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Abstract

Literature review tables are essential for sum-001
marizing and comparing collections of scien-002
tific papers. We explore the task of generating003
tables that best fulfill a user’s informational004
needs given a collection of scientific papers.005
Building on recent work (Newman et al., 2024),006
we extend prior approaches to address real-007
world complexities through a combination of008
LLM-based methods and human annotations.009
Our contributions focus on three key challenges010
encountered in real-world use: (i) User prompts011
are often under-specified; (ii) Retrieved candi-012
date papers frequently contain irrelevant con-013
tent; and (iii) Task evaluation should move be-014
yond shallow text similarity techniques and in-015
stead assess the utility of inferred tables for016
information-seeking tasks (e.g., comparing pa-017
pers). To support reproducible evaluation, we018
introduce ARXIV2TABLE, a more realistic and019
challenging benchmark for this task, along with020
a novel approach to improve literature review021
table generation in real-world scenarios. Our022
extensive experiments on this benchmark show023
that both open-weight and proprietary LLMs024
struggle with the task, highlighting its difficulty025
and the need for further advancements.026

1 Introduction027

Literature review tables play a crucial role in scien-028

tific research by organizing and summarizing large029

amounts of information from selected papers into030

a concise and comparable format (Russell et al.,031

1993). At the core of these tables are the schema032

and values that define their structure, where schema033

refers to the categories or aspects used to summa-034

rize different papers and values correspond to the035

specific information extracted from each paper. A036

well-defined schema allows each work to be repre-037

sented as a row of values, enabling structured and038

transparent comparisons across different studies.039

With recent advancements in large language040

models (LLMs; OpenAI, 2025b; DeepSeek-AI041

(T2) Paper 
Selection

(T3) Table Induction: 
Schema + Value Generation

Generate a table that analyzes various image-guided fashion retrieval 

methods, highlighting the evolution of network architectures, the datasets 

they were evaluated on, the evaluation criteria used, and the specific loss 

functions applied. The table should provide a detailed comparison of these 

aspects to facilitate understanding of differences across the listed papers.

(T1) Candidate paper retrievalIR
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Figure 1: Overview of our proposed task: Given a user’s
demand, a simulated information retrieval (IR) engine
first retrieves semantically relevant papers. Then, a lan-
guage model further filters them and induces the table’s
corresponding schema and values to satisfy the user’s
demand. The grayed region indicates the scope cov-
ered by our method and benchmark (ARXIV2TABLE).

et al., 2025), several studies (Newman et al., 2024; 042

Dagdelen et al., 2024; Sun et al., 2024) have 043

explored generating literature review tables by 044

prompting LLMs with a set of pre-selected papers 045

and the table’s caption. While these efforts rep- 046

resent meaningful progress, we argue that the ex- 047

isting task definition and evaluation protocols are 048

somewhat unrealistic, thus hindering the practical 049

applicability of generation methods. 050

First, existing pipelines assume that all provided 051

papers are relevant and should be included in the 052

table. However, in real-world scenarios, distractor 053

papers—those that are irrelevant or contain limited 054

useful information—are common (OpenAI, 2025a). 055

Models should be able to identify and filter out such 056

papers before table construction. Additionally, cur- 057

rent pipelines use the ground-truth table’s descrip- 058

tive caption as the objective for generation. These 059

captions often lack sufficient context, making it 060

difficult for LLMs to infer an appropriate schema, 061

or they may inadvertently reveal the schema and 062

values, leading to biased evaluations. 063

In this paper, we introduce our task, as illustrated 064

in Figure 1, which improves upon previous task 065
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definitions through two key adaptations. First, our066

