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Abstract—Graph Neural Networks (GNNs) have achieved
state-of-the-art performance on various graph-related tasks, but
training GNNs on large-scale graphs remains challenging due
to the high communication overhead of neighborhood aggrega-
tion. Existing distributed GNN training frameworks suffer from
inefficiencies in communication due to frequent data movement
between user and kernel space and the use of generic communi-
cation primitives.

We introduce PINCH, a novel system designed to speed up
distributed GNN training. It employs eBPF and kernel hooks
(XDP and TC) to shift communication-heavy operations to
the kernel space. PINCH uses three main techniques: (1) in-
kernel neighborhood aggregation via eBPF and XDP to cut
communication costs, (2) in-kernel broadcasting through eBPF
and TC to minimize user-kernel transitions and network stack
passes, and (3) caching and reusing aggregated embeddings
with eBPF maps to reduce redundant data processing. These
integrations aim to alleviate the communication bottleneck and
accelerate overall training.

I. INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a power-
ful framework for learning representations of structured data,
achieving state-of-the-art performance on tasks such as node
classification, link prediction, and graph classification [17],
[25]. GNNs learn node embeddings by iteratively aggregating
and transforming the features of neighboring nodes, allowing
them to capture both node features and graph structure in the
learned representations.

However, training GNNs on large-scale graphs remains
challenging due to the high computation and communication
costs involved, particularly in the context of the aggregation
and broadcasting steps. In the aggregation step, each node
gathers the embeddings of its neighbors to update its own
representation [18]. This requires intensive communication
between nodes, especially in distributed settings where nodes
are partitioned across multiple machines. Similarly, in the
broadcasting step, updated node embeddings need to be dis-
seminated to all machines containing their neighbors, leading
to significant communication overhead [8].

Several frameworks have been proposed to scale GNN train-
ing on distributed systems [6], [9], [31], and these frameworks
employ techniques such as graph partitioning, parallelized
mini-batch training, and layer-wise model parallelism to ac-
celerate GNN computation. However, they still suffer from
high communication overheads due to the need to frequently
exchange node embeddings and gradients between workers
during the iterative message passing process.

Recent works have explored communication-efficient algo-
rithms for distributed GNN training to address this bottleneck.
PipeGCN [23] proposes a pipelined message passing scheme
that interleaves computation and communication to hide com-
munication latency. Cluster-GCN [3] introduces a subgraph
sampling strategy to reduce the number of nodes involved
in each training iteration. CAGNET [19] presents a family
of algorithms based on 1D, 1.5D, and 2D partitioning of the
adjacency matrix to reduce communication volume and latency
in the context of aggregation and broadcasting operations.

Despite these advances, the communication costs of neigh-
borhood aggregation in distributed GNN training remain a sig-
nificant bottleneck, especially on large, dense graphs and deep
architectures. Motivated by this, we propose PINCH, a novel
system that leverages eBPF (extended Berkeley Packet Filter)
and kernel hooks (XDP and TC) to accelerate distributed GNN
training by offloading communication-intensive operations to
the kernel space. Our key contributions include:

• We introduce an in-kernel aggregation and broadcasting
system using eBPF, XDP, and TC to minimize communi-
cation costs and reduce redundant crossings between user
and kernel spaces.

• We introduce caching and reuse of aggregated embed-
dings across iterations using eBPF maps to minimize
communication and computation overhead.

• We integrate the above techniques into a unified system,
PINCH. We believe it will demonstrate its effectiveness
in accelerating distributed GNN training on large graphs
as the future work.

II. BACKGROUND AND MOTIVATION

A. Graph Neural Networks

GNNs have emerged as a powerful tool for learning repre-
sentations of graph-structured data. GNNs iteratively aggregate
information from neighboring nodes to learn node embeddings
that capture both structural and feature information [18]. In the
message passing framework, a GNN layer can be formulated
as:
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where h
(l)
i is the embedding of node i at layer l, N (i) is

the neighborhood of node i, eij is the edge feature between
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nodes i and j, ψ is the message function,
⊕

is the aggregation
function (e.g., sum, mean, max), and ϕ is the update function.

While GNNs have achieved state-of-the-art performance on
various graph learning tasks, training GNNs on large-scale
graphs remains challenging due to the high computational
and memory requirements. To scale GNN training, distributed
computing is necessary. However, in a distributed setting
where the graph is partitioned across multiple machines, the
neighborhood aggregation step in GNNs requires fetching
node embeddings from other machines, leading to intensive
communication. Specifically, at each GNN layer, each machine
needs to broadcast the updated node embeddings to all other
machines and wait for the aggregated embeddings from its
neighbors. This communication overhead can dominate the
training time, especially for deep GNNs on large graphs.

