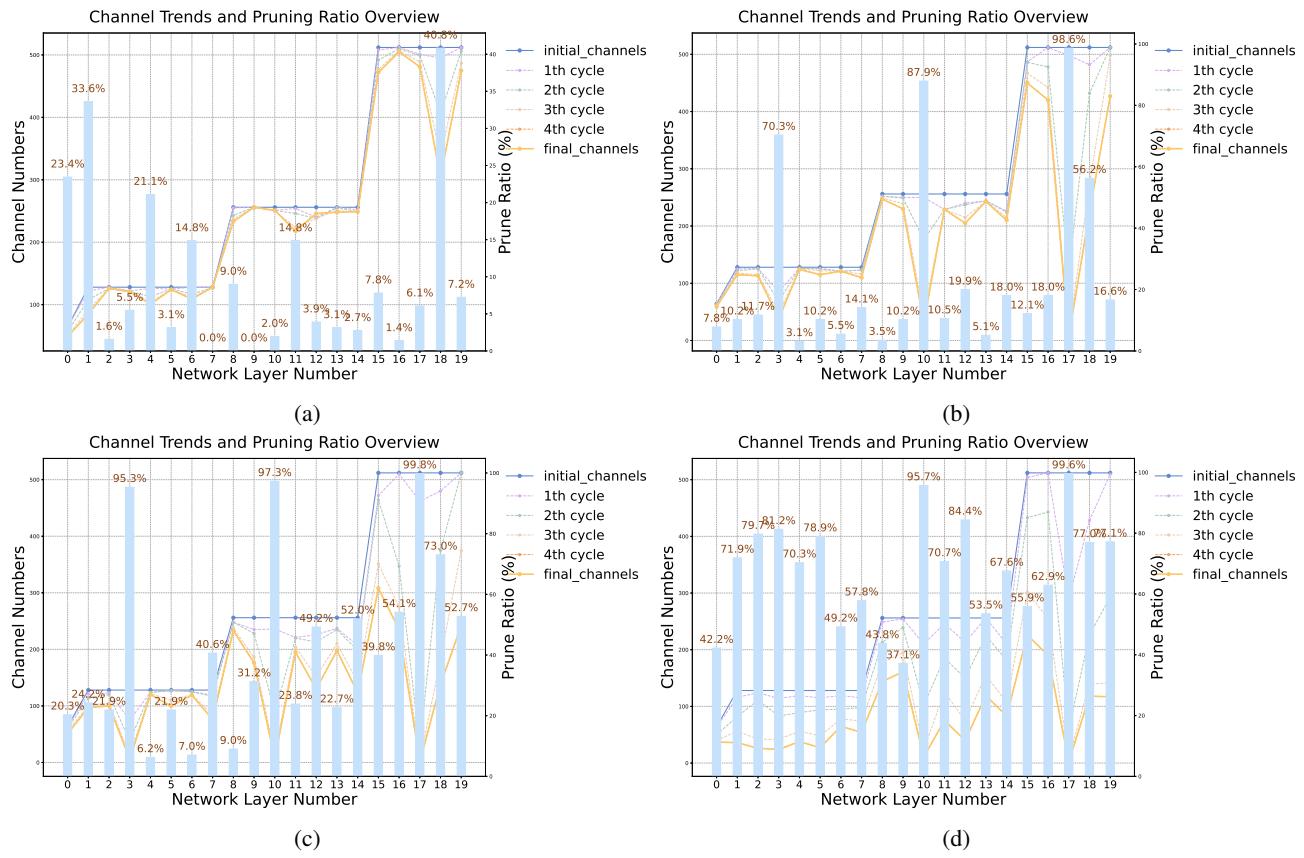
214 where $(\cdot)^\dagger$ denotes the Moore-Penrose pseudo-inverse. This approach accounts for the temporal aspect of SNNs by
 215 considering the reconstruction error over all time steps, ensuring that channels with strong temporal activations are
 prioritized for retention.

216 Next, we compute the leverage scores to quantify the importance of each channel. In SNNs, the weight matrix \mathbf{W}^l
 217 operates over T discrete time steps. Thus, the importance of each channel is evaluated not only based on its spatial
 218 contribution but also across the temporal domain. To account for the temporal behavior, we compute the leverage
 219 score for the j -th channel by summing its contribution at each time step, where \mathbf{U}_t^l is the matrix of singular vectors
 220 for the l -th layer at time step t . The leverage score for the j -th channel is given by:
 221

$$\ell_j^l = \sum_{t=1}^T \|[\mathbf{U}_t^l]_{j,:}\|_2^2 \quad (7)$$

225 where $[\mathbf{U}_t^l]_{j,:}$ represents the j -th row of the singular vector matrix \mathbf{U}_t^l at time step t , and $\|\cdot\|_2$ denotes the L2 norm.
 226 This formula sums the contribution of each channel across all time steps, capturing its temporal importance in the
 227 context of spiking activity, which is crucial for pruning in SNNs.

228 In the pruning process, we retain the channels with the highest leverage scores, ensuring that the SNN preserves the
 229 most informative spatiotemporal features. This selective pruning approach not only reduces the number of parameters
 230 but also maintains the critical temporal dynamics of the network, optimizing both performance and computational
 231 efficiency in spike-based processing. For more details on the SCSS formula, please see the Appendix B.
 232



4.2 CHANNEL REGROWING STAGE

267 **Channel Regrowth in SNNs.** To mitigate the sub-optimality of early pruning decisions in SNNs, we introduce a
 268 regrowth mechanism that periodically reactivates a subset of previously pruned channels. Let $W_l \in \mathbb{R}^{K \times C_l}$ denote
 269 the weight matrix of layer l and $M_l \in \{0, 1\}^{C_l}$ the corresponding channel mask. After pruning, a subset of channels
 is deactivated, and for each pruned channel j we store a snapshot $\widehat{W}_{l,j}$ of its last active state.