pilot study shows that LLMs struggle to retrieve067

relevant papers from large corpora. To benchmark068

this, we introduce distractor papers by selecting069

them based on semantic similarity to papers in070

the ground-truth table. LLMs must first determine071

which papers should be included before generat-072

ing the table. Second, we replace table captions073

with abstract user demands that describe the goal074

of curating the table, making the task more aligned075

with real-world scenarios. We build upon the ARX-076

IVDIGESTABLES (Newman et al., 2024) dataset077

and construct a sibling benchmark through human078

annotation to verify the selected distractors, com-079

prising 1,957 tables and 7,158 papers.080

Meanwhile, current evaluation methods rely on081

static semantic embeddings to estimate schema082

overlap between generated and ground-truth tables083

and require human annotations to assess the qual-084

ity of unseen schemas and values. However, se-085

mantic embeddings struggle to capture nuanced,086

context-specific variations due to their reliance on087

pre-trained representations, while human annota-088

tion is costly and time-consuming. Moreover, the089

most effective table generation approaches define090

schemas primarily based on paper abstracts. This091

method risks missing important aspects present in092

the full text, leading to loosely defined schemas093

with inconsistent granularity.094

To address these issues, we propose an095

annotation-free evaluation framework that instructs096

an LLM to synthesize QA pairs based on the097

ground-truth table and assess the generated table098

by answering these questions. These QA pairs eval-099

uate table content overlap across three dimensions:100

schema-level, single-cell, and pairwise-cell com-101

parisons. Additionally, we introduce a novel table102

generation method that batches input papers, iter-103

atively refining paper selection and schema def-104

inition by revisiting each paper multiple times.105

Extensive experiments using five LLMs demon-106

strate that they struggle with both selecting relevant107

papers and generating high-quality tables, while108

our method significantly improves performance on109

both fronts. Expert validation further confirms the110

reliability of our QA-synthetic evaluations.111

In summary, our contributions are threefold: (1)112

We introduce an improved task definition for liter-113

ature review tabular generation, benchmarking it114

in a more realistic scenario by incorporating dis-115

tractor papers and replacing table captions with ab-116

stract user demands; (2) We propose an annotation-117

free evaluation framework that leverages LLM- 118

generated QA pairs to assess schema-level, single- 119

cell, and pairwise-cell content overlap, addressing 120

the limitations of static semantic embeddings and 121

human evaluation; and (3) We develop a novel it- 122

erative batch-based table generation method that 123

processes input papers in batches, refining schema 124

definition and paper selection iteratively. 125

To the best of our knowledge, we are the first to 126

introduce a task that simulates real-world use cases 127

of scientific tabular generation by incorporating 128

user demands and distractor papers, providing a 129

more robust assessment of LLMs in this domain. 130

2 Related Works 131

Scientific literature tabular generation Prior 132

works primarily attempt to generate scientific ta- 133

bles through two stages: schema induction and 134

value extraction. For schema induction, early meth- 135

ods like entity-based table generation (Zhang and 136

Balog, 2018) focused on structured input, while 137

recent work has explored schema induction from 138

user queries (Wang et al., 2024) and comparative as- 139

pect extraction (Hashimoto et al., 2017). For value 140

extraction, various approaches such as document- 141

grounded question-answering (Kwiatkowski et al., 142

2019; Dasigi et al., 2021; Lee et al., 2023), aspect- 143

based summarization (Ahuja et al., 2022), and doc- 144

ument summarization (DeYoung et al., 2021; Lu 145

et al., 2020) have been proposed to extract rel- 146

evant information. Beyond these methods, sev- 147

eral datasets have been introduced to support sci- 148

entific table-related tasks, such as TableBank (Li 149

et al., 2020), SciGen (Moosavi et al., 2021), and Sc- 150

iTabQA (Lu et al., 2023). Recently, Newman et al. 151

(2024) proposed streamlining schema and value 152

generation with LLMs sequentially and curated a 153

large-scale benchmark for evaluation. However, all 154

these methods assume a clean and fully relevant 155

set of papers and rely on predefined captions or 156

abstract-based schemas, which risk missing key 157

details. In contrast, we argue for an evaluation ap- 158

proach where candidate papers include tangentially 159

relevant or distracting papers, aligning more closely 160

with real-world literature review workflows. 161

Table induction for general domains Other 162

than the scientific domain, table induction is also 163

widely studied as text-to-table generation. Prior 164

works attempt this as a sequence-to-sequence 165

task (Li et al., 2023; Wu et al., 2022) or as a 166

question-answering problem (Sundar et al., 2024; 167
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Tang et al., 2023). Similar to these works, our168

framework is capable of better handling both struc-169

tured and distractive input for real-world literature170

review and knowledge synthesis.171

3 Task Definition172

We first define a pipeline consisting of three sub-173

tasks that extend prior definitions and better capture174

the real-world usage of literature review tabular175

generation. For all the following tasks, we are176

given a user demand prompt p, which specifies the177

intended purpose of creating the table. (T1) Candi-178

date Paper Retrieval: We begin with a given uni-179

verse of papers (e.g., the content of Google Scholar180

or arXiv) from which relevant papers need to be181

identified. Given a large collection, the goal is to182

use a search engine (IR) to retrieve a subset of can-183

didate papers C := {di}Mi=1 of size M , which may184

include distractor papers—i.e., papers that resem-185

ble the user demand prompt but do not fully satisfy186

the requirement. (T2) Paper Selection: Given C,187

the second subtask is to select the relevant subset of188

size m (m < M ): R := {di}mi=1 ⊆ C, which best189

aligns with the user demand p. T2 differs from T1190

in scale. Due to the large scale of T1, IR engines191

must optimize for recall, ensuring that as many rel-192

evant papers as possible are retrieved. However,193

T2 operates at a smaller scale, where precision is194

the priority, as it focuses on filtering out distrac-195

tors and selecting only the most relevant papers.196

(T3) Table Induction: Given the selected papers197

R, the objective is to generate a table with m rows198

and N columns, where N ≥ 2 (i.e., no single-199

column tables). Each row ri ∈ {r1, r2, . . . , rm}200

corresponds to a unique input document di ∈ R,201

and each column cj ∈ {c1, c2, . . . , cN} represents202

a unique aspect of the documents. We refer to203

these N columns as the schema of the table and204

the N × m cells as the values of the table. The205

value of each cell is derived from its respective206

document according to the aspect defined by the207

corresponding column.208

4 ARXIV2TABLE Construction209

We then construct ARXIV2TABLE based on210

the ARXIVDIGESTABLES dataset which consists211

of literature tables (extracted from computer sci-212

ence papers) and their corresponding captions. We213

filter out tables that are structurally incomplete or214

lack full text for all referenced papers. As a re-215

sult, we are left with 1,957 tables (with captions)216

which have rows referring to 7,158 papers. Our 217

construction involves three pillars: user demand 218

inference (§4.1), a simulated paper retrieval (§4.2) 219

and evaluation through utilization (§4.3). 220

4.1 Constructing User Demand Prompts 221

The first step is to collect user demands p that ex- 222

plicitly describe the desired table (can be under- 223

stood without the table content) and do not reveal 224

the table’s schema or specific values. 225

Table captions are not appropriate prompts 226

While the input dataset contains one caption per ta- 227

ble, collected from arXiv papers, these captions are 228

meant to complement tables rather than fully de- 229

scribe them. As a result, they are generally concise. 230

For example, a table caption might read: “Perfor- 231

mance comparison of different approaches,” which 232

is too vague to understand without seeing the ta- 233

ble. Consequently, using table captions as prompts 234

may not yield a well-defined task. A more contex- 235

tually self-contained rewritten user demand might 236

instead be: “Draft a table that compares differ- 237

ent knowledge editing methods, focusing on their 238

performance on QA datasets.” 239

Our prompt construction To address this issue, 240

we propose rewriting the captions of literature re- 241

view tables into abstract yet descriptive user in- 242

tentions using LLMs. We guide GPT-4o with a 243

prompt (see §A) that first explains the task to the 244

LLM, specifying that the user demand should be 245

sufficiently contextualized to clearly state the ta- 246

ble’s purpose while avoiding the inclusion or direct 247

description of column names or specific values. 248

GPT-4o is then expected to infer the user demand 249

for the given table and its caption. Here, LLM is 250

used solely for rewriting existing table captions 251

into user demand prompts and for generating QA 252

pairs grounded in ground-truth tables. These refor- 253

mulations are strictly tied to observed data and do 254

not require external factual knowledge, minimizing 255

risks of contamination or model-specific bias. For 256

simplicity, we collect only one user demand per 257

table. More examples are provided in Appendix C. 258

Table captions vs. constructed user demand 259

prompts To verify that our collected user de- 260

mands align with our objective, we visualize: (1) 261

the distribution of the number of tokens in the orig- 262

inal and modified user demands, and (2) the ratio 263

of captions and user demands of different lengths 264

that have token overlap with the schema or values. 265
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From Figure 2, we observe that our modified user266

demands are generally longer than the original cap-267

tions, providing a more detailed description of the268

table’s goal. Furthermore, as shown in Table 1,269

user demands exhibit a significantly lower overlap270

ratio with the schema and table values, resulting in271

fewer overlapping tokens.272
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Figure 2: Distribution of the number of tokens between
original captions and our modified user demands.

4.2 Paper Retrieval Simulation273

The unreliability of paper retrieval Next, we274

approach the first subtask, candidate paper retrieval,275

by conducting a pilot study to assess whether LMs276

can reliably retrieve relevant papers from a large277

corpus. For each table, we employ a Sentence-278

BERT (Reimers and Gurevych, 2019) encoder as279

a retrieval engine, selecting papers from the en-280

tire corpus based on the highest similarity between281

the table’s user demand and each paper’s title and282

abstract. We vary the number of retrieved papers283

between 2 and 100 and plot the precision and recall284

of retrieval against the ground-truth papers in the285

original table (Figure 3).286

We observe consistently low precision and re-287

call across different retrieval sizes, highlighting the288

challenge of retrieving relevant papers from a noisy289

corpus. This demonstrates that the first subtask is290

non-trivial and may introduce noise into subtask291

T2. However, various information retrieval engines,292

such as Google Scholar and Semantic Scholar, can293

replace LMs in this subtask. Thus, we decide to294

simulate T1 by manually adding noisy distractor295

papers into C to construct R, ensuring a noisy in-296

put for T2. This allows us to focus on evaluating297

LLMs’ capabilities in the T2 and T3 subtasks.298
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Figure 3: Precision and recall curves for different num-
bers of retrieved papers.

