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Abstract

Traditional retrieval methods rely on transform-
ing user queries into vector representations and
retrieving documents based on cosine similarity
within an embedding space. While efficient and
scalable, this approach often fails to handle com-
plex queries involving logical constructs such as
negations, conjunctions, and disjunctions. In this
paper, we propose a novel inference-time logi-
cal reasoning framework that explicitly incorpo-
rates logical reasoning into the retrieval process.
Our method extracts logical reasoning structures
from natural language queries and then composes
the individual cosine similarity scores to formu-
late the final document scores. This approach
enables the retrieval process to handle complex
logical reasoning without compromising compu-
tational efficiency. Our results on both synthetic
and real-world benchmarks demonstrate that the
proposed method consistently outperforms tradi-
tional retrieval methods across different models
and datasets, significantly improving retrieval per-
formance for complex queries.

1. Introduction
Retrieval systems are integral to many applications, includ-
ing search engines, question-answering systems, and rec-
ommendation platforms (Baeza-Yates et al., 1999; Lewis
et al., 2020; Gao et al., 2023). Modern systems operate by
transforming user queries into vector representations and
retrieving documents based on cosine similarity within an
embedding space (Reimers, 2019; Wang et al., 2023; Zhao
et al., 2024; Lee et al., 2024). This approach is highly ef-
ficient and scalable, as cosine similarity computations are
fast and can handle large-scale data. However, the reliance
on cosine similarity and static embeddings often limits the
system’s ability to understand and process complex queries
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Bone Health Vitamin D Benefits

NOT Bone Health Vitamin D Benefits
AND NOT Bone Health

Figure 1. Given a query “What are the benefits of vitamin D, fo-
cusing on benefits other than bone health?”, we first convert the
query into the logical expression “Vitamin D Benefits AND NOT
Bone Health”. We then calculate the cosine similarity scores for
each term (top row) and combine these scores to generate the final
results.

that involve logical constructs such as negations.

Large Language Models (LLMs) have demonstrated remark-
able capabilities in inference-time reasoning (Wei et al.,
2022; Yao et al., 2024). Recently, (Jiang et al., 2023; Gu
et al., 2022; Sun et al., 2023; Luo et al., 2023) have success-
fully applied LLM’s reasoning capability to improve the
retrieval performance for knowledge-based question answer-
ing, however, the application of inference-time reasoning
for general retrieval systems remains relatively unexplored.

We posit that integrating logical reasoning at inference time
is equally crucial for retrieval tasks, especially when dealing
with complex queries that cannot be accurately represented
using simple similarity measures (Meghini et al., 1993; Ou-
nis & Paşca, 1998). Consider a query like ”What are the
benefits of vitamin D, focusing on benefits other than bone
health?” A traditional retrieval system, relying solely on co-
sine similarity, may struggle to exclude documents related
to bone health due to the embedding’s inability to repre-
sent the negation effectively. The system tends to retrieve
documents that are globally similar to the query, failing to
account for specific logical instructions, such as exclusions
or combinations of concepts.

To address this limitation, we propose a novel inference-time
reasoning framework for retrieval systems that explicitly in-
corporates logical reasoning into the retrieval process. Our
approach involves three key steps. First, Logical Query
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Transformation: We utilize an LLM to parse and rewrite
the natural language query into a logical form, such as ”A
AND B OR NOT C,” where A, B, and C represent different
semantic components of the query. Second, Term Embed-
ding and Similarity Computation: Each term identified
in the logical form (A, B, C, etc.) is individually encoded
into the embedding space. We compute the cosine similar-
ity between each term’s embedding and the embeddings of
documents in the corpus. Third, Score Composition Based
on Logical Relations: We combine the similarity scores of
each term in accordance with their logical relations. Our
approach adds minimal overhead since the embedding can
be performed in parallel.