270 A critical step in regrowth is how to assign weights to the reactivated channels. A naive solution is zero initialization,
 271 which ensures no immediate change to the network’s output. However, in SNNs such channels rarely fire due to
 272 their membrane potentials staying below threshold, and thus they receive vanishing surrogate gradients in subsequent
 273 training. This makes them unable to recover effectively.

274 To address this issue, we restore the most recently used parameters of the pruned channels:

$$276 \quad W_{l,j}^{(t+1)} \leftarrow \widehat{W}_{l,j}, \quad j \in \mathcal{R}_l, \quad (8)$$

278 where \mathcal{R}_l denotes the set of reactivated channels. By resuming from their last informative state, the regrown channels
 279 can actively contribute to spatiotemporal feature encoding across time steps and be properly evaluated in subsequent
 280 pruning stages.

281 Moreover, to progressively stabilize the pruning–regrowth process, we employ a cosine-decayed regrowth factor that
 282 gradually reduces the number of reactivated channels as training proceeds. At the t -th pruning step, the regrowth factor
 283 is given by:

$$284 \quad \delta_t = \delta_0 \cdot \frac{1}{2} \left(1 + \cos \left(\frac{\pi t}{T_{\max}/\Delta T} \right) \right), \quad (9)$$

286 where δ_0 is the initial regrowth budget, T_{\max} denotes the total exploration steps, and ΔT controls the frequency of
 287 pruning–regrowth cycles. This schedule ensures that the sub-model gradually converges toward the target channel
 288 sparsity, while still allowing sufficient exploration in the early training stages.

289 Table 1: The performance comparison between DPRC-SNNs and other SNNs models
 290

291	Dataset	Method	Architecture	Acc	Acc	Connection
292			Network	(%)	Loss(%)	Density(%)
293	CIFAR10	ADMM-base (Deng et al., 2021)	7Conv+2FC	89.53	-3.85	10
294		Grad R (Chen et al., 2021)	6Conv+2FC	92.84	-0.34	12
295		TET ¹ (Deng et al., 2022)	ResNet-19	92.79	-	-
296		ESL-SNN (Shen et al., 2023)	Sparse-ResNet19	91.09	-1.70	50.00
297		SCA-based (Li et al., 2024b)	VGG16	91.14	-0.88	9.31
298		Neuron Pruning (Li et al., 2024a)	Resnet18	92.91	-0.01	89.36
299		Channel Pruning (Li et al., 2024a)	VGG16	91.24	-0.47	77.17
300		PQ-SNN (Shen et al., 2025)	ResNet19	92.38	+0.11	29.72
301	DVS-Gesturte	DPRC-SNNs	ResNet19-SNN	93.29	+0.24	70
302				92.64	-0.41	50
303		Neuron Pruning (Li et al., 2024a)	VGG13	94.44	-	50
304	DVS-CIFAR10	Grad R (Chen et al., 2021)	2Conv+2FC	84.12	0.00	50.00
305		DPRC-SNNs	Resnet19-SNN	96.88	+1.05	49.80
306		ELS-SNN (Shen et al., 2023)	VGG8	78.3	-0.28	10
307		SCA-based (Li et al., 2024b)	5Conv+1FC	72.8	+0.9	21.73
308		TET (Deng et al., 2022)	VGGSNN	83.17	-	-
309		PQ-SNN (Shen et al., 2025)	VGGSNN	78.4	-1.4	4.46
310		DPRC-SNNs	ResNet19-SNN	81.50	-0.80	50
311				82.10	-0.20	70

312 We compare our pruning method with TET because it is a strong and widely adopted training paradigm for improving SNN
 313 accuracy. Using TET as the baseline ensures a fair comparison.

314 **Channel Regrowth via Orthogonality.** In previous studies on SNNS pruning with regeneration mechanisms (Han
 315 et al., 2025);(Han et al., 2024), the regrowth of pruned synaptic connections was often implemented through simple
 316 activity-based heuristics or a uniform random sampling of candidate connections. While such strategies can partially

324 restore network capacity, they inherently suffer from two major drawbacks. First, they do not explicitly consider the
 325 redundancy among regrown channels, which may lead to reintroducing connections that are highly correlated with
 326 the already preserved ones. This results in a limited contribution to improving the diversity of feature representations.
 327 Second, in the temporal domain of SNNs, such naive regrowth fails to guarantee the recovery of cross-time-step feature
 328 propagation, thereby risking the loss of important temporal dynamics.

329 To address these limitations, we propose a regrowth mechanism based on *orthogonal projection*, which is inspired
 330 by the biological principle of synaptic competition and decorrelation in cortical circuits. In order to incorporate the
 331 temporal dynamics of SNNs, we compute the orthogonality score of a candidate channel w_j^l with respect to the active
 332 channel subspace W_T^l over T discrete time steps as
 333

$$334 \quad \Omega_j^l = \frac{1}{T} \sum_{t=1}^T \left\| \left(I - W_T^l ((W_T^l)^\top W_T^l)^\dagger (W_T^l)^\top \right) (w_j^l \cdot X^{l-1}(t)) \right\|_2^2, \quad (10)$$

335 where $X^{l-1}(t)$ denotes the input spikes at time step t , \cdot is the convolution or linear transformation, and \dagger represents
 336 the Moore–Penrose pseudoinverse. This formulation measures the novelty of the candidate channel in the temporal
 337 dimension of the SNN.