Prompt Content #Table ↓ #Tokens ↓

Caption Schema 101 (5.2%) 1.2
Value 46 (2.4%) 1.3

User Demand Schema 14 (0.7%) 1.0
Value 8 (0.4%) 1.0

Table 1: Overlap statistics between prompts (the origi-
nal caption or our constructed user demand) and table
content (schema or values). #Table: Number (and %)
of tables with at least one token from table content over-
lapping with the prompt. #Tokens: Average count of
overlapping tokens between table content and prompt.

Similarity-based paper retrieval Moving for- 299

ward, we associate distractor paper candidates with 300

each table to simulate a potentially noisy document 301

pool before constructing the table. Ideally, distrac- 302

tor candidates should be semantically related to the 303

table but exhibit key differences that fail to meet the 304

user demand. To select such candidates, we adopt 305

a retrieve-then-annotate approach. First, we use a 306

SentenceBERT encoder F to obtain embeddings 307

for (1) the user demand F (p) and (2) all papers in 308

the corpus {F (di) | di ∈ C}. Each paper’s embed- 309

ding is computed by encoding the concatenation 310

of its title and abstract. We then rank all papers 311

di /∈ R based on the average of two cosine sim- 312

ilarities: (1) the similarity between the candidate 313

and the user demand, and (2) the average similarity 314

between the candidate and each referenced paper: 315

s(di) = cos(F (di), F (p)) +
1

m

m∑
j=1

cos(F (di), F (duj )).

316Higher values of s(di) indicate stronger seman- 317

tic relevance, and we select the top 10 ranked pa- 318

pers for each table as its distractor candidates. 319

Candidates verification via human annotation 320

After selecting these candidates, we conduct hu- 321

man annotations to verify whether they should in- 322

deed be excluded from the table. Given that an- 323

notating these tables requires expert knowledge in 324

computer science, we recruit seven postgraduate 325

students with research experience in the field as 326

annotators. To ensure they are well-prepared for 327

the task, the annotators undergo rigorous training, 328

including pilot annotation exams. Their task is to 329

make a binary decision on whether a given distrac- 330

tor paper—based on its title, abstract, user demand, 331

the ground-truth table, and the titles and abstracts 332

of all referenced papers—should be included in 333

the table. Each table contains annotations for 10 334

papers, with each distractor paper initially assigned 335

to two randomly selected annotators. If both an- 336
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notators agree on the label, it is finalized. Other-337

wise, two additional annotators review the paper338

until a consensus is reached. In the first round, the339

inter-annotator agreement (IAA) is 94% based on340

pairwise agreement, and the Fleiss’ Kappa (Fleiss,341

1971) score is 0.73, indicating a substantial level342

of agreement (Landis and Koch, 1977). Finally,343

for each table, we randomly select a number of344

distractor papers between [m, 10].345

4.3 Evaluation via LLM-based Utilization346

After constructing the benchmark, we propose eval-347

uating the quality of generated tables from a utiliza-348

tion perspective to address the challenge of aligning349

schemas and values despite potential differences350

in phrasing. This is achieved by synthesizing QA351

pairs based on the ground-truth table and using the352

generated table to answer them, or vice versa. The353

flexibility of this QA synthesis allows us to evalu-354

ate multiple dimensions of the table while ensuring355

a structured and scalable assessment. An overview356

with running examples is shown in Figure 4.357

Dimensions of evaluating a table with QAs We358

introduce three key aspects for evaluating a table in359

terms of its usability: (1) Schema: whether a spe-360

cific column is included in the generated schema,361

(2) Unary Value: whether a particular cell from the362

ground-truth table appears in the generated table,363

(3) Pairwise Value: whether relationships between364

two cells remain consistent in the generated table.365

Recall evaluation We guide GPT-4o in generat-366

ing binary QA pairs based on the ground-truth table.367

For the first two aspects, we generate QA pairs for368

all columns and cells, whereas for the third, we369

randomly sample 10 cell pairs per table and synthe-370

size them into QA pairs. We then prompt GPT-4o371

to answer these questions based on the generated372

table, providing yes/no responses. If the answer373

cannot be found, the model is instructed to respond374

with no,” and vice versa for yes.” The ratio of375

“yes” answers indicates how well the generated ta-376

ble preserves the schema, individual values, and377

pairwise relationships. This represents the recall378

of the ground-truth table, measuring how much379

original information is retained in the generated380

table.381

Precision evaluation To additionally evaluate382

precision, we reverse the process: instead of gen-383

erating QA pairs from the ground-truth table, we384

generate them from the generated table and ask an-385
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Figure 4: Overview of our proposed LLM-based QA-
synthesis evaluation protocol, where LLMs synthesize
QA pairs based on the ground-truth table and utilize the
generated table to answer them. The ratio of success-
fully answered QA pairs indicate the ratio of informa-
tion preserved.

other LLM to answer them using the ground-truth 386

table. The precision score reflects how much of the 387

generated table’s content is actually supported by 388

the original data. By computing the ratio of “yes” 389

answers, we quantify the accuracy of the generated 390

table in reflecting genuine ground-truth informa- 391

tion, as well as any additional useful information 392

not present in the ground-truth table. 393

5 Tabular Generation Methodologies 394

We explore a range of methods to evaluate on our 395

proposed task, starting from several baselines in- 396

spired by prior work (§5.1) and then our proposed 397

approach (§5.2). 398

5.1 Baseline Methods 399

We first introduce three methods for generating lit- 400

erature review tables to evaluate their performance 401

on our task and use them as baselines for our pro- 402

posed method. For easy reference, these methods 403

are termed numerically. 404

First, Baseline 1 generates the table in a one-step 405

process. It takes all available papers R and the user 406

demand p as input, and the model is asked to select 407

all relevant papers and output a table with a well- 408

defined schema and filled values in a single round 409

of conversation. However, this method struggles 410

with extremely long prompts that exceed the LLMs’ 411

context window when generating large tables. 412

To address this issue, Baseline 2 processes pa- 413

pers individually. For each document, the model 414

decides whether it should be included based on 415

the user demand. If included, the model gener- 416
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ates a table for that document. After processing417