We validate our approach through comprehensive experi-
ments. We first create synthetic datasets with queries of
varying logical complexity to test the limitations of exist-
ing retrieval algorithms. Our findings indicate that as the
number of logical terms increases, the performance of tra-
ditional retrieval methods degrades significantly, while our
method better maintains performance, demonstrating robust-
ness against query complexity. We also evaluated our algo-
rithm on three real-world datasets: NFCorpus (Boteva et al.,
2016), SciFact (Wadden et al., 2020) and ArguAna (Thakur
et al., 2021). Specifically, we augmented these three datasets
with natural language queries that target compositional rea-
soning. We tested our method using four commonly used
embedding models. The results show that our approach
consistently outperforms baseline methods across all mod-
els and datasets, confirming its effectiveness in practical
scenarios.

2. Method
Given a natural language query, “What are the beneifts of
vitamin D, focusing on benefits other than bone health?”,
we first transform it into a logical expression using a pre-
trained large language model (Dubey et al., 2024), “Vitamin
D Benefits” AND NOT “Bone Health”, where the terms
in quotes can be any string of text. Given a document,
these queries can be seen as logical expressions, which we
evaluate in a fuzzy way (Novák et al., 2012), using the
scores from a dense retrieval model to assign truth values
to each clause. The fuzzy evaluation of the expression then
gives a composite retrieval score for the given document. In
the following sections, we present the concrete details of
our method, starting with the syntax of the logical queries,
followed by the retrieval semantics.

2.1. Query Syntax

Queries are made up of terms–which can be any string of
text–combined using operators. We allow three operators,
AND, OR, and NOT. Formally, the syntax of the language

is described by the following simple grammar,

T → U OR U |U
U → V AND V |V
V → NOT W |W
W → string | (T )

where the use of distinguished non-terminals, T,U, V , and
W enforces an operator priority, NOT ≻ AND ≻ OR ,
which is itself overridden by parentheses.

2.2. Query Semantics

For each term tj in a query, and each document Di in a
corpus, we compute a score sji using the dense retrieval
model. Usually, this is the cosine similarity between the em-
bedding vectors of the term and document. The semantics
of the query then tell us how to combine the scores sji into
a single score si which we can use for retrieval.

Consider a query of the form,

(t1 OR t2) AND NOT t3.

Then, for document Di, if s1i, s2i, and s3i are the scores ob-
tained from the dense retrieval model, we take the composed
retrieval score to be,

si = OPAND(OPOR(s1i, s2i),OPNOT (s3i)),

where OPAND, OPOR and OPNOT are functions that define
how scores should be combined depending on the query
operator. We detail our choice of operators in the next
section.

AND

OR

t1 t2

NOT

t3

OPAND

OPOR

s1i s2i

OPNOT

s3i
Figure 2. Example parse tree (left) and corresponding graph of
operations (right).

In general, each query can be parsed using the grammar
described above, resulting in a parse tree, which is directly
translated into a tree of operations acting on the scores
s1i, s2i, and s3i as shown in Fig. 2. A more complicated
example is given in the appendix. This tells us how to
compute the final retrieval score si. More formally, this
could be written as an attribute grammar (Knuth, 2005).

2.3. Score Operations

The choice of the operators OPAND, OPOR, OPNOT should
reflect the logical semantics of the query. For example, for
the conjunction t1 AND t2, with scores s1i and s2i, the
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composite score should be low if any of the two scores is
low. In this work we consider three approaches,

1. First, we take the perspective of fuzzy logic, where we
view the retrieval scores as fuzzy set memberships. The
fuzzy membership to a union of sets, corresponding
to the logical OR operation, is then taken to be the
maximum of the individual fuzzy memberships, and
the membership to an intersection, corresponding to
the AND operation, is given by the minimum (Fox &
Sharat, 1986).