338 Next, we define an *importance sampling distribution* over the pruned channels based on the orthogonality scores:
 339

$$340 \quad p_j^l = \frac{\exp(\Omega_j^l)}{\sum_{j' \in [C_l] \setminus T_l} \exp(\Omega_{j'}^l)}, \quad j \in [C_l] \setminus T_l. \quad (11)$$

341 The set of channels to regrow is then sampled without replacement according to a multinomial distribution:
 342

$$343 \quad \mathcal{R}^l \sim \text{Multinomial} \left(\{p_j^l\}_{j \in [C_l] \setminus T_l}; \lfloor \delta_t C_l \rfloor \right), \quad (12)$$

344 where δ_t is the regrowth factor at iteration t , controlling the fraction of channels to be reactivated.
 345

346 4.3 DYNAMIC CHANNEL REGROWTH AND STRUCTURE EXPLORATION

347 The initial architecture of SNNs may not exhibit a balanced channel distribution across layers. Some layers contribute
 348 more critically to the spatiotemporal feature representation, while others contain redundant channels. To preserve accuracy
 349 under pruning, we perform **dynamic sub-model structure exploration**, which reallocates surviving channels
 350 across layers based on both batch normalization (BN) scaling factors and spiking activity, where the temporal nature
 351 of the spikes is leveraged.

352 Specifically, we define a *spike-aware importance score* for each layer, which captures the spiking activity in conjunction
 353 with the static scaling factors from BN:
 354

$$355 \quad \phi_l = \|\gamma_l\|_1 \cdot \rho_l, \quad (13)$$

356 where γ_l denotes the BN scaling factors of layer l (Liu et al., 2017), and ρ_l represents the average spike firing rate of
 357 the layer, which is computed based on the temporal spike activity:
 358

$$359 \quad \rho_l = \frac{1}{T} \sum_{t=1}^T \frac{1}{H_l W_l} \sum_{i,j} \mathbf{Y}_{t,i,j}^l, \quad (14)$$

360 where T is the number of time steps, H_l and W_l are the height and width of the feature map, and $\mathbf{Y}_{t,i,j}^l$ denotes the
 361 spike output of the i -th and j -th neurons at time step t in layer l .
 362

363 This formulation integrates the static scaling information from BN with the dynamic temporal activity of spiking
 364 neurons, ensuring that layers with both strong scaling responses and rich spiking dynamics are prioritized for retaining
 365 channels.

366 Given an overall target sparsity S , the layer-wise pruning ratio κ_l is then computed as:
 367

$$368 \quad \kappa_l = 1 - \frac{\phi_l}{\sum_{j=1}^L \phi_j} \cdot (1 - S), \quad (15)$$

369 where L is the total number of layers. Intuitively, layers with higher ϕ_l values, which reflect both strong spiking
 370 activity and significant scaling responses, retain a larger portion of their channels, while less important layers are
 371 pruned more aggressively.

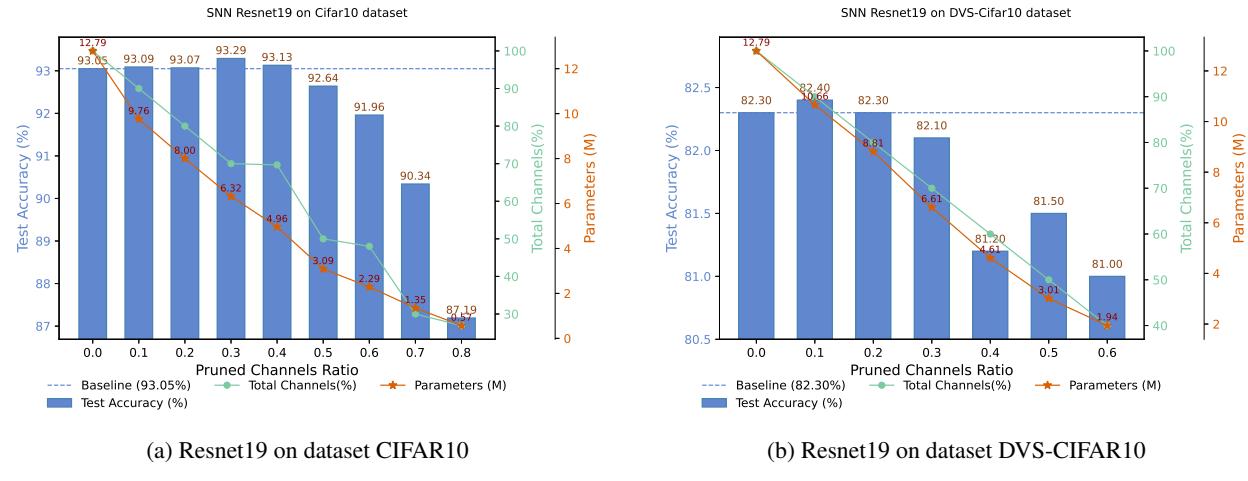


Figure 3: The performance of the DPRC-SNNs structure learning framework.