all documents, the final table is created by merg-418

ing the schemas of all individual tables using exact419

string matching and copying the corresponding val-420

ues. While this approach reduces the input prompt421

length, it results in highly sparse tables due to in-422

consistent schema across papers and the potential423

omission of relevant information when individual424

papers lack sufficient context to define comprehen-425

sive table aspects.426

To overcome both issues, Newman et al. (New-427

man et al., 2024) introduces a two-stage process. In428

the first stage, the model selects papers relevant to429

the user demand based on their titles and abstracts,430

then generates a corresponding schema. In the sec-431

ond stage, the model loops through the selected432

papers and fills in the respective rows based on the433

full text of each document. A minor drawback of434

this method is that the schema is generated solely435

from titles and abstracts, which may overlook de-436

tails present only in the full text. Note that this437

method is the strongest recent baseline for sci-438

entific tabular generation while other text-to-table439

methods (Deng et al., 2024b) are not directly appli-440

cable due to different assumptions.441

5.2 Iterative Batch-based Tabular Generation442

Then, we introduce our proposed method for gen-443

erating literature review tables. Our approach con-444

sists of three steps: (A) key information extraction,445

(B) paper batching, and (C) paper selection and446

schema refinement, where the latter two steps can447

be iterated multiple times.448

(A) Key Information Extraction Processing449

multiple papers simultaneously using their full text450

often results in excessively long prompts that ex-451

ceed the LLMs’ context window. To address this,452

we first shorten each paper by instructing the LLM453

to extract key information from the full text that is454

relevant to the user’s requirements. Notably, we do455

not rely solely on the abstract, as important details456

often appear in the full text but are omitted from the457

abstract. For each paper, we provide the LLM with458

its title, abstract, and full text, along with the user’s459

request, and ask it to generate a concise paragraph460

that preserves all potentially relevant details. These461

summary paragraphs serve as condensed represen-462

tations of the papers for subsequent processing.463

(B) Paper Batching Next, we divide all key in-464

formation paragraphs into smaller batches. Process-465

ing too many papers at once negatively affects the466

model’s performance (as demonstrated by the com- 467

parison of Baseline 1 in Table 2), whereas batching 468

facilitates more efficient comparisons within each 469

batch. For simplicity, we set a batch size of 4 and 470

randomly partition R into
⌈
|R|
4

⌉
batches. 471

(C) Paper Selection and Schema Refinement 472

We initialize an empty schema and table, then se- 473

quentially process each batch with the LLM by 474

providing it with the user’s request and summaries 475

of batched papers. The LLM is instructed to (1) 476

decide whether each paper should be included or 477

removed based on its key information and (2) refine 478

the schema based on the current batch of papers. 479

Schema refinement involves adding or removing 480

specific columns or modifying existing values to 481

align with different formats. For new papers that 482

are not deemed suitable for inclusion yet are not in 483

the current table, we also prompt the LLM to insert 484

a new row according to the refined schema. This 485

ensures that the table remains dynamically struc- 486

tured, continuously adapting to new information 487

while maintaining consistency across batches. 488

Afterward, we iterate steps B and C for k itera- 489

tions. Here k is a hyper-parameter and we set k = 5 490

in our experiments. The rationale is that multiple 491

iterations allow the schema and table contents to 492

progressively improve, ensuring better alignment 493

with user demands. In each iteration, the batches 494

are newly randomized so that each paper is com- 495

pared with different subsets, enabling more robust 496

decision-making and reducing bias from specific 497

batch compositions. This iterative refinement also 498

mitigates errors from earlier batches by revisiting 499

and adjusting prior decisions based on newly pro- 500

cessed information. After completing all iterations, 501

we individually prompt the LLM to revisit the full 502

text of the selected papers to verify the values, 503

thereby completing the tabular generation process. 504

6 Experiments and Analyses 505

6.1 Experiment Setup 506

To demonstrate the generalizability of our method 507

and evaluations, we conduct experiments using 508

two proprietary and three open-source LLMs as 509

backbone model representatives: GPT-4o (OpenAI, 510

2024b), GPT-4o-mini (OpenAI, 2024a), DeepSeek- 511

V3 (685B; DeepSeek-AI et al., 2024), LLAMA- 512

3.3 (70B; Dubey et al., 2024), and Mistral-Large 513

(123B; Mistral-AI, 2024). We apply all baseline 514

methods and our proposed method to each model 515
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Backbone Model Method Paper Schema Unary Value Pairwise Value Avg
Recall P R F1 P R F1 P R F1

LLAMA-3.3 (70B)

Baseline 1 52.8 31.3 37.7 34.2 29.6 40.4 34.2 28.4 31.8 30.0 32.8
Baseline 2 65.4 26.7 69.3 38.5 17.0 56.8 26.2 11.2 22.5 15.0 26.6
Newman et al. 61.9 36.4 40.5 38.3 32.8 44.5 37.8 29.5 30.2 29.8 35.3
Ours 69.3 41.9 55.4 47.7 43.1 62.6 51.1 36.4 46.9 41.0 46.6

Mistral-Large (123B)

Baseline 1 54.7 33.1 34.5 33.8 31.6 30.4 31.0 15.5 24.7 19.0 27.9
Baseline 2 66.8 27.4 65.0 38.5 22.7 47.4 30.7 17.8 30.7 22.6 30.6
Newman et al. 67.9 39.9 41.6 40.7 34.7 46.3 39.7 29.9 35.1 32.3 37.6
Ours 71.3 45.4 56.7 50.4 43.3 61.5 50.8 42.0 49.2 45.3 48.8

DeepSeek-V3 (685B)

Baseline 1 57.5 38.7 41.7 40.1 32.5 43.8 37.3 28.7 31.8 30.1 35.8
Baseline 2 69.8 34.9 69.0 46.4 27.1 55.5 36.4 25.7 32.7 28.8 37.2
Newman et al. 70.9 39.4 44.2 41.7 36.6 49.2 42.0 33.3 36.5 34.8 39.5
Ours 74.3 39.6 56.9 46.7 47.7 65.2 55.1 40.4 49.8 44.6 48.8

GPT-4o-mini

Baseline 1 55.9 32.0 35.7 33.7 28.9 39.3 33.3 25.0 31.0 27.7 31.6
Baseline 2 68.2 31.5 67.7 43.0 27.7 50.8 35.9 21.6 28.3 24.5 34.5
Newman et al. 69.3 40.3 45.9 42.9 38.3 47.5 42.4 35.0 37.8 36.3 40.5
Ours 72.6 46.5 59.7 52.3 49.0 66.7 56.5 43.5 51.9 47.3 52.0

GPT-4o

Baseline 1 58.5 35.8 43.2 39.2 36.9 41.8 39.2 29.0 34.7 31.6 36.7
Baseline 2 70.2 34.2 68.0 45.5 27.9 56.0 37.2 19.4 33.6 24.6 35.8
Newman et al. 71.3 45.0 47.9 46.4 38.7 49.8 43.6 36.9 40.0 38.4 42.8
Ours 74.6 51.5 59.4 55.2 46.1 66.7 54.5 45.9 55.7 50.3 53.3

