
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PDE-EMBEDDED LEARNING WITH MULTI-TIME-
STEPPING FOR ACCELERATED FLUID SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving partial differential equations (PDEs) by numerical methods meet compu-
tational cost challenge for getting the accurate solution since fine grids and small
time steps are required. Machine learning can accelerate this process, but struggle
with weak generalizability, interpretability, and data dependency, as well as suf-
fer in long-term prediction. To this end, we propose a PDE-embedded network
with multiscale time stepping (MultiPDENet), which fuses the scheme of numer-
ical methods and machine learning, for accelerated simulation of fluid flows. In
particular, we design a convolutional filter based on the structure of finite differ-
ence stencils with a small number of parameters to optimize, which estimates the
equivalent form of spatial derivative on a coarse grid to minimize the equation’s
residual. A physics block with a 4th-order Runge-Kutta integrator at the fine time
scale is established that embeds the structure of PDEs to guide the prediction. To
alleviate the curse of temporal error accumulation in long-term prediction, we in-
troduce a multiscale time integration approach, where a neural network is used to
correct the prediction error at a coarse time scale. Experiments across various PDE
systems, including the Navier-Stokes equations, demonstrate that MultiPDENet
can accurately predict long-term spatiotemporal dynamics, even given small and
incomplete training data, e.g., spatiotemporally down-sampled datasets. Multi-
PDENet achieves the state-of-the-art performance compared with other baseline
models, with over 5× speedup compared to classical numerical methods.

1 INTRODUCTION

Complex spatiotemporal dynamical systems, e.g., climate system (Schneider et al., 2017), fluid dy-
namics (Ferziger et al., 2019), and material science (Wang & Sun, 2018; Liu & Wang, 2019), are
fundamentally governed by partial differential equations (PDEs). To capture the intricate behaviors
of these systems, various numerical methods have been developed. Direct Numerical Simulation
(DNS) is a widely used method for solving PDEs. It requires specifying initial conditions (ICs),
boundary conditions (BCs), and PDE parameters, followed by discretizing the equations on a grid
using techniques like finite difference (FD), finite element (FE), finite volume (FV), or spectral
methods. Despite their accuracy, traditional numerical methods face significant challenges, particu-
larly high computational costs (Goc et al., 2021), when addressing with high-dimensional problems
or necessitating fine spatial and temporal resolutions.

Recent advances in deep learning have introduced neural-based approaches (Lu et al., 2021; Li
et al., 2021; Gupta & Brandstetter, 2023) for solving PDEs. These data-driven methods eliminate
the need for explicit theoretical formulations, enabling networks to learn underlying patterns directly
from data through end-to-end training. While promising, these approaches face notable challenges,
including a heavy dependence on large training datasets and limited generalization. For instance,
achieving accurate predictions becomes particularly challenging when models encounter unseen ICs
or scenarios beyond the training distribution.

A representative work in the field of scientific computing introduces a novel paradigm with Physics-
informed neural networks (PINNs) (Raissi et al., 2019), which incorporates physical prior knowl-
edge (such as PDE residuals and I/BCs) as constraints within the loss function. This approach allows
the network to fit the data while simultaneously maintaining a certain degree of physical consistency.
Variants of PINNs (Raissi et al., 2020; Wang et al., 2020; Eshkofti & Hosseini, 2023) have shown

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

notable success across various domains, reducing the dependency on extensive datasets to some de-
gree. However, such methods still face scalability and generalizability challenges when applied to
complex nonlinear dynamical systems. Additionally, optimizing complex loss functions (Rathore
et al., 2024) and ensuring model interpretability remain challenges.

A series of approaches have been proposed to integrate physics into neural networks (NNs) to over-
come the above challenges. For instance, PeRCNN (Rao et al., 2022; 2023), which uses feature
map multiplication to construct polynomial combinations for approximating the underlying PDEs,
can capture the latent spatiotemporal dynamics even with low-resolution, noisy, and sparse data,
demonstrating strong generalizability. Nevertheless, this method suffers from error accumulation,
degrading its performance in long-term predictions. Another approach (Kochkov et al., 2021; Sun
et al., 2023), combining NNs with numerical methods, aims to accelerate the simulation process on
coarse grids. These hybrid methods leverage traditional solvers for stability and NNs for accuracy.
However, they often rely heavily on NN capabilities and often requires large amounts of data.

To overcome these limitations, we propose MultiPDENet, a PDE-embedded network that incorpo-
rates multiscale time-stepping (as shown in Figure 1), to efficiently simulate spatiotemporal dynam-
ics, e.g., turbulent fluid flows, on coarse spatial and temporal grids with limited data. Notably, it
integrates a trainable neural solver for precise predictions at micro time scales, while employing a
NN to correct errors at macro time steps. Additionally, by embedding PDEs, MultiPDENet offers
enhanced generalizability. The primary contributions of this work are summarized as follows:

• We developed MultiPDENet, a PDE-embedded network with multiscale time-stepping, for
accelerated fluid flow simulations on spatiotemporal coarse grids. By integrating neural
solver with PDEs, MultiPDENet achieves great generalizability and efficiency.

• Leveraging the structure of finite difference stencils, we introduced a symmetric convolu-
tional filter that approximates the equivalent form of derivatives on coarse grids, aiming to
reduce the residual error of the governing PDEs.

• Experimental results across various datasets, covering 1D and 2D equations (e.g., complex
reaction-diffusion processes and turbulent flows), demonstrate the effectiveness of MultiP-
DENet in accelerating long-term simulations.

2 RELATED WORK

Numerical Methods. Numerical methods have been extensively applied to solve PDEs. Approaches
such as FD (Thomas, 2013), FE (Zienkiewicz et al., 2005), and FV methods (Moukalled et al.,
2016) discretize the continuous domain into mesh grids, transforming PDEs into algebraic equations
that can be solved with high accuracy. However, these methods often require fine spatiotemporal
grids and substantial computational resources to achieve accurate solutions, particularly in high-
dimensional spaces. This leads to two main challenges: (1) the need for repeated computations when
conditions change (e.g., ICs); (2) the demand for fast simulations in many industrial applications.

Machine Learning Methods. Building on the success of machine learning in fields like natural lan-
guage processing (Vaswani, 2017) and computer vision (He et al., 2016), these techniques have also
been applied to solving PDEs. With abundant labeled data, it is possible to train end-to-end mod-
els to predict solutions. Representative works include ResNet (Lu et al., 2018; Ruthotto & Haber,
2020), CNN-based models (Bhatnagar et al., 2019; Stachenfeld et al., 2022; Gupta & Brandstetter,
2023), Transformers-based models (Cao, 2021; Geneva & Zabaras, 2022; Li et al., 2024) and Graph-
based models (Brandstetter et al., 2022b). Many notable neural operators (Lu et al., 2021; Li et al.,
2021; Wen et al., 2022; Rahman et al., 2023; Bonev et al., 2023), which learn a mapping between
functional spaces, enable the approximation of complex relationships in PDEs. While these meth-
ods show promise in learning complex dynamics and approximating solutions, they often require
substantial amounts of labeled data.

Physics-inspired Learning Methods. Recently, physics-inspired learning methods have demon-
strated impressive capabilities in solving PDEs, which can be classified into two categories accord-
ing to the way of adding prior knowledge: physics-informed and physics-encoded. The physics-
informed methods take PDEs and I/BCs as a part of the loss functions (e.g., the family of PINN
(Raissi et al., 2019; 2020; Wang et al., 2020; Tang et al., 2024), PhySR (Ren et al., 2023)). On the
other hand, the physics-encoded methods employ a different approach that preserves the structure of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Physics
Block

Physics
Block

Physics
Block

Micro Step

Macro Step

 Block

a

+

+ + + +
……

……

b
Physics Block

PDE Block

Correction
Block

Block

Poisson
Block

+
+

Correction
Block

Filter
Bank

Poisson
Block

Collect
derivatives

PDE
Residue Block

O

I

c PDE Block

Figure 1: Schematic of MultiPDENet for learning Navier-Stokes flows. (a), Overall model architec-
ture. (b), Physics block. (c), learnable PDE block.

PDEs, ensuring that the model adheres to the given equations to capture the underlying dynamics,
e.g., EquNN (Wang et al., 2021), TiGNN (Hernández et al., 2023), and PeRCNN (Rao et al., 2023).
In addition, other related studies (Long et al., 2018; 2019; So et al., 2021; Kossaczká et al., 2021;
Kim & Choi, 2022) have explored the use of CNN as alternative spatial derivative operators for
approximating derivatives and capturing the dynamics of interest.

Hybrid Learning Methods. Hybrid learning methods combine the strengths of numerical ap-
proaches and NNs to improve prediction accuracy. For efficient modeling of spatiotemporal dy-
namics, these methods can be trained on coarse grids. Representative methods include FV-based
neural methods (Kochkov et al., 2021; Sun et al., 2023), FD-based neural methods (Zhuang et al.,
2021; Liu et al., 2024), and spectral-based neural methods (Dresdner et al., 2023; Arcomano et al.,
2022). While these approaches show efficacy in modeling spatiotemporal dynamics, their represen-
tation capacities are often limited by the fixed structure of their numerical components. As a result,
most of these models still require large amounts of training data.