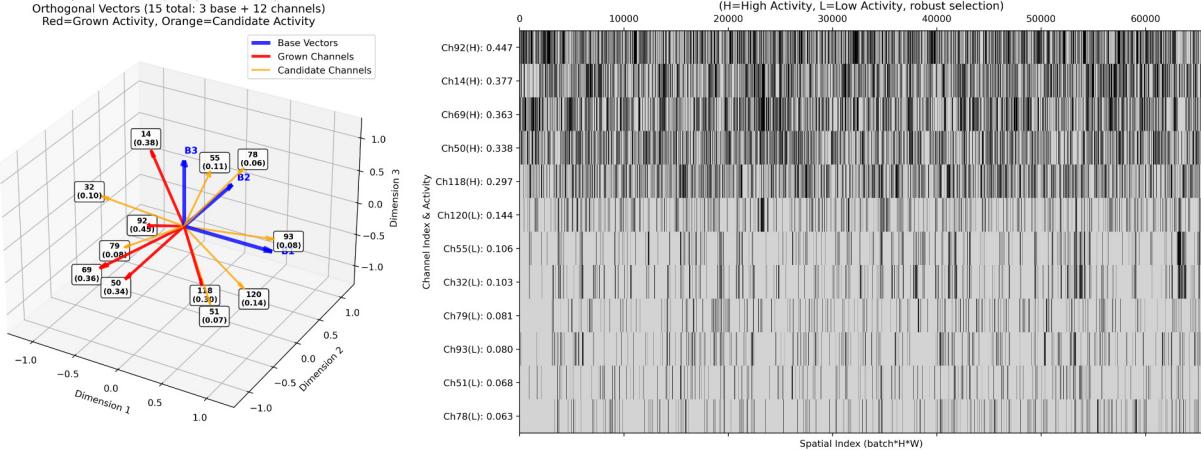


Figure 4: The spike intensity emitted by the orthogonal growth channel and candidate channel of the DPRC-SNNs during the regrowth process is represented.

During training, this reallocation is performed iteratively in tandem with regrowth. The regrowth stage enlarges the candidate set of channels, while the exploration stage dynamically redistributes them across layers to adapt to the spatiotemporal nature of the spikes. This synergy allows the model to preserve critical spiking neurons while pruning redundant features, optimizing both temporal and spatial dynamics for efficient SNNs pruning. A detailed stability and convergence analysis of this mechanism, including the smoothness of importance scores, Lipschitz continuity of pruning ratios, and contraction bounds on pruning-regrowth iterations, is provided in Appendix C.

5 EXPERIMENTS

We evaluate the proposed DPRC-SNNs algorithm on both static and neuromorphic datasets and compare it with existing methods. CIFAR10 is a widely used benchmark for static image classification, containing 10 classes. All images are 32×32 RGB images, which need to be encoded before being fed into the SNN. For the neuromorphic benchmark, we use DVS-CIFAR10, splitting it into 9,000 training samples and 1,000 testing samples. We set the initial regrowth factor and the interval as $\Delta T = 20$ training epochs, where the cycle is fixed to 4 throughout the experiments. Here, δ_0 denotes the pruning ratio, while ΔT represents the number of training iterations between two consecutive pruning-regrowth steps. For simplicity and generality, these hyperparameters are kept constant throughout all experiments.

432 5.1 EFFECTIVENESS ANALYSIS
 433
 434
 435 **Performance Comparison.** Table 1 summarizes the performance of DPRC-SNNs across multiple datasets. Different
 436 channel pruning ratios are applied, maintaining a fixed sparsity level during training. After training, a new sparse SNN
 437 structure is obtained and evaluated. Model efficiency is assessed in terms of parameter count and spike operations
 438 (SOPs), both of which serve as proxies for memory footprint and energy consumption. On CIFAR10, we train for
 439 only 200 epochs and successfully compress the model to a 30% connection ratio. Remarkably, this configuration not
 440 only achieves a 0.24% accuracy improvement over the full model (baseline accuracy: 93.05%), but also yields an
 441 extremely low computational cost of 66.49K SOPs. This is orders of magnitude lower than the SOPs reported by
 442 current state-of-the-art structured sparsity methods—e.g., the SCA-based approach (Li et al., 2024b), which requires
 443 90.82K SOPs under comparable accuracy levels. These results highlight the superior computational efficiency of our
 444 DPRC-SNNs under spatiotemporal sparsity.

445 This clearly demonstrates the effectiveness of our method in static image recognition. Furthermore, we validate DPRC-
 446 SNNs on the challenging DVS-CIFAR10 dataset, where the model achieves an impressive 82.10% accuracy under
 447 30% connection pruning, outperforming all existing methods to date and once again confirming the superiority of our
 448 approach. Additionally, when evaluated on the DVS-Gesture dataset, a highly challenging neuromorphic benchmark,
 449 our method achieves an impressive accuracy of 96.88% even under 49.8% pruning, further showcasing the robustness
 450 and effectiveness of DPRC-SNNs across diverse neuromorphic datasets.

451 **Structural Analysis.** To better understand the learning process, we visualize the channel count per layer in ResNet19
 452 across different pruning rounds (Fig 2). Each curve represents the number of channels in a given layer after a pruning
 453 step on CIFAR10. The evolution of channel counts across successive pruning rounds reveals clear and consistent
 454 trends. In the early pruning stages, the initial layers have already learned strong feature representations, so the pruning
 455 ratios of the later layers are relatively higher. As the overall pruning ratio increases, all layers progressively
 456 remove redundant channels to meet the target compression. The final layers are pruned more conservatively to pre-
 457 serve high-level semantic features crucial for classification, as excessive pruning here would significantly harm model
 458 performance. Layers 3, 7, and 10 experience the most pruning, as they correspond to downsampling stages with a
 459 large number of channels. Many of these channels are redundant due to reduced spatial resolution, making them
 460 ideal candidates for pruning without significantly impacting the network’s representational capacity. As training and
 461 pruning progress, the model structure gradually stabilizes, indicating that the structural learning framework adaptively
 462 converges to an appropriate architecture over iterative pruning.