B. eBPF and Hooks

eBPF (extended Berkeley Packet Filter) is a Linux kernel
technology that allows safely executing custom code inside
the kernel. eBPF programs are written in a restricted C-
like language and are verified by the kernel before being
loaded and attached to specific hook points. This ensures
the safety and stability of the kernel while enabling high-
performance packet processing and monitoring. eBPF has
been widely used for networking, security, and performance
profiling applications [11].

XDP (eXpress Data Path) is an eBPF-based packet process-
ing framework that executes programs early in the kernel’s
networking stack, right after packet reception. This enables
XDP achieve low latency and high throughput by minimiz-
ing packet copies and context switches. AF XDP extends
XDP by providing a user-space interface, enhancing efficiency
through zero-copy operations from the network driver to user
space [22]. Both are widely used for DDoS mitigation, load
balancing, and pre-filtering, efficiently handling network traffic
and allowing advanced packet manipulation. with AF XDP
facilitating direct user-space access to enhance performance
further [5].

TC (Traffic Control) is another eBPF hook point that allows
attaching eBPF programs to the kernel’s traffic control subsys-
tem [1]. Unlike XDP, which processes raw packets, TC hooks
work with Linux sk_buff structures that contain parsed
packet information. TC allows eBPF programs to classify,
filter, and manipulate packets based on various criteria such as
IP addresses, ports, or custom markers. TC is commonly used
for implementing complex network policies, quality of service
(QoS) mechanisms, and virtual networking functionalities.

C. Motivation

The message passing nature of GNNs introduces significant
communication overhead in distributed training, especially due
to the need for broadcasting node embeddings and aggre-
gating neighbor information at each iteration. Broadcasting
node embeddings to all machines is necessary to ensure each
machine has the required information for aggregation, while

the aggregation step itself involves fetching and combining
embeddings from different machines. As the graph size and
model depth grow, this communication overhead can quickly
become the scalability bottleneck, taking up to 80% of the
total training time [2], [2], [14], [19].

Existing distributed GNN training frameworks, such as
DistDGL [28] and DistGNN [10], rely on the traditional
socket-based communication stack, which incurs high latency
and CPU overhead due to frequent user-kernel crossings and
network stack traversals. They also follow the conventional
paradigm of pulling data from remote machines, leading to
redundant communication and blocking waits.

We observe that the broadcasting and aggregation patterns in
GNN communication are well-suited for applying in-network
optimizations by leveraging the programmable packet process-
ing capabilities of eBPF and kernel hooks (XDP and TC). By
offloading these operations to the kernel space and performing
them in a more efficient way, we can significantly reduce
the communication overhead and improve the scalability of
distributed GNN training

III. DESIGN

Based on the motivation (Cf. § II-C), we propose PINCH,
a novel system that leverages eBPF, XDP, and TC to optimize
the communication in distributed GNN training. The key idea
is to offload the broadcasting and aggregation operations to
the kernel space and perform them in a more efficient way
by utilizing the packet processing capabilities of eBPF. In this
section, we describe the design of PINCH, with the following
design goals:
G1 Reduce the communication overhead of distributed GNN

training.
G2 Scalable to large graphs and deep GNN models.
G3 Robust to network failures and ensure the correctness of

the training process.
To achieve these goals, we employ the following techniques:

In-kernel Broadcasting and Aggregation: We offload the
broadcasting and aggregation to the kernel space using
eBPF programs attached to XDP and TC hooks.

Kernel-bypass with AF XDP: We use the AF XDP socket
to transfer packets directly between the user space and
the XDP program, bypassing the kernel network stack.

Caching and Reuse: We cache the aggregated results in
eBPF maps to avoid redundant communication and com-
putation.

A. Overview

PINCH consists of three main components: In-XDP Ag-
gregation, In-TC Broadcasting, and Caching. The In-XDP
Aggregation component performs neighbor embedding aggre-
gation directly in the kernel upon receiving the packets. The
In-TC Broadcasting component constructs and sends broadcast
packets containing node embeddings. The Caching and Reuse
component stores the aggregated embeddings in eBPF maps
and reuses them whenever possible. The overall architecture
of PINCH is shown in Figure 1.
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Fig. 1: Architecture of PINCH

B. In-XDP Aggregation

The In-XDP Aggregation component is responsible for
performing neighbor embedding aggregation directly in the
kernel. It is implemented as an eBPF program attached to the
XDP hook. Whenever a packet containing node embeddings
arrives, the XDP program parses the packet, extracts the node
ID and embedding, and performs the aggregation operation
(e.g., sum, mean, or max) based on the specified GNN model.
The aggregated results are stored in an eBPF map keyed by
the node ID.

