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Abstract

The development of Artificial Intelligence relies on large-
scale data, which creates significant privacy and compliance
challenges. This article examines how privacy-preserving
technologies like federated learning and differential pri-
vacy reshape legal relationships and responsibility alloca-
tion through their technical architectures. We argue that these
technologies do more than protect privacy; they enable a le-
gal paradigm shift from ex post punishment to ex ante de-
sign. This shift clearly redefines the responsibilities of data
controllers and processors, laying the groundwork for a new,
technology-enabled legal governance framework.

Introduction

The rapid development of artificial intelligence, especially
large-scale models, has expanded its use in areas like health-
care, finance, and public services. However, a clear ten-
sion has emerged between data-driven Al systems and strict
data privacy laws such as the EU’s GDPR and China’s Per-
sonal Information Protection Law (PIPL). This conflict is
particularly evident in fields like healthcare and education,
which handle highly sensitive information. Here, organiza-
tions face the challenge of using Al to improve services
while also ensuring data privacy and security. Traditional le-
gal compliance methods rely mainly on contracts and after-
the-fact accountability. These approaches often fall short
when dealing with the complex and non-transparent data
processing practices of modern Al systems.

In response, a range of privacy-preserving Al technolo-
gies—such as split learning and differential privacy—has
emerged. These methods aim to achieve “using data with-
out exposing it” and represent a key research direction to-
day. This paper argues that the value of these technologies
goes beyond providing privacy protection tools. More im-
portantly, they reshape legal relationships and responsibility
allocation in data processing through architectural redesign.
In doing so, they offer a new compliance paradigm for the
Al era.
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Development and Characteristics of
Privacy-Preserving Technologies

The initial concept of privacy-preserving technologies
stemmed from a straightforward need: to transform or dis-
tort sensitive data before sharing and analysis, thereby re-
ducing its sensitivity and preventing direct exposure of per-
sonal identity or private information.

One of the earliest and most typical Privacy-Preserving
Technologies is k-anonymity (Sweeney 2002). Its core idea
is to process quasi-identifiers in a dataset (a set of attributes
like zip code, age, and gender that can uniquely or nearly
uniquely identify an individual) through generalization and
suppression. However, k-anonymity has notable limitations.
It cannot defend against homogeneity attacks or background
knowledge attacks . To address these issues, enhanced mod-
els like l-diversity (Machanavajjhala et al. 2007) and t-
closeness (Li, Li, and Venkatasubramanian 2006) emerged.
Still, they often come at the cost of higher information loss
and can be difficult to implement effectively with complex,
high-dimensional data.

As data environments grew more complex, traditional
techniques faced severe challenges in balancing privacy pro-
tection and data utility. Entering the 21st century, a privacy
model built on strict mathematical definitions—Differential
Privacy (DP) (Dwork 2006)—came to the forefront and
gradually became the gold standard in the field . The differ-
ential privacy framework provides a quantifiable and prov-
able security guarantee. Its core principle is that, regard-
less of an attacker’s background information, adding care-
fully calibrated random noise to query results ensures that
the presence or absence of any single data record does not
significantly affect the algorithm’s output. The proposal of
differential privacy was a milestone because it transformed
privacy protection from a vague concept into a mathemat-
ical quantity that can be precisely controlled and theoreti-
cally proven . In recent years, DP research has moved from
theory to practice, with its application scenarios expanding
from traditional statistical queries to complex tasks like ma-
chine learning and natural language processing (Abadi et al.
2016).

Although differential privacy provides a powerful privacy
definition, it often relies on a trusted data collection center
to add noise. To completely avoid raw data leaving local de-



vices, a distributed machine learning paradigm called Feder-
ated Learning (FL) (Li et al. 2020) emerged . The core idea
of federated learning is that multiple participants (e.g., mo-
bile devices, hospitals) hold data locally and compute model
updates (like gradients). Only these updates are uploaded to
a central server for aggregation to generate a global model,
while the raw data always remains local . Federated learning
is essentially an architectural privacy-preserving solution.
By design, it establishes a "technical boundary” between the
data source and the central server, physically restricting data
flow.