2. Second, we also choose operators based on probability
theory. The probability of two independent events oc-
curring simultaneously is P (A∩B) = P (A)P (B), the
probability of the union of two events is upper bounded
by P (A ∪B) ≤ P (A) + P (B) and the probability of
the complement of an event is P (¬A) = 1 − P (A).
Motivated by this we use the arithmetic operations ×,
+ and 1− · for AND, OR and NOT respectively.

3. Finally, we also use heuristically motivated operators
such as addition for AND, so that a document that
scores highly for individual queries will score highly
for their conjunction; and 1/· for NOT, so that a docu-
ment that scores highly for a query will score low for
its negation.

In summary, the full set of operator choices is,

OPAND(x, y) = x ∗ y |x+ y | min(x, y)

OPOR(x, y) = x+ y | max(x, y)

OPNOT (x) = 1− x | 1/x

We evaluate all combinations of these operators in our ex-
periments. Our default choice is OPAND(x, y) = x ∗ y,
OPOR(x, y) = x+ y, and OPNOT (x, y) = (1− x), which
we find to work best.

3. Results
We start by validating the performance of the logical
retrieval system itself on synthetic data. Next, we
assess the system’s utility for retrieval on real data.
In all our experiments, we evaluate using four base
embedding models: Nvidia’s NV-Embed-V1 (Lee et al.,
2024), Mistral’s nv-embedqa-mistral-7b-v2
and OpenAI’s text-embedding-v3-large and
text-embedding-v3-small.

3.1. Synthetic Data

Three Term Queries We first evaluate performance on
all possible queries formed of three terms using synthetic
data. This gives 32 “templates”, such as,

t1 AND t2 OR NOT t3

Number of negations

0 1 2 3

Base 0.95 0.77 0.65 0.52
ITLR 0.99 0.97 0.96 1.00

Table 1. nDCG@10 Results on synthetic data. Dense and logical
retrieval systems were evaluated on synthetically generated test
cases for all 32 possible logical queries with three terms. We show
results broken down by the number of negations in the queries.

The three placeholders t1, t2, and t3 are filled in by terms.
For each possible template, we generate 100 queries by
filling in the placeholders with random topics from a set
generated by Llama3-70b. For each query we then gener-
ate documents that match and don’t match the query with
Llama3-70b. For example, for the query,

“dog” AND “cat” AND “mouse”,

we generate one document that matches, which is related to
all three terms, and three documents that don’t match, which
are related to all but one of the terms. See Appendix H for
more details.

The results are presented in Table 1. We report the standard
nDCG@10 in all our results. We show the results when
passing the query directly to the retrieval model (base) vs.
composing the retrieval model scores for each term (logical).
For reference, the performance when using random scores
is around 0.7. We see that logical retrieval outperforms the
baseline, with the most gains coming from queries with
negations. We did not see large differences between embed-
ding models. See Table 5 in the appendix for a breakdown.

Scaling Number of Queries We look at performance as
the number of terms in the queries scales, focusing this time
solely on queries consisting of OR or AND operators. For
example,

“dog” AND “mouse” AND . . . AND “cat”

We generate data in the same way as before. Our results
are presented in Fig. 3. We see that the gains from logical
retrieval increase as the number of terms increases. This is
more pronounced for the AND queries than the OR queries,
likely since each AND query has a single positive match
whereas each OR query has many matches.

3.2. Operator Combinations

We tested all combinations of operators OPAND, OPOR and
OPNOT proposed in section 2.3 on the three term query data
using the NV-Embed-V1 embedding model. We present
the results in Table 2. We see that our default choice works
best, although the alternative using OPAND(x, y) = x +
y works equally as well. Note that the common choice
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Figure 3. Performance as the number of terms scales. Baseline
dense retrieval and logical retrieval were evaluated on queries
connected by AND and OR clauses, with increasing number of
clauses.