One challenge in implementing aggregation in XDP is that
the eBPF virtual machine does not natively support floating-
point operations, which are commonly used in GNN embed-
dings. To address this limitation, we adopt a scheme similar
to prior works [8], [16], [26], where the workers multiply
the floating-point embeddings by a large factor (e.g., 108)
and then round them to 32-bit integers before sending them
to the aggregators. The XDP aggregation program performs
integer addition operations on these quantized embeddings.
When the workers receive the aggregated embeddings, they
convert the 32-bit integers back to floating-point numbers by
dividing them by the same factor and the number of workers.

Another challenge is the limited size of the eBPF stack
and the restrictions on loops and function calls in the eBPF
verifier. To handle these limitations, PINCH breaks down the
aggregation logic into multiple smaller functions and uses
eBPF tail calls to chain them together. The aggregation state is
stored in eBPF maps, which can be accessed across tail calls
and persist across packet processing.

To further reduce the overhead of transferring packets
between the user space and the kernel space, we use the
AF XDP socket to enable kernel-bypass. With AF XDP, the
packets can be directly transferred between the user space and
the XDP program, bypassing the kernel network stack. This
can significantly reduce the latency and the CPU overhead of
packet processing.

The aggregated embeddings are cached in an eBPF map.
If the same set of nodes are aggregated again in a later
iteration,the cached results can be directly reused as described
in § III-D. The In-XDP Aggregation component also handles

deduplication as described in § III-E.

C. In-TC Broadcasting

The In-TC Broadcasting component is responsible for con-
structing and sending broadcast packets containing node em-
beddings. It is implemented as an eBPF program attached to
the TC hook.

Inspired by the message broadcasting mechanism in Elec-
trode [30], we leverage the bpf_clone_redirect()
helper function to efficiently clone and redirect packets for
broadcasting. This function allows the eBPF program to create
multiple copies of a packet and redirect them to different
network interfaces or sockets without incurring additional
user-kernel crossings or memory copies.

The broadcasting process works as follows. When the user-
space GNN framework has finished updating the embeddings
of a batch of nodes, it passes these embeddings to the TC
program via an eBPF map. The TC program then constructs a
packet containing the node IDs and their updated embeddings.
To minimize the number of packets sent and the overall
communication overhead, In-TC Broadcasting batches the
embeddings of multiple nodes into a single packet, up to the
maximum transmission unit (MTU) size.

For each destination machine, the TC program looks up
the network interface or socket associated with that ma-
chine in an eBPF map. It then clones the packet using
bpf_clone_redirect() and redirects the cloned packet
to the corresponding interface or socket. The program also
updates the destination IP address and port number of the
cloned packet to match the receiving machine.

This eBPF-based broadcasting avoids the need to send the
same message multiple times from user space, which would
incur repeated user-kernel crossings and traversals of the
network stack. To handle packet loss, PINCH incorporates a
retransmission mechanism with the TC program as described
in § III-E.

D. Caching

The Caching component is responsible for storing the
aggregated node embeddings in eBPF maps and reusing them
across iterations to avoid redundant communication and com-
putation. It works in conjunction with the In-XDP Aggregation
component.

Specifically, when the In-XDP Aggregation component re-
ceives a packet containing node embeddings, it first checks
whether the embeddings of the same nodes have been aggre-
gated before by querying the eBPF map. If a cache hit occurs,
the XDP program directly returns the cached results without
performing the aggregation again. If a cache miss occurs, the
XDP program performs the aggregation and updates the eBPF
map with the new results. The cache entries in the eBPF map
are managed in an LRU (Least Recently Used) manner. When
the map is full, the least recently used entry is evicted to make
room for the new entry. The cache size can be configured based
on the available memory and the workload characteristics.
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The Caching and Reuse component can effectively reduce
the amount of data transmission and the aggregation overhead,
especially for iterative GNN training workloads where the
same nodes are accessed repeatedly across iterations.

E. Fault Tolerance

PINCH is designed to be resilient to various types of failures
that can occur during distributed GNN training, such as packet
loss, packet duplication.