463 To evaluate the model’s regrowth capabilities, we conduct orthogonal analysis on selected channels within specific
 464 layers, as illustrated in (Fig. 4). The orthogonal projection is computed relative to a basis vector (shown in blue)
 465 according to (Eq 10). Channels exhibiting higher orthogonal values demonstrate greater spike intensity and enhanced
 466 feature independence, indicating their necessity for regrowth during the pruning process. Conversely, channels
 467 with lower orthogonal values show reduced independence and can be safely pruned without regrowth. The spike
 468 activation patterns presented in the right panel provide empirical validation of this orthogonality-based channel
 469 selection criterion, where high-activity channels (marked in red) clearly demonstrate distinct firing patterns compared
 470 to low-activity channels (marked in orange), confirming the effectiveness of our orthogonal analysis for identifying
 471 critical channels requiring preservation and regrowth.

474 5.2 ABLATION STUDY

475
 476 To further validate the effectiveness of DPRC-SNNs in structure learning, we conduct ablation experiments on CI-
 477 FAR10 and DVS-CIFAR10, as shown in Figure 3. The blue bars represent the test accuracy of SNN Resnet19 on the
 478 datasets CIFAR10 and DVS-CIFAR10, while the orange curves show the number of parameters at different pruning
 479 ratios. The blue curve indicates the accuracy of the unpruned baseline model, and the green curve depicts the num-
 480 ber of channels at different pruning ratios. When the pruning ratio reaches 0.6 on the CIFAR10 dataset, the model
 481 accuracy only drops by 1.09%. On DVS-CIFAR10, pruning 20% of the parameters does not affect accuracy, and
 482 even at 50% pruning, the model accuracy decreases by just 0.80%, with the parameter count reduced to 1/4 of the
 483 previous one. In contrast, pruning-only training shows minimal mask updates after the initial step, highlighting that
 484 the regrowth mechanism in DPRC-SNNs is crucial for reactivating incorrectly pruned channels. These results confirm
 485 that DPRC-SNNs are robust and stable across a wide range of pruning ratios, making them an effective solution for
 486 structured pruning with both high performance and efficiency.

486 6 CONCLUSION
487

488 The depth and complexity of SNNs have been expanding across diverse applications, which, in turn, hinders their
489 potential for low energy efficiency due to parameter redundancy and high memory requirements. In this work, we
490 introduce DPRC-SNNs, a novel framework designed for training sparse SNNs at the channel level. DPRC-SNNs
491 implement a spiking column subset selection strategy that integrates channel-level pruning with orthogonality-driven
492 regeneration. This approach selectively reintroduces diverse and complementary channels to minimize the information
493 loss resulting from aggressive pruning. By systematically pruning redundant channels and regenerating orthogonal
494 ones, DPRC-SNNs preserve functional diversity while promoting greater sparsity at the channel level. Experimental
495 results demonstrate that DPRC-SNNs successfully learn compact, sparse architectures that achieve competitive accuracy
496 with significantly fewer parameters. Moreover, sparse training at the channel level enhances the expressive power
497 of the learned network, offering substantial benefits for embedded hardware, including reduced power consumption,
498 lower memory usage, and improved on-chip learning efficiency.

499
500 REFERENCES

- 501 Shuo Chen, Boxiao Liu, and Haihang You. Criticality-guided efficient pruning in spiking neural networks inspired by
502 critical brain hypothesis. *arXiv preprint arXiv:2311.16141*, 2023.
- 503
- 504 Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking neural networks
505 through gradient rewiring. *arXiv preprint arXiv:2105.04916*, 2021.
- 506
- 507 Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning: Taxonomy, com-
508 parison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
- 509
- 510 Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-temporal pruning and quantization for low-latency
511 spiking neural networks. In *2021 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–9. IEEE,
512 2021.
- 513
- 514 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios
515 Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor with on-chip
516 learning. *Ieee Micro*, 38(1):82–99, 2018.
- 517
- 518 Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie. Comprehensive
519 snn compression using admm optimization and activity regularization. *IEEE transactions on neural networks and
520 learning systems*, 34(6):2791–2805, 2021.
- 521
- 522 Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural network via
523 gradient re-weighting. *arXiv preprint arXiv:2202.11946*, 2022.
- 524
- 525 Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear structure within
526 convolutional networks for efficient evaluation. *Advances in neural information processing systems*, 27, 2014.
- 527
- 528 Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices iii: Computing a
529 compressed approximate matrix decomposition. *SIAM Journal on Computing*, 36(1):184–206, 2006.
- 530
- 531 Hanwei Fan, Jiandong Mu, and Wei Zhang. Bayesian optimization with clustering and rollback for cnn auto pruning.
532 In *European Conference on Computer Vision*, pp. 494–511. Springer, 2022.
- 533
- 534 Ilia R Fiete, Richard HR Hahnloser, Michale S Fee, and H Sebastian Seung. Temporal sparseness of the premotor
535 drive is important for rapid learning in a neural network model of birdsong. *Journal of neurophysiology*, 92(4):
2274–2282, 2004.
- 536
- 537 Min Fu, Xinzhu Yu, Ju Lu, and Yi Zuo. Repetitive motor learning induces coordinated formation of clustered dendritic
538 spines in vivo. *Nature*, 483(7387):92–95, 2012.
- 539
- 540 Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a strong rank-revealing qr factorization. *SIAM
541 Journal on Scientific Computing*, 17(4):848–869, 1996.
- 542
- 543 Bing Han, Feifei Zhao, Yi Zeng, and Guobin Shen. Developmental plasticity-inspired adaptive pruning for deep
544 spiking and artificial neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