3 METHODOLOGY

3.1 PROBLEM DESCRIPTION

Let’s consider a general spatiotemporal dynamical system governed by the following PDE:

ut = F(u,u2, . . . ,∇u,∆u, . . . ;λ) + f (1)

where u(x, t) ∈ Rn denotes the physical state in the spatiotemporal domain Ω× [0, T]; ut the first-
order time derivative term; F(·) a linear/nonlinear functional parameterized by PDE parameters λ
(e.g., the Reynolds number Re); ∇ the Nabla operator is defined as [∂x, ∂y, ...]T; and f the source
term. Additionally, we define I(u,ut;x ∈ Ω, t = 0) = 0 and B(u,∇u, · · · ;x ∈ ∂Ω) = 0
specified ICs and BCs, where ∂Ω represents the domain boundary.

We aim to accelerate the simulation of fluid flows by using a PDE-embedded network with multi-
scale time stepping based on a limited training data (sparse in both spatial and temporal scales). The
model is capable of rapid simulation, achieving high solution accuracy while demonstrating strong
generalizability across varying ICs, source terms, complex domains, and PDE parameters.

3.2 MODEL ARCHITECTURE

In this section, we introduce MultiPDENet and show how our model efficiently captures the under-
lying spatiotemporal dynamics. As illustrated in Figure 1(a), predicting uk+1 from the input uk

involves two main components: the Physics block and the MaNN block.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2.1 MULTI-SCALE FORWARD TIME STEPPING SCHEME

While the learnable neural solver can be used independently, its accuracy for long-term prediction
is limited due to error accumulation. To address this issue, we introduce a multi-scale time step-
ping scheme, incorporating micro-scale and macro-scale steps, to improve predictive accuracy and
enables fast prediction of PDE solutions on coarse spatiotemporal grids. Specifically, we define
two types of time stepping: micro-scale step and macro-scale step, to enhance the performance of
spatiotemporal dynamics prediction. At the macro scale, given the coarse solution uk at time tk,
MultiPDENet is expected to predict the next-step solution uk+1 at tk+1, which can be expressed as:

uk+1 = uk +

M∑
m=1

δūk
m + MaNN(uk,∆t, dx) (2)

where ∆t denotes the macro-scale time interval, and dx the spatial resolution of mesh grid. Here,
δūk

m is the incremental update produced by the Physics block (see Section 3.2.2) at each micro step,
as shown in Eq. (3), where M denotes the number of micro-scale time steps in one macro-scale step
(e.g., M = 4 in our study). The MaNN block (see Section 3.2.4) refines these incremental updates
generated by the Physics block on coarse grids, yielding the final update for the macro step.

3.2.2 PHYSICS BLOCK: A LEARNABLE NEURAL SOLVER

To accurately predict at the micro-scale step, we developed a neural solver, referred to as the Physics
Block, as illustrated in Figure 1(b). This solver is designed to ensure the stability (Hoffman &
Frankel, 2018), accuracy, and efficiency of its predictions by adhering to the Courant-Friedrichs-
Lewy (CFL) conditions (LeVeque, 2007). The Physics Block comprises three main components:
the Poisson Block, the PDE Block, and the MiNN Block. The solution update for each micro-scale
time step can be describe as ūk

m+1 = ūk
m + δūk

m, where

δūk
m =

∫ tk+mδt

tk+(m−1)δt
[B (ũ(τ),∇ũ(τ), · · · ;λ) + f(τ)] dτ + MiNN

(
ūk
m,Ξ

k
m(p, ∇̂û, ∇̂2û, ∇̂p, f , Re)

)
(3)

Here, ūk
m represents the intermediate state at m-th micro-scale step initialized at time tk (note that

ūk
1 = uk). We denote ũ(τ) ≜ u(x̃, τ), where x̃ depicts the coordinates of coarse grid. Moreover, λ

can be set as trainable if unknown. B represents the PDE block, used for approximatingF in Eq. (1).
To keep the accuracy and ensure the stability, the PDE block is designed based on the RK4 integrator
(see Appendix Section A.3) and consists of the correction block and a trainable filter bank. Since
the considered micro-scale time interval is relatively large, the MiNN block is used as a corrector
to refine the solution. More details can be found in Appendix Section A. In fact, the Physics block
can be used for prediction independently (e.g., the quantitative results for the NS dataset predictions
using purely the Physics block are presented in Table 3, labeled Model C).

PDE Block. The PDE block computes the residual of the governing PDEs. It incorporates a
learnable filter bank with symmetry constraints, which calculates derivative terms based on the cor-
rected solution produced by a correction block. These terms are then combined into the governing
PDEs, a learnable form of F in Eq. (1). This process is incorporated into the RK4 integrator (see
Appendix Section A.3) for solution update which can be expressed as

B
(
ūk
m, · · · ,∇ūk

m,∇2ūk
m, · · · ;λ

)
← F

(
ūk
m, · · · , ∇̂ˆ̄uk

m, ∇̂2 ˆ̄uk
m, · · · ;λ

)
(4)

where B denotes the PDE block, and ūk
m the coarse solution (aka, solution on coarse grids) at micro-

scale time tk +mδt. Here, ˆ̄uk
m refers to the neural-corrected state of the coarse solution, which is

obtained through the Correction block (see Appendix Section A.1 for details). This corrected state
ˆ̄uk
m is used to estimate spatial derivatives, namely, ˆ̄uk

m = NN(ūk
m). Note that ∇̂ and ∇̂2 represent

trainable Nabla and Laplace operators, respectively, each consisting of a symmetrically constrained
convolution filter, e.g., an enhanced FD kernel to approximate spatial equivalent derivatives. By uti-
lizing the RK4 integrator, we can project the coarse solution to the subsequent micro-scale time step.
Despite the reduced resolution causing some information loss, this learnable PDE block enables a
closer approximation of the equivalent form of the derivatives on coarse grids. This addition serves
as a fully interpretable “white box” element within the overall network structure.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Poisson Block. In solving incompressible NS equations, the pressure term, p, is obtained by solv-
ing an associated Poisson equation. To compute the pressure field, we implemented a special-
ized pressure-solving module shown in Figure S1(a). This module solves the Poisson equation,
∆p = ψ(u), where ψ(u) = 2 (uxvy − uyvx) for 2D problems (the subscripts indicate the spatial
derivatives along xory directions). To compute the pressure, we employ a spectral method (Poisson
solver) based on ψ(ūk

m) to calculate p̄km. As shown in Figure S1(b), this approach dynamically
estimates the pressure field from the velocity inputs, removing the need for labeled pressure data.

3.2.3 ADAPTIVE FILTER WITH CONSTRAINT
0

0

0

0

0

0

0

0

0

1st-order
derivative filter

2nd-order
derivative filter

Figure 2: Symmetric filter

Traditional FD methods often yield inaccurate derivatives
on coarse grids. To address this, we propose a learnable fil-
ter with constraints that approximates equivalent derivatives
on coarse grids, minimizing the PDE residuals during train-
ing and thereby improving the model’s predictive accuracy.
By leveraging the symmetry of central difference stencils,
our filter maintains structural integrity while enhancing network flexibility. As shown in Figure 2,
we construct two 5 × 5 symmetric matrices, each requiring only six learnable parameters due to
symmetry constraints. These matrices are designed to compute the first-order (g′) and second-order
(g′′) derivatives, respectively. In the matrix of g′′, s = 4× (a3+a4+a5+a6)+2× (a1+a2). This
design leverages the structural properties of central difference methods. By satisfying the Order of
Sum Rules (Long et al., 2018), this filter can achieve up to fourth-order accuracy in approximating
the derivatives through the optimization of trainable parameters.

3.2.4 NN BLOCK

To alleviate the error accumulation during long-term predictions on coarse grids, we introduce the
MiNN and MaNN blocks, operating at micro- and macro-scales, respectively. The MiNN Block
employs a lightweight model (e.g., FNO, DenseCNN (Liu et al., 2024)) for efficient micro-step
predictions, whereas the MaNN Block delivers more accurate predictions at larger steps (Gupta &
Brandstetter, 2023). In this study, we utilized FNO as the MiNN block and UNet as the MaNN
block. The significance of these blocks is evident from the ablation studies presented in Table 3.

MiNN Block. The MiNN block is designed to rectify error accumulation during micro-scale time
step predictions. As shown in Figure 1(b) in the upper path, ūk

m is first corrected by the correction
block, and p̄km is computed by the Poisson block. Inputs, including solution states {ūk

m, p̄
k
m} and

their derivative terms, forcing term, and Reynolds number, are fed into the MiNN block (see Figure
S1(d)). The MiNN block continuously refines the PDE block’s outputs on the fly. For detailed
information of the MiNN block settings, please refer to Appendix Table S5.