OPNOT

OPAND OPOR 1− x 1/x

min(x, y) max(x, y) 0.86 0.86
x+ y 0.92 0.87

x ∗ y max(x, y) 0.90 0.89
x+ y 0.97 0.90

x+ y max(x, y) 0.91 0.81
x+ y 0.97 0.82

Table 2. nDCG@10 results for logical retrieval on the same
data from Table 1 for different choices of operators, using
NV-Embed-V1. Each entry represents a choice for each of the
three operators.

made in fuzzy logic of OPAND(x, y) = min(x, y) and
OPOR(x, y) = max(x, y) performs quite poorly.

3.3. Real Data

Our previous experiments consider very small corpora con-
structed specifically for each query. We now turn to real
datasets. In order to ensure the queries have sufficient com-
positionality, we generate queries using Llama3-70b. As in
our synthetic experiments, we create 3-term logical queries
from templates, filled in with topics extracted from the
dataset. We create 30 queries per template, resulting in
960 total queries. We ask Llama3-70b to turn these queries
into natural language questions and throw away the original
queries. We also use Llama3-70b to label the relevance of
each document in the corpus to each of the questions. In
the appendix we give the prompts that were used and show
through examples that the generated queries are realistic.

We compare three methods. The Baseline feeds the question
to the dense retrieval model. The BRIGHT baseline first
asks Llama3-70b to reason about the question and feeds the
reasoning trace to the retrieval model. This is the method
used in (Su et al., 2024). Finally, our ITLR method asks
Llama3-70b to generate a logical query from the question,
which is fed to our logical retrieval system. See the appendix
for human evaluation results showing that Llama3-70b is
able to successfully formulate logical queries.

We report nDCG@10 results in Table 3, for three datasets
derived respectively from the NFCorpus, SciFact and Ar-

NFcorpus SciFact ArguAna Legal

NV-Embed-V1:
Baseline 0.56 0.51 0.51 0.46
BRIGHT 0.67 0.59 0.58 0.52
ITLR 0.74 0.64 0.64 0.59
text-embedding-v3-large:
Base 0.63 0.59 0.63 0.56
BRIGHT 0.70 0.63 0.66 0.60
ITLR 0.73 0.64 0.67 0.66
text-embedding-v3-small:
Base 0.56 0.50 0.55 0.50
BRIGHT 0.68 0.59 0.65 0.57
ITLR 0.67 0.54 0.63 0.61
nv-embedqa-mistral-7b-v2:
Base 0.54 0.50 0.40 0.41
BRIGHT 0.48 0.39 0.29 0.27
ITLR 0.67 0.61 0.59 0.42

Table 3. nDCG@10 Results on real data. For each dataset taken
from BEIR (Thakur et al., 2021), compositional questions were
generated using Llama3-70b. We show results for three embedding
models and three methods. Legal short for LegalBenchCorpo-
rateLobbying.

Number of negations

0 1 2 3

Base 0.81 0.60 0.51 0.36
Reasoning 0.81 0.68 0.64 0.56
Logical 0.76 0.71 0.76 0.73

Table 4. Breakdown of Table 3 for NV-Embed-V1 on NFCorpus
by number of negations.

guAna tasks, accessed through MTEB (Muennighoff et al.,
2022). We see that ITLR achieves the best performance
overall, beating all baselines in a majority of cases. This
performance gap becomes larger with more negations, as
seen in Table 4. One possible explanation why we do not see
much improvement without negations is that the three term
queries we considered are too simple. Since simpler queries
are likely better represented in the training distribution of
the retrieval models they are easy enough to process. In
our synthetic experiments (Figure 3) we show that as the
number of terms increases ITLR outperforms baselines in-
cluding on cases without negations. One thing to note is that
because ITLR is a modular system, the user can choose to
use the base retrieval model if preferred when the extracted
logical formulations are simple.

4. Conclusion
In this paper, we propose an inference-time logical reason-
ing framework that addresses the limitations of traditional
retrieval methods in managing complex queries with logical
constructs. The framework is highly efficient, enabling con-
current computation of retrieval scores for each term. By in-
tegrating logical reasoning directly into the retrieval process,
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our framework consistently outperforms traditional methods
on both synthetic and real-world benchmarks, demonstrat-
ing particular strength in handling queries with a higher
frequency of negations and AND operations.