Table 2: Tabular evaluation results (%) of five LLMs on the ARXIV2TABLE. The best performances within each
backbone are underlined and the best among all backbones are bold-faced. Avg refers to averaging three F1 scores.

and use our evaluation framework to assess the516

quality of the generated tables based on our bench-517

mark, focusing on four aspects: paper selection518

(Paper), schema content overlap (Schema), single-519

cell value overlap (Unary Value), and comparisons520

across cells (Pairwise Value). For paper selection,521

we use recall as the metric to measure the number522

of ground-truth papers successfully selected. For523

the latter three tasks, we report precision (P), recall524

(R), and F1 scores (F1), as explained in §4.3.525

6.2 Main Evaluation Results526

We report the main evaluation results in Table 2527

and summarize our key findings as follows. A vi-528

sual comparison of model-wise performance across529

methods is also provided in Figure 6.530

(1) All methods and models struggle to distin-531

guish relevant papers from distractors. For ex-532

ample, even with their best-performing methods,533

LLAMA-3.3 and GPT-4o achieve only 65.4% and534

71.3% recall on average, respectively. This indi-535

cates that a significant number of distractor pa-536

pers are still being included in the generated tables.537

Additionally, we observe that processing papers538

individually or using only abstracts for inclusion539

decisions yields better performance than concate-540

nating full texts. This suggests that excessively541

long prompts may weaken LLMs’ ability to make542

accurate inclusion decisions for each paper.543

(2) Aligning generated schemas with the ground-544

truth table remains challenging. Among the545

baselines, the second method consistently achieves546

higher recall (e.g., 69.3% with LLAMA-3.3), pri-547

marily because it generates a larger number of548

columns, leading to more overlaps with the ground-549

truth schema. However, other methods exhibit sig- 550

nificantly lower recall, indicating that LLMs still 551

struggle to generate meaningful columns that align 552

well with the ground-truth structure. 553

(3) While unary values are well preserved, pair- 554

wise comparisons suffer substantial losses. Most 555

methods, especially our proposed approach, extract 556

unary values with relatively high F1 scores. How- 557

ever, extracting and maintaining pairwise relation- 558

ships remains challenging. This trend is consistent 559

across different models, suggesting that while in- 560

dividual entries are correctly identified, capturing 561

the relationships between them remains difficult. 562

The significant gap highlights the challenge of pre- 563

serving complex relational comparisons within the 564

generated tables. 565

(4) Our proposed method improves performance 566

across all aspects and models. Across all back- 567

bone models and evaluation criteria, our method 568

consistently outperforms the baselines. For exam- 569

ple, it achieves the highest recall and F1 scores 570

for both unary and pairwise metrics, regardless of 571

model size. This demonstrates that our approach 572

not only enhances overall performance but also pro- 573

vides a more robust solution for handling distractor 574

paper selection and precise table generation. 575

(5) Larger models lead to better performance. 576

For the three open-source LLMs, we observe a 577

clear trend that increasing the model size improves 578

performance across all aspects when using the same 579

method. For instance, with our approach, scaling 580

from 70B to 123B parameters leads to consistent 581

improvements in most aspects and metrics, rein- 582

forcing the importance of stronger generative capa- 583

bilities in addressing this task. 584
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6.3 Ablation Study on Iteration Number585

We further study the impact of the number of it-586

erations, k, in our proposed method to illustrate587

the importance of refining the schema and table588

contents over multiple iterations using different589

batches of papers. As described in §5.2, we per-590

form one round of paper selection and schema re-591

finement five times to achieve optimal performance.592

In this section, we analyze this process by studying593

the model’s performance across previous rounds.594

We select GPT-4o as the backbone model and vi-595

sualize changes in the F1 scores for schema, unary596

value, pairwise comparison overlap, and their av-597

erage, by applying the same evaluation protocol to598

the generated tables across iterations ranging from599

1 (the first cycle) to 5.600

The results are plotted in Figure 5. We observe601

that during the first four iterations, performance602

steadily improves across all aspects, demonstrat-603

ing the effectiveness of iteratively refining paper604

selection and table schema through multiple itera-605

tions and comparisons between different subsets of606

papers. At the fifth iteration, however, the improve-607

ment slows down, and in some cases, performance608

even decreases. One possible reason is that the609

table starts overfitting by including additional val-610

ues that do not appear in the ground-truth table,611

reducing precision and leading to lower F1 scores.612

Considering the overall performance, k = 5 is sup-613

ported as the optimal number of iterations.614

1 2 3 4 5
Iterations

45

50

55

60

Pe
rf

or
m

an
ce

 (%
)

Schema
Unary Value

Pairwise Value
Average

Figure 5: Ablation study on the number of iterations for
our iterative batch-based table generation method.

6.4 Validation of Utilization-Based Evaluation615

To verify the reliability of synthesizing QA pairs616

using LLMs for evaluating tabular data, we con-617

duct two complementary expert assessments. First,618

we invited the authors (as domain experts) to619

manually inspect a random sample of 200 QA620

pairs—spanning schema-level, unary value, and621

pairwise value comparisons. Annotators were622

asked to assess (1) whether each QA pair is firmly623

grounded in the source table, and (2) whether the624

LLM’s answer is correct based on the generated 625

target table. As shown in Table 3, the expert accep- 626

tance rates exceed 98% in all categories, confirm- 627

ing the quality of the synthesized QA pairs. 628

Table Schema Unary Value Pairwise Value

Source 99.5% 100% 98.5%
Target 98.5% 99.5% 97.0%

Table 3: Expert acceptance rate for the synthesized QA
pairs sampled from our evaluations.

Second, we conducted an additional human 629

study to assess whether our LLM-based evaluation 630

aligns with human judgment across different gener- 631

ation methods. For each method, we sampled 300 632

QA pairs, answered them using both LLMs and 633

human annotators, and measured the agreement 634

rate. As shown in Table 4, LLM and human “yes” 635

response rates are highly consistent, with over 97% 636

agreement across all methods. These results rein- 637

force the robustness of our evaluation framework, 638

demonstrating that LLM-synthesized QA pairs pro- 639

vide a scalable and trustworthy proxy for human 640

judgment in assessing semantically diverse tabular 641

outputs. Specifically, these results indicate that the 642

high agreement is not driven by an inherent bias of 643

LLMs toward their own generated QA pairs. 644

Method LLM Rate Human Rate Agreement

Baseline 1 39.1% 39.6% 97.3%
Baseline 2 57.1% 57.3% 98.2%
Newman et al. 42.9% 43.0% 98.6%
Ours 57.3% 57.5% 98.0%

Table 4: Comparison between GPT-4o and human an-
notators on 300 QA pairs. We report the proportion of
“yes” answers by each and their overall agreement.