MaNN Block. Although the Physics block offers real-time corrections for the MiNN outputs, errors
still accumulate in long-term predictions. To mitigate error accumulation in long-term predictions
given training data sampled at large time steps (e.g., 128∆t for the NS dataset), we introduce the
MaNN block. As depicted in Figure 1(a), the MaNN block takes the current velocity field uk as
input, and updates the solution uk+1 which is obtained by integrating the outputs from both the
upper and lower paths. During the backpropagation, the MaNN block learns to correct the coarse
solution output of the Physics block in real time, ensuring that their combined results more closely
align with the ground truth. The configuration details for this block are found in Appendix Table S6.

4 EXPERIMENT

In this section, we validate the performance of our method against several baseline models on various
PDE datasets. We then perform generalization tests across different external forces (f), Reynolds
numbers (Re), and domain sizes on the Kolmogorov flow (KF) dataset. Finally, we present ablation
studies to demonstrate the contributions of each component in our model.

4.1 SETUP

Dataset. We generate the data using high-order FD/FV methods with high resolution under peri-
odic boundary conditions and then downsample it spatially and temporally to a coarse grid. The

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Overview of datasets and training configurations. Note that “→” denotes the downsampling
process from the high resolution (simulation) to the low resolution (training and testing).

Dataset Numerical Spatial Time Steps # of Training # of Testing Macro-step Micro-step
Method Grid (Temporal Grid) Trajectories Trajectories Rollout Rollout

KdV Spectral 256 → 64 10000 → 2000 3 10 10 4
Burgers FD 1002 → 252 2000 → 200 5 10 10 4
GS FD 1282 → 322 4000 → 200 3 10 1 4
NS FV 20482 → 642 153600 → 1200 5 10 1 4

UNetRef.
a Simulation time

Time steps

Error distribution

Ti
m

e
[s

]

b c

UNetRef. FNO DeepONet

Snapshots at timestep = 140

d MultiPDENet PeRCNN

C
or

re
la

tio
n

Time steps

Error distribution

 0.09

 0.18

 0.00

e f

UNetRef. FNO DeepONet

Snapshots at timestep = 120

g
MultiPDENet PeRCNN

Time steps

Error distribution

 0.60

 1.03

 0.17

 0.29

 0.61

-0.04

h i

M
N

A
D

Models

 -0.11

 0.03

-0.25

DeepONetFNO

Spatial [m]

PhyFNO

Simulation time

Simulation time

Models

Models

 0.05

 0.36

 -0.25

MultiPDENet

C
or

re
la

tio
n

C
or

re
la

tio
n

M
N

A
D

M
N

A
D

NaN

Figure 3: An overview of the comparison between our MultiPDENet and baselines, including pre-
dicted solutions (left), correlation curve (middle), and error distributions (right). (a)-(c) show the
qualitative results on KdV. (d)-(f) show the qualitative results on Burgers. (g)-(i) show the qualita-
tive results on GS. These PDE systems are trained with grid sizes of 64, 25×25, 32×32, respectively.

low-resolution dataset is used for both training and testing. We consider four distinct dynamical
systems: Korteweg-de Vries (KdV), Burgers, Gray-Scott (GS), and Navier-Stokes (NS) equations.
Each dataset is divided into 90% for training and 10% for validation. We segment trajectories into
data series, where each sample includes multi snapshots (e.g., for the KdV dataset, the sample length
is set to 10, as detailed in Table 1) separated by a time step ∆t, the 2nd to the last snapshot serves as
the training labels. During training, we use only 3–5 trajectories for each system, and evaluate them
on 10 distinct trajectories. For further details, please refer to Appendix Section B.

Model training. Our objective is to accelerate flow simulations with all computations anchored
to coarse grids. During training, the model solely predicts the solutions for subsequent time steps,
employing Mean Squared Error (MSE) as the loss metric. Unlike PINNs, our MultiPDENet directly
embeds PDEs into its architecture, resulting in a loss function that exclusively comprises data loss,
given by: J (λ) = 1

BN

∑B
i=1

∑N
j=1MSE

(
Ȟij ,Hij

)
, where Ȟij denotes the coarse solution pre-

dicted by model rollout for the j-th sample in the i-th batch, and Hij is the corresponding ground
truth. Here,N denotes the number of batches,B the batch size, and λ the trainable PDE parameters.

Model generalization. The generalization of MultiPDENet is evaluated across ICs, PDE param-
eters (e.g., Re), force terms, and computational domain sizes (e.g., different mesh grids). The
model integrates ICs through its time-marching mechanism, ensuring robust generalization when
trained effectively. The Reynolds number (Re) is represented via a two-dimensional embedding,
Reembb = 1

Re · (a ⊗ b), using trainable vectors a and b. This embedding, applied in both the
PDE and MiNN blocks, reduces error propagation from the diffusion term on coarse grids and en-
hances generalization acrossRe values. The force term is incorporated into the learnable PDE block
and the MiNN block, where it serves as both a PDE feature and an input feature map as shown in
Figure S1(c), enabling joint learning of force variations for better generalization.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Evaluation metrics. We evaluate the performance of our model using four metrics: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Mean Normalized Absolute Difference (MNAD),
and High Correlation Time (HCT). For detailed definitions, please refer to Appendix Section D.

Baseline models. To ensure a comprehensive comparison, we selected several baseline models,
including FNO (Li et al., 2021), UNet (Gupta & Brandstetter, 2023), TSM (Sun et al., 2023), LI
(Kochkov et al., 2021), DeepONet (Lu et al., 2021), and PeRCNN (Rao et al., 2023). Details are
found in Appendix Section E.

4.2 SOVLING PDE SYSTEMS

Table 2: Results for MultiPDENet and baselines. For KdV,
Burgers, and GS, we inferred upper time limits of 50 s, 1.4 s,
and 1200 s, for the test set as the system dynamics stabilized
within these trajectories. These time limits were used in
HCT to calculate the evaluation metrics.

Case Model RMSE (↓) MAE (↓) MNAD (↓) HCT (s)

KdV

FNO 0.9541 0.4607 0.3469 10.0833
PhyFNO 0.4120 0.3022 0.2139 13.90

UNet 1.9887 1.5722 1.6158 3.1250
DeepONet NaN NaN NaN 0.1500

MultiPDENet (Ours) 0.1536 0.1110 0.0833 39.8
Improvement (↑) 62.7% 63.3% 61.1% 186.3%

Burgers

FNO 0.0980 0.0762 0.062 0.3000
UNet 0.3316 0.2942 0.2556 0.0990

DeepONet 0.2522 0.2106 0.1692 0.0020
PeRCNN 0.0967 0.1828 0.1875 0.4492

MultiPDENet (Ours) 0.0057 0.0037 0.0031 1.4000
Improvement (↑) 94.1% 95.1% 95.0% 211.7%

GS

FNO 8774 1303 1303 270
UNet NaN NaN NaN 20

DeepONet 0.4113 0.2961 0.2898 568
PeRCNN 0.1763 0.1198 0.1198 640

MultiPDENet (Ours) 0.0573 0.0294 0.0298 1400.0
Improvement (↑) 67.5% 75.5% 75.1% 118.8%

NS

FNO 1.0100 0.7319 0.0887 2.5749
UNet 0.8224 0.5209 0.0627 3.9627

LI NaN NaN NaN 3.5000
TSM NaN NaN NaN 3.7531

DeepONet 2.1849 1.0227 0.1074 0.1126

MultiPDENet (Ours) 0.1379 0.0648 0.0077 8.3566
Improvement (↑) 83.2% 87.6% 87.7% 110.9%

KdV. The primary challenge of
this dataset lies in accurately captur-
ing the complex interplay between
nonlinearity and dispersion, leading
to phenomena like soliton formation
(Gardner et al., 1967). As shown
in Figure 3(a), each baseline model
struggles to produce accurate predic-
tions, with DeepONet exhibiting sig-
nificant divergence. In contrast, Mul-
tiPDENet demonstrates superior ac-
curate predictions for ICs outside the
training range. The correlation curve
in Figure 3(b) highlights the signif-
icantly higher correlation of Multi-
PDENet compared to the baselines.
The error distribution in Figure 3(c)
confirms its lower error levels. Table
2 shows our model’s generalizabil-
ity, with performance improvements
ranging from 61.1% to 186.3%.

Burgers. As shown in Figure 3(d),
the solution snapshots predicted by MultiPDENet are significantly more accurate than those of the
baseline models. The baseline models, limited by the sparse training data, produce incorrect pre-
dictions. The correlation curve in Figure 3(e) shows that MultiPDENet maintains a high correlation
with the ground truth throughout the prediction, while other baseline models diverge. This is further
evidenced by the error distribution in Figure 3(f), demonstrating that MultiPDENet’s error is over an
order of magnitude lower than that of the baselines. Table 2 confirms these findings, showing that
MultiPDENet achieves improvements exceeding 94.1% across all evaluation metrics.

GS. This reaction-diffusion system is highly nonlinear, making it challenging to capture its complex
patterns (see Figure 3(g)). Only MultiPDENet accurately predicts the trajectory evolution. The base-
line models struggle to learn the spatiotemporal dynamics, and even PeRCNN, despite its embedded
physics, produces inaccurate predictions due to the limited and sparse training data. Figure 3(h)
demonstrates the superior correlation of MultiPDENet’s predictions with the ground truth. The er-
ror analysis in Figure 3(i) reveals significantly lower error levels for MultiPDENet, often by 1 to 2
orders of magnitude smaller compared to the baselines. Table 2 further validates this observation,
with MultiPDENet achieving improvements of 67.5% to 118.8% over the best baseline.