The logical retrieval system we presented in this paper
presents some limitations, as it still underperforms on
queries without any negations. We identify some concrete
problems that could be addressed in future work. First, in
most scenarios, the queries to retrieval systems, such as
questions from users, are not given as logical formulas. It is
also unreasonable to expect users to write logical formulas
on their own. Hence, the system is reliant on reformulating
queries into logical queries. While we used a simple prompt
to achieve this, it is possible that better performance could
be obtained by finetuning a reformulation model. Second,
we observed in preliminary experiments that the perfor-
mance of the system can be improved by calibrating the
scores of the underlying retrieval model. For example, when
processing AND queries, some terms may receive generally
higher retrieval scores than others, biasing retrieval towards
documents that match those terms but not the others. We did
not find any simple methods to calibrate the scores, but this
could be accomplished when training the retrieval model, or
by training a calibration model on a large dataset.
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Embedding Model Base ITLR

NV-Embed-V1 0.74 0.97
text-embedding-v3-large 0.71 0.97
text-embedding-v3-small 0.71 0.97

Table 5. nDCG@10 results on synthetic data, broken down by embedding model.

A. Additional Parsing Example
Consider the query,

(“dog” OR “cat” AND “mouse”) AND NOT “giraffe”

The corresponding parse tree will be,

AND

OR

dog AND

cat mouse

NOT

giraffe

And the computational graph for combining the scores is,

OPAND

OPOR

sdog OPAND

scat smouse

OPNOT

sgiraffe

With our actual choice of operators this looks like,

∗

+

sdog ∗

scat smouse

1− ·

sgiraffe

Written out as a formula this gives the final retrieval score as

s = (sdog + scat ∗ smouse) ∗ (1− sgiraffe).

B. Additional Results
Breakdown by Embedding Model Table 5 breaks down the synthetic data results by embedding model. We see that
there is little difference between the embedding models we considered.
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NFCorpus SciFact ArguAna

Accuracy 87.29 86.25 85.1

Table 6. Accuracy of question transformation into logical queries.

Accuracy of Query Transformation We investigated how accurate Llama3-70b was at transforming natural language
questions into logical queries. For all the questions we generated for the three datasets in our experiments–NFCropus,
SciFact and ArguaAna–we asked human annotators to assess whether or not the logical query generated by the LLM
accurately reflected the original question. As can be seen in Table 6, the generated logical queries tend to capture the original
question quite well, with accuracies of 85% to 87%. We also examined the queries labelled as inaccurate and found that in
the cases we considered the errors tended to be minor. Below we give an example of inaccurate queries from the NFCorpus,
SciFact and ArguAna datasets respectively.

• Example 1 Natural language question:

What are some studies on the health benefits of anthocyanins that are not specifically focused on cancer
prevention or targeted towards men?

LLM generated query:

”Health benefits of anthocyanins” AND (NOT ”cancer prevention” OR NOT ”targeted towards men”)

Here, the original question is ambiguous about which studies should be excluded.

• Example 2 Natural language question:

What are some recent research topics in the fields of neurology and oncology?

LLM generated query:

”Recent research in neurology” OR ”Current research topics in neurology” AND ”Recent advancements in
oncology” OR ”Current studies in oncology”

Here the AND should have been an OR .

• Example 3 Natural language question:

What are some news articles that are not about agricultural development in Africa or Brexit, or are about a
topic unrelated to peacekeeping?

LLM generated query:

”News articles” AND NOT (”Agricultural development in Africa” OR ”Brexit” OR ”Peacekeeping”)

Here, ”Peacekeeping” should be outside the NOT clause.

C. Data Examples
Below we provide examples of queries from our NFCorpus dataset.

• Example 1

What are the risk factors for pancreatic cancer, excluding those related to MRSA in swine farms, or what are
the benefits of cruciferous compounds in cancer prevention?