- 540 Bing Han, Feifei Zhao, Wenzuan Pan, and Yi Zeng. Adaptive sparse structure development with pruning and regeneration for spiking neural networks. *Information Sciences*, 689:121481, 2025.
- 541
- 542
- 543 Yang He, Ping Liu, Linchao Zhu, and Yi Yang. Filter pruning by switching to neighboring cnns with good attributes. *IEEE Transactions on Neural Networks and Learning Systems*, 34(10):8044–8056, 2022.
- 544
- 545 Torsten Hoefer, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. *Journal of Machine Learning Research*, 22(241):1–124, 2021.
- 546
- 547
- 548 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang. Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint arXiv:2504.01296*, 2025.
- 549
- 550
- 551 Arthur R Houweling and Michael Brecht. Behavioural report of single neuron stimulation in somatosensory cortex. *Nature*, 451(7174):65–68, 2008.
- 552
- 553
- 554 Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André van Schaik, Ralph Etienne-Cummings, Tobi Delbrück, Shih-Chii Liu, Piotr Dudek, Philipp Häfliger, Sylvie Renaud, et al. Neuromorphic silicon neuron circuits. *Frontiers in neuroscience*, 5:73, 2011.
- 555
- 556
- 557 Dongwoo Lew, Hoyoung Tang, and Jongsun Park. Neuron pruning in temporal domain for energy efficient snn processor design. *Frontiers in Neuroscience*, 17:1285914, 2023.
- 558
- 559 Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisiting random channel pruning for neural network compression. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 191–201, 2022.
- 560
- 561
- 562 Yixin Li, Xuanye Fang, Yuyuan Gao, Dongdong Zhou, Jiangrong Shen, Jian K Liu, Gang Pan, and Qi Xu. Efficient structure slimming for spiking neural networks. *IEEE Transactions on Artificial Intelligence*, 5(8):3823–3831, 2024a.
- 563
- 564
- 565 Yixin Li, Qi Xu, Jiangrong Shen, Hongming Xu, Long Chen, and Gang Pan. Towards efficient deep spiking neural networks construction with spiking activity based pruning. *arXiv preprint arXiv:2406.01072*, 2024b.
- 566
- 567
- 568 Gui Ling, Ziyang Wang, and Qingwen Liu. Slimpt: Layer-wise structured pruning for large language models. *Advances in Neural Information Processing Systems*, 37:107112–107137, 2024.
- 569
- 570
- 571 Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient convolutional networks through network slimming. In *Proceedings of the IEEE international conference on computer vision*, pp. 2736–2744, 2017.
- 572
- 573
- 574 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. *Neural networks*, 10(9):1659–1671, 1997.
- 575
- 576
- 577 Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved data analysis. *Proceedings of the National Academy of Sciences*, 106(3):697–702, 2009.
- 578
- 579 Thao NN Nguyen, Bharadwaj Veeravalli, and Xuanyao Fong. Connection pruning for deep spiking neural networks with on-chip learning. In *International Conference on Neuromorphic Systems 2021*, pp. 1–8, 2021.
- 580
- 581
- 582 Panayiota Poirazi and Bartlett W Mel. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. *Neuron*, 29(3):779–796, 2001.
- 583
- 584
- 585 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.
- 586
- 587 Jiangrong Shen, Qi Xu, Jian K Liu, Yueming Wang, Gang Pan, and Huajin Tang. Esl-sns: An evolutionary structure learning strategy for spiking neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 86–93, 2023.
- 588
- 589
- 590 Jiangrong Shen, Qi Xu, Gang Pan, and Badong Chen. Improving the sparse structure learning of spiking neural networks from the view of compression efficiency. *arXiv preprint arXiv:2502.13572*, 2025.
- 591
- 592
- 593 Lianfeng Shi, Ao Li, and Benjamin Ward-Cherrier. Optimal spiking brain compression: Improving one-shot post-training pruning and quantization for spiking neural networks. *arXiv preprint arXiv:2506.03996*, 2025.

594 Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neural networks: An
 595 unstructured pruning framework. In *The Twelfth International Conference on Learning Representations*, 2024.
 596

597 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training high-
 598 performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

599 600 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through time for spiking
 601 neural networks. *Advances in neural information processing systems*, 35:20717–20730, 2022.

602 603 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan. Spikformer:
 604 When spiking neural network meets transformer. *arXiv preprint arXiv:2209.15425*, 2022.

605 606 Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Timothée Masquelier. Training spiking neural
 607 networks with event-driven backpropagation. *Advances in Neural Information Processing Systems*, 35:30528–
 608 30541, 2022.