NS. We evaluate a KF with Re = 1000 across different ICs, governed by the NS equation. Figure
4(a) shows the trajectory snapshots predicted by MultiPDENet and the baseline models over 10 s.
Our model outperforms DNS 512, accurately capturing both global and local correction patterns.
The neural methods, particularly FNO, exhibit poor generalization, producing granular and erro-
neous solutions. Among the Physics + ML baselines, TSM performs the best, but starts to produce
incorrect patterns at t = 5 s due to error accumulation. The correlation curve in Figure 4(b) supports
these findings. Our model also achieves a spectrum energy distribution closely matching the ground
truth (see Figure 4(c)). Table 2 highlights a performance improvement of over 83.2%. Even with
20% less training data, our model still maintains strong generalizability (see Appendix Table S3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

M
ul

tiP
D

E
N

et

T = 0 T = 2.5 s T = 5 s T = 7.5 sa

TS
M

D
N

S
 2

04
8

LI
FN

O
U

N
et

N
um

er
ic

al
 S

ol
ve

r
D

N
S

 5
12

D
N

S
 6

4
D

ee
pO

N
et

Ph
y

+
M

L
D

at
a

dr
iv

en

T = 10 s

10

C
or

re
la

tio
n

b Simulation time

-10

-

-

-

-5

-

0

Vo
rti

ci
ty

5

- Time steps
c

Wavenumber k

S
ca

le
d

en
er

gy
 s

pe
ct

ru
m

 E
(k

) k
5

Figure 4: Comparison of MultiPDENet and baseline models on Kolmogorov flow with Re = 1000.
(a) shows the evolution of predicted vorticity fields for reference, MultiPDENet and baselines, start-
ing from the same initial velocities. (b) shows the correlation curve across 500 time steps. (c) shows
the scaled energy spectrum scaled by k5 averaged between time steps 100 and 500.

4.3 MODEL GENERALIZATION

To assess our model’s ability to capture the underlying dynamics, we conducted generalization tests
on the KF flow dataset. The model was initially trained on 5 sets of trajectories, where the forcing
term is defined as f = sin(4y)ηx − 0.1u with Re = 1000 and ηx = [1, 0]T . After training, we
tested MultiPDENet on 10 different sets of trajectories, each with varying Reynolds numbers (Re)
and forcing terms (f), to evaluate its performance across a range of different ICs.

Generalization test on Reynolds numbers. Firstly, we evaluate the generalizability of MultiP-
DENet across four different Reynolds numbers: Re = {500, 800, 1600, 2000}. The varying Re
values result in trajectories with differing levels of complexity. Figure 5(a) displays the accurate
predictions made by our model at time step 300 for different Re. Figure 5(b) shows the correlation
curves between the predicted and ground truth trajectories, while Figure 5(c) highlights the error
distributions, which remain consistently below 0.1, indicating a low error level.

Generalization test on external forces. Next, we performed the generalization test using 4 distinct
external forces. As shown in Figure 5(d), MultiPDENet accurately predicts the trajectories for all
external forces. Notably, the downward trend in the correlation curve for f2 parallels the behavior
observed in Figure 4(b), likely because f alters only the periodic function without changing the wave
number. The error analysis in Figure 5(e) confirms that the error levels remain below 0.1.

In summary, MultiPDENet demonstrates remarkable generalizability, showcasing its ability to cap-
ture the underlying dynamics across multiple temporal scales. The embedded learnable PDE module
within our model is crucial for enabling robust and accurate predictions.

4.4 TEST ON FLOW WITH Re = 4000

Turbulence at highRes presents significant challenges for prediction due to its nonlinearity and com-
plex vortex structures. To further demonstrate the superior capability of our model, we conducted an

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Time steps

Error distributionb cSimulation time

Reynolds numbers

C
or

re
la

tio
n

M
N

A
D

R
ef

.
M

ul
tiP

D
E

N
et

Re = 2000Re = 500 Re = 1600Re = 800

Snapshots at timestep = 300

10

0

-10
-

-

a

Time steps

Error distributione fSimulation time

External forcings

C
or

re
la

tio
n

M
N

A
D

R
ef

.
M

ul
tiP

D
E

N
et

Snapshots at timestep = 300

10

0

-10
-

-

d

-

-

Figure 5: MultiPDENet can generalize to simulate different Reynolds numbers and external forcings
without retraining. Vorticity snapshots predicted by MultiPDENet and ground truth at timestep =
300 (left), correlation curve over 600 timesteps (middle), error distribution (right). (a-c) display
results for different Reynolds numbers, (d-f) show results for varying external forcings.

Time steps

Error distribution
b cSimulation time

Models

C
or

re
la

tio
n

M
N

A
DD

N
S

 4
09

6
M

ul
tiP

D
E

N
et

Time step = 450Time step = 0 Time step = 300Time step = 150

Vorticity snapshots over 600 timesteps

10

0

-10-

-

a

-

Time step = 600

Figure 6: MultiPDENet is applicable to high Reynolds number turbulence. (a) Trajectories pre-
dicted by MultiPDENet at Re = 4000. (b-c) Correlation and error distribution comparison between
MultiPDENet and numerical method.

Time steps

Error distribution
b cSimulation time

Models

C
or

re
la

tio
n

M
N

A
DD

N
S

 4
09

6
M

ul
tiP

D
E

N
et

Time step = 250Time step = 100 Time step = 200Time step = 150

Vorticity snapshots over 300 timesteps

15

0

-15-

-

a

-

Time step = 300

Figure 7: MultiPDENet applied to a larger domain. (a) Predicted trajectories within 4π × 4π. (b-c)
Correlation and error distribution comparison with the numerical method.

additional experiment with a high Reynolds numberRe = 4000 (see details in Table S2) maintaining
the experimental setup of Section 4.1. After training, the model was tested on 10 trajectories with
new ICs. Figure 6(a) illustrates the snapshots predicted by MultiPDENet over 600 timesteps, demon-
strating sustained accuracy even at time step 450. The correlation curve in Figure 6(b) highlights
the superiority of our model compared to DNS 1024. The error analysis in Figure 6(c) confirms
this performance, with errors consistently below 0.01. These results demonstrate the effectiveness
of MultiPDENet for higher Reynolds number, e.g., Re = 4000, within domain [0, 2π]2.

4.5 TEST ON FLOW WITHIN LARGER DOMAINS

We extend the spatial domain from [0, 2π]2 to [0, 4π]2 to further evaluate our model’s generalizabil-
ity over larger mesh grids in a more complex scenario. Larger domains introduce diverse physical
phenomena, challenging the model to capture global and local dynamics on coarse grids. Using the
same 64×64 grid, we tested our trained model on 10 unseen trajectories (details in Appendix B). As
shown in Figure 7(a), the snapshots over 300 time steps remain accurate. The correlation curve in
Figure 7(b) demonstrates that our model’s performance closely matches or exceeds DNS 1024. The
error distribution in Figure 7(c) shows error levels comparable to DNS 1024. Notably, our model
achieves a speedup of 49× compared to the FV-based DNS method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.6 ABLATION STUDY Table 3: Results of the ablation study.
Ablated Model RMSE (↓) MAE (↓) MNAD (↓) HCT (s)

Model A 0.1601 0.0711 0.0085 7.904
Model B 0.2432 0.1156 0.0137 7.8633
Model C 0.2632 0.1402 0.0186 7.3146
Model D 0.2503 0.1410 0.0145 7.0783
Model E 0.2958 0.1453 0.0180 6.6856
Model F 0.4338 0.2401 0.0285 5.9768
Model G NaN NaN NaN 1.4193
Model H 1.2023 0.9256 0.1122 0.6227
Model I 0.4357 0.2321 0.0278 6.2481

MultiPDENet 0.1379 0.0648 0.0077 8.3566

To quantify the contribution of each mod-
ule, we conducted ablation experiments on
the KF dataset. Specifically, we compared
the following model variations: (1) Model
A (no Poisson block); (2) Model B (no fil-
ter structure constraint); (3) Model C (only
Physics block for prediction); (4) Model D
(FD convolution instead of symmetric fil-
ter); (5) Model E (no correction block); (6)
Model F (no MiNN block); (7) Model G (no MaNN block); (8) Model H (no Physics block); (9)
Model I (forward Euler); and (10) the full model.

As shown in Table 3, removing the Poisson block degrades our model’s performance, emphasizing
the importance of decoupling p from u in the NS equation. Relaxing the filter structure constraint
also leads to performance degradation, highlighting the effectiveness of our proposed kernel for
PDE solution. Using only the physics block for prediction is feasible, but yields significantly lower
performance compared to the full model.