As a variant of federated learning, Split Learning (Thapa
et al. 2022) offers another architectural approach. It splits a
deep learning model into two parts at an intermediate layer
(the cut layer). The client holds and executes the first part of
the model, then sends the generated intermediate represen-
tations (not the raw data) to the server. The server completes
the forward and backward propagation of the remaining part.
This method further reduces the amount of information the
client needs to transmit and hides the raw data and its corre-
sponding model structure.

Federated learning and split learning protect privacy by
altering the computational architecture, representing a sig-
nificant shift in privacy-preserving technologies from simply
“processing data” to “restructuring the process.”

For scenarios with extremely high-security requirements,
relying solely on noise addition or gradient aggregation
might still be insufficient. Here, powerful tools from cryp-
tography—Homomorphic Encryption (HE) (Acar et al.
2018) and Secure Multi-Party Computation (MPC) (Gol-
dreich 1998)—provide an alternative approach: performing
computations directly on ciphertext.

Homomorphic encryption allows specific algebraic oper-
ations (like addition and multiplication) to be performed di-
rectly on encrypted data. The decrypted result matches the
result obtained if the same operations were performed on the
plaintext. This means data owners can send encrypted data
to an untrusted cloud server. The server performs tasks like
machine learning model inference on the ciphertext and re-
turns the encrypted result. The data owner then decrypts it
to get the final output. Throughout this process, the cloud
server never accesses any plaintext data, achieving a very
strong level of privacy protection.

A common feature of these technologies is the establish-
ment of a “technical boundary” within the data process-
ing workflow. The operations of data owners and algorithm
providers are confined to either side of this boundary, with
access permissions and information exposure scope techni-
cally defined.

Legal Foundations of Privacy-Preserving
Technologies

The emergence of privacy-preserving technologies repre-
sents not only a breakthrough in computing and algorithms
but also a direct response to increasingly strict data protec-
tion laws. The design principles of these technologies align
closely with core data protection principles embodied in reg-
ulations like the EU’s GDPR and China’s Personal Infor-

mation Protection Law (PIPL). They can be seen as exam-
ples of legal principles being implemented through engi-
neering. This section analyzes the legal foundations behind
these technologies.

Technical Embedding of the Data Minimization
Principle

The data minimization principle requires that personal infor-
mation processing be “limited to the minimum scope nec-
essary to achieve the processing purposes.” It prohibits the
collection and use of personal information unrelated to these
purposes (Calzada 2022).

Federated Learning strictly confines data processing ac-
tivities to their source under a “move models, not data”
paradigm. Participants only send locally trained model up-
dates, such as gradients, to a central server for aggregation.
They do not send the original raw data. This design dra-
matically reduces the requirement for raw data to leave the
device. This implements data minimization at the level of
information content. Algorithm developers only access re-
fined parameters directly related to model optimization, not
the broad set of original personal data.

Split Learning takes this a step further. This technique
splits a deep learning model at an intermediate layer.
The data holder transmits only the intermediate features
(activations) to the collaborator. These features are high-
dimensional and abstract. They are not directly interpretable
by the collaborator and are extremely difficult to reverse-
engineer into the original data. This achieves an even more
thorough form of data minimization than Federated Learn-
ing. It ensures, at the source, that any shared information is
strictly limited and necessary.

Engineering Implementation of the Privacy by
Design Principle

The “Privacy by Design” principle requires integrating pri-
vacy protections throughout the entire lifecycle of a product
or service. It must be proactively embedded starting from the
design stage (Calzada 2022). Privacy-preserving technolo-
gies do not simply add patches to existing systems. Instead,
they make privacy protection the starting point and core of
the system architecture.

Federated Learning is a typical engineering practice of
this principle. From its inception, this architecture aimed to
proactively prevent the privacy risks associated with central-
ized data collection. It focuses on prevention rather than re-
mediation after a data breach occurs.

Similarly, Differential Privacy provides provable privacy
guarantees by introducing carefully calibrated mathematical
noise. This approach quantifies privacy protection into a pre-
cise parameter and systematically embeds it into the compu-
tational process. It represents the ultimate embodiment of
the ”Privacy by Design” principle at the algorithmic level.