609 A APPENDIX

612 A.1 USE OF LLMs

614 Large Language Models (LLMs) were used solely to assist with polishing the text.

616 A.2 CODE OF ETHICS AND ETHICS STATEMENT

618 The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics <https://iclr.cc/public/CodeOfEthics>.

621 A.3 THE SUPPLEMENTARY MATERIALS FOR THE PRELIMINARY OF SNNs

623 **Surrogate Gradient Training.** As mentioned above, the major difficulty in training SNNs arises from the non-
 624 differentiability of the spike generation function $s(t) = H(u(t) - V_{th})$, since the Heaviside step function $H(\cdot)$ has
 625 zero gradient almost everywhere. This prevents the direct application of gradient-based optimization methods such as
 626 backpropagation.

627 To address this, surrogate gradient methods approximate the derivative of the spike function with a smooth surrogate
 628 during the backward pass, while keeping the exact binary spike function in the forward pass. Formally, let $s(t) =$
 629 $H(u(t) - V_{th})$. In surrogate gradient training, the forward and backward computations are decoupled:

$$631 \frac{\partial s(t)}{\partial u(t)} \approx \sigma'(u(t) - V_{th}), \quad (16)$$

633 where $\sigma(\cdot)$ is a smooth function, such as a sigmoid, piecewise linear, or exponential function, used only for gradient
 634 computation. For example, a common surrogate is the fast sigmoid derivative:

$$636 \sigma'(x) = \frac{1}{(1 + \beta|x|)^2}, \quad (17)$$

638 where β controls the slope sharpness. Another popular choice is the piecewise linear approximation:

$$640 \sigma'(x) = \begin{cases} 1 - |x|/\gamma, & |x| < \gamma, \\ 0, & \text{otherwise,} \end{cases} \quad (18)$$

643 where γ defines the surrogate window.

644 645 These approximations allow error signals to propagate through spiking neurons, enabling end-to-end supervised training
 646 of deep SNNs on large-scale datasets. This surrogate gradient framework has become the standard approach for
 647 modern SNN optimization.

648 **B MORE DETAILS ON SCSS MATRIX APPROXIMATION AND SUBSPACE SELECTIONIN**
649

650 Below, we clarify how our SCSS formulation relates to classical matrix approximation and subspace-selection techniques, which originated from numerical linear algebra and have been widely used in CNN model compression.
651 Low-rank decomposition is commonly applied to compress CNN convolution kernels(Denton et al., 2014). Given a
652 weight matrix: $W \in \mathbb{R}^{K \times C}$, its truncated SVD yields: $W \approx U_r \Sigma_r V_r^\top$, where τ is the target rank. Although optimal
653 in Frobenius norm, this method does **not select actual channels** (columns of w), making it unsuitable for channel
654 pruning.
655

656 The classical column subset selection (Gu & Eisenstat, 1996) seeks a subset of columns C of W that best reconstruct
657 the full matrix:

$$658 \quad C^* = \arg \min_C \|W - CC^\dagger W\|_F^2 \quad (19)$$

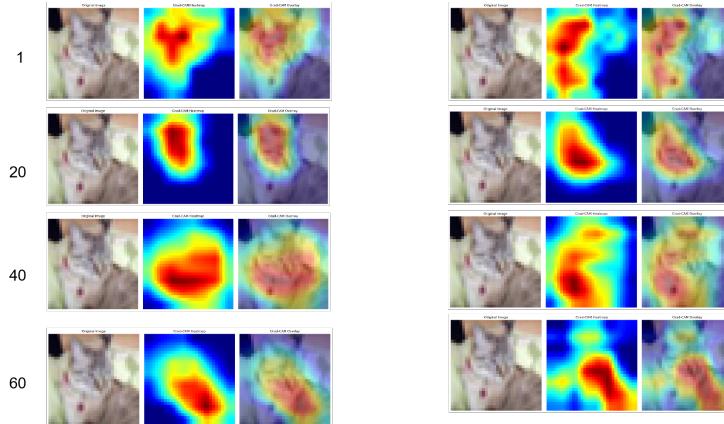
659 CUR decomposition (Mahoney & Drineas, 2009) expresses: $W \approx CUR$, where C contains a subset of real columns
660 of W , directly corresponding to selected CNN channels.

661 Leverage scores are widely used to approximate column subset selection (Drineas et al., 2006). For truncated SVD
662 $W \approx U_r \Sigma_r V_r^\top$

$$663 \quad \ell_j = \|V_r(j, :)\|_2^2 \quad (20)$$

664 This represents the energy of each channel within the dominant subspace. However, CNNs compute such importance
665 only **once**, since their activation is purely spatial and static (single-pass).

666 Unlike CNNs, SNNs propagate information across T discrete time steps, and the importance of a channel depends



667
668 Figure 5: **Grad-CAM** comparison of pruned (left) and unpruned (right) models. The pruned model focuses on the
669 most discriminative regions, while the unpruned model shows more diffuse, less representative attention.
670

671 on its contribution to the spatiotemporal evolution of membrane potentials and spikes. Directly applying CNN-style
672 column subset selection or leverage scores ignores this temporal dynamics. Let W_l be the weight matrix reused at each
673 time step $t = 1, \dots, T$. We extend classical column subset selection by minimizing the reconstruction error across all
674 time steps:

$$675 \quad W_{l,c}^* = \arg \min_{W_{l,c}} \sum_{t=1}^T \|W_l - W_{l,c}(W_{l,c})^\dagger W_l\|_F^2. \quad (21)$$

676 This temporal objective is unique to SNNs, since CNNs do not maintain time-varying activations. At each time step,
677 compute the left singular vectors:

$$678 \quad W_l \approx U_{l,t} \Sigma_{l,t} V_{l,t}^\top. \quad (22)$$

679 We then define the temporal leverage score for channel j as:

$$680 \quad \ell_j = \sum_{t=1}^T \|U_{l,t}(j, :)\|_2^2. \quad (23)$$

681 This score measures how consistently a channel contributes to the dominant temporal subspaces, highlighting channels
682 with strong and stable activations across all T steps. CNNs cannot obtain this score because they lack a temporal
683 dimension.