Replacing the convolution kernel with FD stencils results in poorer performance, indicating that
fixed-value FD kernels are unsuitable for coarse grids. Omitting the correction block also degrades
the model prediction, highlighting the necessity of field correction in coarse grid scenarios. While
the model can still accurately predict up to 5.9 s without the MiNN block, the error increases by
nearly 4×, suggesting that training on micro-scale time steps is insufficient for long-term prediction.

Removing the MaNN block limits the model to accurate predictions at micro-scale time steps, but it
fails to maintain stability at macro-scale time steps. Errors accumulate rapidly, leading to instability
and divergence of predictiopn. This underscores the importance of the MaNN block for long-term
stability. Without the Physics block, the model struggles to make accurate predictions with limited
sparse training data, relying solely on the neural network namely, U-Net. This demonstrates the
Physics block’s crucial role in long-term prediction capabilities. Using the forward Euler integrator
instead of RK4 leads to a significant decrease in prediction accuracy. Therefore, RK4 was employed
for the micro-scale steps to effectively ensure the stability of our model. In summary, all components
of MultiPDENet contribute meaningfully to its performance and are essential for its success.

5 CONCLUSION
Table 4: Computational time for a given accu-
racy (e.g., correlation≥ 0.8) on the NS dataset.

Iterm Re = 1000 Re = 4000 x ∈[0,4π]2

DNS 1024 135 s 130 s 133 s

MultiPDENet 26 s 19 s 21 s

Speed up 5× 7× 6×

We introduce an end-to-end physics-encoded net-
work (aka, MultiPDENet) with multi-scale time
stepping for accelerated simulation of spatiotem-
poral dynamics such as turbulent flows. MultiP-
DENet consists of a multi-scale temporal learning architecture, a learnable physics block for solu-
tion prediction at the fine time scale, where trainable symmetric filters are designed for improved
derivative approximation on coarse spatial grids. Such a method is capable of long-term predic-
tion on coarse grids given very limited training data. MultiPDENet outperforms other baselines
through extensive tests on fluid dynamics and reaction-diffusion equations. In particular, such a
model excels in generalizability over ICs, Reynolds numbers, and external forces in the turbulent
flow experiments. MultiPDENet also exhibits strong stability in long-term prediction of turbulent
flows, effectively capturing both global and local patterns in larger computational domains. We also
tested the computational efficiency of trained MultiPDENet for accelerated flow prediction (more
details shown in Appendix Section F.2). For a certain given accuracy (e.g., correlation ≥ 0.8), Mul-
tiPDENet achieves ≥ 5× speedup compared with GPU-accelerated DNS (Table 4), e.g., JAX-CFD,
where all the tests were performed on a single Nvidia A100 80G GPU. However, MultiPDENet still
faces some unresolved challenges. Firstly, the model currently only handles regular grids, due to the
limitation of convolution operation used in the model. In the future, we aim to address this issue by
incorporating graph neural networks to manage irregular grids. Secondly, the model has only been
currently tested on 1D and 2D problems . We will extend it to 3D systems in our future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

IMPACT STATEMENT

The aim of this research is to develop a novel physics-encoded learning scheme to accelerate predic-
tions and simulations of spatiotemporal dynamical systems. This method can be applied to various
fields, including weather forecasting, turbulent flow prediction, and other simulation tasks. Our
work is solely intended for scientific purposes and poses no potential ethical risks.

REPRODUCIBILITY

Our model is easily reproducible, with key training details, data details, and model settings provided
in the Appendix. The code (which will be made publicly available after peer review) can further
help researchers in replicating our results.

REFERENCES

Troy Arcomano, Istvan Szunyogh, Alexander Wikner, Jaideep Pathak, Brian R Hunt, and Edward
Ott. A hybrid approach to atmospheric modeling that combines machine learning with a physics-
based numerical model. Journal of Advances in Modeling Earth Systems, 14(3):e2021MS002712,
2022.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64:525–545, 2019.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
namics on the sphere. In International conference on machine learning, pp. 2806–2823. PMLR,
2023.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. arXiv preprint arXiv:2202.07643, 2022a.

Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural pde solvers. In
International Conference on Learning Representations, 2022b.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Gideon Dresdner, Dmitrii Kochkov, Peter Christian Norgaard, Leonardo Zepeda-Nunez, Jamie
Smith, Michael Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating
turbulent flows. Transactions on Machine Learning Research, 2023.

Katayoun Eshkofti and Seyed Mahmoud Hosseini. A gradient-enhanced physics-informed neu-
ral network (gpinn) scheme for the coupled non-fickian/non-fourierian diffusion-thermoelasticity
analysis: A novel gpinn structure. Engineering Applications of Artificial Intelligence, 126:
106908, 2023.

Joel H Ferziger, Milovan Perić, and Robert L Street. Computational methods for fluid dynamics.
springer, 2019.

Clifford S Gardner, John M Greene, Martin D Kruskal, and Robert M Miura. Method for solving
the korteweg-devries equation. Physical review letters, 19(19):1095, 1967.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural Net-
works, 146:272–289, 2022.

Konrad A Goc, Oriol Lehmkuhl, George Ilhwan Park, Sanjeeb T Bose, and Parviz Moin. Large
eddy simulation of aircraft at affordable cost: a milestone in computational fluid dynamics. Flow,
1:E14, 2021.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized PDE
modeling. Transactions on Machine Learning Research, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Quercus Hernández, Alberto Badı́as, Francisco Chinesta, and Elı́as Cueto. Thermodynamics-
informed neural networks for physically realistic mixed reality. Computer Methods in Applied
Mechanics and Engineering, 407:115912, 2023. ISSN 0045-7825.

Joe D Hoffman and Steven Frankel. Numerical methods for engineers and scientists. CRC press,
2018.

Yongho Kim and Yongho Choi. Learning finite difference methods for reaction-diffusion type equa-
tions with fcnn. Computers & Mathematics with Applications, 123:115–122, 2022.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Tatiana Kossaczká, Matthias Ehrhardt, and Michael Günther. Enhanced fifth order weno shock-
capturing schemes with deep learning. Results in Applied Mathematics, 12:100201, 2021.

Nand Kishor Kumar. A review on burgers’ equations and it’s applications. Journal of Institute of
Science and Technology, 28(2):49–52, 2023.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
Advances in Neural Information Processing Systems, 36, 2024.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

Dehao Liu and Yan Wang. Multi-fidelity physics-constrained neural network and its application in
materials modeling. Journal of Mechanical Design, 141(12):121403, 2019.

Xin-Yang Liu, Min Zhu, Lu Lu, Hao Sun, and Jian-Xun Wang. Multi-resolution partial differential
equations preserved learning framework for spatiotemporal dynamics. Communications Physics,
7(1):31, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pp. 3208–3216, 2018.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International Conference on
Machine Learning, pp. 3276–3285, 2018.

Fadl Moukalled, Luca Mangani, Marwan Darwish, F Moukalled, L Mangani, and M Darwish. The
finite volume method. Springer, 2016.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural
operators. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=j3oQF9coJd.

12

https://openreview.net/forum?id=j3oQF9coJd
https://openreview.net/forum?id=j3oQF9coJd

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Chengping Rao, Pu Ren, Yang Liu, and Hao Sun. Discovering nonlinear pdes from scarce data with
physics-encoded learning. In International Conference on Learning Representations, 2022.

Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, and Yang Liu. Encoding physics
to learn reaction–diffusion processes. Nature Machine Intelligence, 5(7):765–779, 2023.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
pinns: A loss landscape perspective. CoRR, 2024.

Pu Ren, Chengping Rao, Yang Liu, Zihan Ma, Qi Wang, Jian-Xun Wang, and Hao Sun. Physr:
Physics-informed deep super-resolution for spatiotemporal data. Journal of Computational
Physics, 492:112438, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62(3):352–364, 2020.

Tapio Schneider, João Teixeira, Christopher S Bretherton, Florent Brient, Kyle G Pressel, Christoph
Schär, and A Pier Siebesma. Climate goals and computing the future of clouds. Nature Climate
Change, 7(1):3–5, 2017.

Chi Chiu So, Tsz On Li, Chufang Wu, and Siu Pang Yung. Differential spectral normalization (dsn)
for pde discovery. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 9675–9684, 2021.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. In International Conference on Learning Rep-
resentations, 2022.

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. A neural PDE solver with temporal stencil modeling.
In International Conference on Machine Learning, pp. 33135–33155, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Kejun Tang, Jiayu Zhai, Xiaoliang Wan, and Chao Yang. Adversarial adaptive sampling: Unify pinn
and optimal transport for the approximation of pdes. In International Conference on Learning
Representations, 2024.

James William Thomas. Numerical partial differential equations: finite difference methods, vol-
ume 22. Springer Science & Business Media, 2013.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Kun Wang and WaiChing Sun. A multiscale multi-permeability poroplasticity model linked by
recursive homogenizations and deep learning. Computer Methods in Applied Mechanics and
Engineering, 334:337–380, 2018.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1457–1466, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. In International Conference on Learning Representations, 2021.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M. Benson. U-fno-
an enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances in
water resources, (May):163, 2022.