Packet losses are particularly critical in our current im-
plementation, which uses UDP protocols and where PINCH
employs bpf_clone_redirect. To address packet losses
in In-TC Broadcasting, PINCH utilizes a combination of
retransmission and sliding window. Each broadcast packet
is assigned a unique sequence number. If the sender does
not receive an acknowledgement from all receivers within a
specified timeout period, it retransmits the packet. Meanwhile,
receivers maintain a sliding window of received sequence
numbers and discard any duplicates.

For In-XDP Aggregation, the eBPF program is designed
to be idempotent, meaning that processing the same packet
multiple times does not affect the correctness of the aggregated
results. This is achieved by using the eBPF map as a key-
value store, where the key is the node ID and the value is the
aggregated embedding. If a packet is processed multiple times
due to retransmission, the eBPF program simply updates the
corresponding value in the map, which has no effect on the
final result.

IV. LIMINATION AND FUTURE WORK

While PINCH can accelerate distributed GNN training,
there are several limitations and directions for future work.

Flexible Aggregation Functions. The current implementation
of PINCH supports only a limited set of aggregation functions
(e.g., sum, mean, max) due to the constraints of the eBPF
virtual machine, which does not natively support floating-
point operations. While PINCH currently circumvents this
limitation by using fixed-point arithmetic, supporting more
complex aggregation functions and customizable aggregators
is an important direction for future work. This could involve
extending the eBPF virtual machine to support floating-point
operations or exploring the use of approximate computing
techniques to trade off precision for performance.

Communication Patterns. The design of PINCH is currently
tailored to the message-passing paradigm of GNNs, where
the main communication patterns are broadcasting node em-
beddings and aggregating neighbor information. Extending
PINCH to support other types of GNNs and big data ap-
plications, such as attention-based GNNs (e.g., GAT) [21],
graph convolutional matrix completion (e.g., GCMC) [20],
Pagerank, and Mapreduce, may require additional optimiza-
tions and modifications to the eBPF programs. Investigating
the applicability and performance of PINCH in these variants
of GNNs and big data applications is an insightful direction
for future research.

CPU and NUMA Overhead. PINCH currently does not
consider the impact of CPU affinity and NUMA architecture
on the performance of distributed GNN training. This is
particularly relevant for the In-XDP Aggregation component,
where the aggregated results are stored in eBPF maps which
reside on a specific CPU core. If the subsequent processing of
these results is performed on a different CPU core, especially
one located on a different NUMA node, it can lead to
increased memory access latency and cause a high number of
cache misses. Investigating techniques such as CPU pinning,
NUMA-aware scheduling, and cache-aware data placement to
mitigate these overheads and improve the efficiency of PINCH
is an important direction for future work.

V. RELATED WORK

Distributed GNN Training. Distributed GNN training frame-
works have been developed to handle large graph net-
works efficiently. DistDGL [28] operates on DGL [24], dis-
tributing graphs across multiple machines and employing a
message-passing system for inter-machine communication.
DistGNN [10] focuses on reducing communication costs
through efficient graph partitioning. AliGraph [31], by Al-
ibaba, offers a versatile platform for various GNN models
and training approaches. ByteGNN [27] optimizes communi-
cation and computation through a bytecode-based model. Un-
like these, PINCH leverages kernel-level eBPF optimizations,
enhancing communication speeds significantly in distributed
GNN training.
eBPF Applications. Enhanced Berkeley Packet Filter (eBPF)
facilitates advanced networking and systems operations.
CCP [12] integrates eBPF’s JIT capabilities for effective
congestion control through real-time data path measurements.
BMC [4] uses eBPF for a kernel-level cache, boosting UDP
Memcached GET request throughput. Syrup [7] employs
eBPF maps for seamless data exchange across system lay-
ers, supporting custom scheduling policies. SPRIGHT [15]
enhances sidecar proxy performance in serverless architectures
via eBPF-driven fast packet forwarding. XRP [29] offloads
kernel storage operations like B-tree lookups to eBPF, re-
ducing overhead. SynCord [13] applies eBPF for dynamic,
hardware-aware kernel lock strategies, optimizing synchro-
nization. PINCH targets communication bottlenecks in dis-
tributed GNN training, using eBPF and kernel hooks to en-
hance operations not covered by existing eBPF optimizations.

VI. CONCLUSION

In this paper, we present PINCH, a system that optimizes
distributed GNN training by leveraging eBPF and kernel-level
packet processing for efficient broadcasting and aggregation
and enhances performance through caching, and fault toler-
ance. PINCH has the potential of integrating the communica-
tion layer with the kernel network stack, potentially improving
components like parameter synchronization and model training
in distributed GNN systems. Future plans include expanding
PINCH to support advanced GNN models and exploring eBPF
for other distributed system challenges.
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