7 Conclusion 645

In this work, we introduce an improved literature 646

review table generation task that incorporates dis- 647

tractor papers and replaces table captions with ab- 648

stract user demands to better align with real-world 649

scenarios, and curated an associated benchmark. 650

Additionally, we propose an annotation-free evalu- 651

ation framework using LLM-synthesized QA pairs 652

and a novel method to enhance table generation. 653

Our experiments show that current LLMs and ex- 654

isting methods struggle with our task, while our 655

approach significantly improves performance. We 656

envision that our work paves the way for more au- 657

tomated and scalable literature review table genera- 658

tion, ultimately facilitating the efficient synthesis 659

of scientific knowledge in large-scale applications. 660
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Limitations661

A minor limitation is that our work uses ARXIVDI-662

GESTABLES as the source of literature review ta-663

bles for subsequent data reconstruction. However,664

Newman et al. (2024) have included their pipeline665

for scalably extracting literature review tables from666

scientific papers, thus resolving the data reliance667

gap. Beyond the computer science domain, our for-668

mulation and methodology are readily applicable669

to other scientific fields such as medicine, physics,670

and social sciences, where structured comparisons671

across publications are equally valuable. Moreover,672

the core task—generating structured tables from673

noisy, unstructured input with under-specified in-674

tent—extends naturally to real-world applications675

like news fact aggregation, personalized knowledge676

card generation, and structured database population677

from web or legal documents.678

Another limitation of our work is its reliance679

on GPT-4o, a proprietary LLM, for benchmark680

curation and subsequent evaluation, which may681

introduce several issues. First, it raises concerns682

about data contamination (Deng et al., 2024a; Dong683

et al., 2024), as the model may generate user de-684

mands (during benchmark curation) and synthesis685

evaluation questions (when evaluating a generated686

table against the ground truth) that are similar to687

its training data, potentially leading to inflated per-688

formance in table generation. A data provenance689

check (Longpre et al., 2024) can be further imple-690

mented to address this issue. Second, the bench-691

mark and evaluation process may inherit the in-692

ternal knowledge or semantic distribution biases693

of GPT-4o, which could skew the evaluation of694

other LLMs and reduce the generalizability of our695

findings. Lastly, a minor issue is scalability, as cu-696

rating larger datasets using a proprietary model can697

be resource-intensive and may limit accessibility698

when extending our framework to other literature699

or domains. Future work can explore the use of700

open-source LLMs to replicate the entire process701

for convenient adaptation to other tabular datasets.702

Ethics Statement703

The ARXIVDIGESTABLES (Newman et al., 2024)704

dataset used in our work is shared under the Open705

Data Commons License, which grants us access706

to it and allows us to improve and redistribute it707

for research purposes. Regarding language models,708

we access all open-source LMs via the Hugging709

Face Hub (Wolf et al., 2020) and proprietary GPT710

models through their official API1. The number of 711

these models, if available, is marked in Table 2. All 712

associated licenses for these models permit user 713

access for research purposes, and we commit to 714

following all terms of use. 715

When prompting GPT-4o to generate user de- 716

mands and synthetic QA questions, we explicitly 717

state in the prompt that the LLM should not gen- 718

erate any content that contains personal privacy vi- 719

olations, promotes violence, racial discrimination, 720

hate speech, sexual, or self-harm contents. We also 721

manually inspect a random sample of 100 data en- 722

tries generated by GPT-4o for offensive content, 723

and none are detected. Therefore, we believe that 724

our dataset is safe and will not yield any negative 725

or harmful impact. 726

Our human annotations are conducted by recruit- 727

ing five graduate-level students who have sufficient 728

experience in data collection for training large lan- 729

guage models. They are proficient in English, pri- 730

marily from Asia, and are paid above the minimum 731

wage in their local jurisdictions. They receive thor- 732

ough training on the task and are reminded to have 733

a clear understanding of the task instructions be- 734

fore proceeding to annotation. The high level of 735

inter-agreement also confirms the quality of our 736

annotation. The expert annotators have agreed to 737

participate as their contribution to the paper with- 738

out receiving any compensation. 739
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Appendices1072

A Implementation Details1073

In this section, we provide additional implemen-1074

tation details about our benchmark curation and1075

evaluation pipeline, including the prompt we used1076

and the models we accessed.1077

A.1 Prompts Used1078

We first introduce the prompt used to construct1079

the ARXIV2TABLE benchmark, as explained in1080

Section 4. The main step involves prompting LLM1081

is to collect user demands that describe the pur-1082

pose of creating the table while remaining contex-1083

tually self-contained and not revealing the actual1084

schema or values of the table. We use the following1085

prompt to instruct GPT-4o in generating these user1086

demands.1087

Given a literature review table, along1088

with its caption, you are tasked with1089

writing a user demand or intention for1090

the creator of this table. The user1091

demand should be written as though1092

you are instructing an AI system to1093

generate the table. Avoid directly1094

mentioning column names in the table1095

itself, but instead, focus on explaining1096

why the table is needed and what1097

information it should contain. You may1098

include a description of the table’s1099

structure, whether it requires detailed1100

or summarized columns. Additionally,1101

infer the user’s intentions from the1102

titles of the papers the table will1103

include. Limit each user demand to 1-21104

sentences. Examples of good user demands1105

are: I need a table that outlines how1106

each study conceptualizes the problem,1107

categorizes the task, describes the1108

data analyzed, and summarizes the main1109

findings. The table should have detailed1110

columns for each of these aspects.1111

Generate a detailed table comparing1112

the theoretical background, research1113

methodology, and key results of these1114

papers. You can use several columns1115

to capture these aspects for each1116

paper. I want to create a table that1117

summarizes the datasets used to evaluate1118

different GNN models, focusing on the1119

common features and characteristics1120

found across the papers listed below. 1121

The table should have concise columns to 1122

highlight these dataset attributes. Now, 1123

write a user demand for the table below. 1124

The caption of the table is “<CAPTION>”. 1125

The table looks like this: 1126

<TABLE> 1127

The following papers are included in the 1128

table: 1129

<PAPER-1> . . . <PAPER-N> 1130

Write the user demand for this table. Do 1131

not include the column names in the user 1132

demand. Write a concise and clear user 1133

demand covering the function, topic, and 1134

structure of the table with one or two 1135

sentences. The user demand is: 1136

Then, for synthesizing QA pairs from a table, 1137

we use the following prompt to guide GPT-4o in 1138

generating some QA pairs with answers: 1139

You will evaluate the quality of a 1140

generated table by comparing it against 1141

a ground-truth table. The goal is 1142

to assess whether the generated table 1143

correctly retains the schema, individual 1144

values, and pairwise relationships. This 1145

is achieved by generating targeted 1146

QA pairs based on the ground-truth 1147

table and answering them using the 1148

generated table. Step 1: QA Pair 1149

Generation Based on the Ground-Truth 1150

Table Generate binary (Yes/No) QA pairs 1151

focusing on three aspects: Schema 1152

QA Pairs: Check whether a specific 1153

column from the ground-truth table 1154

appears in the generated table schema. 1155

Example: Is Dataset included in the 1156

table schema? Unary Value QA Pairs: 1157

Check whether a specific cell value 1158

from the ground-truth table is present 1159

in the generated table. Example: Is 1160

CL, TL the loss function for paper 1161

CN-LexNet? Pairwise Value QA Pairs: 1162

Check whether a relationship between 1163

two values remains consistent in the 1164

generated table. Example: Is ResNet-v2 1165

using more evaluation metrics than GAN? 1166

For Schema and Unary Value, generate 1167

a QA pair for every column and every 1168

cell, respectively. For Pairwise Value, 1169

randomly sample 10 pairs per table and 1170

construct the corresponding QA pairs. 1171
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Figure 6: Average performance scores of four backbone LLMs across four different methods. The comparison
highlights the consistent improvement of our proposed method over existing baselines and prior work.