Jiawei Zhuang, Dmitrii Kochkov, Yohai Bar-Sinai, Michael P Brenner, and Stephan Hoyer. Learned
discretizations for passive scalar advection in a two-dimensional turbulent flow. Physical Review
Fluids, 6(6):064605, 2021.

Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element method: its basis and
fundamentals. Elsevier, 2005.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A THE DETAILS OF MULTIPDENET

A.1 CORRECTION BLOCK

The correction block leverages a neural network to refine the coarse solution, with the Fourier Neural
Operator (FNO) (Li et al., 2021) as the correction mechanism within this block. FNO functions by
decomposing the input field into frequency components, processing each frequency individually,
and reconstructing the modified spectral information back into the physical domain via the Fourier
transform. This layer-wise update process is expressed as:

vl+1(x̃) = σ
(
Wlvl(x̃) +

(
K(ϕ)vl

)
(x̃)

)
, (S1)

where vl(x̃) denotes the latent feature map at the l-th layer, defined on the coarse grid x̃. The
initial feature map is v0(x̃) = P (ūk

m), where P is a local mapping function that projects ūk
m

into a higher-dimensional space. The kernel integral transformation is defined as K(ϕ)(z) =
iFFT(Rϕ · FFT(z)), which applies the Fourier transform, spectral filtering via Rϕ, convolution
in the frequency domain, and the inverse Fourier transform to the latent feature map z. Here, ϕ rep-
resents the trainable parameters, σ(·) is the GELU activation function, and Wl denotes the weights
of the linear layer. After passing through an L-layer FNO, the refined coarse solution is computed as
ˆ̄uk
m = Q(vL(x̃)), where Q projects the latent representation of the final layer back into the original

solution space.

In the correction block, we set L = 2. For the Burgers equation, we configure the model with modes
= 12, width = 12, and a projection from 12 channels to 50 channels. For the GS case, we use the
same configuration: modes = 12, width = 20, with a projection from 20 channels to 50 channels.
For the KdV equation, the setup is defined as modes = 32 and width = 64, with a projection from 64
channels to 128 channels. The NS case, however, requires a different setup: modes = 25, width =
20, with a projection from channel = 20 to channel = 128.

A.2 PHYSICS BLOCK

To accurately predict at the micro-scale step, we developed a neural solver called the Physics Block,
ensuring stability, accuracy, and efficiency through adherence to the Courant-Friedrichs-Lewy (CFL)
conditions (LeVeque, 2007). The Physics Block comprises three key components: the Poisson Block
(Figure S1a-b), the PDE Block (Figure 1c), and the MiNN Block (Figure S1c).

Poisson Solver. The pressure field is computed using the spectral method, which involves solving
the Poisson equation:

∆p = ψ(u). (S2)

Here, ψ(u) = 2 (uxvy − uyvx) represents the source term for the pressure.

Applying the Fast Fourier Transform (FFT) to Eq. (S2), we obtain:

−(φ2
x + φ2

y)p
∗ = ψ∗(u), (S3)

a

Construct Poisson
Solver

b

Filter
Bank

Poisson Block

I FFT IFFT

FFT - Fast Fourier Transform
IFFT - Inverse Fast Fourier Transform

- Wavenumbers in the and direction

Poisson Solver c

Gather feature terms

Neural
Network

Filter
Bank

 Block

O

I

Figure S1: Components of Physics Block. (a), Poisson block. (b), Poisson solver. (c), MiNN block.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

29 30

35 36

5 6

11 12

29 30

35 36

5 6

11 12

25 26

31 32

1 2

7 8

25 26

31 32

1 2

7 8

Symtric Filter Padding Nodes Internal Nodes

Figure S2: Periodic BC padding.

where φx and φy are the wavenumbers in the x and y directions, respectively. Assuming φ2
x+φ

2
y ̸=

0, we can solve for the pressure in the frequency domain:

p∗ =
ψ∗(u)

−(φ2
x + φ2

y)
. (S4)

Finally, the pressure field is recovered in the spatial domain using the inverse FFT (iFFT):
p = iFFT [p∗] . (S5)

This spectral method offers an efficient approach to calculating the pressure field without the need
for labeled data or training.

BC encoding. To ensure that the solution obeys the given periodic boundary conditions and that
the feature map shape remains unchanged after differentiation, we employ periodic BC padding (see
Figure S2) in our architecture. This method of hard encoding padding not only guarantees that the
boundary conditions are periodic, but also improves accuracy.

A.3 RK4 INTEGRATION SCHEME

RK4 is a widely used numerical integration method for solving ordinary differential equations
(ODEs) and PDEs, commonly employed as a time integration solver. It provides a balance be-
tween computational efficiency and accuracy by calculating intermediate slopes at various points
within each time step. The general numerical integration method for time marching from utj to
utj+1

can be written as:

uj+1 = uj +

∫ tj+1

tj

B(uj(x̃, τ))dτ. (S6)

Among them, uj+1 and uj are solutions at time j+1 and j. RK4 is a high-order integration scheme,
which divides the time interval into multiple equally spaced small time steps to approximate the
integral. The final update of the above state change can be written as:

r1 = B (uj , tj) ,

r2 = B
(
uj +

δt

2
× r1, tj +

δt

2

)
,

r3 = B
(
uj +

δt

2
× r2, tj +

δt

2

)
,

r4 = B (uj + δt× r3, tj + δt) ,

uj+1 = uj +
1

6
δt(r1 + 2r2 + 2r3 + r4).

(S7)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table S1: Settings for generating datasets.

Parameters / Case KdV Burgers GS NS
DNS Method Spectral FD FD FV
Spatial Domain [0, 64] [0, 1]2 [0, 1]2 [0, 2π]2

Calculate Grid 256 1002 1282 20482

Training Grid 64 252 322 642

Simulation dt (s) 1.00× 10−2 1.00× 10−3 2.00× 10−3 2.19× 10−4

Warmup (s) 0 0.1 0 40
Training data group 3 5 3 5
Testing data group 10 10 10 10
Spatial downsample 4× 16× 16× 1024×
Temporal downsample 5× 10× 20× 128×

where δt denotes the step size and r1, r2, r3, r4 represent four intermediate variables (slopes). The
global error is proportional to the step size to the fourth power, i.e., O(δt4).

B DATA DETAILS

KdV. The Korteweg-de Vries (KdV) equation is a well-known nonlinear PDE used to describe the
movement of shallow water waves with small amplitude in a channel. It models the dynamics of
these waves and is particularly noted for its ability to represent solitary waves, or solutons, given by:

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0, (S8)

where u = u(x, t) represents the wave amplitude as a function of position x and time t. u∂u
∂x

accounts for the nonlinear effects, while ∂3u
∂x3 captures the dispersive effects in the system. The

equation illustrates how a balance between these two effects leads to the formation of solitary waves,
or solitons, that maintain their shape over long distances.

To generate the dataset, we employ the method of lines (MOL) using pseudospectral methods to
compute the spatial derivatives (Brandstetter et al., 2022a). The dataset is initially generated on a
grid of 256 points and then downsampled to a grid of 64 points for numerical experiments. The
simulation timestep is set to dt = 1 × 10−2 seconds, with the total simulation duration set to 100
seconds. For training, we use 3 sets of data, each comprising 1000 timesteps over ∆t = 5dt, along
with ten additional testing sets with different ICs.

Burgers. This equation models the behavior of a viscous fluid (Kumar, 2023), incorporating both
nonlinear dynamics and diffusion effects. It finds extensive applications across various scientific
disciplines, including fluid mechanics, materials science, applied mathematics and engineering. The
equation is expressed as follows:

∂u

∂t
= ν∇2u− u ·∇u, t ∈ [0, T] (S9)

where u = {u, v} ∈ R2 represents the fluid velocities, ν is the viscosity coefficient set to 0.002, and
∆ is the Laplacian operator.

As shown in Table S1, we generate the dataset using the finite difference method with a 4th-order
Runge–Kutta time integration (Rao et al., 2023) and periodic boundary conditions over the spatial
domain x ∈ [0, 1]. The data is initially generated on a 1002 grid and subsequently downsampled to a
252 grid for use in numerical experiments. The simulation timestep is set to dt = 1×10−3 seconds,
with a total duration of T = 1.4 seconds. During the training stage, we employ five trajectories with
∆t = 10δt, each consisting of 140 snapshots. In the testing stage, we use ten different trajectories,
each containing 140 snapshots

GS. The Gray-Scott (GS) reaction-diffusion model is a system of PDEs that describes the inter-
action and diffusion of two reacting chemicals. It is known for its ability to produce intricate and
evolving patterns, making it a popular model for studying pattern formation. It is widely used in

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table S2: Settings for generating the Navier-Stokes (NS) datasets.