• Example 2

What are the health benefits and risks of a vegetarian diet that does not include dairy products, and are there
any natural alternatives to dairy that can provide similar nutritional value?

• Example 3
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What are some ways to prevent cancer through diet, excluding the effects of xenohormesis mechanisms, and
specifically considering the potential benefits of cherries or other foods rich in phenolic compounds?

• Example 4

What are the dietary factors that can help prevent cancer, excluding those related to polycyclic aromatic
hydrocarbons?

• Example 5

What are the effects of bioactive compounds on colon or prostate cancer, excluding studies on their mecha-
nisms of action?

Below, we give the corresponding logical queries generated by the LLM,

• Example 1

(”Risk factors for pancreatic cancer” AND NOT ”MRSA in swine farms”) OR ”Benefits of cruciferous
compounds in cancer prevention”

• Example 2

”Health benefits of a vegetarian diet without dairy products” AND ”Risks of a vegetarian diet without dairy
products” AND (”Natural alternatives to dairy products” OR ”Plant-based alternatives to dairy products”)
AND (”Nutritional value of dairy products” OR ”Nutritional benefits of dairy alternatives”)

• Example 3

”Dietary prevention of cancer” AND NOT ”xenohormesis” AND (”cherries” OR ”foods rich in phenolic
compounds”)

• Example 4

”Dietary factors that help prevent cancer” AND NOT ”Polycyclic aromatic hydrocarbons”

• Example 5

”Effects of bioactive compounds on colon cancer” OR ”Effects of bioactive compounds on prostate cancer”
AND NOT ”Mechanisms of action of bioactive compounds”

D. Reformulation Prompts
Here we give the prompts used for query reformulation in our reasoning methods from Sec. 3.3.

BRIGHT Reasoning prompt

Here is a user query:

\{question\}

(1) Identify the essential question in the query.
(2) Think step by step to reason about what should be included in the relevant documents.
(3) Draft an answer.

9



Number of negations
0 1 2 3

Base 0.95 0.77 0.65 0.52
ITLR 0.99 0.97 0.96 1.00
Calibrated ITLR 1.00 0.98 0.97 1.00

Table 7. Expanded version of Table 1 including calibration.

Logical Formula Prompt

I have a document retrieval system that processes logical queries.
These queries can be of the form,
"term1" AND "term2" OR "term3" AND NOT "term4"

The meaning of the operators AND, OR and NOT should be obvious:
- AND means the retrieved document should be related to both terms
- OR means the retrieved document can be related to either term
- NOT means the retrieved document should not be related to the given term

Given a natural language question from a user, I want to use the retrieval system to
gather documents that contain information relevant to the user’s question.
I need you to create suitable logical query to the retrieval system.
Remember that each of the individual terms can be a keyword, a phrase, a sentence, or even
a whole document. So don’t limit yourselves to keywords.
For example, the following question,
"What is the impact of eating fresh oranges on pancreatic cancer risk,
and its relationship to stage II diabetes"
Could be answered with the query,
"Impact of fresh orange consumption on pancreatic cancer risk" AND
"What is the relationship of eating fresh oranges to stage II diabetes?"
A query that only used keywords, such as
"oranges" AND "consumption" AND "pancreatic cancer" AND "stage II diabetes"
would lose much of the meaning of the original question! It’s not clear if consumption relates
to oranges, so a document that talks about consuming figs, and peeling oranges
would match this query!

Here is the user’s question,
\{question\}

Can you come up with a suitable logical query to the retrieval system? Only include the query
in your answer.