Statistic Paper Count Column Count Distractor Count

Min 1 2 4
Max 35 13 10
Mean 3.65 3.56 5.21
Total 7158 6967 10196

Table 5: Summary statistics of the ARXIV2TABLE
benchmark. We report aggregate values for the number
of papers, columns, and distractor papers per table.

Step 2: Answering QA Pairs Using the1172

Generated Table After generating the QA1173

pairs, answer them using the generated1174

table. Provide only "yes" or "no"1175

responses: If the information is present1176

in the generated table, respond with1177

"yes." If the information is missing or1178

different, respond with "no." Your task1179

is to generate the QA pairs based on the1180

ground-truth table and then answer them1181

based on the generated table. Now, begin1182

by generating the QA pairs.1183

The distribution of number of papers per table1184

in ARXIV2TABLE is shown in Figure 7.1185

A.2 Evaluation Implementations1186

We access all open-source LLMs via the Hugging1187

Face library (Wolf et al., 2020). The models used1188

are meta-llama/Llama-3.3-70B-Instruct,1189

mistralai/Mistral-Large-Instruct-2411,1190

and deepseek-ai/DeepSeek-V3.1191

For GPT models, we access them via1192

the official OpenAI Batch API2. The mod-1193

els used are gpt-4o-mini-2024-07-18 and1194

gpt-4o-2024-08-06.1195

Note that the DeepSeek model family has a con-1196

text window limit of 64K tokens, whereas the oth-1197

ers have a limit of 128K tokens. The generation1198

temperature is set to 0.5 for all experiments. All1199

experiments are repeated twice and the average1200

performance is reported.1201

2https://platform.openai.com/docs/guides/batch
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Figure 7: Distribution of number of papers in each table.

A.3 Computational Cost Comparisons 1202

To assess the efficiency and scalability of our itera- 1203

tive batch-based method, we report computational 1204

statistics in Table 6. Each method was run using 1205

the same LLaMA-3.3 model backend. We measure 1206

three aspects: (1) generation success rate, defined 1207

as the proportion of prompts yielding complete ta- 1208

bles within the context window, (2) average token 1209

usage per table, and (3) average runtime per table. 1210

Our method achieves a 100% success rate, outper- 1211

forming the baselines that occasionally fail due to 1212

context limitations or prompt instability. While our 1213

runtime is moderately longer than Baseline 1 and 1214

Baseline 2, it remains comparable to Newman et al. 1215

and stays well within acceptable latency for practi- 1216

cal usage. Furthermore, token usage remains con- 1217

trolled, confirming that our iterative approach does 1218

not incur excessive computational cost despite its 1219

multi-step structure. These results demonstrate that 1220

our method offers a favorable trade-off between 1221

performance and efficiency. 1222

Method Success Rate #Tokens Avg. Runtime

Baseline 1 48.2% 128K 37
Baseline 2 98.2% 167K 118
Newman et al. 99.7% 110K 208
Ours 100.0% 118K 194

Table 6: Computational cost and efficiency metrics
across different generation methods using LLaMA-3.3.
We report the generation success rate, average token
usage, and average runtime (s) per table.
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B Annotation Details1223

To ensure the high quality of our human annota-1224

tions, we implement strict quality control measures.1225

First, we select only postgraduate students with1226

research experience in computer science to ensure1227

they are familiar with relevant topics. All selected1228

annotators undergo qualification rounds, and we1229

invite only those who demonstrate satisfactory per-1230

formance to serve as our main annotators.1231

For each task, we provide workers with com-1232

prehensive task explanations in layman’s terms to1233

enhance their understanding. Additionally, we of-1234

fer detailed definitions and multiple examples for1235

each choice to help annotators make informed de-1236

cisions. Each entry requires the worker to provide1237

a binary vote on whether the paper should be ex-1238

cluded or not. Our annotation interface is shown in1239

Figure 8.1240

To ensure comprehension, we require annotators1241

to confirm that they have thoroughly read the in-1242

structions by ticking a checkbox before starting the1243

annotation task. We also manually monitor the per-1244

formance of annotators throughout the annotation1245

process and provide feedback based on common1246

errors. Spammers or underperforming workers are1247

disqualified. As described in Section 4.2, the inter-1248

annotator agreement supports the quality of our1249

collected annotations.1250

C Case Studies1251

Table 7 presents randomly sampled examples of1252

original table captions alongside their improved1253

user demands, demonstrating how refining vague1254

captions enhances specificity and ensures more1255

structured table generation. The findings highlight1256

that well-defined user demands help capture key1257

aspects of table construction, leading to more infor-1258

mative and targeted tabular representations.1259

Table 8 illustrates schema, unary value, and1260

pairwise value questions designed to assess the1261

quality of generated tables, ensuring alignment1262

with ground-truth information. The results reveal1263

that this QA-based evaluation effectively quanti-1264

fies schema retention, individual value accuracy,1265

and consistency in relationships, providing a struc-1266

tured approach for benchmarking table generation1267

models.1268

In addition, we present two pairs of ground-truth1269

and generated tables as examples for a case study1270

on table generation, as shown in Table 9. From1271

these tables, we observe that the generation process1272

is capable of incorporating many useful columns, 1273

thereby enriching the available information. For 1274

instance, in the first example, the generated table 1275

introduces new columns such as Number of Images, 1276

Number of Subjects, and Avg. Images per Subject, 1277

which add valuable quantitative insights beyond the 1278

original ground truth table. However, it is also evi- 1279

dent that some columns present in the ground truth, 1280

like the Evaluation Metric, are not fully covered in 1281

the generated version. In the second example, the 1282

user demand for detailed descriptions has led to a 1283

generated table with numerous specific columns, 1284

including ID, Method Used, Performance Metric, 1285

and Results Achieved. Although these additional 1286

details enhance the descriptive quality of the table, 1287

they also suggest a potential issue: the need for fur- 1288

ther polishing and refinement of the user demand 1289

to balance detail with clarity. 1290
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Original Table Caption User Demand

Comparison of Trajectory and Path
Planing Approach

Generate a table that compares different trajectory and path planning approaches, focusing
on their collision avoidance techniques, benefits, limitations, and applicable scenarios. The
table should include detailed columns to capture these aspects for each method mentioned
in the relevant papers.