Dataset Grid Spatial Domain Re Warmup time ∆t Innerstep

f1 ∼ f4 20482→ 642 [0, 2π]2 1000 40 2.1914×10−4 32
Re = 500 20482→ 642 [0, 2π]2 500 40 2.1914×10−4 32
Re = 800 20482→ 642 [0, 2π]2 800 40 2.1914×10−4 32
Re = 1000 20482→ 642 [0, 2π]2 1000 40 2.1914×10−4 32
Re = 1600 20482→ 642 [0, 2π]2 1600 40 2.1914×10−4 32
Re = 2000 20482→ 642 [0, 2π]2 2000 40 2.1914×10−4 32
Re = 4000 40962→ 642 [0, 2π]2 4000 40 1.0957×10−4 32
Re = 1000 40962→ 642 [0, 4π]2 1000 40 1.0957×10−4 32

fields such as chemistry, biology, and physics to simulate processes like chemical reactions and
biological morphogenesis. The equation is expressed by:

∂u

∂t
= Du∆u− uv2 + α(1− u),

∂v

∂t
= Dv∆v + uv2 − (α+ κ)v,

(S10)

where u and v denote the concentrations of two distinct chemical species, withDu andDv indicating
their respective diffusion coefficients. The first equation models the change in the concentration of
u over time. The term Du∆u represents the diffusion of u, −uv2 describes the reaction between u
and v, and α(1−u) represents the replenishment of u based on the feed rate α. The second equation
models the evolution of v, where Dv∆v accounts for diffusion, uv2 represents the creation of v
from the reaction with u, and −(α+ κ)v describes the decay of v, with κ as the decay rates.

We also utilize the RK4 time integration method for dataset generation. In this case, we assign the
valuesDu = 2.0×10−5,Dv = 5.0×10−6, α = 0.04, and κ = 0.06. The dataset is generated using
the finite difference method on a 1282 grid with periodic boundary conditions, spanning the spatial
domain x ∈ [0, 1]2. To generate different ICs, we first define a grid based on the spatiotemporal
resolution and initialize the concentrations of two chemicals. By setting different random seeds and
adding varied random noise, we create unique ICs. The simulation uses a timestep of dt = 0.5 s
over a total duration of T = 1400 seconds. The data is then downsampled to a 322 grid, and the
timestep is increased to 10 seconds (∆t = 20dt) for ground truth creation. We utilize three training
trajectories, each with 180 snapshots, and ten additional testing sets with varying ICs.

NS. The Navier-Stokes (NS) equations are fundamental to the study of fluid dynamics, govern-
ing the behavior of fluid motion. In this paper, we focus on a two-dimensional, incompressible
Kolmogorov flow with periodic boundary conditions, expressed in velocity-pressure form as:

∂u

∂t
+ (u ·∇)u =

1

Re
∇2u−∇p+ f , t ∈ [0, T],

∇ · u = 0,
(S11)

where u = {u, v} ∈ R2 denotes the fluid velocity vector, p ∈ R represents the pressure, and Re is
the Reynolds number that characterizes the flow regime. The Reynolds number serves as a scaling
factor in the NS equations, balancing the inertial forces, represented by the advection term (u ·∇)u,
with the viscous forces, captured by the Laplacian term ∆u. When Re is low, the flow remains
predominantly laminar and smooth due to the dominance of the viscous forces. Conversely, at high
Reynolds numbers, the inertial forces take precedence, leading to a more chaotic and turbulent flow
behavior.

To create the dataset, we follow the approach outlined in JAX-CFD (Kochkov et al., 2021). We
simulate data using the Finite Volume Method (FVM) on a fine grid with a time step of dt (e.g., Re
= 1000, 2048 × 2048). This data is then downsampled to a coarse grid with ∆t = 128dt (e.g., Re
= 1000, 64 × 64) to serve as the ground truth. Different ICs are generated by introducing random
noise into each component of the velocity field and subsequently filtering it to obtain a divergence-
free field with the desired properties. For training, we utilize only five groups of labeled data with
4800 snapshots, while testing involves ten sets of trajectories. The model performance tests include

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table S3: Performance metrics under different noise levels during training.
Training RMSE MAE MNAD HCT (s)
- 20% data 0.1935 0.0958 0.0113 8.1392
+ 0.1% noise 0.2083 0.1014 0.0123 8.0431

normal 0.1379 0.0648 0.0077 8.3566

Table S4: Performance metrics for different NN blocks.
Model RMSE MAE MNAD HCT
Model-a NaN NaN NaN 0.8846
Model-b NaN NaN NaN 5.2930
Model-c 0.2575 0.1507 0.0191 7.2930
Model-d 0.1564 0.0703 0.0083 8.0525
Model-e 0.2479 0.1242 0.0197 7.6346

MultiPDENet 0.1379 0.0648 0.0077 8.3566

trajectories with different Reynolds numbers Re = {500, 800, 1600, 2000, 4000}, different external
forces f1 = cos(2y)ηx −0.1u, f2 = 0 f3 = cos(4y)ηx −0.1u, f4 = sin(4y)ηx −0.4u, and a larger
computational domain x ∈ [0, 4π]2. The detailed dataset parameters are shown in Table S2.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LESS DATA AND ADD NOISE

To evaluate our model’s robustness against missing data and noise, we conducted experiments on
the NS equation using five sets of trajectories (5×1200×2×64×64). We tested two conditions:
(1) randomly removing 20% of snapshots and (2) adding 0.1% Gaussian noise during training. As
shown in Table S3, the model’s performance was only slightly impacted in Experiment 1, with low
error rates. In Experiment 2, HCT remained above 8 s. These results highlight the model’s strong
generalization ability even under challenging conditions.

C.2 PARAMETRIC EXPERIMENTS ON MINN BLOCK AND MANN BLOCK

To investigate the role of the NN blocks in our model, we conducted additional comparative experi-
ments with the following configurations:

• Model-a: the MiNN block was set to UNet and the MaNN block to FNO;
• Model-b: both the MiNN block and the MaNN block were set to FNO;
• Model-c: both blocks were set to FNO with roll-out training applied at the macro step (with

an unrolled step size of 8);
• Model-d: the MiNN block was set to DenseCNN and the MaNN block to UNet;
• Model-e: the MiNN block was set to FNO while the MaNN block was set to Swin Trans-

former (Liu et al., 2021).

All other experimental settings were kept consistent, and the results are presented in Table S4.
Model-a and Model-b encountered NaN values, which can be attributed to the MaNN Block re-
quiring a model capable of robust predictions at the macro step. Without such a model, multi-step
roll-out training (as in Model-c) becomes necessary to enhance the model’s stability in long-term
predictions. When a strong predictive module is employed at the macro step (e.g., UNet), the MiNN
Block can be replaced with a more parameter-efficient model, such as DenseCNN (Model-d). Set-
ting the MaNN Block to Swin Transformer resulted in a slight decrease in accuracy, which can be
attributed to the relatively small size of our dataset, as the Swin Transformer typically excels on
larger datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D EVALUATION METRICS

We employ several metrics to assess the performance of the tested models, including Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Mean Normalized Absolute Difference
(MNAD), and High Correction Time (HCT) (Sun et al., 2023). RMSE quantifies the average magni-
tude of the errors between predicted and actual values, providing insight into the model’s accuracy.
MAE assesses the average absolute deviation between predicted and observed values, thereby indi-
cating the scale of the errors. MNAD serves as an important metric for evaluating the consistency
of model outputs over time, calculating the average discrepancy across temporal data points and of-
fering a normalized measure of prediction error relative to the range of actual data. HCT gauges the
model’s capability for making reliable long-term predictions. These metrics are defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

∥Hi − Ȟi∥2, (S12)

MAE =
1

n

n∑
i=1

∣∣Hi − Ȟi

∣∣ , (S13)

MNAD =
1

n

n∑
i=1

∥Hi − Ȟi∥
∥Hi∥max − ∥Hi∥min

, (S14)

HCT =

N∑
i=1

∆t · [PCC(Hi, Ȟi) > 0.8], (S15)

where

PCC(Hi, Ȟi) =
cov(Hi, Ȟi)

σHi
σȞi

. (S16)

Here, n represents the number of trajectories; Hi denotes the ground truth for each trajectory; Ȟi

indicates the spatiotemporal sequence predicted by the model. The term “cov” refers to the covari-
ance function, while “σ” represents the standard deviation of the respective sequence. The Iverson
bracket returns a value of 1 when the condition (PCC(Hi, Ȟi) > 0.8) is satisfied and 0 otherwise.
The variable N signifies the total number of time steps.

E BASELINE MODELS

Fourier Neural Operator (FNO). The FNO (Li et al., 2021) combines neural networks with
Fourier transforms to effectively capture both global and local features of system dynamics. The
architecture has two key components: First, it applies Fourier transforms to the system state, per-
forming convolution operations in the frequency domain to capture global information. This is
followed by an inverse Fourier transform which maps the data back to the spatial domain. Sec-
ondly, convolutional layers are employed to extract local features directly from the system state.
The outputs from both global and local components are then integrated through the application of
activation functions, which ultimately yield the final prediction.

PhyFNO. PhyFNO shares the same architecture as FNO but incorporates physics-based constraints
by embedding governing equations into the loss function. The loss function can be expressed as:
L(λ) = LEq + LData. The first term of the loss function, LEq , represent an MSE loss computed
using the analytical expressions of the dynamics, as defined in Equation 1. The second term LData

is the data loss, which was previously discussed in Section 4.1.”