702 C STABILITY AND CONVERGENCE ANALYSIS OF THE ADAPTIVE SPARSITY MECHANISM

703
 704 The proposed adaptive sparsity mechanism relies on both batch normalization (BN) scaling factors and the temporal
 705 spiking activity of SNNs. We show that the interaction of these two signals leads to stable pruning dynamics and does
 706 not introduce optimization instability.

708 Table 2: Testing on more architectures or datasets
 709

710 Dataset	711 Method	712 Architecture	713 Acc	714 Acc	715 Connection
716 Network (%) Loss(%) Density(%)					
717 Tiny-Imagenet	718 Attention-base (Deng et al., 2021)	719 VGG16	720 51.92	721 +0.78	722 40
	723 SCA-based (Li et al., 2024b)	724 VGG16	725 49.33	726 -0.19	727 30.60
	728 DPRC-SNNs	729 VGGSNN	730 62.33	731 -0.01	732 70
733 CIFAR100	734 ELS-SNN (Shen et al., 2023)	735 Sparse ResNet-19	736 73.48	737 -0.99	738 50
	739 SCA-based (Li et al., 2024b)	740 VGG16	741 64.89	742 +0.64	743 23.52
	744 ANN	745 ResNet-19	746 75.35	747 -	748 -
	749 TET (Deng et al., 2022)	750 ResNet-19	751 74.47	752 -	753 -
	754 DPRC-SNNs	755 ResNet19-SNN	756 77.21	757 +0.02	758 77.9
759 CIFAR10	760 Spikeformer (Zhou et al., 2022)	761 Spikeformer-4-384	762 95.19	763 -	764 -
	765 ANN	766 Transformer-4-384	767 96.73	768 -	769 -
	770 DPRC-SNNs	771 Spikeformer-4-384	772 94.98	773 -0.21	774 50
	775	776	777	778	779

730 Recall the spike-aware importance score Eq. 13 used in the main text, where γ_l is the BN scaling vector and ρ_l is the
 731 average firing rate defined in Eq. 14. These two terms evolve smoothly during training due to their distinct update
 732 characteristics in SNNs. BN scales γ_l follow gradient descent with Lipschitz-continuous updates, while the firing rate
 733 is a bounded empirical average of spike trains, i.e.,

$$734 \quad 0 \leq \rho_l \leq 1, \quad |\rho_l^{(k+1)} - \rho_l^{(k)}| \leq C_\rho \eta, \quad (24)$$

735 where the constant C_ρ depends on the surrogate gradient used in backpropagation through spikes. Because both
 736 components vary smoothly, the importance score also changes smoothly:

$$737 \quad |\phi_l^{(k+1)} - \phi_l^{(k)}| \leq \|\gamma_l\|_1 |\Delta \rho_l| + \rho_l \|\Delta \gamma_l\|_1 = \mathcal{O}(\eta), \quad (25)$$

738 which means that SNN-specific temporal dynamics do not introduce abrupt jumps in layer importance. The pruning
 739 ratio is obtained by normalizing $\{\phi_l\}$:

$$740 \quad \kappa_l = 1 - \frac{\phi_l}{\sum_{j=1}^L \phi_j}. \quad (26)$$

741 Differentiating with respect to ϕ gives bounded Jacobian entries:

$$742 \quad \left| \frac{\partial \kappa_l}{\partial \phi_m} \right| = \mathcal{O} \left(\frac{1}{(\sum_j \phi_j)^2} \right), \quad (27)$$

743 implying that the mapping from spike-driven importance scores to pruning ratios is Lipschitz-continuous. Thus, the
 744 temporal fluctuations of spikes influence pruning *smoothly*, ensuring that sparsity allocation does not oscillate across
 745 training iterations. We further consider the interaction between pruning masks and optimization. For masked SGD
 746 updates

$$747 \quad \theta_{t+1} = \theta_t - \eta(m_t \odot g_t), \quad (28)$$

748 The stability depends on how quickly the masks change. Since κ_l and hence the masks evolve smoothly (due to the
 749 bounded updates of ϕ_l), we have

$$750 \quad \|m_{t+1} - m_t\|_2 = \mathcal{O}(\eta), \quad (29)$$

756 which keeps the effective gradient energy nearly unchanged and avoids destructive resets of temporal membrane
 757 potentials—an SNN-specific risk during pruning. Finally, over pruning-regrowth cycles indexed by k , the sparse
 758 model $\mathcal{M}^{(k)}$ satisfies

$$759 \quad \|\mathcal{M}^{(k+1)} - \mathcal{M}^{(k)}\| = \mathcal{O}(\eta), \quad (30)$$

760 leading to a contraction-like convergence:

$$762 \quad \|\mathcal{M}^{(k+1)} - \mathcal{M}^*\| \leq \alpha \|\mathcal{M}^{(k)} - \mathcal{M}^*\| + \mathcal{O}(\eta), \quad \alpha < 1. \quad (31)$$

763 This shows that the adaptive sparsity mechanism—driven jointly by BN scaling and spike dynamics—preserves training
 764 stability and converges reliably, while dynamically selecting the most informative temporal-spatial channels in
 765 SNNs.

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809