E. Calibration
We also experimented with calibrating the scores from the retrieval models before combining them in ITLR. On the
synthetic data, for a given embedding model and for each term, we generated 20 positive and 20 negative documents using
Llama3-70b. This gave us a dataset of documents x1, . . . , xN , with embedded cosine similarities s1, . . . , sN and labels
y1, . . . , yN ∈ {0, 1}. We then fit a simple calibration model,

ŷi = σ((si − τ) ∗ λ),

using gradient descent. This calibration offered some improvements on our synthetic dataset, as can be seen in Table 7,
which is an expanded version of Table 1 with calibration.
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Figure 4. Expanded version of Fig. 3 including calibration.

Base Dataset Corpus Size Number of Generated Queries

NFCorpus 3,633 960
ArguAna 8,674 960
SciFact 5,183 960

Table 8. Dataset statistics

F. Additional Data Details
Table 8 gives the statistics of the datasets used in our experiments. The datasets were accessed through MTEB (Muennighoff
et al., 2022) under an Apache 2.0 license. These datasets all contain English text.

G. Model Details
Table 9 gives details on the embedding models and LLMs used in our experiments, including parameter counts and how they
were accessed.

H. Synthetic Data Generation
Consider a query,

“mouse” OR “dog” AND NOT “cat”.

Any document that matches this query can be categorized by the individual terms of the query that it does or does not match.
For example, for this query, there are two categories,

1. Matches mouse but not cat

2. Matches dog but not cat

Any of these categories is a list of terms that the document matches, and a list of terms that it doesn’t match. This gives an
easy way to generate matching documents using Llama3-70b by providing terms that should or shouldn’t be matched.

Model Number of Model Parameters Access License

Llama3-70b 70 ∗ 109 API cc-by-nc-4.0
NV-Embed-V1 7.85 ∗ 109 API llama3
text-embedding-3-large Undisclosed API commercial
text-embedding-3-small Undisclosed API commercial

Table 9. Dataset statistics
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There are many documents that don’t match the query, but we want to evaluate against challenging negatives. We can create
these by taking one of the categories above and swapping a condition. For example, a positive document will match “mouse”
but not “cat”. A hard negative could match “mouse” and “cat”. In general, given a list of terms that the document should or
shouldn’t match, we simply move one term to the opposite category. So a hard negative will match all the terms it should to
match the query, except one. Or it will avoid all the terms it should, except one.

Thus, to generate documents for our synthetic data, we first enumerate all the combinations that positive documents should
or shouldn’t match. We then create all the hard negatives by swapping one of the terms. For each set of terms to match or
not match, we create one document. For three term queries, this will result in at most three positive documents. We also
keep up two three negative documents. Hence for each query, we generate up to six documents.

I. Synthetic Queries
We found that the queries in original datasets used in our experiments are overly simple. For example, in the NFCorpus
dataset the queries are the titles of web articles such as ”Philippines”. To better evaluate the retrieval performance under
complex user questions, we created a set of queries based on topics found in the corpus and then used an LLM to evaluate
how relevant each passage was to each query. The passages are completely unchanged. This gives us natural and challenging
queries with a better labelling of relevant passages, while retaining the complexity of a real world document corpus.

To generate the queries, we extract topics from random documents in the corpus. We then create logical queries using the
extracted topics. Finally, we transform these into natural language questions. The Llama3-70b prompts we used are given
below.

Topic Extraction Prompt

You will be given a document. You need to extract all the salient topics from it.
The topics should range from general to specific. Here is the document:
{format_doc(doc)}

Please give the salient topics as a list with one topic per line.
Don’t include anything else in your answer.
Sort the topics from most general to most specific.

Query to Question Prompt

I have a document retrieval system that processes logical queries.
These queries can be of the form,
"term1" AND "term2" OR "term3" AND NOT "term4"

The meaning of the operators AND, OR and NOT should be obvious:
- AND means the retrieved document should be related to both terms
- OR means the retrieved document can be related to either term
- NOT means the retrieved document should not be related to the given term

I want to evaluate the performance of a human user to use this retrieval system.
Given a natural language question, the user needs to come up with a logical query that will best
retrieve relevant documents.
In order to make a dataset for evaluation, I want to operate in reverse. I have collected
many logical queries, and I would like to come up with a corresponding natural language question.
Then I can give the question to a user and see how well the recover they original query.