Publications with deep-learning fo-
cused sampling methods. We cluster
the papers based on the space the sam-
ple through and how the samples are
evaluated. Some approaches further
consider an optional refinement stage.

Create a table that categorizes publications focused on deep-learning-based sampling
methods for grasp detection, organizing them by the space in which samples are generated,
the evaluation criteria used, and whether a refinement stage is included. The table should
provide a comprehensive yet concise overview of the methodological variations and
enhancements across different papers.

Categorization of textual explanation
methods.

Create a table that categorizes the methods used for providing textual explanations in visual
question answering systems, focusing on the types of texts generated and the reasoning
processes employed. The table should use succinct columns to differentiate between these
methodological aspects for each paper.

Metadata of the three benchmarks that
we focus on. XSumSota is a com-
bined benchmark of cite:1400aac and
cite:d420ef8 for summaries generated
by the state-of-the-art summarization
models.

Create a table that details the metadata for three summarization benchmarks, focusing
on the composition of annotators, the dataset sizes for validation and testing, and the
distribution of positive and negative evaluations. The table should provide a comprehensive
comparison across these aspects for each benchmark.

Review of open access ground-based
forest datasets

Create a table that reviews various open-access forest datasets, focusing on the publication
and data recording years, types of data collected, and their applicability to specific forestry-
related tasks. The table should offer a concise summary of each dataset’s attributes,
including the number of classification categories and geographical location.

Comparison of existing consistency-
type models.

Create a table that compares different models focusing on their purpose, the trajectory they
follow, the main objects they equate, and their methodological approach. The table should
provide detailed insights into how each model addresses consistency issues, drawing from
specified papers.

Table 7: Randomly sampled examples of the original captions and their corresponding improved user demands.
Most captions are relatively short and may be vague without the full table’s content.

Schema Unary Value Pairwise Value

Is Dataset included in the table schema? Is CL, TL the loss function for paper CN-
LexNet?

Is ResNet-v2 using more evaluation met-
rics than GAN?

Is Model Architecture included in the table
schema?

Is GPT-4o the model used for multimodal
understanding?

Does GPT-4o have a larger parameter size
than LLaMA-2?

Is Training Dataset included in the table
schema?

Is ImageNet the dataset used for training
ResNet?

Is ResNet trained on more samples than
EfficientNet?

Is Performance Metric included in the ta-
ble schema?

Is BLEU-4 the evaluation metric for MT-
BERT?

Does BERT outperform LSTM on BLEU-
4 score?

Is Activation Function included in the table
schema?

Is ReLU the activation function used in
Transformer?

Is GELU smoother than ReLU in function
continuity?

Is Optimization Algorithm included in the
table schema?

Is Adam the optimizer used for training
BERT?

Does Adam converge faster than SGD for
BERT training?

Is Pretraining Task included in the table
schema?

Is Masked Language Modeling the pre-
training task for BERT?

Does BERT use a more complex pretrain-
ing strategy than GPT?

Is Hyperparameter included in the table
schema?

Is the learning rate set to 0.001 for training
ViT?

Does ViT use a higher learning rate than
ResNet?

Is Hardware Accelerator included in the
table schema?

Is TPU used for training T5? Do TPUs provide faster training than
GPUs for T5?

Table 8: Randomly sampled examples of schema, unary value, and pairwise value questions used to evaluate the
quality of generated tables. Each row contains three related questions derived from the same table.
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Figure 8: The annotation interface we used for collecting the gold labels for distractor papers.
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Tasks #Categories Evaluation Metric

fine-grained 100 mean accuracy
face 9131 -

(a) Ground-truth table of the first pair of example.

Number of Images Number of Subjects Avg. Images per Sub-
ject

Number of Classes Dataset Purpose

10,000 100 100 100 Fine-grained visual classification
3,310,000 9,131 362.6 9,131 Face recognition across variations

(b) Generated table of the first pair of example.

Problem Description

Visual Reference Resolution Capturing related visual region through an associative attention memory.
Visual Reference Resolution Selectively referring dialogue history to refine the visual attention until referenc-

ing the answer.
Visual Reference Resolution Establishing mapping of visual object and textual entities to exclude undesired

visual content.
Visual-based Dialogue Strategies Optimization Enhancing response generator with discriminator by RL reward.
Visual-based Dialogue Strategies Optimization Maximizing the information gain while asking questions with a RL paradigm

for explicit dialogue goals.
Pre-trained Vision Language Model-based VAD Training unified Transformer encoder initialized by BERT with two visual

training objectives.
Pre-trained Vision Language Model-based VAD Utilizing GPT-2 to capture cross-modal semantic dependencies.
Unique Training Schemes-based VAD Simulating Dual-coding theory of human cognition to adaptively find query-

related information from the image.
Unique Training Schemes-based VAD Asking questions to confirm the conjecture of models about the referent guided

by human cognitive literature.

(c) Ground-truth table of the second pair of example.

ID Method Used Dataset Problem Ad-
dressed

Performance
Metric

Results
Achieved

Model Type

5677543 Attention memory
model

VisDial Visual dialog
with reference
resolution

Answer predic-
tion accuracy

16% improve-
ment over state-
of-the-art

Generative

54446647 Recursive Visual Atten-
tion mechanism

VisDial v0.9 Visual co-
reference
resolution

Mean Rank State-of-the-art
performance

Generative

236478107 Multimodal transformer
with visual grounding

VisDial v0.9
and v1.0

Visual dialogue
generation

BLEU Achieves new
state-of-the-art
results

Generative

24537813 Adversarial learning
with co-attention

VisDial Visual dialog
generation

Recall@5 +2.14% im-
provement over
the previous
best

Generative

196180698 Goal-oriented question
generation model

GuessWhat?! Goal-oriented
visual dialogue

Accuracy 67.19% on
GuessWhat?!

Generative

216562638 Vision-dialog trans-
former architecture

VisDial v0.9
and v1.0

Visual dialog NDCG New state-
of-the-art
performance

Generative
and Dis-
criminative

220045105 GPT-2 based architec-
ture

AVSD Video-
grounded
dialogue

BLEU Outperforms
existing ap-
proaches

Generative

208138178 Adaptive dual encoding
framework

VisDial Visual dialogue State-of-the-art
results

Generative 2023

237491596 Beam search re-ranking
algorithm

GuessWhat?! Referential
guessing games

Task accuracy +4.35% im-
provement with
re-ranking

Generative

(d) Generated table of the second pair of example.

Table 9: Case studies on the generation of literature review tables in ARXIV2TABLE.
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