Fulfillment of Security Obligations and Reshaping
of Responsibility Boundaries

Data controllers have a legal obligation to adopt necessary
technical measures to ensure data security (Calzada 2022).



Adopting privacy-preserving technologies serves as strong
evidence that data controllers are actively fulfilling this secu-
rity obligation. Simultaneously, these technologies reshape
the responsibility boundaries in data processing activities.

For example, deploying a federated learning system
means the data controller has implemented technical mea-
sures like local data storage” and encrypted transmission
of model updates.” This itself demonstrates the fulfillment
of the security obligation. More profoundly, technologies
like Homomorphic Encryption enhance security to a cryp-
tographic level by allowing computations to be performed
directly on ciphertext. This achieves “data usability without
visibility.”

The legal significance of this architecture is that it clearly
separates the “custodial responsibility” for data from the
“right to use data for computation.” The data controller (e.g.,
a hospital) may retain the security responsibility for safe-
guarding the data. Meanwhile, the data processor (e.g., a
research institute) performs computations only on the en-
crypted data. This technically minimizes the risk of origi-
nal data leakage resulting from improper operations by the
processor. Consequently, it alters the responsibility structure
and risk allocation between the parties.

Architectural Assurance of the Purpose Limitation
Principle

The purpose limitation principle requires that personal in-
formation collected shall not be used for purposes incom-
patible with the original purposes (Calzada 2022). Privacy-
preserving technologies provide architectural assurance for
complying with this principle by limiting the exposure of the
data itself.

When algorithm developers can only access gradient up-
dates aggregated through federated learning or intermedi-
ate features from split learning, it becomes technically dif-
ficult for them to use this information for any purpose other
than model training. These features are highly specialized
and lack value as general-purpose data. In contrast, if they
possessed the original dataset, the potential and risk of us-
ing it for other analyses would exist. Therefore, privacy-
preserving technologies establish a technical barrier at the
operational level. This transforms the legal requirement that
data can “only be used for specific purposes” into a built-in
constraint of the system’s operation.

Risk Prevention Concept and Continuous
Evaluation Requirements

Modern data protection laws emphasize a risk-based regu-
latory approach. However, technological limitations reveal a
challenge the law must confront: absolute privacy security
is difficult to achieve. Risk can only be managed, not elimi-
nated.

For instance, re-identification attacks against k-
anonymity models have been confirmed by multiple
studies. This has made regulators recognize that the risk of
de-identified data is not zero. Similarly, although differential
privacy provides strong theoretical guarantees, setting its
privacy budget is itself a social decision involving risk

trade-offs. It is not merely a technical issue. Therefore, the
law cannot exempt controllers from all responsibility simply
because they adopt a specific de-identification technology.
Instead, it needs to establish a continuous risk assessment
and regulatory framework. This framework should urge
controllers to continuously adjust and upgrade their privacy
protection measures based on technological developments
and evolving attack methods.

From Ex-Post Punishment to Ex-Ante Design:
A Paradigm Shift in Legal Approach and New
Responsibility Allocation

The most profound legal significance of privacy-preserving
technologies lies in their facilitation of a paradigm shift in
legal thinking—from ex-post punishment to ex-ante design.
Changes in technical architecture directly lead to clearer and
more precise legal responsibilities.

Paradigm Shift: From External Contractual
Constraints to Internal Architectural Constraints

In traditional data collaboration models, the law primarily
relies on contract terms to define the rights and obligations
of data controllers and processors. Compliance is usually
achieved through ex-post audits and liability for breaches.
The limitations of this model are clear. Breaches can only be
addressed after harm occurs. Furthermore, facing complex
and non-transparent data processing flows makes evidence
collection difficult and blurs the chain of liability.

Privacy-preserving technologies fundamentally change
this landscape. Taking Split Learning and Federated Learn-
ing as examples, their architectural design physically and
logically prevents the direct transfer of raw data. Algorithm
developers (data processors) can technically only access in-
termediate features or model parameters that are not di-
rectly interpretable, not the raw personal data. This “archi-
tectural isolation” makes unauthorized access to raw data
impossible at the system level. Its protective effect far ex-
ceeds any contractual clause relying on ex-post liability. As
scholars point out, the function of anonymization (and re-
lated de-identification techniques) should shift from merely
protecting individual privacy to systematically reducing re-
identification risk during data utilization.