PeRCNN. PeRCNN (Rao et al., 2023) integrates physics-based principles directly into the learning
framework by embedding governing equations into the neural network structure. The architecture
features multiple parallel CNNs that model polynomial relationships via feature map multiplica-
tions. This incorporation of physical laws improves the model’s generalization and extrapolation
capabilities, enabling accurate predictions in dynamic systems governed by complex equations.

UNet. The UNet architecture (Ronneberger et al., 2015) adopts a symmetric encoder-decoder struc-
ture originally designed for computer vision tasks. The encoder compresses the input by applying

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

multiple downsampling layers to capture hierarchical features at various scales. Conversely, the
decoder gradually restores the original spatial resolution using upsampling operations. Skip con-
nections bridge the encoder and decoder, directly transferring feature maps to retain fine-grained
details. This design allows UNet to merge high-resolution spatial information with deeper, abstract
features, achieving accurate reconstructions of both local and global structures.

DeepONet. DeepONet (Lu et al., 2021) is designed to approximate operators and map inputs di-
rectly to outputs by leveraging neural networks. The architecture consists of two main components:
the trunk network, which processes domain-specific information, and the branch network, which
handles the input functions. This dual-structure approach enables the efficient learning of complex
functional relationships and enhances the model’s capability to capture detailed operator mappings
across various applications.

Learned Interpolation (LI). The LI (Kochkov et al., 2021) employs a finite volume approach
enhanced with neural networks as a replacement for conventional polynomial-based interpolation
schemes in computing velocity tensor product. The network adapts to the local flow conditions
by learning a dynamic interpolation mechanism that can adjust to the characteristics of the flow.
This enables LI to provide accurate fluid dynamics predictions even on coarse grids, improving
computational efficiency while maintaining prediction fidelity.

Temporal Stencil Modeling (TSM). TSM (Sun et al., 2023) addresses time-dependent partial dif-
ferential equations (PDEs) in conservation form by integrating time-series modeling with learnable
stencil techniques. It effectively recovers information lost during downsampling, enabling enhanced
predictive accuracy. TSM is particularly advantageous for machine learning models dealing with
coarse-resolution datasets.

F COMPUTATIONAL DETAILS

F.1 TRAINING DETAILS

All experiments (both training and inference) in this study were conducted on a single Nvidia A100
GPU (with 80GB memory) running on a server with an Intel(R) Xeon(R) Platinum 8380 CPU
(2.30GHz, 64 cores). All model training efforts were performed on coarse grids (see Table 1).

MultiPDENet. The MultiPDENet architecture employs the Adam optimizer with a learning rate
of 5 × 10−3. The model is trained over 1000 epochs with a batch size of 90. Detailed settings for
the rollout timestep can be found in Table 1. Additionally, we use the StepLR scheduler to adjust
the learning rate by a factor of 0.96 every 200 steps. The model hyperparameters are listed in Tables
S5 and S6.

FNO. The architecture of the FNO network closely follows that presented in the original study
(Li et al., 2021), with the main adjustment being the adaptation of its training methodology to an
autoregressive framework. The training utilizes the Adam optimizer with a learning rate of 1×10−3

and a batch size of 20. Training is carried out for 1000 epochs, and the rollout timestep matches
MultiPDENet.

UNet. We implement the modern UNet architecture (Gupta & Brandstetter, 2023) using its default
settings, ensuring that the rollout timestep is consistent with that of the MultiPDENet. The StepLR
scheduler is employed with a step size of 100 and a gamma of 0.96. The optimizer is Adam, with a
learning rate of 1× 10−3 and a batch size of 10. The model is trained for 1000 epochs.

DeepONet. We utilize the default configuration of DeepONet (Lu et al., 2021) along with the
Adam optimizer. The learning rate is established at 5 × 10−4, with a decay factor of 0.9 applied
every 5000 steps. The model is trained using a batch size of 16 over a total of 20000 epochs.

PeRCNN. We maintain the standard architecture of PeRCNN (Rao et al., 2023). The optimization
process is executed with the Adam optimizer and employs a StepLR scheduler that reduces the
learning rate by a factor of 0.96 every 100 steps. The initial learning rate is set to 0.01, and the
training is conducted over 1000 epochs with a batch size of 32.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table S5: Overview of hyperparameters used in the MiNN Block.

Case Hyperparameters Value

NS

Network FNO (Li et al., 2021)
Layers 6
Modes 30
Width 30
Blocks 1
Padding periodical

σ GELU
Inputs {u, p, ∇̂û, ∇̂2û, ∇̂p, f , Re}

Burgers

Network FNO (Li et al., 2021)
Layers 4
Modes 12
Width 12
Blocks 1
Padding periodical

σ GELU
Inputs {u}

GS

Network FNO (Li et al., 2021)
Layers 6
Modes 12
Width 22
Blocks 1
Padding periodical

σ GELU
Inputs {u}

KdV

Network FNO (Li et al., 2021)
Layers 4
Modes 32
Width 64
Blocks 1
Padding periodical

σ ReLU
Inputs {u}

LI. We adopt the default network architecture and parameter settings for LI (Kochkov et al., 2021).
The optimizer used is Adam with β1 = 0.9 and β2 = 0.99. The batch size is configured to 8, along
with a global gradient norm clipping threshold of 0.01. The learning rate is set to 1 × 10−3, and
weight decay is configured to 1× 10−6.

TSM. We follow the default network architecture and parameter settings for TSM (Sun et al.,
2023). The initial learning rate is set to 1×10−4, with a weight decay of 1×10−4. The gradient
clipping norm is configured to be 1×10−2. We use the Adam optimizer with β2 = 0.98, and the
batch size is set to 8.

F.2 COMPUTATIONAL COST (INFERENCE)

Taking NS as an example, we compared the inference time, RMSE, and HCT of MultiPDENet
with the Direct Numerical Simulation (DNS) method across three cases. The comparison principle
is based on the time required to simulate the same trajectory length (T = 8.4 s) under identical
experimental conditions (a single A100 GPU). The inference time is measured from the moment the
initial conditions (IC) are fed into the model until the trajectory of the same length is predicted.

The DNS settings follow JAX-CFD (Kochkov et al., 2021). According to the CFL condition, the
simulated time step (dt) varies with the resolution of the DNS method, resulting in different numbers
of timesteps required for calculation. DNS 2048, DNS 4096, and DNS 4096 are used as the ground
truth for the three cases, respectively. Detailed comparison results are presented in Table S7.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table S6: Overview of hyperparameters used in the MaNN Block.

Case Hyperparameters Value

NS

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [128, 128, 256, 512]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

Burgers

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

GS

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ GELU

KdV

Network U-Net (Gupta & Brandstetter, 2023)
Hidden size [64, 64, 128, 256]

Blocks 2
Padding periodical
Inputs {u,∆t, dx}
σ ReLU

Table S7: Performance comparison of different methods on the NS dataset across various cases.
Case Method Timestep Infer Cost (s) RMSE HCT (s)
Re = 1000 DNS 2048 38400 260 0 8.4
Re = 1000 DNS 1024 19200 135 0.1267 8.4
Re = 1000 DNS 512 9600 52 0.2674 6.5
Re = 1000 DNS 64 1200 18 0.7818 2.7
Re = 1000 MultiPDENet 300 26 0.1379 8.4
Re = 4000 DNS 4096 76800 1400 0 8.4
Re = 4000 DNS 1024 19200 136 0.1463 6.8
Re = 4000 DNS 512 9600 52 0.2860 5.8
Re = 4000 DNS 128 2400 31 0.8658 3.6
Re = 4000 MultiPDENet 300 26 0.1685 6.4
x ∈ [0, 4π]2 DNS 4096 75750 1280 0 8.4
x ∈ [0, 4π]2 DNS 1024 19200 129 0.4638 6.6
x ∈ [0, 4π]2 DNS 512 9600 50 0.6166 5.2
x ∈ [0, 4π]2 DNS 128 2400 30 0.8835 2.3
x ∈ [0, 4π]2 MultiPDENet 300 26 0.4577 6.7

Nevertheless, we also would like to clarify that the DNS code used above was implemented in JAX,
while our model was programmed in PyTorch. These two platforms have distinct efficiencies even
for the same model. Typically, the codes under JAX environment runs much faster compared with
PyTorch (up to 6×) (Takamoto et al., 2022). We anticipate to achieve much higher speedup of our
model if also implemented and optimized in JAX, which is, however, out of the scope of this study.

23

	Introduction
	Related work
	Methodology
	Problem red Description
	Model Architecture
	red Multi-scale forward time stepping scheme
	Physics Block: A learnable Neural Solver
	Adaptive Filter with Constraint
	NN Block

	Experiment
	Setup
	Sovling PDE Systems
	Model Generalization
	red Test on Flow with Re=4000
	red Test on Flow within Larger Domains
	Ablation Study

	Conclusion
	The details of MultiPDENet
	Correction block
	Physics block
	RK4 integration scheme

	Data Details
	Additional Experimental Results
	Less Data and add noise
	Parametric Experiments on MiNN Block and MaNN Block

	Evaluation metrics
	Baseline models
	Computational Details
	Training Details
	Computational cost (inference)