So, given the following logical query, can you come up with such a natural language question?
Here’s the query,
{query}

What question would you come up with? Only include the question in your answer.
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J. Human Annotations
Human annotators tasked with evaluating the LLM generated queries were paid a fair wage of $25 an hour. They were given
the following instructions

Instruction for Human Annotator: Logical Expression Validation
Task Overview
You will be given a natural language question and a corresponding logical expression

generated by an LLM (Large Language Model). Your task is to determine whether the
logical expression accurately represents the intended meaning of the question.

A correct logical expression should:
- Capture the key intent of the question.
- Properly reflect any exclusions, inclusions, or constraints mentioned.
- Maintain the logical relationships between elements.
Evaluation Criteria
1. Accuracy - Does the logical expression correctly interpret the intent of the question?
2. Completeness - Are all relevant aspects of the question included in the logical

expression?
3. Exclusions - If the question explicitly excludes something, does the logical expression

handle this correctly?
4. Logical Structure - Are the AND, OR, and NOT operators used correctly to reflect the

relationships in the question?
If the logical expression is correct, mark it as valid. If incorrect, mark it as invalid

and provide an explanation of the error.
Examples
Positive Examples (Correct Expressions)
Example 1:
- Natural Language Question: ‘‘How does vitamin D benefit your health? I already know

about bone health, so I want to know other benefits.’’
- Parsed Logical Expression: health benefits of vitamin D AND NOT bone health
- Explanation: The logical expression correctly retrieves information about vitamin D’s

health benefits while excluding bone health, as specified in the question.
Example 2:
- Natural Language Question: ‘‘What are some movies directed by Christopher Nolan,

excluding superhero films?"
- Parsed Logical Expression: movies directed by Christopher Nolan AND NOT superhero films
- Explanation: The logical expression correctly filters out superhero films while still

retrieving Nolan’s other movies.
Example 3:
- Natural Language Question: ‘‘Which laptops have at least 16GB RAM and either an Intel i7

or AMD Ryzen 7 processor?"
- Parsed Logical Expression: laptops AND 16GB RAM AND (Intel i7 OR AMD Ryzen 7)
- Explanation: The expression correctly captures the requirement of 16GB RAM and allows

either processor type, as intended.
Negative Examples (Incorrect Expressions)
Example 4:
- Natural Language Question: ‘‘How does vitamin D benefit your health? I already know

about bone health, so I want to know other benefits."
- Parsed Logical Expression: health benefits of vitamin D OR NOT bone health
- Error: The use of OR NOT instead of AND NOT changes the meaning. The expression may

return results that are completely unrelated to vitamin D.
Example 5:
- Natural Language Question: ‘‘What are some movies directed by Christopher Nolan,

excluding superhero films?"
- Parsed Logical Expression: movies directed by Christopher Nolan OR NOT superhero films
- Error: The OR NOT operator incorrectly allows movies that aren’t superhero films but

might not be directed by Nolan, which is not what the question asks.
Example 6:
- Natural Language Question: ‘‘Which laptops have at least 16GB RAM and either an Intel i7

or AMD Ryzen 7 processor?"
- Parsed Logical Expression: laptops AND (16GB RAM OR Intel i7 OR AMD Ryzen 7)
- Error: The use of OR within the parentheses makes it possible for laptops with only

Intel i7 or AMD Ryzen 7 (but less than 16GB RAM) to be included, which is incorrect.
Final Notes
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- Pay close attention to negations (NOT). Misplacing them can completely alter the meaning.

- Ensure correct grouping with parentheses. Ambiguities in logic can lead to unintended
results.

- Rephrase the natural language question in a structured way before checking the logical
expression.

Your accuracy in annotation ensures that the model correctly understands and processes
logical constraints in natural language.
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