This means the method of achieving legal compliance has
fundamentally changed. It has transformed from an external,
backward-looking review standard into an internal, pre-set
operational characteristic built into the system. This reflects
the deepening of the ”Privacy by Design” legal principle,
turning abstract compliance requirements into concrete, ex-
ecutable, and sustainable technical norms.

Responsibility Allocation: Using Technical
Boundaries to Redefine Legal Liability

The “technical boundary” established by the architecture of
privacy-preserving technologies provides an objective and
auditable basis for clearly defining the legal responsibili-
ties of all parties in judicial and regulatory practice. This
addresses the issue of “responsibility not flowing with data
circulation.”



Under the new responsibility framework, the core respon-
sibility of the data controller is focused on source guarantee.
First, they must ensure the reliability and security of the lo-
cally deployed first part of the model (e.g., the client part in
split learning or the local training process in federated learn-
ing). They must adopt sufficient technical and organizational
measures to protect local data and the environment. Second,
they must fulfill the notification obligation to data subjects.
They must clearly explain, in an understandable way, that
their personal data will be used for collaborative computa-
tion in a de-identified feature form, not by sharing the raw
data directly.

Correspondingly, the responsibility of the algorithm de-
veloper is strictly limited to the scope of the de-identified
information they receive. Their core obligation is to pro-
cess the received intermediate features or aggregated models
subsequently. They must commit to, and in practice refrain
from, attempting to reconstruct the original data through at-
tacks like model inversion or membership inference. If a
data processor attempts to breach the technical boundary for
“re-identification,” such action itself constitutes a clear ele-
ment of illegality or even crime (e.g., the crime of infringing
on personal information).

This responsibility division based on technical architec-
ture greatly enhances the practicality of legal enforcement. If
a data security incident occurs, the investigation can clearly
focus on whether the data owner’s local encoder was com-
promised or the algorithm developer maliciously misused
the features. This clarification of responsibility allocation ef-
fectively reduces legal uncertainty in data collaboration and
provides market participants with stable compliance expec-
tations.

Evolution of Risk Governance: From Absolute
Security to Controlled Risk

The application of privacy-preserving technologies also pro-
motes an advancement in the concept of risk governance
within the law. It shifts the focus from pursuing unre-
alistic “absolute anonymity” or “zero risk” to pragmatic
“controlled risk” management. A consensus has formed in
academia and practice: in the face of continuously evolv-
ing re-identification techniques, absolute, non-reversible
anonymization exists only in ideal scenarios.

Therefore, the legal evaluation standard for these tech-
nologies should not require the complete elimination of risk.
Instead, it should assess whether the technology reduces the
re-identification risk to an acceptable level. This necessi-
tates a risk-based governance approach. It involves embed-
ding technical and organizational measures to prevent re-
identification throughout the entire data processing lifecycle.
For instance, the law can require enterprises to conduct con-
tinuous risk assessments of their adopted de-identification
technologies. It should consider whether the technical dif-
ficulty, time, and economic cost required for reconstruction
far exceed what a typical actor can bear. This pragmatic le-
gal standard leaves room for technological innovation while
ensuring the core objective of privacy protection is achieved
dynamically.

Conclusion

Privacy-preserving Al technologies, such as split learning
and differential privacy, represent more than engineering
progress. They drive a fundamental shift in legal paradigms.
Through architectural design, these technologies transform
abstract legal principles into executable technical specifica-
tions. This enables a crucial move from passive, ex-post pun-
ishment to proactive, ex-ante prevention.

The "technical boundaries” established by these architec-
tures clearly redefine the legal responsibilities of all partic-
ipants. They provide a viable path for the secure flow and
value realization of data within a compliant framework.

The future improvement of Al governance relies on a deep
integration of technical insight and legal wisdom. Construct-
ing a legal environment that fosters innovation while protect-
ing fundamental rights and clarifying responsibilities will be
a key focus for future work.
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